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Increasingly, parallel processing is being seen as the only cost-effective method for the fast
solution of computationally large and data-intensive problems. The emergence of inexpensive
parallel computers such as commodity desktop multiprocessors and clusters of workstations or
PCs has made such parallel methods generally applicable, as have software standards for
portable parallel programming. This sets the stage for substantial growth in parallel software.

Data-intensive applications such as transaction processing and information retrieval, data
mining and analysis and multimedia services have provided a new challenge for the modern
generation of parallel platforms. Emerging areas such as computational biology and
nanotechnology have implications for algorithms and systems development, while changes in
architectures, programming models and applications have implications for how parallel
platforms are made available to users in the form of grid-based services.

This book takes into account these new developments as well as covering the more traditional
problems addressed by parallel computers.Where possible it employs an architecture-
independent view of the underlying platforms and designs algorithms for an abstract model.
Message Passing Interface (MPI), POSIX threads and OpenMP have been selected as
programming models and the evolving application mix of parallel computing is reflected in
various examples throughout the book.
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Preface
Since the 1994 release of the text "Introduction to Parallel Computing: Design and Analysis of
Algorithms" by the same authors, the field of parallel computing has undergone significant
changes. Whereas tightly coupled scalable message-passing platforms were the norm a decade
ago, a significant portion of the current generation of platforms consists of inexpensive clusters
of workstations, and multiprocessor workstations and servers. Programming models for these
platforms have also evolved over this time. Whereas most machines a decade back relied on
custom APIs for messaging and loop-based parallelism, current models standardize these APIs
across platforms. Message passing libraries such as PVM and MPI, thread libraries such as
POSIX threads, and directive based models such as OpenMP are widely accepted as standards,
and have been ported to a variety of platforms.

With respect to applications, fluid dynamics, structural mechanics, and signal processing formed
dominant applications a decade back. These applications continue to challenge the current
generation of parallel platforms. However, a variety of new applications have also become
important. These include data-intensive applications such as transaction processing and
information retrieval, data mining and analysis, and multimedia services. Applications in
emerging areas of computational biology and nanotechnology pose tremendous challenges for
algorithms and systems development. Changes in architectures, programming models, and
applications are also being accompanied by changes in how parallel platforms are made
available to the users in the form of grid-based services.

This evolution has a profound impact on the process of design, analysis, and implementation of
parallel algorithms. Whereas the emphasis of parallel algorithm design a decade back was on
precise mapping of tasks to specific topologies such as meshes and hypercubes, current
emphasis is on programmability and portability, both from points of view of algorithm design
and implementation. To this effect, where possible, this book employs an architecture
independent view of the underlying platforms and designs algorithms for an abstract model.
With respect to programming models, Message Passing Interface (MPI), POSIX threads, and
OpenMP have been selected. The evolving application mix for parallel computing is also
reflected in various examples in the book.

This book forms the basis for a single concentrated course on parallel computing or a two-part
sequence. Some suggestions for such a two-part sequence are:

Introduction to Parallel Computing: Chapters 1–6. This course would provide the basics of
algorithm design and parallel programming.

1.

Design and Analysis of Parallel Algorithms: Chapters 2 and 3 followed by Chapters 8–12.
This course would provide an in-depth coverage of design and analysis of various parallel
algorithms.

2.

The material in this book has been tested in Parallel Algorithms and Parallel Computing courses
at the University of Minnesota and Purdue University. These courses are taken primarily by
graduate students and senior-level undergraduate students in Computer Science. In addition,
related courses in Scientific Computation, for which this material has also been tested, are
taken by graduate students in science and engineering, who are interested in solving
computationally intensive problems.



Most chapters of the book include (i) examples and illustrations; (ii) problems that supplement
the text and test students' understanding of the material; and (iii) bibliographic remarks to aid
researchers and students interested in learning more about related and advanced topics. The
comprehensive subject index helps the reader locate terms they might be interested in. The
page number on which a term is defined is highlighted in boldface in the index. Furthermore,
the term itself appears in bold italics where it is defined. The sections that deal with relatively
complex material are preceded by a '*'. An instructors' manual containing slides of the figures
and solutions to selected problems is also available from the publisher
(http://www.booksites.net/kumar).

As with our previous book, we view this book as a continually evolving resource. We thank all
the readers who have kindly shared critiques, opinions, problems, code, and other information
relating to our first book. It is our sincere hope that we can continue this interaction centered
around this new book. We encourage readers to address communication relating to this book to
book-vk@cs.umn.edu. All relevant reader input will be added to the information archived at the
site http://www.cs.umn.edu/~parbook with due credit to (and permission of) the sender(s). An
on-line errata of the book will also be maintained at the site. We believe that in a highly
dynamic field such as ours, a lot is to be gained from a healthy exchange of ideas and material
in this manner.
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Chapter 1. Introduction to Parallel
Computing
The past decade has seen tremendous advances in microprocessor technology. Clock rates of
processors have increased from about 40 MHz (e.g., a MIPS R3000, circa 1988) to over 2.0 GHz
(e.g., a Pentium 4, circa 2002). At the same time, processors are now capable of executing
multiple instructions in the same cycle. The average number of cycles per instruction (CPI) of
high end processors has improved by roughly an order of magnitude over the past 10 years. All
this translates to an increase in the peak floating point operation execution rate (floating point
operations per second, or FLOPS) of several orders of magnitude. A variety of other issues have
also become important over the same period. Perhaps the most prominent of these is the ability
(or lack thereof) of the memory system to feed data to the processor at the required rate.
Significant innovations in architecture and software have addressed the alleviation of
bottlenecks posed by the datapath and the memory.

The role of concurrency in accelerating computing elements has been recognized for several
decades. However, their role in providing multiplicity of datapaths, increased access to storage
elements (both memory and disk), scalable performance, and lower costs is reflected in the
wide variety of applications of parallel computing. Desktop machines, engineering workstations,
and compute servers with two, four, or even eight processors connected together are becoming
common platforms for design applications. Large scale applications in science and engineering
rely on larger configurations of parallel computers, often comprising hundreds of processors.
Data intensive platforms such as database or web servers and applications such as transaction
processing and data mining often use clusters of workstations that provide high aggregate disk
bandwidth. Applications in graphics and visualization use multiple rendering pipes and
processing elements to compute and render realistic environments with millions of polygons in
real time. Applications requiring high availability rely on parallel and distributed platforms for
redundancy. It is therefore extremely important, from the point of view of cost, performance,
and application requirements, to understand the principles, tools, and techniques for
programming the wide variety of parallel platforms currently available.
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1.1 Motivating Parallelism

Development of parallel software has traditionally been thought of as time and effort intensive.
This can be largely attributed to the inherent complexity of specifying and coordinating
concurrent tasks, a lack of portable algorithms, standardized environments, and software
development toolkits. When viewed in the context of the brisk rate of development of
microprocessors, one is tempted to question the need for devoting significant effort towards
exploiting parallelism as a means of accelerating applications. After all, if it takes two years to
develop a parallel application, during which time the underlying hardware and/or software
platform has become obsolete, the development effort is clearly wasted. However, there are
some unmistakable trends in hardware design, which indicate that uniprocessor (or implicitly
parallel) architectures may not be able to sustain the rate of realizable performance increments
in the future. This is a result of lack of implicit parallelism as well as other bottlenecks such as
the datapath and the memory. At the same time, standardized hardware interfaces have
reduced the turnaround time from the development of a microprocessor to a parallel machine
based on the microprocessor. Furthermore, considerable progress has been made in
standardization of programming environments to ensure a longer life-cycle for parallel
applications. All of these present compelling arguments in favor of parallel computing platforms.

1.1.1 The Computational Power Argument – from Transistors to FLOPS

In 1965, Gordon Moore made the following simple observation:

"The complexity for minimum component costs has increased at a rate of roughly a factor
of two per year. Certainly over the short term this rate can be expected to continue, if not
to increase. Over the longer term, the rate of increase is a bit more uncertain, although
there is no reason to believe it will not remain nearly constant for at least 10 years. That
means by 1975, the number of components per integrated circuit for minimum cost will be
65,000."

His reasoning was based on an empirical log-linear relationship between device complexity and
time, observed over three data points. He used this to justify that by 1975, devices with as
many as 65,000 components would become feasible on a single silicon chip occupying an area
of only about one-fourth of a square inch. This projection turned out to be accurate with the
fabrication of a 16K CCD memory with about 65,000 components in 1975. In a subsequent
paper in 1975, Moore attributed the log-linear relationship to exponential behavior of die sizes,
finer minimum dimensions, and "circuit and device cleverness". He went on to state that:

"There is no room left to squeeze anything out by being clever. Going forward from here
we have to depend on the two size factors - bigger dies and finer dimensions."

He revised his rate of circuit complexity doubling to 18 months and projected from 1975
onwards at this reduced rate. This curve came to be known as "Moore's Law". Formally, Moore's
Law states that circuit complexity doubles every eighteen months. This empirical relationship
has been amazingly resilient over the years both for microprocessors as well as for DRAMs. By
relating component density and increases in die-size to the computing power of a device,
Moore's law has been extrapolated to state that the amount of computing power available at a
given cost doubles approximately every 18 months.

The limits of Moore's law have been the subject of extensive debate in the past few years.



Staying clear of this debate, the issue of translating transistors into useful OPS (operations per
second) is the critical one. It is possible to fabricate devices with very large transistor counts.
How we use these transistors to achieve increasing rates of computation is the key architectural
challenge. A logical recourse to this is to rely on parallelism – both implicit and explicit. We will
briefly discuss implicit parallelism in Section 2.1 and devote the rest of this book to exploiting
explicit parallelism.

1.1.2 The Memory/Disk Speed Argument

The overall speed of computation is determined not just by the speed of the processor, but also
by the ability of the memory system to feed data to it. While clock rates of high-end processors
have increased at roughly 40% per year over the past decade, DRAM access times have only
improved at the rate of roughly 10% per year over this interval. Coupled with increases in
instructions executed per clock cycle, this gap between processor speed and memory presents a
tremendous performance bottleneck. This growing mismatch between processor speed and
DRAM latency is typically bridged by a hierarchy of successively faster memory devices called
caches that rely on locality of data reference to deliver higher memory system performance. In
addition to the latency, the net effective bandwidth between DRAM and the processor poses
other problems for sustained computation rates.

The overall performance of the memory system is determined by the fraction of the total
memory requests that can be satisfied from the cache. Memory system performance is
addressed in greater detail in Section 2.2. Parallel platforms typically yield better memory
system performance because they provide (i) larger aggregate caches, and (ii) higher
aggregate bandwidth to the memory system (both typically linear in the number of processors).
Furthermore, the principles that are at the heart of parallel algorithms, namely locality of data
reference, also lend themselves to cache-friendly serial algorithms. This argument can be
extended to disks where parallel platforms can be used to achieve high aggregate bandwidth to
secondary storage. Here, parallel algorithms yield insights into the development of out-of-core
computations. Indeed, some of the fastest growing application areas of parallel computing in
data servers (database servers, web servers) rely not so much on their high aggregate
computation rates but rather on the ability to pump data out at a faster rate.

1.1.3 The Data Communication Argument

As the networking infrastructure evolves, the vision of using the Internet as one large
heterogeneous parallel/distributed computing environment has begun to take shape. Many
applications lend themselves naturally to such computing paradigms. Some of the most
impressive applications of massively parallel computing have been in the context of wide-area
distributed platforms. The SETI (Search for Extra Terrestrial Intelligence) project utilizes the
power of a large number of home computers to analyze electromagnetic signals from outer
space. Other such efforts have attempted to factor extremely large integers and to solve large
discrete optimization problems.

In many applications there are constraints on the location of data and/or resources across the
Internet. An example of such an application is mining of large commercial datasets distributed
over a relatively low bandwidth network. In such applications, even if the computing power is
available to accomplish the required task without resorting to parallel computing, it is infeasible
to collect the data at a central location. In these cases, the motivation for parallelism comes not
just from the need for computing resources but also from the infeasibility or undesirability of
alternate (centralized) approaches.
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1.2 Scope of Parallel Computing

Parallel computing has made a tremendous impact on a variety of areas ranging from
computational simulations for scientific and engineering applications to commercial applications
in data mining and transaction processing. The cost benefits of parallelism coupled with the
performance requirements of applications present compelling arguments in favor of parallel
computing. We present a small sample of the diverse applications of parallel computing.

1.2.1 Applications in Engineering and Design

Parallel computing has traditionally been employed with great success in the design of airfoils
(optimizing lift, drag, stability), internal combustion engines (optimizing charge distribution,
burn), high-speed circuits (layouts for delays and capacitive and inductive effects), and
structures (optimizing structural integrity, design parameters, cost, etc.), among others. More
recently, design of microelectromechanical and nanoelectromechanical systems (MEMS and
NEMS) has attracted significant attention. While most applications in engineering and design
pose problems of multiple spatial and temporal scales and coupled physical phenomena, in the
case of MEMS/NEMS design these problems are particularly acute. Here, we often deal with a
mix of quantum phenomena, molecular dynamics, and stochastic and continuum models with
physical processes such as conduction, convection, radiation, and structural mechanics, all in a
single system. This presents formidable challenges for geometric modeling, mathematical
modeling, and algorithm development, all in the context of parallel computers.

Other applications in engineering and design focus on optimization of a variety of processes.
Parallel computers have been used to solve a variety of discrete and continuous optimization
problems. Algorithms such as Simplex, Interior Point Method for linear optimization and
Branch-and-bound, and Genetic programming for discrete optimization have been efficiently
parallelized and are frequently used.

1.2.2 Scientific Applications

The past few years have seen a revolution in high performance scientific computing
applications. The sequencing of the human genome by the International Human Genome
Sequencing Consortium and Celera, Inc. has opened exciting new frontiers in bioinformatics.
Functional and structural characterization of genes and proteins hold the promise of
understanding and fundamentally influencing biological processes. Analyzing biological
sequences with a view to developing new drugs and cures for diseases and medical conditions
requires innovative algorithms as well as large-scale computational power. Indeed, some of the
newest parallel computing technologies are targeted specifically towards applications in
bioinformatics.

Advances in computational physics and chemistry have focused on understanding processes
ranging in scale from quantum phenomena to macromolecular structures. These have resulted
in design of new materials, understanding of chemical pathways, and more efficient processes.
Applications in astrophysics have explored the evolution of galaxies, thermonuclear processes,
and the analysis of extremely large datasets from telescopes. Weather modeling, mineral
prospecting, flood prediction, etc., rely heavily on parallel computers and have very significant
impact on day-to-day life.



Bioinformatics and astrophysics also present some of the most challenging problems with
respect to analyzing extremely large datasets. Protein and gene databases (such as PDB,
SwissProt, and ENTREZ and NDB) along with Sky Survey datasets (such as the Sloan Digital
Sky Surveys) represent some of the largest scientific datasets. Effectively analyzing these
datasets requires tremendous computational power and holds the key to significant scientific
discoveries.

1.2.3 Commercial Applications

With the widespread use of the web and associated static and dynamic content, there is
increasing emphasis on cost-effective servers capable of providing scalable performance.
Parallel platforms ranging from multiprocessors to linux clusters are frequently used as web and
database servers. For instance, on heavy volume days, large brokerage houses on Wall Street
handle hundreds of thousands of simultaneous user sessions and millions of orders. Platforms
such as IBMs SP supercomputers and Sun Ultra HPC servers power these business-critical sites.
While not highly visible, some of the largest supercomputing networks are housed on Wall
Street.

The availability of large-scale transaction data has also sparked considerable interest in data
mining and analysis for optimizing business and marketing decisions. The sheer volume and
geographically distributed nature of this data require the use of effective parallel algorithms for
such problems as association rule mining, clustering, classification, and time-series analysis.

1.2.4 Applications in Computer Systems

As computer systems become more pervasive and computation spreads over the network,
parallel processing issues become engrained into a variety of applications. In computer security,
intrusion detection is an outstanding challenge. In the case of network intrusion detection, data
is collected at distributed sites and must be analyzed rapidly for signaling intrusion. The
infeasibility of collecting this data at a central location for analysis requires effective parallel and
distributed algorithms. In the area of cryptography, some of the most spectacular applications
of Internet-based parallel computing have focused on factoring extremely large integers.

Embedded systems increasingly rely on distributed control algorithms for accomplishing a
variety of tasks. A modern automobile consists of tens of processors communicating to perform
complex tasks for optimizing handling and performance. In such systems, traditional parallel
and distributed algorithms for leader selection, maximal independent set, etc., are frequently
used.

While parallel computing has traditionally confined itself to platforms with well behaved
compute and network elements in which faults and errors do not play a significant role, there
are valuable lessons that extend to computations on ad-hoc, mobile, or faulty environments.
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1.3 Organization and Contents of the Text

This book provides a comprehensive and self-contained exposition of problem solving using
parallel computers. Algorithms and metrics focus on practical and portable models of parallel
machines. Principles of algorithm design focus on desirable attributes of parallel algorithms and
techniques for achieving these in the contest of a large class of applications and architectures.
Programming techniques cover standard paradigms such as MPI and POSIX threads that are
available across a range of parallel platforms.

Chapters in this book can be grouped into four main parts as illustrated in Figure 1.1. These
parts are as follows:

Figure 1.1. Recommended sequence for reading the chapters.



Fundamentals This section spans Chapters 2 through 4 of the book. Chapter 2, Parallel
Programming Platforms, discusses the physical organization of parallel platforms. It establishes
cost metrics that can be used for algorithm design. The objective of this chapter is not to
provide an exhaustive treatment of parallel architectures; rather, it aims to provide sufficient
detail required to use these machines efficiently. Chapter 3, Principles of Parallel Algorithm
Design, addresses key factors that contribute to efficient parallel algorithms and presents a
suite of techniques that can be applied across a wide range of applications. Chapter 4, Basic
Communication Operations, presents a core set of operations that are used throughout the book
for facilitating efficient data transfer in parallel algorithms. Finally, Chapter 5, Analytical
Modeling of Parallel Programs, deals with metrics for quantifying the performance of a parallel



algorithm.

Parallel Programming This section includes Chapters 6 and 7 of the book. Chapter 6,
Programming Using the Message-Passing Paradigm, focuses on the Message Passing Interface
(MPI) for programming message passing platforms, including clusters. Chapter 7, Programming
Shared Address Space Platforms, deals with programming paradigms such as threads and
directive based approaches. Using paradigms such as POSIX threads and OpenMP, it describes
various features necessary for programming shared-address-space parallel machines. Both of
these chapters illustrate various programming concepts using a variety of examples of parallel
programs.

Non-numerical Algorithms Chapters 9–12 present parallel non-numerical algorithms. Chapter
9 addresses sorting algorithms such as bitonic sort, bubble sort and its variants, quicksort,
sample sort, and shellsort. Chapter 10 describes algorithms for various graph theory problems
such as minimum spanning tree, shortest paths, and connected components. Algorithms for
sparse graphs are also discussed. Chapter 11 addresses search-based methods such as branch-
and-bound and heuristic search for combinatorial problems. Chapter 12 classifies and presents
parallel formulations for a variety of dynamic programming algorithms.

Numerical Algorithms Chapters 8 and 13 present parallel numerical algorithms. Chapter 8
covers basic operations on dense matrices such as matrix multiplication, matrix-vector
multiplication, and Gaussian elimination. This chapter is included before non-numerical
algorithms, as the techniques for partitioning and assigning matrices to processors are common
to many non-numerical algorithms. Furthermore, matrix-vector and matrix-matrix
multiplication algorithms form the kernels of many graph algorithms. Chapter 13 describes
algorithms for computing Fast Fourier Transforms.
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1.4 Bibliographic Remarks

Many books discuss aspects of parallel processing at varying levels of detail. Hardware aspects
of parallel computers have been discussed extensively in several textbooks and monographs
[CSG98, LW95, HX98, AG94, Fly95, AG94, Sto93, DeC89, HB84, RF89, Sie85, Tab90, Tab91,
WF84, Woo86]. A number of texts discuss paradigms and languages for programming parallel
computers [LB98, Pac98, GLS99, GSNL98, CDK+00, WA98, And91, BA82, Bab88, Ble90, Con89,
CT92, Les93, Per87, Wal91]. Akl [Akl97], Cole [Col89], Gibbons and Rytter [GR90], Foster
[Fos95], Leighton [Lei92], Miller and Stout [MS96], and Quinn [Qui94] discuss various aspects
of parallel algorithm design and analysis. Buyya (Editor) [Buy99] and Pfister [Pfi98] discuss
various aspects of parallel computing using clusters. Jaja [Jaj92] covers parallel algorithms for
the PRAM model of computation. Hillis [Hil85, HS86] and Hatcher and Quinn [HQ91] discuss
data-parallel programming. Agha [Agh86] discusses a model of concurrent computation based
on actors. Sharp [Sha85] addresses data-flow computing. Some books provide a general
overview of topics in parallel computing [CL93, Fou94, Zom96, JGD87, LER92, Mol93, Qui94].
Many books address parallel processing applications in numerical analysis and scientific
computing [DDSV99, FJDS96, GO93, Car89]. Fox et al. [FJL+88] and Angus et al. [AFKW90]
provide an application-oriented view of algorithm design for problems in scientific computing.
Bertsekas and Tsitsiklis [BT97] discuss parallel algorithms, with emphasis on numerical
applications.

Akl and Lyons [AL93] discuss parallel algorithms in computational geometry. Ranka and Sahni
[RS90b] and Dew, Earnshaw, and Heywood [DEH89] address parallel algorithms for use in
computer vision. Green [Gre91] covers parallel algorithms for graphics applications. Many
books address the use of parallel processing in artificial intelligence applications [Gup87,
HD89b, KGK90, KKKS94, Kow88, RZ89].

A useful collection of reviews, bibliographies and indexes has been put together by the
Association for Computing Machinery [ACM91]. Messina and Murli [MM91] present a collection
of papers on various aspects of the application and potential of parallel computing. The scope of
parallel processing and various aspects of US government support have also been discussed in
National Science Foundation reports [NSF91, GOV99].

A number of conferences address various aspects of parallel computing. A few important ones
are the Supercomputing Conference, ACM Symposium on Parallel Algorithms and Architectures,
the International Conference on Parallel Processing, the International Parallel and Distributed
Processing Symposium, Parallel Computing, and the SIAM Conference on Parallel Processing.
Important journals in parallel processing include IEEE Transactions on Parallel and Distributed
Systems, International Journal of Parallel Programming, Journal of Parallel and Distributed
Computing, Parallel Computing, IEEE Concurrency, and Parallel Processing Letters. These
proceedings and journals provide a rich source of information on the state of the art in parallel
processing.
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Problems

1.1 Go to the Top 500 Supercomputers site (http://www.top500.org/) and list the five
most powerful supercomputers along with their FLOPS rating.

1.2 List three major problems requiring the use of supercomputing in the following
domains:

Structural Mechanics.1.

Computational Biology.2.

Commercial Applications.3.

1.3 Collect statistics on the number of components in state of the art integrated circuits
over the years. Plot the number of components as a function of time and compare the
growth rate to that dictated by Moore's law.

1.4 Repeat the above experiment for the peak FLOPS rate of processors and compare the
speed to that inferred from Moore's law.
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Chapter 2. Parallel Programming
Platforms
The traditional logical view of a sequential computer consists of a memory connected to a
processor via a datapath. All three components – processor, memory, and datapath – present
bottlenecks to the overall processing rate of a computer system. A number of architectural
innovations over the years have addressed these bottlenecks. One of the most important
innovations is multiplicity – in processing units, datapaths, and memory units. This multiplicity
is either entirely hidden from the programmer, as in the case of implicit parallelism, or exposed
to the programmer in different forms. In this chapter, we present an overview of important
architectural concepts as they relate to parallel processing. The objective is to provide sufficient
detail for programmers to be able to write efficient code on a variety of platforms. We develop
cost models and abstractions for quantifying the performance of various parallel algorithms,
and identify bottlenecks resulting from various programming constructs.

We start our discussion of parallel platforms with an overview of serial and implicitly parallel
architectures. This is necessitated by the fact that it is often possible to re-engineer codes to
achieve significant speedups (2 x to 5 x unoptimized speed) using simple program
transformations. Parallelizing sub-optimal serial codes often has undesirable effects of
unreliable speedups and misleading runtimes. For this reason, we advocate optimizing serial
performance of codes before attempting parallelization. As we shall demonstrate through this
chapter, the tasks of serial and parallel optimization often have very similar characteristics.
After discussing serial and implicitly parallel architectures, we devote the rest of this chapter to
organization of parallel platforms, underlying cost models for algorithms, and platform
abstractions for portable algorithm design. Readers wishing to delve directly into parallel
architectures may choose to skip Sections 2.1 and 2.2.

[ Team LiB ]  



[ Team LiB ]  

2.1 Implicit Parallelism: Trends in Microprocessor
Architectures*

While microprocessor technology has delivered significant improvements in clock speeds over
the past decade, it has also exposed a variety of other performance bottlenecks. To alleviate
these bottlenecks, microprocessor designers have explored alternate routes to cost-effective
performance gains. In this section, we will outline some of these trends with a view to
understanding their limitations and how they impact algorithm and code development. The
objective here is not to provide a comprehensive description of processor architectures. There
are several excellent texts referenced in the bibliography that address this topic.

Clock speeds of microprocessors have posted impressive gains - two to three orders of
magnitude over the past 20 years. However, these increments in clock speed are severely
diluted by the limitations of memory technology. At the same time, higher levels of device
integration have also resulted in a very large transistor count, raising the obvious issue of how
best to utilize them. Consequently, techniques that enable execution of multiple instructions in a
single clock cycle have become popular. Indeed, this trend is evident in the current generation
of microprocessors such as the Itanium, Sparc Ultra, MIPS, and Power4. In this section, we
briefly explore mechanisms used by various processors for supporting multiple instruction
execution.

2.1.1 Pipelining and Superscalar Execution

Processors have long relied on pipelines for improving execution rates. By overlapping various
stages in instruction execution (fetch, schedule, decode, operand fetch, execute, store, among
others), pipelining enables faster execution. The assembly-line analogy works well for
understanding pipelines. If the assembly of a car, taking 100 time units, can be broken into 10
pipelined stages of 10 units each, a single assembly line can produce a car every 10 time units!
This represents a 10-fold speedup over producing cars entirely serially, one after the other. It is
also evident from this example that to increase the speed of a single pipeline, one would break
down the tasks into smaller and smaller units, thus lengthening the pipeline and increasing
overlap in execution. In the context of processors, this enables faster clock rates since the tasks
are now smaller. For example, the Pentium 4, which operates at 2.0 GHz, has a 20 stage
pipeline. Note that the speed of a single pipeline is ultimately limited by the largest atomic task
in the pipeline. Furthermore, in typical instruction traces, every fifth to sixth instruction is a
branch instruction. Long instruction pipelines therefore need effective techniques for predicting
branch destinations so that pipelines can be speculatively filled. The penalty of a misprediction
increases as the pipelines become deeper since a larger number of instructions need to be
flushed. These factors place limitations on the depth of a processor pipeline and the resulting
performance gains.

An obvious way to improve instruction execution rate beyond this level is to use multiple
pipelines. During each clock cycle, multiple instructions are piped into the processor in parallel.
These instructions are executed on multiple functional units. We illustrate this process with the
help of an example.



Example 2.1 Superscalar execution

Consider a processor with two pipelines and the ability to simultaneously issue two
instructions. These processors are sometimes also referred to as super-pipelined
processors. The ability of a processor to issue multiple instructions in the same cycle is
referred to as superscalar execution. Since the architecture illustrated in Figure 2.1
allows two issues per clock cycle, it is also referred to as two-way superscalar or dual
issue execution.

Figure 2.1. Example of a two-way superscalar execution of
instructions.

Consider the execution of the first code fragment in Figure 2.1 for adding four
numbers. The first and second instructions are independent and therefore can be
issued concurrently. This is illustrated in the simultaneous issue of the instructions
load R1, @1000 and load R2, @1008 at t = 0. The instructions are fetched, decoded,
and the operands are fetched. The next two instructions, add R1, @1004 and add R2,



@100C are also mutually independent, although they must be executed after the first

two instructions. Consequently, they can be issued concurrently at t = 1 since the
processors are pipelined. These instructions terminate at t = 5. The next two
instructions, add R1, R2 and store R1, @2000 cannot be executed concurrently
since the result of the former (contents of register R1) is used by the latter. Therefore,
only the add instruction is issued at t = 2 and the store instruction at t = 3. Note that
the instruction add R1, R2 can be executed only after the previous two instructions

have been executed. The instruction schedule is illustrated in Figure 2.1(b). The
schedule assumes that each memory access takes a single cycle. In reality, this may
not be the case. The implications of this assumption are discussed in Section 2.2 on

memory system performance. 

In principle, superscalar execution seems natural, even simple. However, a number of issues
need to be resolved. First, as illustrated in Example 2.1, instructions in a program may be
related to each other. The results of an instruction may be required for subsequent instructions.
This is referred to as true data dependency. For instance, consider the second code fragment
in Figure 2.1 for adding four numbers. There is a true data dependency between load R1,
@1000 and add R1, @1004, and similarly between subsequent instructions. Dependencies of this

type must be resolved before simultaneous issue of instructions. This has two implications.
First, since the resolution is done at runtime, it must be supported in hardware. The complexity
of this hardware can be high. Second, the amount of instruction level parallelism in a program
is often limited and is a function of coding technique. In the second code fragment, there can be
no simultaneous issue, leading to poor resource utilization. The three code fragments in Figure
2.1(a) also illustrate that in many cases it is possible to extract more parallelism by reordering
the instructions and by altering the code. Notice that in this example the code reorganization
corresponds to exposing parallelism in a form that can be used by the instruction issue
mechanism.

Another source of dependency between instructions results from the finite resources shared by
various pipelines. As an example, consider the co-scheduling of two floating point operations on
a dual issue machine with a single floating point unit. Although there might be no data
dependencies between the instructions, they cannot be scheduled together since both need the
floating point unit. This form of dependency in which two instructions compete for a single
processor resource is referred to as resource dependency.

The flow of control through a program enforces a third form of dependency between
instructions. Consider the execution of a conditional branch instruction. Since the branch
destination is known only at the point of execution, scheduling instructions a priori across
branches may lead to errors. These dependencies are referred to as branch dependencies or
procedural dependencies and are typically handled by speculatively scheduling across
branches and rolling back in case of errors. Studies of typical traces have shown that on
average, a branch instruction is encountered between every five to six instructions. Therefore,
just as in populating instruction pipelines, accurate branch prediction is critical for efficient
superscalar execution.

The ability of a processor to detect and schedule concurrent instructions is critical to superscalar
performance. For instance, consider the third code fragment in Figure 2.1 which also computes
the sum of four numbers. The reader will note that this is merely a semantically equivalent
reordering of the first code fragment. However, in this case, there is a data dependency
between the first two instructions – load R1, @1000 and add R1, @1004. Therefore, these

instructions cannot be issued simultaneously. However, if the processor had the ability to look
ahead, it would realize that it is possible to schedule the third instruction – load R2, @1008 –

with the first instruction. In the next issue cycle, instructions two and four can be scheduled,
and so on. In this way, the same execution schedule can be derived for the first and third code



fragments. However, the processor needs the ability to issue instructions out-of-order to
accomplish desired reordering. The parallelism available in in-order issue of instructions can be
highly limited as illustrated by this example. Most current microprocessors are capable of out-
of-order issue and completion. This model, also referred to as dynamic instruction issue,
exploits maximum instruction level parallelism. The processor uses a window of instructions
from which it selects instructions for simultaneous issue. This window corresponds to the look-
ahead of the scheduler.

The performance of superscalar architectures is limited by the available instruction level
parallelism. Consider the example in Figure 2.1. For simplicity of discussion, let us ignore the
pipelining aspects of the example and focus on the execution aspects of the program. Assuming
two execution units (multiply-add units), the figure illustrates that there are several zero-issue
cycles (cycles in which the floating point unit is idle). These are essentially wasted cycles from
the point of view of the execution unit. If, during a particular cycle, no instructions are issued on
the execution units, it is referred to as vertical waste; if only part of the execution units are
used during a cycle, it is termed horizontal waste. In the example, we have two cycles of
vertical waste and one cycle with horizontal waste. In all, only three of the eight available cycles
are used for computation. This implies that the code fragment will yield no more than three-
eighths of the peak rated FLOP count of the processor. Often, due to limited parallelism,
resource dependencies, or the inability of a processor to extract parallelism, the resources of
superscalar processors are heavily under-utilized. Current microprocessors typically support up
to four-issue superscalar execution.

2.1.2 Very Long Instruction Word Processors

The parallelism extracted by superscalar processors is often limited by the instruction look-
ahead. The hardware logic for dynamic dependency analysis is typically in the range of 5-10%
of the total logic on conventional microprocessors (about 5% on the four-way superscalar Sun
UltraSPARC). This complexity grows roughly quadratically with the number of issues and can
become a bottleneck. An alternate concept for exploiting instruction-level parallelism used in
very long instruction word (VLIW) processors relies on the compiler to resolve dependencies
and resource availability at compile time. Instructions that can be executed concurrently are
packed into groups and parceled off to the processor as a single long instruction word (thus the
name) to be executed on multiple functional units at the same time.

The VLIW concept, first used in Multiflow Trace (circa 1984) and subsequently as a variant in
the Intel IA64 architecture, has both advantages and disadvantages compared to superscalar
processors. Since scheduling is done in software, the decoding and instruction issue
mechanisms are simpler in VLIW processors. The compiler has a larger context from which to
select instructions and can use a variety of transformations to optimize parallelism when
compared to a hardware issue unit. Additional parallel instructions are typically made available
to the compiler to control parallel execution. However, compilers do not have the dynamic
program state (e.g., the branch history buffer) available to make scheduling decisions. This
reduces the accuracy of branch and memory prediction, but allows the use of more
sophisticated static prediction schemes. Other runtime situations such as stalls on data fetch
because of cache misses are extremely difficult to predict accurately. This limits the scope and
performance of static compiler-based scheduling.

Finally, the performance of VLIW processors is very sensitive to the compilers' ability to detect
data and resource dependencies and read and write hazards, and to schedule instructions for
maximum parallelism. Loop unrolling, branch prediction and speculative execution all play
important roles in the performance of VLIW processors. While superscalar and VLIW processors
have been successful in exploiting implicit parallelism, they are generally limited to smaller
scales of concurrency in the range of four- to eight-way parallelism.
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2.2 Limitations of Memory System Performance*

The effective performance of a program on a computer relies not just on the speed of the
processor but also on the ability of the memory system to feed data to the processor. At the
logical level, a memory system, possibly consisting of multiple levels of caches, takes in a
request for a memory word and returns a block of data of size b containing the requested word
after l nanoseconds. Here, l is referred to as the latency of the memory. The rate at which data
can be pumped from the memory to the processor determines the bandwidth of the memory
system.

It is very important to understand the difference between latency and bandwidth since different,
often competing, techniques are required for addressing these. As an analogy, if water comes
out of the end of a fire hose 2 seconds after a hydrant is turned on, then the latency of the
system is 2 seconds. Once the flow starts, if the hose pumps water at 1 gallon/second then the
'bandwidth' of the hose is 1 gallon/second. If we need to put out a fire immediately, we might
desire a lower latency. This would typically require higher water pressure from the hydrant. On
the other hand, if we wish to fight bigger fires, we might desire a higher flow rate, necessitating
a wider hose and hydrant. As we shall see here, this analogy works well for memory systems as
well. Latency and bandwidth both play critical roles in determining memory system
performance. We examine these separately in greater detail using a few examples.

To study the effect of memory system latency, we assume in the following examples that a
memory block consists of one word. We later relax this assumption while examining the role of
memory bandwidth. Since we are primarily interested in maximum achievable performance, we
also assume the best case cache-replacement policy. We refer the reader to the bibliography for
a detailed discussion of memory system design.

Example 2.2 Effect of memory latency on performance

Consider a processor operating at 1 GHz (1 ns clock) connected to a DRAM with a
latency of 100 ns (no caches). Assume that the processor has two multiply-add units
and is capable of executing four instructions in each cycle of 1 ns. The peak processor
rating is therefore 4 GFLOPS. Since the memory latency is equal to 100 cycles and
block size is one word, every time a memory request is made, the processor must wait
100 cycles before it can process the data. Consider the problem of computing the dot-
product of two vectors on such a platform. A dot-product computation performs one
multiply-add on a single pair of vector elements, i.e., each floating point operation
requires one data fetch. It is easy to see that the peak speed of this computation is
limited to one floating point operation every 100 ns, or a speed of 10 MFLOPS, a very
small fraction of the peak processor rating. This example highlights the need for

effective memory system performance in achieving high computation rates. 

2.2.1 Improving Effective Memory Latency Using Caches

Handling the mismatch in processor and DRAM speeds has motivated a number of architectural



innovations in memory system design. One such innovation addresses the speed mismatch by
placing a smaller and faster memory between the processor and the DRAM. This memory,
referred to as the cache, acts as a low-latency high-bandwidth storage. The data needed by the
processor is first fetched into the cache. All subsequent accesses to data items residing in the
cache are serviced by the cache. Thus, in principle, if a piece of data is repeatedly used, the
effective latency of this memory system can be reduced by the cache. The fraction of data
references satisfied by the cache is called the cache hit ratio of the computation on the system.
The effective computation rate of many applications is bounded not by the processing rate of
the CPU, but by the rate at which data can be pumped into the CPU. Such computations are
referred to as being memory bound. The performance of memory bound programs is critically
impacted by the cache hit ratio.

Example 2.3 Impact of caches on memory system performance

As in the previous example, consider a 1 GHz processor with a 100 ns latency DRAM.
In this case, we introduce a cache of size 32 KB with a latency of 1 ns or one cycle
(typically on the processor itself). We use this setup to multiply two matrices A and B
of dimensions 32 x 32. We have carefully chosen these numbers so that the cache is
large enough to store matrices A and B, as well as the result matrix C. Once again, we
assume an ideal cache placement strategy in which none of the data items are
overwritten by others. Fetching the two matrices into the cache corresponds to
fetching 2K words, which takes approximately 200 µs. We know from elementary
algorithmics that multiplying two n x n matrices takes 2n3 operations. For our
problem, this corresponds to 64K operations, which can be performed in 16K cycles
(or 16 µs) at four instructions per cycle. The total time for the computation is
therefore approximately the sum of time for load/store operations and the time for the
computation itself, i.e., 200+16 µs. This corresponds to a peak computation rate of
64K/216 or 303 MFLOPS. Note that this is a thirty-fold improvement over the previous
example, although it is still less than 10% of the peak processor performance. We see
in this example that by placing a small cache memory, we are able to improve

processor utilization considerably. 

The improvement in performance resulting from the presence of the cache is based on the
assumption that there is repeated reference to the same data item. This notion of repeated
reference to a data item in a small time window is called temporal locality of reference. In our
example, we had O(n2) data accesses and O(n3) computation. (See the Appendix for an
explanation of the O notation.) Data reuse is critical for cache performance because if each data
item is used only once, it would still have to be fetched once per use from the DRAM, and
therefore the DRAM latency would be paid for each operation.

2.2.2 Impact of Memory Bandwidth

Memory bandwidth refers to the rate at which data can be moved between the processor and
memory. It is determined by the bandwidth of the memory bus as well as the memory units.
One commonly used technique to improve memory bandwidth is to increase the size of the
memory blocks. For an illustration, let us relax our simplifying restriction on the size of the
memory block and assume that a single memory request returns a contiguous block of four
words. The single unit of four words in this case is also referred to as a cache line.
Conventional computers typically fetch two to eight words together into the cache. We will see



how this helps the performance of applications for which data reuse is limited.

Example 2.4 Effect of block size: dot-product of two vectors

Consider again a memory system with a single cycle cache and 100 cycle latency
DRAM with the processor operating at 1 GHz. If the block size is one word, the
processor takes 100 cycles to fetch each word. For each pair of words, the dot-product
performs one multiply-add, i.e., two FLOPs. Therefore, the algorithm performs one
FLOP every 100 cycles for a peak speed of 10 MFLOPS as illustrated in Example 2.2.

Now let us consider what happens if the block size is increased to four words, i.e., the
processor can fetch a four-word cache line every 100 cycles. Assuming that the
vectors are laid out linearly in memory, eight FLOPs (four multiply-adds) can be
performed in 200 cycles. This is because a single memory access fetches four
consecutive words in the vector. Therefore, two accesses can fetch four elements of
each of the vectors. This corresponds to a FLOP every 25 ns, for a peak speed of 40
MFLOPS. Note that increasing the block size from one to four words did not change the
latency of the memory system. However, it increased the bandwidth four-fold. In this
case, the increased bandwidth of the memory system enabled us to accelerate the
dot-product algorithm which has no data reuse at all.

Another way of quickly estimating performance bounds is to estimate the cache hit
ratio, using it to compute mean access time per word, and relating this to the FLOP
rate via the underlying algorithm. For example, in this example, there are two DRAM
accesses (cache misses) for every eight data accesses required by the algorithm. This
corresponds to a cache hit ratio of 75%. Assuming that the dominant overhead is
posed by the cache misses, the average memory access time contributed by the
misses is 25% at 100 ns (or 25 ns/word). Since the dot-product has one
operation/word, this corresponds to a computation rate of 40 MFLOPS as before. A
more accurate estimate of this rate would compute the average memory access time
as 0.75 x 1 + 0.25 x 100 or 25.75 ns/word. The corresponding computation rate is

38.8 MFLOPS. 

Physically, the scenario illustrated in Example 2.4 corresponds to a wide data bus (4 words or
128 bits) connected to multiple memory banks. In practice, such wide buses are expensive to
construct. In a more practical system, consecutive words are sent on the memory bus on
subsequent bus cycles after the first word is retrieved. For example, with a 32 bit data bus, the
first word is put on the bus after 100 ns (the associated latency) and one word is put on each
subsequent bus cycle. This changes our calculations above slightly since the entire cache line
becomes available only after 100 + 3 x (memory bus cycle) ns. Assuming a data bus operating
at 200 MHz, this adds 15 ns to the cache line access time. This does not change our bound on
the execution rate significantly.

The above examples clearly illustrate how increased bandwidth results in higher peak
computation rates. They also make certain assumptions that have significance for the
programmer. The data layouts were assumed to be such that consecutive data words in
memory were used by successive instructions. In other words, if we take a computation-centric
view, there is a spatial locality of memory access. If we take a data-layout centric point of
view, the computation is ordered so that successive computations require contiguous data. If
the computation (or access pattern) does not have spatial locality, then effective bandwidth can
be much smaller than the peak bandwidth.



An example of such an access pattern is in reading a dense matrix column-wise when the matrix
has been stored in a row-major fashion in memory. Compilers can often be relied on to do a
good job of restructuring computation to take advantage of spatial locality.

Example 2.5 Impact of strided access

Consider the following code fragment:

1  for (i = 0; i < 1000; i++) 
2          column_sum[i] = 0.0; 
3          for (j = 0; j < 1000; j++) 
4                  column_sum[i] += b[j][i]; 

The code fragment sums columns of the matrix b into a vector column_sum. There are
two observations that can be made: (i) the vector column_sum is small and easily fits
into the cache; and (ii) the matrix b is accessed in a column order as illustrated in

Figure 2.2(a). For a matrix of size 1000 x 1000, stored in a row-major order, this
corresponds to accessing every 1000th entry. Therefore, it is likely that only one word
in each cache line fetched from memory will be used. Consequently, the code

fragment as written above is likely to yield poor performance. 

Figure 2.2. Multiplying a matrix with a vector: (a) multiplying
column-by-column, keeping a running sum; (b) computing each

element of the result as a dot product of a row of the matrix
with the vector.

The above example illustrates problems with strided access (with strides greater than one). The
lack of spatial locality in computation causes poor memory system performance. Often it is
possible to restructure the computation to remove strided access. In the case of our example, a
simple rewrite of the loops is possible as follows:

Example 2.6 Eliminating strided access



Consider the following restructuring of the column-sum fragment:

1  for (i = 0; i < 1000; i++) 
2          column_sum[i] = 0.0; 
3  for (j = 0; j < 1000; j++) 
4          for (i = 0; i < 1000; i++) 
5                  column_sum[i] += b[j][i]; 

In this case, the matrix is traversed in a row-order as illustrated in Figure 2.2(b).
However, the reader will note that this code fragment relies on the fact that the vector
column_sum can be retained in the cache through the loops. Indeed, for this particular

example, our assumption is reasonable. If the vector is larger, we would have to
break the iteration space into blocks and compute the product one block at a time.
This concept is also called tiling an iteration space. The improved performance of this

loop is left as an exercise for the reader. 

So the next question is whether we have effectively solved the problems posed by memory
latency and bandwidth. While peak processor rates have grown significantly over the past
decades, memory latency and bandwidth have not kept pace with this increase. Consequently,
for typical computers, the ratio of peak FLOPS rate to peak memory bandwidth is anywhere
between 1 MFLOPS/MBs (the ratio signifies FLOPS per megabyte/second of bandwidth) to 100
MFLOPS/MBs. The lower figure typically corresponds to large scale vector supercomputers and
the higher figure to fast microprocessor based computers. This figure is very revealing in that it
tells us that on average, a word must be reused 100 times after being fetched into the full
bandwidth storage (typically L1 cache) to be able to achieve full processor utilization. Here, we
define full-bandwidth as the rate of data transfer required by a computation to make it
processor bound.

The series of examples presented in this section illustrate the following concepts:

Exploiting spatial and temporal locality in applications is critical for amortizing memory
latency and increasing effective memory bandwidth.

Certain applications have inherently greater temporal locality than others, and thus have
greater tolerance to low memory bandwidth. The ratio of the number of operations to
number of memory accesses is a good indicator of anticipated tolerance to memory
bandwidth.

Memory layouts and organizing computation appropriately can make a significant impact
on the spatial and temporal locality.

2.2.3 Alternate Approaches for Hiding Memory Latency

Imagine sitting at your computer browsing the web during peak network traffic hours. The lack
of response from your browser can be alleviated using one of three simple approaches:

(i) we anticipate which pages we are going to browse ahead of time and issue requests for them
in advance; (ii) we open multiple browsers and access different pages in each browser, thus
while we are waiting for one page to load, we could be reading others; or (iii) we access a
whole bunch of pages in one go – amortizing the latency across various accesses. The first
approach is called prefetching, the second multithreading, and the third one corresponds to



spatial locality in accessing memory words. Of these three approaches, spatial locality of
memory accesses has been discussed before. We focus on prefetching and multithreading as
techniques for latency hiding in this section.

Multithreading for Latency Hiding

A thread is a single stream of control in the flow of a program. We illustrate threads with a
simple example:

Example 2.7 Threaded execution of matrix multiplication

Consider the following code segment for multiplying an n x n matrix a by a vector b to
get vector c.

1  for(i=0;i<n;i++) 
2     c[i] = dot_product(get_row(a, i), b); 

This code computes each element of c as the dot product of the corresponding row of
a with the vector b. Notice that each dot-product is independent of the other, and

therefore represents a concurrent unit of execution. We can safely rewrite the above
code segment as:

1 for(i=0;i<n;i++) 
2    c[i] = create_thread(dot_product, get_row(a, i), b); 

The only difference between the two code segments is that we have explicitly specified
each instance of the dot-product computation as being a thread. (As we shall learn in
Chapter 7, there are a number of APIs for specifying threads. We have simply chosen
an intuitive name for a function to create threads.) Now, consider the execution of
each instance of the function dot_product. The first instance of this function accesses

a pair of vector elements and waits for them. In the meantime, the second instance of
this function can access two other vector elements in the next cycle, and so on. After l
units of time, where l is the latency of the memory system, the first function instance
gets the requested data from memory and can perform the required computation. In
the next cycle, the data items for the next function instance arrive, and so on. In this

way, in every clock cycle, we can perform a computation. 

The execution schedule in Example 2.7 is predicated upon two assumptions: the memory
system is capable of servicing multiple outstanding requests, and the processor is capable of
switching threads at every cycle. In addition, it also requires the program to have an explicit
specification of concurrency in the form of threads. Multithreaded processors are capable of
maintaining the context of a number of threads of computation with outstanding requests
(memory accesses, I/O, or communication requests) and execute them as the requests are
satisfied. Machines such as the HEP and Tera rely on multithreaded processors that can switch
the context of execution in every cycle. Consequently, they are able to hide latency effectively,
provided there is enough concurrency (threads) to keep the processor from idling. The tradeoffs
between concurrency and latency will be a recurring theme through many chapters of this text.



Prefetching for Latency Hiding

In a typical program, a data item is loaded and used by a processor in a small time window. If
the load results in a cache miss, then the use stalls. A simple solution to this problem is to
advance the load operation so that even if there is a cache miss, the data is likely to have
arrived by the time it is used. However, if the data item has been overwritten between load and
use, a fresh load is issued. Note that this is no worse than the situation in which the load had
not been advanced. A careful examination of this technique reveals that prefetching works for
much the same reason as multithreading. In advancing the loads, we are trying to identify
independent threads of execution that have no resource dependency (i.e., use the same
registers) with respect to other threads. Many compilers aggressively try to advance loads to
mask memory system latency.

Example 2.8 Hiding latency by prefetching

Consider the problem of adding two vectors a and b using a single for loop. In the
first iteration of the loop, the processor requests a[0] and b[0]. Since these are not in

the cache, the processor must pay the memory latency. While these requests are
being serviced, the processor also requests a[1] and b[1]. Assuming that each

request is generated in one cycle (1 ns) and memory requests are satisfied in 100 ns,
after 100 such requests the first set of data items is returned by the memory system.
Subsequently, one pair of vector components will be returned every cycle. In this way,
in each subsequent cycle, one addition can be performed and processor cycles are not

wasted. 

2.2.4 Tradeoffs of Multithreading and Prefetching

While it might seem that multithreading and prefetching solve all the problems related to
memory system performance, they are critically impacted by the memory bandwidth.

Example 2.9 Impact of bandwidth on multithreaded programs

Consider a computation running on a machine with a 1 GHz clock, 4-word cache line,
single cycle access to the cache, and 100 ns latency to DRAM. The computation has a
cache hit ratio at 1 KB of 25% and at 32 KB of 90%. Consider two cases: first, a single
threaded execution in which the entire cache is available to the serial context, and
second, a multithreaded execution with 32 threads where each thread has a cache
residency of 1 KB. If the computation makes one data request in every cycle of 1 ns, in
the first case the bandwidth requirement to DRAM is one word every 10 ns since the
other words come from the cache (90% cache hit ratio). This corresponds to a
bandwidth of 400 MB/s. In the second case, the bandwidth requirement to DRAM
increases to three words every four cycles of each thread (25% cache hit ratio).
Assuming that all threads exhibit similar cache behavior, this corresponds to 0.75

words/ns, or 3 GB/s. 



Example 2.9 illustrates a very important issue, namely that the bandwidth requirements of a
multithreaded system may increase very significantly because of the smaller cache residency of
each thread. In the example, while a sustained DRAM bandwidth of 400 MB/s is reasonable, 3.0
GB/s is more than most systems currently offer. At this point, multithreaded systems become
bandwidth bound instead of latency bound. It is important to realize that multithreading and
prefetching only address the latency problem and may often exacerbate the bandwidth problem.

Another issue relates to the additional hardware resources required to effectively use
prefetching and multithreading. Consider a situation in which we have advanced 10 loads into
registers. These loads require 10 registers to be free for the duration. If an intervening
instruction overwrites the registers, we would have to load the data again. This would not
increase the latency of the fetch any more than the case in which there was no prefetching.
However, now we are fetching the same data item twice, resulting in doubling of the bandwidth
requirement from the memory system. This situation is similar to the one due to cache
constraints as illustrated in Example 2.9. It can be alleviated by supporting prefetching and
multithreading with larger register files and caches.
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2.3 Dichotomy of Parallel Computing Platforms

In the preceding sections, we pointed out various factors that impact the performance of a serial
or implicitly parallel program. The increasing gap in peak and sustainable performance of
current microprocessors, the impact of memory system performance, and the distributed nature
of many problems present overarching motivations for parallelism. We now introduce, at a high
level, the elements of parallel computing platforms that are critical for performance oriented
and portable parallel programming. To facilitate our discussion of parallel platforms, we first
explore a dichotomy based on the logical and physical organization of parallel platforms. The
logical organization refers to a programmer's view of the platform while the physical
organization refers to the actual hardware organization of the platform. The two critical
components of parallel computing from a programmer's perspective are ways of expressing
parallel tasks and mechanisms for specifying interaction between these tasks. The former is
sometimes also referred to as the control structure and the latter as the communication model.

2.3.1 Control Structure of Parallel Platforms

Parallel tasks can be specified at various levels of granularity. At one extreme, each program in
a set of programs can be viewed as one parallel task. At the other extreme, individual
instructions within a program can be viewed as parallel tasks. Between these extremes lie a
range of models for specifying the control structure of programs and the corresponding
architectural support for them.

Example 2.10 Parallelism from single instruction on multiple
processors

Consider the following code segment that adds two vectors:

1  for (i = 0; i < 1000; i++) 
2          c[i] = a[i] + b[i]; 

In this example, various iterations of the loop are independent of each other; i.e.,
c[0] = a[0] + b[0]; c[1] = a[1] + b[1];, etc., can all be executed

independently of each other. Consequently, if there is a mechanism for executing the
same instruction, in this case add on all the processors with appropriate data, we

could execute this loop much faster. 

Processing units in parallel computers either operate under the centralized control of a single
control unit or work independently. In architectures referred to as single instruction stream,
multiple data stream (SIMD), a single control unit dispatches instructions to each processing
unit. Figure 2.3(a) illustrates a typical SIMD architecture. In an SIMD parallel computer, the
same instruction is executed synchronously by all processing units. In Example 2.10, the add

instruction is dispatched to all processors and executed concurrently by them. Some of the
earliest parallel computers such as the Illiac IV, MPP, DAP, CM-2, and MasPar MP-1 belonged to



this class of machines. More recently, variants of this concept have found use in co-processing
units such as the MMX units in Intel processors and DSP chips such as the Sharc. The Intel
Pentium processor with its SSE (Streaming SIMD Extensions) provides a number of instructions
that execute the same instruction on multiple data items. These architectural enhancements rely
on the highly structured (regular) nature of the underlying computations, for example in image
processing and graphics, to deliver improved performance.

Figure 2.3. A typical SIMD architecture (a) and a typical MIMD
architecture (b).

While the SIMD concept works well for structured computations on parallel data structures such
as arrays, often it is necessary to selectively turn off operations on certain data items. For this
reason, most SIMD programming paradigms allow for an "activity mask". This is a binary mask
associated with each data item and operation that specifies whether it should participate in the
operation or not. Primitives such as where (condition) then <stmnt> <elsewhere stmnt>

are used to support selective execution. Conditional execution can be detrimental to the
performance of SIMD processors and therefore must be used with care.

In contrast to SIMD architectures, computers in which each processing element is capable of
executing a different program independent of the other processing elements are called multiple
instruction stream, multiple data stream (MIMD) computers. Figure 2.3(b) depicts a typical
MIMD computer. A simple variant of this model, called the single program multiple data
(SPMD) model, relies on multiple instances of the same program executing on different data. It
is easy to see that the SPMD model has the same expressiveness as the MIMD model since each
of the multiple programs can be inserted into one large if-else block with conditions specified

by the task identifiers. The SPMD model is widely used by many parallel platforms and requires
minimal architectural support. Examples of such platforms include the Sun Ultra Servers,
multiprocessor PCs, workstation clusters, and the IBM SP.

SIMD computers require less hardware than MIMD computers because they have only one
global control unit. Furthermore, SIMD computers require less memory because only one copy
of the program needs to be stored. In contrast, MIMD computers store the program and
operating system at each processor. However, the relative unpopularity of SIMD processors as
general purpose compute engines can be attributed to their specialized hardware architectures,



economic factors, design constraints, product life-cycle, and application characteristics. In
contrast, platforms supporting the SPMD paradigm can be built from inexpensive off-the-shelf
components with relatively little effort in a short amount of time. SIMD computers require
extensive design effort resulting in longer product development times. Since the underlying
serial processors change so rapidly, SIMD computers suffer from fast obsolescence. The
irregular nature of many applications also makes SIMD architectures less suitable. Example
2.11 illustrates a case in which SIMD architectures yield poor resource utilization in the case of
conditional execution.

Example 2.11 Execution of conditional statements on a SIMD
architecture

Consider the execution of a conditional statement illustrated in Figure 2.4. The
conditional statement in Figure 2.4(a) is executed in two steps. In the first step, all
processors that have B equal to zero execute the instruction C = A. All other
processors are idle. In the second step, the 'else' part of the instruction (C = A/B) is
executed. The processors that were active in the first step now become idle. This

illustrates one of the drawbacks of SIMD architectures. 

Figure 2.4. Executing a conditional statement on an SIMD
computer with four processors: (a) the conditional statement;

(b) the execution of the statement in two steps.



2.3.2 Communication Model of Parallel Platforms

There are two primary forms of data exchange between parallel tasks – accessing a shared data
space and exchanging messages.

Shared-Address-Space Platforms

The "shared-address-space" view of a parallel platform supports a common data space that is
accessible to all processors. Processors interact by modifying data objects stored in this shared-
address-space. Shared-address-space platforms supporting SPMD programming are also



referred to as multiprocessors. Memory in shared-address-space platforms can be local
(exclusive to a processor) or global (common to all processors). If the time taken by a
processor to access any memory word in the system (global or local) is identical, the platform is
classified as a uniform memory access (UMA) multicomputer. On the other hand, if the time
taken to access certain memory words is longer than others, the platform is called a non-
uniform memory access (NUMA) multicomputer. Figures 2.5(a) and (b) illustrate UMA
platforms, whereas Figure 2.5(c) illustrates a NUMA platform. An interesting case is illustrated
in Figure 2.5(b). Here, it is faster to access a memory word in cache than a location in memory.
However, we still classify this as a UMA architecture. The reason for this is that all current
microprocessors have cache hierarchies. Consequently, even a uniprocessor would not be
termed UMA if cache access times are considered. For this reason, we define NUMA and UMA
architectures only in terms of memory access times and not cache access times. Machines such
as the SGI Origin 2000 and Sun Ultra HPC servers belong to the class of NUMA multiprocessors.
The distinction between UMA and NUMA platforms is important. If accessing local memory is
cheaper than accessing global memory, algorithms must build locality and structure data and
computation accordingly.

Figure 2.5. Typical shared-address-space architectures: (a) Uniform-
memory-access shared-address-space computer; (b) Uniform-

memory-access shared-address-space computer with caches and
memories; (c) Non-uniform-memory-access shared-address-space

computer with local memory only.

The presence of a global memory space makes programming such platforms much easier. All
read-only interactions are invisible to the programmer, as they are coded no differently than in
a serial program. This greatly eases the burden of writing parallel programs. Read/write
interactions are, however, harder to program than the read-only interactions, as these
operations require mutual exclusion for concurrent accesses. Shared-address-space
programming paradigms such as threads (POSIX, NT) and directives (OpenMP) therefore
support synchronization using locks and related mechanisms.

The presence of caches on processors also raises the issue of multiple copies of a single memory
word being manipulated by two or more processors at the same time. Supporting a shared-
address-space in this context involves two major tasks: providing an address translation
mechanism that locates a memory word in the system, and ensuring that concurrent operations
on multiple copies of the same memory word have well-defined semantics. The latter is also
referred to as the cache coherence mechanism. This mechanism and its implementation are
discussed in greater detail in Section 2.4.6. Supporting cache coherence requires considerable
hardware support. Consequently, some shared-address-space machines only support an
address translation mechanism and leave the task of ensuring coherence to the programmer.
The native programming model for such platforms consists of primitives such as get and put.

These primitives allow a processor to get (and put) variables stored at a remote processor.



However, if one of the copies of this variable is changed, the other copies are not automatically
updated or invalidated.

It is important to note the difference between two commonly used and often misunderstood
terms – shared-address-space and shared-memory computers. The term shared-memory
computer is historically used for architectures in which the memory is physically shared among
various processors, i.e., each processor has equal access to any memory segment. This is
identical to the UMA model we just discussed. This is in contrast to a distributed-memory
computer, in which different segments of the memory are physically associated with different
processing elements. The dichotomy of shared- versus distributed-memory computers pertains
to the physical organization of the machine and is discussed in greater detail in Section 2.4.
Either of these physical models, shared or distributed memory, can present the logical view of a
disjoint or shared-address-space platform. A distributed-memory shared-address-space
computer is identical to a NUMA machine.

Message-Passing Platforms

The logical machine view of a message-passing platform consists of p processing nodes, each
with its own exclusive address space. Each of these processing nodes can either be single
processors or a shared-address-space multiprocessor – a trend that is fast gaining momentum
in modern message-passing parallel computers. Instances of such a view come naturally from
clustered workstations and non-shared-address-space multicomputers. On such platforms,
interactions between processes running on different nodes must be accomplished using
messages, hence the name message passing. This exchange of messages is used to transfer
data, work, and to synchronize actions among the processes. In its most general form,
message-passing paradigms support execution of a different program on each of the p nodes.

Since interactions are accomplished by sending and receiving messages, the basic operations in
this programming paradigm are send and receive (the corresponding calls may differ across

APIs but the semantics are largely identical). In addition, since the send and receive operations
must specify target addresses, there must be a mechanism to assign a unique identification or
ID to each of the multiple processes executing a parallel program. This ID is typically made
available to the program using a function such as whoami, which returns to a calling process its

ID. There is one other function that is typically needed to complete the basic set of message-
passing operations – numprocs, which specifies the number of processes participating in the

ensemble. With these four basic operations, it is possible to write any message-passing
program. Different message-passing APIs, such as the Message Passing Interface (MPI) and
Parallel Virtual Machine (PVM), support these basic operations and a variety of higher level
functionality under different function names. Examples of parallel platforms that support the
message-passing paradigm include the IBM SP, SGI Origin 2000, and workstation clusters.

It is easy to emulate a message-passing architecture containing p nodes on a shared-address-
space computer with an identical number of nodes. Assuming uniprocessor nodes, this can be
done by partitioning the shared-address-space into p disjoint parts and assigning one such
partition exclusively to each processor. A processor can then "send" or "receive" messages by
writing to or reading from another processor's partition while using appropriate synchronization
primitives to inform its communication partner when it has finished reading or writing the data.
However, emulating a shared-address-space architecture on a message-passing computer is
costly, since accessing another node's memory requires sending and receiving messages.
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2.4 Physical Organization of Parallel Platforms

In this section, we discuss the physical architecture of parallel machines. We start with an ideal
architecture, outline practical difficulties associated with realizing this model, and discuss some
conventional architectures.

2.4.1 Architecture of an Ideal Parallel Computer

A natural extension of the serial model of computation (the Random Access Machine, or RAM)
consists of p processors and a global memory of unbounded size that is uniformly accessible to
all processors. All processors access the same address space. Processors share a common clock
but may execute different instructions in each cycle. This ideal model is also referred to as a
parallel random access machine (PRAM). Since PRAMs allow concurrent access to various
memory locations, depending on how simultaneous memory accesses are handled, PRAMs can
be divided into four subclasses.

Exclusive-read, exclusive-write (EREW) PRAM. In this class, access to a memory
location is exclusive. No concurrent read or write operations are allowed. This is the
weakest PRAM model, affording minimum concurrency in memory access.

1.

Concurrent-read, exclusive-write (CREW) PRAM. In this class, multiple read accesses
to a memory location are allowed. However, multiple write accesses to a memory location
are serialized.

2.

Exclusive-read, concurrent-write (ERCW) PRAM. Multiple write accesses are allowed
to a memory location, but multiple read accesses are serialized.

3.

Concurrent-read, concurrent-write (CRCW) PRAM. This class allows multiple read and
write accesses to a common memory location. This is the most powerful PRAM model.

4.

Allowing concurrent read access does not create any semantic discrepancies in the program.
However, concurrent write access to a memory location requires arbitration. Several protocols
are used to resolve concurrent writes. The most frequently used protocols are as follows:

Common, in which the concurrent write is allowed if all the values that the processors are
attempting to write are identical.

Arbitrary, in which an arbitrary processor is allowed to proceed with the write operation
and the rest fail.

Priority, in which all processors are organized into a predefined prioritized list, and the
processor with the highest priority succeeds and the rest fail.

Sum, in which the sum of all the quantities is written (the sum-based write conflict
resolution model can be extended to any associative operator defined on the quantities
being written).



Architectural Complexity of the Ideal Model

Consider the implementation of an EREW PRAM as a shared-memory computer with p
processors and a global memory of m words. The processors are connected to the memory
through a set of switches. These switches determine the memory word being accessed by each
processor. In an EREW PRAM, each of the p processors in the ensemble can access any of the
memory words, provided that a word is not accessed by more than one processor
simultaneously. To ensure such connectivity, the total number of switches must be Q(mp). (See
the Appendix for an explanation of the Q notation.) For a reasonable memory size, constructing
a switching network of this complexity is very expensive. Thus, PRAM models of computation
are impossible to realize in practice.

2.4.2 Interconnection Networks for Parallel Computers

Interconnection networks provide mechanisms for data transfer between processing nodes or
between processors and memory modules. A blackbox view of an interconnection network
consists of n inputs and m outputs. The outputs may or may not be distinct from the inputs.
Typical interconnection networks are built using links and switches. A link corresponds to
physical media such as a set of wires or fibers capable of carrying information. A variety of
factors influence link characteristics. For links based on conducting media, the capacitive
coupling between wires limits the speed of signal propagation. This capacitive coupling and
attenuation of signal strength are functions of the length of the link.

Interconnection networks can be classified as static or dynamic. Static networks consist of
point-to-point communication links among processing nodes and are also referred to as direct
networks. Dynamic networks, on the other hand, are built using switches and communication
links. Communication links are connected to one another dynamically by the switches to
establish paths among processing nodes and memory banks. Dynamic networks are also
referred to as indirect networks. Figure 2.6(a) illustrates a simple static network of four
processing elements or nodes. Each processing node is connected via a network interface to two
other nodes in a mesh configuration. Figure 2.6(b) illustrates a dynamic network of four nodes
connected via a network of switches to other nodes.

Figure 2.6. Classification of interconnection networks: (a) a static
network; and (b) a dynamic network.



A single switch in an interconnection network consists of a set of input ports and a set of output
ports. Switches provide a range of functionality. The minimal functionality provided by a switch
is a mapping from the input to the output ports. The total number of ports on a switch is also
called the degree of the switch. Switches may also provide support for internal buffering (when
the requested output port is busy), routing (to alleviate congestion on the network), and
multicast (same output on multiple ports). The mapping from input to output ports can be
provided using a variety of mechanisms based on physical crossbars, multi-ported memories,
multiplexor-demultiplexors, and multiplexed buses. The cost of a switch is influenced by the
cost of the mapping hardware, the peripheral hardware and packaging costs. The mapping
hardware typically grows as the square of the degree of the switch, the peripheral hardware
linearly as the degree, and the packaging costs linearly as the number of pins.

The connectivity between the nodes and the network is provided by a network interface. The
network interface has input and output ports that pipe data into and out of the network. It
typically has the responsibility of packetizing data, computing routing information, buffering
incoming and outgoing data for matching speeds of network and processing elements, and error
checking. The position of the interface between the processing element and the network is also
important. While conventional network interfaces hang off the I/O buses, interfaces in tightly
coupled parallel machines hang off the memory bus. Since I/O buses are typically slower than
memory buses, the latter can support higher bandwidth.

2.4.3 Network Topologies

A wide variety of network topologies have been used in interconnection networks. These
topologies try to trade off cost and scalability with performance. While pure topologies have
attractive mathematical properties, in practice interconnection networks tend to be
combinations or modifications of the pure topologies discussed in this section.

Bus-Based Networks

A bus-based network is perhaps the simplest network consisting of a shared medium that is
common to all the nodes. A bus has the desirable property that the cost of the network scales
linearly as the number of nodes, p. This cost is typically associated with bus interfaces.
Furthermore, the distance between any two nodes in the network is constant (O(1)). Buses are
also ideal for broadcasting information among nodes. Since the transmission medium is shared,
there is little overhead associated with broadcast compared to point-to-point message transfer.
However, the bounded bandwidth of a bus places limitations on the overall performance of the
network as the number of nodes increases. Typical bus based machines are limited to dozens of
nodes. Sun Enterprise servers and Intel Pentium based shared-bus multiprocessors are
examples of such architectures.

The demands on bus bandwidth can be reduced by making use of the property that in typical
programs, a majority of the data accessed is local to the node. For such programs, it is possible
to provide a cache for each node. Private data is cached at the node and only remote data is
accessed through the bus.

Example 2.12 Reducing shared-bus bandwidth using caches

Figure 2.7(a) illustrates p processors sharing a bus to the memory. Assuming that
each processor accesses k data items, and each data access takes time tcycle, the



execution time is lower bounded by tcycle x kp seconds. Now consider the hardware
organization of Figure 2.7(b). Let us assume that 50% of the memory accesses (0.5k)
are made to local data. This local data resides in the private memory of the processor.
We assume that access time to the private memory is identical to the global memory,
i.e., tcycle. In this case, the total execution time is lower bounded by 0.5 x tcycle x k +
0.5 x tcycle x kp. Here, the first term results from accesses to local data and the second
term from access to shared data. It is easy to see that as p becomes large, the
organization of Figure 2.7(b) results in a lower bound that approaches 0.5 x tcycle x
kp. This time is a 50% improvement in lower bound on execution time compared to

the organization of Figure 2.7(a). 

Figure 2.7. Bus-based interconnects (a) with no local caches;
(b) with local memory/caches.

In practice, shared and private data is handled in a more sophisticated manner. This is briefly
addressed with cache coherence issues in Section 2.4.6.

Crossbar Networks

A simple way to connect p processors to b memory banks is to use a crossbar network. A
crossbar network employs a grid of switches or switching nodes as shown in Figure 2.8. The
crossbar network is a non-blocking network in the sense that the connection of a processing
node to a memory bank does not block the connection of any other processing nodes to other
memory banks.



Figure 2.8. A completely non-blocking crossbar network connecting p
processors to b memory banks.

The total number of switching nodes required to implement such a network is Q(pb). It is
reasonable to assume that the number of memory banks b is at least p; otherwise, at any given
time, there will be some processing nodes that will be unable to access any memory banks.
Therefore, as the value of p is increased, the complexity (component count) of the switching
network grows as W(p2). (See the Appendix for an explanation of the W notation.) As the
number of processing nodes becomes large, this switch complexity is difficult to realize at high
data rates. Consequently, crossbar networks are not very scalable in terms of cost.

Multistage Networks

The crossbar interconnection network is scalable in terms of performance but unscalable in
terms of cost. Conversely, the shared bus network is scalable in terms of cost but unscalable in
terms of performance. An intermediate class of networks called multistage interconnection
networks lies between these two extremes. It is more scalable than the bus in terms of
performance and more scalable than the crossbar in terms of cost.

The general schematic of a multistage network consisting of p processing nodes and b memory
banks is shown in Figure 2.9. A commonly used multistage connection network is the omega
network. This network consists of log p stages, where p is the number of inputs (processing
nodes) and also the number of outputs (memory banks). Each stage of the omega network
consists of an interconnection pattern that connects p inputs and p outputs; a link exists
between input i and output j if the following is true:

Equation 2.1



Figure 2.9. The schematic of a typical multistage interconnection
network.

Equation 2.1 represents a left-rotation operation on the binary representation of i to obtain j.
This interconnection pattern is called a perfect shuffle. Figure 2.10 shows a perfect shuffle
interconnection pattern for eight inputs and outputs. At each stage of an omega network, a
perfect shuffle interconnection pattern feeds into a set of p/2 switches or switching nodes. Each
switch is in one of two connection modes. In one mode, the inputs are sent straight through to
the outputs, as shown in Figure 2.11(a). This is called the pass-through connection. In the
other mode, the inputs to the switching node are crossed over and then sent out, as shown in
Figure 2.11(b). This is called the cross-over connection.

Figure 2.10. A perfect shuffle interconnection for eight inputs and
outputs.

Figure 2.11. Two switching configurations of the 2 x 2 switch: (a)
Pass-through; (b) Cross-over.



An omega network has p/2 x log p switching nodes, and the cost of such a network grows as
Q(p log p). Note that this cost is less than the Q(p2) cost of a complete crossbar network. Figure
2.12 shows an omega network for eight processors (denoted by the binary numbers on the left)
and eight memory banks (denoted by the binary numbers on the right). Routing data in an
omega network is accomplished using a simple scheme. Let s be the binary representation of a
processor that needs to write some data into memory bank t. The data traverses the link to the
first switching node. If the most significant bits of s and t are the same, then the data is routed
in pass-through mode by the switch. If these bits are different, then the data is routed through
in crossover mode. This scheme is repeated at the next switching stage using the next most
significant bit. Traversing log p stages uses all log p bits in the binary representations of s and
t.

Figure 2.12. A complete omega network connecting eight inputs and
eight outputs.

Figure 2.13 shows data routing over an omega network from processor two (010) to memory
bank seven (111) and from processor six (110) to memory bank four (100). This figure also
illustrates an important property of this network. When processor two (010) is communicating
with memory bank seven (111), it blocks the path from processor six (110) to memory bank
four (100). Communication link AB is used by both communication paths. Thus, in an omega
network, access to a memory bank by a processor may disallow access to another memory bank
by another processor. Networks with this property are referred to as blocking networks.

Figure 2.13. An example of blocking in omega network: one of the
messages (010 to 111 or 110 to 100) is blocked at link AB.



Completely-Connected Network

In a completely-connected network, each node has a direct communication link to every
other node in the network. Figure 2.14(a) illustrates a completely-connected network of eight
nodes. This network is ideal in the sense that a node can send a message to another node in a
single step, since a communication link exists between them. Completely-connected networks
are the static counterparts of crossbar switching networks, since in both networks, the
communication between any input/output pair does not block communication between any
other pair.

Figure 2.14. (a) A completely-connected network of eight nodes; (b) a
star connected network of nine nodes.

Star-Connected Network

In a star-connected network, one processor acts as the central processor. Every other
processor has a communication link connecting it to this processor. Figure 2.14(b) shows a star-
connected network of nine processors. The star-connected network is similar to bus-based
networks. Communication between any pair of processors is routed through the central
processor, just as the shared bus forms the medium for all communication in a bus-based
network. The central processor is the bottleneck in the star topology.



Linear Arrays, Meshes, and k-d Meshes

Due to the large number of links in completely connected networks, sparser networks are
typically used to build parallel computers. A family of such networks spans the space of linear
arrays and hypercubes. A linear array is a static network in which each node (except the two
nodes at the ends) has two neighbors, one each to its left and right. A simple extension of the
linear array (Figure 2.15(a)) is the ring or a 1-D torus (Figure 2.15(b)). The ring has a
wraparound connection between the extremities of the linear array. In this case, each node has
two neighbors.

Figure 2.15. Linear arrays: (a) with no wraparound links; (b) with
wraparound link.

A two-dimensional mesh illustrated in Figure 2.16(a) is an extension of the linear array to two-

dimensions. Each dimension has  nodes with a node identified by a two-tuple (i, j). Every
node (except those on the periphery) is connected to four other nodes whose indices differ in
any dimension by one. A 2-D mesh has the property that it can be laid out in 2-D space, making
it attractive from a wiring standpoint. Furthermore, a variety of regularly structured
computations map very naturally to a 2-D mesh. For this reason, 2-D meshes were often used
as interconnects in parallel machines. Two dimensional meshes can be augmented with
wraparound links to form two dimensional tori illustrated in Figure 2.16(b). The three-
dimensional cube is a generalization of the 2-D mesh to three dimensions, as illustrated in
Figure 2.16(c). Each node element in a 3-D cube, with the exception of those on the periphery,
is connected to six other nodes, two along each of the three dimensions. A variety of physical
simulations commonly executed on parallel computers (for example, 3-D weather modeling,
structural modeling, etc.) can be mapped naturally to 3-D network topologies. For this reason,
3-D cubes are used commonly in interconnection networks for parallel computers (for example,
in the Cray T3E).

Figure 2.16. Two and three dimensional meshes: (a) 2-D mesh with no
wraparound; (b) 2-D mesh with wraparound link (2-D torus); and (c)

a 3-D mesh with no wraparound.

The general class of k-d meshes refers to the class of topologies consisting of d dimensions with
k nodes along each dimension. Just as a linear array forms one extreme of the k-d mesh family,
the other extreme is formed by an interesting topology called the hypercube. The hypercube
topology has two nodes along each dimension and log p dimensions. The construction of a
hypercube is illustrated in Figure 2.17. A zero-dimensional hypercube consists of 20, i.e., one



node. A one-dimensional hypercube is constructed from two zero-dimensional hypercubes by
connecting them. A two-dimensional hypercube of four nodes is constructed from two one-
dimensional hypercubes by connecting corresponding nodes. In general a d-dimensional
hypercube is constructed by connecting corresponding nodes of two (d - 1) dimensional
hypercubes. Figure 2.17 illustrates this for up to 16 nodes in a 4-D hypercube.

Figure 2.17. Construction of hypercubes from hypercubes of lower
dimension.

It is useful to derive a numbering scheme for nodes in a hypercube. A simple numbering
scheme can be derived from the construction of a hypercube. As illustrated in Figure 2.17, if we
have a numbering of two subcubes of p/2 nodes, we can derive a numbering scheme for the
cube of p nodes by prefixing the labels of one of the subcubes with a "0" and the labels of the
other subcube with a "1". This numbering scheme has the useful property that the minimum
distance between two nodes is given by the number of bits that are different in the two labels.
For example, nodes labeled 0110 and 0101 are two links apart, since they differ at two bit
positions. This property is useful for deriving a number of parallel algorithms for the hypercube
architecture.

Tree-Based Networks



A tree network is one in which there is only one path between any pair of nodes. Both linear
arrays and star-connected networks are special cases of tree networks. Figure 2.18 shows
networks based on complete binary trees. Static tree networks have a processing element at
each node of the tree (Figure 2.18(a)). Tree networks also have a dynamic counterpart. In a
dynamic tree network, nodes at intermediate levels are switching nodes and the leaf nodes are
processing elements (Figure 2.18(b)).

Figure 2.18. Complete binary tree networks: (a) a static tree network;
and (b) a dynamic tree network.

To route a message in a tree, the source node sends the message up the tree until it reaches
the node at the root of the smallest subtree containing both the source and destination nodes.
Then the message is routed down the tree towards the destination node.

Tree networks suffer from a communication bottleneck at higher levels of the tree. For example,
when many nodes in the left subtree of a node communicate with nodes in the right subtree, the
root node must handle all the messages. This problem can be alleviated in dynamic tree
networks by increasing the number of communication links and switching nodes closer to the
root. This network, also called a fat tree, is illustrated in Figure 2.19.

Figure 2.19. A fat tree network of 16 processing nodes.

2.4.4 Evaluating Static Interconnection Networks

We now discuss various criteria used to characterize the cost and performance of static
interconnection networks. We use these criteria to evaluate static networks introduced in the
previous subsection.

Diameter The diameter of a network is the maximum distance between any two processing
nodes in the network. The distance between two processing nodes is defined as the shortest



path (in terms of number of links) between them. The diameter of a completely-connected
network is one, and that of a star-connected network is two. The diameter of a ring network is

. The diameter of a two-dimensional mesh without wraparound connections is 

for the two nodes at diagonally opposed corners, and that of a wraparound mesh is .
The diameter of a hypercube-connected network is log p since two node labels can differ in at
most log p positions. The diameter of a complete binary tree is 2 log((p + 1)/2) because the
two communicating nodes may be in separate subtrees of the root node, and a message might
have to travel all the way to the root and then down the other subtree.

Connectivity The connectivity of a network is a measure of the multiplicity of paths between
any two processing nodes. A network with high connectivity is desirable, because it lowers
contention for communication resources. One measure of connectivity is the minimum number
of arcs that must be removed from the network to break it into two disconnected networks. This
is called the arc connectivity of the network. The arc connectivity is one for linear arrays, as
well as tree and star networks. It is two for rings and 2-D meshes without wraparound, four for
2-D wraparound meshes, and d for d-dimensional hypercubes.

Bisection Width and Bisection Bandwidth The bisection width of a network is defined as
the minimum number of communication links that must be removed to partition the network
into two equal halves. The bisection width of a ring is two, since any partition cuts across only
two communication links. Similarly, the bisection width of a two-dimensional p-node mesh

without wraparound connections is  and with wraparound connections is . The bisection
width of a tree and a star is one, and that of a completely-connected network of p nodes is p2/4.
The bisection width of a hypercube can be derived from its construction. We construct a d-
dimensional hypercube by connecting corresponding links of two (d - 1)-dimensional
hypercubes. Since each of these subcubes contains 2(d-1) or p/2 nodes, at least p/2
communication links must cross any partition of a hypercube into two subcubes (Problem 2.15).

The number of bits that can be communicated simultaneously over a link connecting two nodes
is called the channel width. Channel width is equal to the number of physical wires in each
communication link. The peak rate at which a single physical wire can deliver bits is called the
channel rate. The peak rate at which data can be communicated between the ends of a
communication link is called channel bandwidth. Channel bandwidth is the product of channel
rate and channel width.

Table 2.1. A summary of the characteristics of various static network
topologies connecting p nodes.

Network Diameter Bisection
Width

Arc
Connectivity

Cost (No. of
links)

Completely-connected 1 p2/4 p - 1 p(p - 1)/2

Star 2 1 1 p - 1

Complete binary tree 2 log((p +
1)/2)

1 1 p - 1

Linear array p - 1 1 1 p - 1

2-D mesh, no
wraparound

2

2-D wraparound mesh 4 2p



Network Diameter Bisection
Width

Arc
Connectivity

Cost (No. of
links)

Hypercube log p p/2 logp (p log p)/2

Wraparound k-ary d-
cube

2kd-1 2d dp

The bisection bandwidth of a network is defined as the minimum volume of communication
allowed between any two halves of the network. It is the product of the bisection width and the
channel bandwidth. Bisection bandwidth of a network is also sometimes referred to as cross-
section bandwidth.

Cost Many criteria can be used to evaluate the cost of a network. One way of defining the cost
of a network is in terms of the number of communication links or the number of wires required
by the network. Linear arrays and trees use only p - 1 links to connect p nodes. A d-dimensional
wraparound mesh has dp links. A hypercube-connected network has (p log p)/2 links.

The bisection bandwidth of a network can also be used as a measure of its cost, as it provides a
lower bound on the area in a two-dimensional packaging or the volume in a three-dimensional
packaging. If the bisection width of a network is w, the lower bound on the area in a two-
dimensional packaging is Q(w2), and the lower bound on the volume in a three-dimensional
packaging is Q(w3/2). According to this criterion, hypercubes and completely connected
networks are more expensive than the other networks.

We summarize the characteristics of various static networks in Table 2.1, which highlights the
various cost-performance tradeoffs.

2.4.5 Evaluating Dynamic Interconnection Networks

A number of evaluation metrics for dynamic networks follow from the corresponding metrics for
static networks. Since a message traversing a switch must pay an overhead, it is logical to think
of each switch as a node in the network, in addition to the processing nodes. The diameter of
the network can now be defined as the maximum distance between any two nodes in the
network. This is indicative of the maximum delay that a message will encounter in being
communicated between the selected pair of nodes. In reality, we would like the metric to be the
maximum distance between any two processing nodes; however, for all networks of interest,
this is equivalent to the maximum distance between any (processing or switching) pair of
nodes.

The connectivity of a dynamic network can be defined in terms of node or edge connectivity.
The node connectivity is the minimum number of nodes that must fail (be removed from the
network) to fragment the network into two parts. As before, we should consider only switching
nodes (as opposed to all nodes). However, considering all nodes gives a good approximation to
the multiplicity of paths in a dynamic network. The arc connectivity of the network can be
similarly defined as the minimum number of edges that must fail (be removed from the
network) to fragment the network into two unreachable parts.

The bisection width of a dynamic network must be defined more precisely than diameter and
connectivity. In the case of bisection width, we consider any possible partitioning of the p
processing nodes into two equal parts. Note that this does not restrict the partitioning of the
switching nodes. For each such partition, we select an induced partitioning of the switching
nodes such that the number of edges crossing this partition is minimized. The minimum number
of edges for any such partition is the bisection width of the dynamic network. Another intuitive
way of thinking of bisection width is in terms of the minimum number of edges that must be

Hypercube log p p/2 logp (p log p)/2

Wraparound k-ary d-
cube

2kd-1 2d dp

The bisection bandwidth of a network is defined as the minimum volume of communication
allowed between any two halves of the network. It is the product of the bisection width and the
channel bandwidth. Bisection bandwidth of a network is also sometimes referred to as cross-
section bandwidth.

Cost Many criteria can be used to evaluate the cost of a network. One way of defining the cost
of a network is in terms of the number of communication links or the number of wires required
by the network. Linear arrays and trees use only p - 1 links to connect p nodes. A d-dimensional
wraparound mesh has dp links. A hypercube-connected network has (p log p)/2 links.

The bisection bandwidth of a network can also be used as a measure of its cost, as it provides a
lower bound on the area in a two-dimensional packaging or the volume in a three-dimensional
packaging. If the bisection width of a network is w, the lower bound on the area in a two-
dimensional packaging is Q(w2), and the lower bound on the volume in a three-dimensional
packaging is Q(w3/2). According to this criterion, hypercubes and completely connected
networks are more expensive than the other networks.

We summarize the characteristics of various static networks in Table 2.1, which highlights the
various cost-performance tradeoffs.

2.4.5 Evaluating Dynamic Interconnection Networks

A number of evaluation metrics for dynamic networks follow from the corresponding metrics for
static networks. Since a message traversing a switch must pay an overhead, it is logical to think
of each switch as a node in the network, in addition to the processing nodes. The diameter of
the network can now be defined as the maximum distance between any two nodes in the
network. This is indicative of the maximum delay that a message will encounter in being
communicated between the selected pair of nodes. In reality, we would like the metric to be the
maximum distance between any two processing nodes; however, for all networks of interest,
this is equivalent to the maximum distance between any (processing or switching) pair of
nodes.

The connectivity of a dynamic network can be defined in terms of node or edge connectivity.
The node connectivity is the minimum number of nodes that must fail (be removed from the
network) to fragment the network into two parts. As before, we should consider only switching
nodes (as opposed to all nodes). However, considering all nodes gives a good approximation to
the multiplicity of paths in a dynamic network. The arc connectivity of the network can be
similarly defined as the minimum number of edges that must fail (be removed from the
network) to fragment the network into two unreachable parts.

The bisection width of a dynamic network must be defined more precisely than diameter and
connectivity. In the case of bisection width, we consider any possible partitioning of the p
processing nodes into two equal parts. Note that this does not restrict the partitioning of the
switching nodes. For each such partition, we select an induced partitioning of the switching
nodes such that the number of edges crossing this partition is minimized. The minimum number
of edges for any such partition is the bisection width of the dynamic network. Another intuitive
way of thinking of bisection width is in terms of the minimum number of edges that must be



removed from the network so as to partition the network into two halves with identical number
of processing nodes. We illustrate this concept further in the following example:

Example 2.13 Bisection width of dynamic networks

Consider the network illustrated in Figure 2.20. We illustrate here three bisections, A,
B, and C, each of which partitions the network into two groups of two processing
nodes each. Notice that these partitions need not partition the network nodes equally.
In the example, each partition results in an edge cut of four. We conclude that the

bisection width of this graph is four. 

Figure 2.20. Bisection width of a dynamic network is computed
by examining various equi-partitions of the processing nodes

and selecting the minimum number of edges crossing the
partition. In this case, each partition yields an edge cut of four.

Therefore, the bisection width of this graph is four.

The cost of a dynamic network is determined by the link cost, as is the case with static
networks, as well as the switch cost. In typical dynamic networks, the degree of a switch is
constant. Therefore, the number of links and switches is asymptotically identical. Furthermore,
in typical networks, switch cost exceeds link cost. For this reason, the cost of dynamic networks
is often determined by the number of switching nodes in the network.

We summarize the characteristics of various dynamic networks in Table 2.2.

2.4.6 Cache Coherence in Multiprocessor Systems

While interconnection networks provide basic mechanisms for communicating messages (data),
in the case of shared-address-space computers additional hardware is required to keep multiple
copies of data consistent with each other. Specifically, if there exist two copies of the data (in



different caches/memory elements), how do we ensure that different processors operate on
these in a manner that follows predefined semantics?

Table 2.2. A summary of the characteristics of various dynamic
network topologies connecting p processing nodes.

Network Diameter Bisection Width Arc Connectivity Cost (No. of links)

Crossbar 1 p 1 p2

Omega Network log p p/2 2 p/2

Dynamic Tree 2 log p 1 2 p - 1

The problem of keeping caches in multiprocessor systems coherent is significantly more
complex than in uniprocessor systems. This is because in addition to multiple copies as in
uniprocessor systems, there may also be multiple processors modifying these copies. Consider a
simple scenario illustrated in Figure 2.21. Two processors P0 and P1 are connected over a
shared bus to a globally accessible memory. Both processors load the same variable. There are
now three copies of the variable. The coherence mechanism must now ensure that all operations
performed on these copies are serializable (i.e., there exists some serial order of instruction
execution that corresponds to the parallel schedule). When a processor changes the value of its
copy of the variable, one of two things must happen: the other copies must be invalidated, or
the other copies must be updated. Failing this, other processors may potentially work with
incorrect (stale) values of the variable. These two protocols are referred to as invalidate and
update protocols and are illustrated in Figure 2.21(a) and (b).

Figure 2.21. Cache coherence in multiprocessor systems: (a)
Invalidate protocol; (b) Update protocol for shared variables.



In an update protocol, whenever a data item is written, all of its copies in the system are
updated. For this reason, if a processor simply reads a data item once and never uses it,
subsequent updates to this item at other processors cause excess overhead in terms of latency
at source and bandwidth on the network. On the other hand, in this situation, an invalidate
protocol invalidates the data item on the first update at a remote processor and subsequent
updates need not be performed on this copy.

Another important factor affecting the performance of these protocols is false sharing. False
sharing refers to the situation in which different processors update different parts of of the same
cache-line. Thus, although the updates are not performed on shared variables, the system does
not detect this. In an invalidate protocol, when a processor updates its part of the cache-line,
the other copies of this line are invalidated. When other processors try to update their parts of
the cache-line, the line must actually be fetched from the remote processor. It is easy to see
that false-sharing can cause a cache-line to be ping-ponged between various processors. In an
update protocol, this situation is slightly better since all reads can be performed locally and the
writes must be updated. This saves an invalidate operation that is otherwise wasted.

The tradeoff between invalidate and update schemes is the classic tradeoff between
communication overhead (updates) and idling (stalling in invalidates). Current generation cache
coherent machines typically rely on invalidate protocols. The rest of our discussion of
multiprocessor cache systems therefore assumes invalidate protocols.

Maintaining Coherence Using Invalidate Protocols Multiple copies of a single data item are
kept consistent by keeping track of the number of copies and the state of each of these copies.
We discuss here one possible set of states associated with data items and events that trigger
transitions among these states. Note that this set of states and transitions is not unique. It is
possible to define other states and associated transitions as well.

Let us revisit the example in Figure 2.21. Initially the variable x resides in the global memory.
The first step executed by both processors is a load operation on this variable. At this point, the
state of the variable is said to be shared, since it is shared by multiple processors. When
processor P0 executes a store on this variable, it marks all other copies of this variable as
invalid. It must also mark its own copy as modified or dirty. This is done to ensure that all
subsequent accesses to this variable at other processors will be serviced by processor P0 and
not from the memory. At this point, say, processor P1 executes another load operation on x .
Processor P1 attempts to fetch this variable and, since the variable was marked dirty by
processor P0, processor P0 services the request. Copies of this variable at processor P1 and the
global memory are updated and the variable re-enters the shared state. Thus, in this simple
model, there are three states - shared, invalid, and dirty - that a cache line goes through.

The complete state diagram of a simple three-state protocol is illustrated in Figure 2.22. The
solid lines depict processor actions and the dashed lines coherence actions. For example, when
a processor executes a read on an invalid block, the block is fetched and a transition is made
from invalid to shared. Similarly, if a processor does a write on a shared block, the coherence
protocol propagates a C_write (a coherence write) on the block. This triggers a transition from
shared to invalid at all the other blocks.

Figure 2.22. State diagram of a simple three-state coherence protocol.



Example 2.14 Maintaining coherence using a simple three-state
protocol

Consider an example of two program segments being executed by processor P0 and P1

as illustrated in Figure 2.23. The system consists of local memories (or caches) at
processors P0 and P1, and a global memory. The three-state protocol assumed in this
example corresponds to the state diagram illustrated in Figure 2.22. Cache lines in
this system can be either shared, invalid, or dirty. Each data item (variable) is
assumed to be on a different cache line. Initially, the two variables x and y are tagged
dirty and the only copies of these variables exist in the global memory. Figure 2.23
illustrates state transitions along with values of copies of the variables with each

instruction execution. 

Figure 2.23. Example of parallel program execution with the
simple three-state coherence protocol discussed in Section

2.4.6.



The implementation of coherence protocols can be carried out using a variety of hardware
mechanisms – snoopy systems, directory based systems, or combinations thereof.

Snoopy Cache Systems

Snoopy caches are typically associated with multiprocessor systems based on broadcast
interconnection networks such as a bus or a ring. In such systems, all processors snoop on
(monitor) the bus for transactions. This allows the processor to make state transitions for its
cache-blocks. Figure 2.24 illustrates a typical snoopy bus based system. Each processor's cache
has a set of tag bits associated with it that determine the state of the cache blocks. These tags
are updated according to the state diagram associated with the coherence protocol. For
instance, when the snoop hardware detects that a read has been issued to a cache block that it
has a dirty copy of, it asserts control of the bus and puts the data out. Similarly, when the
snoop hardware detects that a write operation has been issued on a cache block that it has a
copy of, it invalidates the block. Other state transitions are made in this fashion locally.

Figure 2.24. A simple snoopy bus based cache coherence system.



Performance of Snoopy Caches Snoopy protocols have been extensively studied and used in
commercial systems. This is largely because of their simplicity and the fact that existing bus
based systems can be upgraded to accommodate snoopy protocols. The performance gains of
snoopy systems are derived from the fact that if different processors operate on different data
items, these items can be cached. Once these items are tagged dirty, all subsequent operations
can be performed locally on the cache without generating external traffic. Similarly, if a data
item is read by a number of processors, it transitions to the shared state in the cache and all
subsequent read operations become local. In both cases, the coherence protocol does not add
any overhead. On the other hand, if multiple processors read and update the same data item,
they generate coherence functions across processors. Since a shared bus has a finite bandwidth,
only a constant number of such coherence operations can execute in unit time. This presents a
fundamental bottleneck for snoopy bus based systems.

Snoopy protocols are intimately tied to multicomputers based on broadcast networks such as
buses. This is because all processors must snoop all the messages. Clearly, broadcasting all of a
processor's memory operations to all the processors is not a scalable solution. An obvious
solution to this problem is to propagate coherence operations only to those processors that
must participate in the operation (i.e., processors that have relevant copies of the data). This
solution requires us to keep track of which processors have copies of various data items and
also the relevant state information for these data items. This information is stored in a
directory, and the coherence mechanism based on such information is called a directory-based
system.

Directory Based Systems

Consider a simple system in which the global memory is augmented with a directory that
maintains a bitmap representing cache-blocks and the processors at which they are cached
(Figure 2.25). These bitmap entries are sometimes referred to as the presence bits. As before,
we assume a three-state protocol with the states labeled invalid, dirty, and shared. The key to
the performance of directory based schemes is the simple observation that only processors that
hold a particular block (or are reading it) participate in the state transitions due to coherence
operations. Note that there may be other state transitions triggered by processor read, write, or
flush (retiring a line from cache) but these transitions can be handled locally with the operation
reflected in the presence bits and state in the directory.

Figure 2.25. Architecture of typical directory based systems: (a) a
centralized directory; and (b) a distributed directory.



Revisiting the code segment in Figure 2.21, when processors P0 and P1 access the block
corresponding to variable x , the state of the block is changed to shared, and the presence bits
updated to indicate that processors P0 and P1 share the block. When P0 executes a store on the
variable, the state in the directory is changed to dirty and the presence bit of P1 is reset. All
subsequent operations on this variable performed at processor P0 can proceed locally. If another
processor reads the value, the directory notices the dirty tag and uses the presence bits to
direct the request to the appropriate processor. Processor P0 updates the block in the memory,
and sends it to the requesting processor. The presence bits are modified to reflect this and the
state transitions to shared.

Performance of Directory Based Schemes As is the case with snoopy protocols, if different
processors operate on distinct data blocks, these blocks become dirty in the respective caches
and all operations after the first one can be performed locally. Furthermore, if multiple
processors read (but do not update) a single data block, the data block gets replicated in the
caches in the shared state and subsequent reads can happen without triggering any coherence
overheads.

Coherence actions are initiated when multiple processors attempt to update the same data item.
In this case, in addition to the necessary data movement, coherence operations add to the
overhead in the form of propagation of state updates (invalidates or updates) and generation of
state information from the directory. The former takes the form of communication overhead and
the latter adds contention. The communication overhead is a function of the number of
processors requiring state updates and the algorithm for propagating state information. The
contention overhead is more fundamental in nature. Since the directory is in memory and the
memory system can only service a bounded number of read/write operations in unit time, the
number of state updates is ultimately bounded by the directory. If a parallel program requires a
large number of coherence actions (large number of read/write shared data blocks) the



directory will ultimately bound its parallel performance.

Finally, from the point of view of cost, the amount of memory required to store the directory
may itself become a bottleneck as the number of processors increases. Recall that the directory
size grows as O(mp), where m is the number of memory blocks and p the number of
processors. One solution would be to make the memory block larger (thus reducing m for a
given memory size). However, this adds to other overheads such as false sharing, where two
processors update distinct data items in a program but the data items happen to lie in the same
memory block. This phenomenon is discussed in greater detail in Chapter 7.

Since the directory forms a central point of contention, it is natural to break up the task of
maintaining coherence across multiple processors. The basic principle is to let each processor
maintain coherence of its own memory blocks, assuming a physical (or logical) partitioning of
the memory blocks across processors. This is the principle of a distributed directory system.

Distributed Directory Schemes In scalable architectures, memory is physically distributed
across processors. The corresponding presence bits of the blocks are also distributed. Each
processor is responsible for maintaining the coherence of its own memory blocks. The
architecture of such a system is illustrated in Figure 2.25(b). Since each memory block has an
owner (which can typically be computed from the block address), its directory location is
implicitly known to all processors. When a processor attempts to read a block for the first time,
it requests the owner for the block. The owner suitably directs this request based on presence
and state information locally available. Similarly, when a processor writes into a memory block,
it propagates an invalidate to the owner, which in turn forwards the invalidate to all processors
that have a cached copy of the block. In this way, the directory is decentralized and the
contention associated with the central directory is alleviated. Note that the communication
overhead associated with state update messages is not reduced.

Performance of Distributed Directory Schemes As is evident, distributed directories permit
O(p) simultaneous coherence operations, provided the underlying network can sustain the
associated state update messages. From this point of view, distributed directories are inherently
more scalable than snoopy systems or centralized directory systems. The latency and bandwidth
of the network become fundamental performance bottlenecks for such systems.
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2.5 Communication Costs in Parallel Machines

One of the major overheads in the execution of parallel programs arises from communication of
information between processing elements. The cost of communication is dependent on a variety
of features including the programming model semantics, the network topology, data handling
and routing, and associated software protocols. These issues form the focus of our discussion
here.

2.5.1 Message Passing Costs in Parallel Computers

The time taken to communicate a message between two nodes in a network is the sum of the
time to prepare a message for transmission and the time taken by the message to traverse the
network to its destination. The principal parameters that determine the communication latency
are as follows:

Startup time (ts): The startup time is the time required to handle a message at the
sending and receiving nodes. This includes the time to prepare the message (adding
header, trailer, and error correction information), the time to execute the routing
algorithm, and the time to establish an interface between the local node and the router.
This delay is incurred only once for a single message transfer.

1.

Per-hop time (th): After a message leaves a node, it takes a finite amount of time to
reach the next node in its path. The time taken by the header of a message to travel
between two directly-connected nodes in the network is called the per-hop time. It is also
known as node latency. The per-hop time is directly related to the latency within the
routing switch for determining which output buffer or channel the message should be
forwarded to.

2.

Per-word transfer time (tw): If the channel bandwidth is r words per second, then each
word takes time tw = 1/r to traverse the link. This time is called the per-word transfer
time. This time includes network as well as buffering overheads.

3.

We now discuss two routing techniques that have been used in parallel computers – store-and-
forward routing and cut-through routing.

Store-and-Forward Routing

In store-and-forward routing, when a message is traversing a path with multiple links, each
intermediate node on the path forwards the message to the next node after it has received and
stored the entire message. Figure 2.26(a) shows the communication of a message through a
store-and-forward network.

Figure 2.26. Passing a message from node P0 to P3 (a) through a
store-and-forward communication network; (b) and (c) extending the
concept to cut-through routing. The shaded regions represent the time

that the message is in transit. The startup time associated with this
message transfer is assumed to be zero.



Suppose that a message of size m is being transmitted through such a network. Assume that it
traverses l links. At each link, the message incurs a cost th for the header and twm for the rest
of the message to traverse the link. Since there are l such links, the total time is (th + twm)l.
Therefore, for store-and-forward routing, the total communication cost for a message of size m
words to traverse l communication links is

Equation 2.2

In current parallel computers, the per-hop time th is quite small. For most parallel algorithms, it
is less than twm even for small values of m and thus can be ignored. For parallel platforms
using store-and-forward routing, the time given by Equation 2.2 can be simplified to

Packet Routing

Store-and-forward routing makes poor use of communication resources. A message is sent from
one node to the next only after the entire message has been received (Figure 2.26(a)). Consider



the scenario shown in Figure 2.26(b), in which the original message is broken into two equal
sized parts before it is sent. In this case, an intermediate node waits for only half of the original
message to arrive before passing it on. The increased utilization of communication resources
and reduced communication time is apparent from Figure 2.26(b). Figure 2.26(c) goes a step
further and breaks the message into four parts. In addition to better utilization of
communication resources, this principle offers other advantages – lower overhead from packet
loss (errors), possibility of packets taking different paths, and better error correction capability.
For these reasons, this technique is the basis for long-haul communication networks such as the
Internet, where error rates, number of hops, and variation in network state can be higher. Of
course, the overhead here is that each packet must carry routing, error correction, and
sequencing information.

Consider the transfer of an m word message through the network. The time taken for
programming the network interfaces and computing the routing information, etc., is
independent of the message length. This is aggregated into the startup time ts of the message
transfer. We assume a scenario in which routing tables are static over the time of message
transfer (i.e., all packets traverse the same path). While this is not a valid assumption under all
circumstances, it serves the purpose of motivating a cost model for message transfer. The
message is broken into packets, and packets are assembled with their error, routing, and
sequencing fields. The size of a packet is now given by r + s, where r is the original message
and s is the additional information carried in the packet. The time for packetizing the message
is proportional to the length of the message. We denote this time by mtw1. If the network is
capable of communicating one word every tw2 seconds, incurs a delay of th on each hop, and if
the first packet traverses l hops, then this packet takes time thl + tw2(r + s) to reach the
destination. After this time, the destination node receives an additional packet every tw2(r + s)
seconds. Since there are m/r - 1 additional packets, the total communication time is given by:

where

Packet routing is suited to networks with highly dynamic states and higher error rates, such as
local- and wide-area networks. This is because individual packets may take different routes and
retransmissions can be localized to lost packets.

Cut-Through Routing

In interconnection networks for parallel computers, additional restrictions can be imposed on
message transfers to further reduce the overheads associated with packet switching. By forcing
all packets to take the same path, we can eliminate the overhead of transmitting routing
information with each packet. By forcing in-sequence delivery, sequencing information can be
eliminated. By associating error information at message level rather than packet level, the
overhead associated with error detection and correction can be reduced. Finally, since error



rates in interconnection networks for parallel machines are extremely low, lean error detection
mechanisms can be used instead of expensive error correction schemes.

The routing scheme resulting from these optimizations is called cut-through routing. In cut-
through routing, a message is broken into fixed size units called flow control digits or flits.
Since flits do not contain the overheads of packets, they can be much smaller than packets. A
tracer is first sent from the source to the destination node to establish a connection. Once a
connection has been established, the flits are sent one after the other. All flits follow the same
path in a dovetailed fashion. An intermediate node does not wait for the entire message to
arrive before forwarding it. As soon as a flit is received at an intermediate node, the flit is
passed on to the next node. Unlike store-and-forward routing, it is no longer necessary to have
buffer space at each intermediate node to store the entire message. Therefore, cut-through
routing uses less memory and memory bandwidth at intermediate nodes, and is faster.

Consider a message that is traversing such a network. If the message traverses l links, and th is
the per-hop time, then the header of the message takes time lth to reach the destination. If the
message is m words long, then the entire message arrives in time twm after the arrival of the
header of the message. Therefore, the total communication time for cut-through routing is

Equation 2.3

This time is an improvement over store-and-forward routing since terms corresponding to
number of hops and number of words are additive as opposed to multiplicative in the former.
Note that if the communication is between nearest neighbors (that is, l = 1), or if the message
size is small, then the communication time is similar for store-and-forward and cut-through
routing schemes.

Most current parallel computers and many local area networks support cut-through routing. The
size of a flit is determined by a variety of network parameters. The control circuitry must
operate at the flit rate. Therefore, if we select a very small flit size, for a given link bandwidth,
the required flit rate becomes large. This poses considerable challenges for designing routers as
it requires the control circuitry to operate at a very high speed. On the other hand, as flit sizes
become large, internal buffer sizes increase, so does the latency of message transfer. Both of
these are undesirable. Flit sizes in recent cut-through interconnection networks range from four
bits to 32 bytes. In many parallel programming paradigms that rely predominantly on short
messages (such as cache lines), the latency of messages is critical. For these, it is unreasonable
for a long message traversing a link to hold up a short message. Such scenarios are addressed
in routers using multilane cut-through routing. In multilane cut-through routing, a single
physical channel is split into a number of virtual channels.

Messaging constants ts, tw, and th are determined by hardware characteristics, software layers,
and messaging semantics. Messaging semantics associated with paradigms such as message
passing are best served by variable length messages, others by fixed length short messages.
While effective bandwidth may be critical for the former, reducing latency is more important for
the latter. Messaging layers for these paradigms are tuned to reflect these requirements.

While traversing the network, if a message needs to use a link that is currently in use, then the
message is blocked. This may lead to deadlock. Figure 2.27 illustrates deadlock in a cut-through
routing network. The destinations of messages 0, 1, 2, and 3 are A, B, C, and D, respectively. A
flit from message 0 occupies the link CB (and the associated buffers). However, since link BA is
occupied by a flit from message 3, the flit from message 0 is blocked. Similarly, the flit from
message 3 is blocked since link AD is in use. We can see that no messages can progress in the
network and the network is deadlocked. Deadlocks can be avoided in cut-through networks by



using appropriate routing techniques and message buffers. These are discussed in Section 2.6.

Figure 2.27. An example of deadlock in a cut-through routing network.

A Simplified Cost Model for Communicating Messages

As we have just seen in Section 2.5.1, the cost of communicating a message between two nodes
l hops away using cut-through routing is given by

This equation implies that in order to optimize the cost of message transfers, we would need to:

Communicate in bulk. That is, instead of sending small messages and paying a startup
cost ts for each, we want to aggregate small messages into a single large message and
amortize the startup latency across a larger message. This is because on typical platforms
such as clusters and message-passing machines, the value of ts is much larger than those
of th or tw.

1.

Minimize the volume of data. To minimize the overhead paid in terms of per-word
transfer time tw, it is desirable to reduce the volume of data communicated as much as

2.

3.



possible.

2.

Minimize distance of data transfer. Minimize the number of hops l that a message must
traverse.

3.

While the first two objectives are relatively easy to achieve, the task of minimizing distance of
communicating nodes is difficult, and in many cases an unnecessary burden on the algorithm
designer. This is a direct consequence of the following characteristics of parallel platforms and
paradigms:

In many message-passing libraries such as MPI, the programmer has little control on the
mapping of processes onto physical processors. In such paradigms, while tasks might have
well defined topologies and may communicate only among neighbors in the task topology,
the mapping of processes to nodes might destroy this structure.

Many architectures rely on randomized (two-step) routing, in which a message is first sent
to a random node from source and from this intermediate node to the destination. This
alleviates hot-spots and contention on the network. Minimizing number of hops in a
randomized routing network yields no benefits.

The per-hop time (th ) is typically dominated either by the startup latency (ts )for small
messages or by per-word component (twm) for large messages. Since the maximum
number of hops (l) in most networks is relatively small, the per-hop time can be ignored
with little loss in accuracy.

All of these point to a simpler cost model in which the cost of transferring a message between
two nodes on a network is given by:

Equation 2.4

This expression has significant implications for architecture-independent algorithm design as
well as for the accuracy of runtime predictions. Since this cost model implies that it takes the
same amount of time to communicate between any pair of nodes, it corresponds to a completely
connected network. Instead of designing algorithms for each specific architecture (for example,
a mesh, hypercube, or tree), we can design algorithms with this cost model in mind and port it
to any target parallel computer.

This raises the important issue of loss of accuracy (or fidelity) of prediction when the algorithm
is ported from our simplified model (which assumes a completely connected network) to an
actual machine architecture. If our initial assumption that the th term is typically dominated by
the ts or tw terms is valid, then the loss in accuracy should be minimal.

However, it is important to note that our basic cost model is valid only for uncongested
networks. Architectures have varying thresholds for when they get congested; i.e., a linear
array has a much lower threshold for congestion than a hypercube. Furthermore, different
communication patterns congest a given network to different extents. Consequently, our
simplified cost model is valid only as long as the underlying communication pattern does not
congest the network.

Example 2.15 Effect of congestion on communication cost



Consider a  mesh in which each node is only communicating with its nearest
neighbor. Since no links in the network are used for more than one communication,
the time for this operation is ts + twm, where m is the number of words
communicated. This time is consistent with our simplified model.

Consider an alternate scenario in which each node is communicating with a randomly
selected node. This randomness implies that there are p/2 communications (or p/4 bi-
directional communications) occurring across any equi-partition of the machine (since
the node being communicated with could be in either half with equal probability).
From our discussion of bisection width, we know that a 2-D mesh has a bisection

width of . From these two, we can infer that some links would now have to carry at

least  messages, assuming bi-directional communication channels. These
messages must be serialized over the link. If each message is of size m, the time for

this operation is at least . This time is not in conformity with our

simplified model. 

The above example illustrates that for a given architecture, some communication patterns can
be non-congesting and others may be congesting. This makes the task of modeling
communication costs dependent not just on the architecture, but also on the communication
pattern. To address this, we introduce the notion of effective bandwidth. For communication
patterns that do not congest the network, the effective bandwidth is identical to the link
bandwidth. However, for communication operations that congest the network, the effective
bandwidth is the link bandwidth scaled down by the degree of congestion on the most
congested link. This is often difficult to estimate since it is a function of process to node
mapping, routing algorithms, and communication schedule. Therefore, we use a lower bound on
the message communication time. The associated link bandwidth is scaled down by a factor p/b,
where b is the bisection width of the network.

In the rest of this text, we will work with the simplified communication model for message
passing with effective per-word time tw because it allows us to design algorithms in an
architecture-independent manner. We will also make specific notes on when a communication
operation within an algorithm congests the network and how its impact is factored into parallel
runtime. The communication times in the book apply to the general class of k-d meshes. While
these times may be realizable on other architectures as well, this is a function of the underlying
architecture.

2.5.2 Communication Costs in Shared-Address-Space Machines

The primary goal of associating communication costs with parallel programs is to associate a
figure of merit with a program to guide program development. This task is much more difficult
for cache-coherent shared-address-space machines than for message-passing or non-cache-
coherent architectures. The reasons for this are as follows:

Memory layout is typically determined by the system. The programmer has minimal
control on the location of specific data items over and above permuting data structures to
optimize access. This is particularly important in distributed memory shared-address-
space architectures because it is difficult to identify local and remote accesses. If the
access times for local and remote data items are significantly different, then the cost of
communication can vary greatly depending on the data layout.



Finite cache sizes can result in cache thrashing. Consider a scenario in which a node needs
a certain fraction of the total data to compute its results. If this fraction is smaller than
locally available cache, the data can be fetched on first access and computed on. However,
if the fraction exceeds available cache, then certain portions of this data might get
overwritten, and consequently accessed several times. This overhead can cause sharp
degradation in program performance as the problem size is increased. To remedy this, the
programmer must alter execution schedules (e.g., blocking loops as illustrated in serial
matrix multiplication in Problem 2.5) for minimizing working set size. While this problem is
common to both serial and multiprocessor platforms, the penalty is much higher in the
case of multiprocessors since each miss might now involve coherence operations and
interprocessor communication.

Overheads associated with invalidate and update operations are difficult to quantify. After
a data item has been fetched by a processor into cache, it may be subject to a variety of
operations at another processor. For example, in an invalidate protocol, the cache line
might be invalidated by a write operation at a remote processor. In this case, the next
read operation on the data item must pay a remote access latency cost again. Similarly,
the overhead associated with an update protocol might vary significantly depending on the
number of copies of a data item. The number of concurrent copies of a data item and the
schedule of instruction execution are typically beyond the control of the programmer.

Spatial locality is difficult to model. Since cache lines are generally longer than one word
(anywhere from four to 128 words), different words might have different access latencies
associated with them even for the first access. Accessing a neighbor of a previously fetched
word might be extremely fast, if the cache line has not yet been overwritten. Once again,
the programmer has minimal control over this, other than to permute data structures to
maximize spatial locality of data reference.

Prefetching can play a role in reducing the overhead associated with data access.
Compilers can advance loads and, if sufficient resources exist, the overhead associated
with these loads may be completely masked. Since this is a function of the compiler, the
underlying program, and availability of resources (registers/cache), it is very difficult to
model accurately.

False sharing is often an important overhead in many programs. Two words used by
(threads executing on) different processor may reside on the same cache line. This may
cause coherence actions and communication overheads, even though none of the data
might be shared. The programmer must adequately pad data structures used by various
processors to minimize false sharing.

Contention in shared accesses is often a major contributing overhead in shared address
space machines. Unfortunately, contention is a function of execution schedule and
consequently very difficult to model accurately (independent of the scheduling algorithm).
While it is possible to get loose asymptotic estimates by counting the number of shared
accesses, such a bound is often not very meaningful.

Any cost model for shared-address-space machines must account for all of these overheads.
Building these into a single cost model results in a model that is too cumbersome to design
programs for and too specific to individual machines to be generally applicable.

As a first-order model, it is easy to see that accessing a remote word results in a cache line
being fetched into the local cache. The time associated with this includes the coherence
overheads, network overheads, and memory overheads. The coherence and network overheads
are functions of the underlying interconnect (since a coherence operation must be potentially
propagated to remote processors and the data item must be fetched). In the absence of
knowledge of what coherence operations are associated with a specific access and where the
word is coming from, we associate a constant overhead to accessing a cache line of the shared



data. For the sake of uniformity with the message-passing model, we refer to this cost as ts.
Because of various latency-hiding protocols, such as prefetching, implemented in modern
processor architectures, we assume that a constant cost of ts is associated with initiating access
to a contiguous chunk of m words of shared data, even if m is greater than the cache line size.
We further assume that accessing shared data is costlier than accessing local data (for instance,
on a NUMA machine, local data is likely to reside in a local memory module, while data shared
by p processors will need to be fetched from a nonlocal module for at least p - 1 processors).
Therefore, we assign a per-word access cost of tw to shared data.

From the above discussion, it follows that we can use the same expression ts + twm to account
for the cost of sharing a single chunk of m words between a pair of processors in both shared-
memory and message-passing paradigms (Equation 2.4) with the difference that the value of
the constant ts relative to tw is likely to be much smaller on a shared-memory machine than on
a distributed memory machine (tw is likely to be near zero for a UMA machine). Note that the
cost ts + twm assumes read-only access without contention. If multiple processes access the
same data, then the cost is multiplied by the number of processes, just as in the message-
passing where the process that owns the data will need to send a message to each receiving
process. If the access is read-write, then the cost will be incurred again for subsequent access
by processors other than the one writing. Once again, there is an equivalence with the
message-passing model. If a process modifies the contents of a message that it receives, then it
must send it back to processes that subsequently need access to the refreshed data. While this
model seems overly simplified in the context of shared-address-space machines, we note that
the model provides a good estimate of the cost of sharing an array of m words between a pair
of processors.

The simplified model presented above accounts primarily for remote data access but does not
model a variety of other overheads. Contention for shared data access must be explicitly
accounted for by counting the number of accesses to shared data between co-scheduled tasks.
The model does not explicitly include many of the other overheads. Since different machines
have caches of varying sizes, it is difficult to identify the point at which working set size exceeds
the cache size resulting in cache thrashing, in an architecture independent manner. For this
reason, effects arising from finite caches are ignored in this cost model. Maximizing spatial
locality (cache line effects) is not explicitly included in the cost. False sharing is a function of the
instruction schedules as well as data layouts. The cost model assumes that shared data
structures are suitably padded and, therefore, does not include false sharing costs. Finally, the
cost model does not account for overlapping communication and computation. Other models
have been proposed to model overlapped communication. However, designing even simple
algorithms for these models is cumbersome. The related issue of multiple concurrent
computations (threads) on a single processor is not modeled in the expression. Instead, each
processor is assumed to execute a single concurrent unit of computation.
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2.6 Routing Mechanisms for Interconnection Networks

Efficient algorithms for routing a message to its destination are critical to the performance of
parallel computers. A routing mechanism determines the path a message takes through the
network to get from the source to the destination node. It takes as input a message's source
and destination nodes. It may also use information about the state of the network. It returns
one or more paths through the network from the source to the destination node.

Routing mechanisms can be classified as minimal or non-minimal. A minimal routing
mechanism always selects one of the shortest paths between the source and the destination. In
a minimal routing scheme, each link brings a message closer to its destination, but the scheme
can lead to congestion in parts of the network. A non-minimal routing scheme, in contrast, may
route the message along a longer path to avoid network congestion.

Routing mechanisms can also be classified on the basis of how they use information regarding
the state of the network. A deterministic routing scheme determines a unique path for a
message, based on its source and destination. It does not use any information regarding the
state of the network. Deterministic schemes may result in uneven use of the communication
resources in a network. In contrast, an adaptive routing scheme uses information regarding
the current state of the network to determine the path of the message. Adaptive routing detects
congestion in the network and routes messages around it.

One commonly used deterministic minimal routing technique is called dimension-ordered
routing. Dimension-ordered routing assigns successive channels for traversal by a message
based on a numbering scheme determined by the dimension of the channel. The dimension-
ordered routing technique for a two-dimensional mesh is called XY-routing and that for a
hypercube is called E-cube routing.

Consider a two-dimensional mesh without wraparound connections. In the XY-routing scheme,
a message is sent first along the X dimension until it reaches the column of the destination node
and then along the Y dimension until it reaches its destination. Let PSy,Sx represent the position
of the source node and PDy,Dx represent that of the destination node. Any minimal routing

scheme should return a path of length |Sx - Dx| + |Sy - Dy|. Assume that Dx  Sx and Dy 
Sy. In the XY-routing scheme, the message is passed through intermediate nodes PSy,Sx+1,
PSy,Sx+2, ..., PSy,Dx along the X dimension and then through nodes PSy+1,Dx, PSy+2,Dx, ..., PDy,Dx

along the Y dimension to reach the destination. Note that the length of this path is indeed |Sx -
Dx| + |Sy - Dy|.

E-cube routing for hypercube-connected networks works similarly. Consider a d-dimensional
hypercube of p nodes. Let Ps and Pd be the labels of the source and destination nodes. We know
from Section 2.4.3 that the binary representations of these labels are d bits long. Furthermore,

the minimum distance between these nodes is given by the number of ones in Ps  Pd (where

 represents the bitwise exclusive-OR operation). In the E-cube algorithm, node Ps computes

Ps  Pd and sends the message along dimension k, where k is the position of the least

significant nonzero bit in Ps  Pd . At each intermediate step, node Pi , which receives the

message, computes Pi  Pd and forwards the message along the dimension corresponding to
the least significant nonzero bit. This process continues until the message reaches its
destination. Example 2.16 illustrates E-cube routing in a three-dimensional hypercube network.



Example 2.16 E-cube routing in a hypercube network

Consider the three-dimensional hypercube shown in Figure 2.28. Let Ps = 010 and Pd

= 111 represent the source and destination nodes for a message. Node Ps computes

010  111 = 101. In the first step, Ps forwards the message along the dimension
corresponding to the least significant bit to node 011. Node 011 sends the message

along the dimension corresponding to the most significant bit (011  111 = 100).

The message reaches node 111, which is the destination of the message. 

Figure 2.28. Routing a message from node Ps (010) to node Pd

(111) in a three-dimensional hypercube using E-cube routing.

In the rest of this book we assume deterministic and minimal message routing for analyzing
parallel algorithms.
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2.7 Impact of Process-Processor Mapping and Mapping
Techniques

As we have discussed in Section 2.5.1, a programmer often does not have control over how
logical processes are mapped to physical nodes in a network. For this reason, even
communication patterns that are not inherently congesting may congest the network. We
illustrate this with the following example:

Example 2.17 Impact of process mapping

Consider the scenario illustrated in Figure 2.29. The underlying architecture is a 16-
node mesh with nodes labeled from 1 to 16 (Figure 2.29(a)) and the algorithm has
been implemented as 16 processes, labeled 'a' through 'p' (Figure 2.29(b)). The
algorithm has been tuned for execution on a mesh in such a way that there are no
congesting communication operations. We now consider two mappings of the
processes to nodes as illustrated in Figures 2.29(c) and (d). Figure 2.29(c) is an
intuitive mapping and is such that a single link in the underlying architecture only
carries data corresponding to a single communication channel between processes.
Figure 2.29(d), on the other hand, corresponds to a situation in which processes have
been mapped randomly to processing nodes. In this case, it is easy to see that each
link in the machine carries up to six channels of data between processes. This may
potentially result in considerably larger communication times if the required data rates

on communication channels between processes is high. 

Figure 2.29. Impact of process mapping on performance: (a)
underlying architecture; (b) processes and their interactions;

(c) an intuitive mapping of processes to nodes; and (d) a
random mapping of processes to nodes.



It is evident from the above example that while an algorithm may be fashioned out of non-
congesting communication operations, the mapping of processes to nodes may in fact induce
congestion on the network and cause degradation in performance.

2.7.1 Mapping Techniques for Graphs

While the programmer generally does not have control over process-processor mapping, it is
important to understand algorithms for such mappings. This is because these mappings can be
used to determine degradation in the performance of an algorithm. Given two graphs, G(V, E)
and G'(V', E'), mapping graph G into graph G' maps each vertex in the set V onto a vertex (or a
set of vertices) in set V' and each edge in the set E onto an edge (or a set of edges) in E'. When
mapping graph G(V, E) into G'(V', E'), three parameters are important. First, it is possible that
more than one edge in E is mapped onto a single edge in E'. The maximum number of edges
mapped onto any edge in E' is called the congestion of the mapping. In Example 2.17, the
mapping in Figure 2.29(c) has a congestion of one and that in Figure 2.29(d) has a congestion
of six. Second, an edge in E may be mapped onto multiple contiguous edges in E'. This is
significant because traffic on the corresponding communication link must traverse more than
one link, possibly contributing to congestion on the network. The maximum number of links in
E' that any edge in E is mapped onto is called the dilation of the mapping. Third, the sets V and
V' may contain different numbers of vertices. In this case, a node in V corresponds to more than
one node in V'. The ratio of the number of nodes in the set V' to that in set V is called the



expansion of the mapping. In the context of process-processor mapping, we want the
expansion of the mapping to be identical to the ratio of virtual and physical processors.

In this section, we discuss embeddings of some commonly encountered graphs such as 2-D
meshes (matrix operations illustrated in Chapter 8), hypercubes (sorting and FFT algorithms in
Chapters 9 and 13, respectively), and trees (broadcast, barriers in Chapter 4). We limit the
scope of the discussion to cases in which sets V and V' contain an equal number of nodes (i.e.,
an expansion of one).

Embedding a Linear Array into a Hypercube

A linear array (or a ring) composed of 2d nodes (labeled 0 through 2d -1) can be embedded into
a d-dimensional hypercube by mapping node i of the linear array onto node G(i, d) of the
hypercube. The function G(i, x) is defined as follows:

The function G is called the binary reflected Gray code (RGC). The entry G(i, d) denotes the i
th entry in the sequence of Gray codes of d bits. Gray codes of d + 1 bits are derived from a
table of Gray codes of d bits by reflecting the table and prefixing the reflected entries with a 1
and the original entries with a 0. This process is illustrated in Figure 2.30(a).

Figure 2.30. (a) A three-bit reflected Gray code ring; and (b) its
embedding into a three-dimensional hypercube.



A careful look at the Gray code table reveals that two adjoining entries (G(i, d) and G(i + 1, d))
differ from each other at only one bit position. Since node i in the linear array is mapped to
node G(i, d), and node i + 1 is mapped to G(i + 1, d), there is a direct link in the hypercube
that corresponds to each direct link in the linear array. (Recall that two nodes whose labels
differ at only one bit position have a direct link in a hypercube.) Therefore, the mapping
specified by the function G has a dilation of one and a congestion of one. Figure 2.30(b)
illustrates the embedding of an eight-node ring into a three-dimensional hypercube.

Embedding a Mesh into a Hypercube

Embedding a mesh into a hypercube is a natural extension of embedding a ring into a
hypercube. We can embed a 2r x 2s wraparound mesh into a 2r+s -node hypercube by

mapping node (i, j) of the mesh onto node G(i, r - 1)||G( j, s - 1) of the hypercube (where ||
denotes concatenation of the two Gray codes). Note that immediate neighbors in the mesh are
mapped to hypercube nodes whose labels differ in exactly one bit position. Therefore, this
mapping has a dilation of one and a congestion of one.

For example, consider embedding a 2 x 4 mesh into an eight-node hypercube. The values of r



and s are 1 and 2, respectively. Node (i, j) of the mesh is mapped to node G(i, 1)||G( j, 2) of
the hypercube. Therefore, node (0, 0) of the mesh is mapped to node 000 of the hypercube,
because G(0, 1) is 0 and G(0, 2) is 00; concatenating the two yields the label 000 for the
hypercube node. Similarly, node (0, 1) of the mesh is mapped to node 001 of the hypercube,
and so on. Figure 2.31 illustrates embedding meshes into hypercubes.

Figure 2.31. (a) A 4 x 4 mesh illustrating the mapping of mesh nodes
to the nodes in a four-dimensional hypercube; and (b) a 2 x 4 mesh

embedded into a three-dimensional hypercube.

This mapping of a mesh into a hypercube has certain useful properties. All nodes in

the same row of the mesh are mapped to hypercube nodes whose labels have r identical most
significant bits. We know from Section 2.4.3 that fixing any r bits in the node label of an (r +
s)-dimensional hypercube yields a subcube of dimension s with 2s nodes. Since each mesh node
is mapped onto a unique node in the hypercube, and each row in the mesh has 2s nodes, every
row in the mesh is mapped to a distinct subcube in the hypercube. Similarly, each column in the
mesh is mapped to a distinct subcube in the hypercube.



Embedding a Mesh into a Linear Array

We have, up until this point, considered embeddings of sparser networks into denser networks.
A 2-D mesh has 2 x p links. In contrast, a p-node linear array has p links. Consequently, there
must be a congestion associated with this mapping.

Consider first the mapping of a linear array into a mesh. We assume that neither the mesh nor
the linear array has wraparound connections. An intuitive mapping of a linear array into a mesh
is illustrated in Figure 2.32. Here, the solid lines correspond to links in the linear array and
normal lines to links in the mesh. It is easy to see from Figure 2.32(a) that a congestion-one,
dilation-one mapping of a linear array to a mesh is possible.

Figure 2.32. (a) Embedding a 16 node linear array into a 2-D mesh;
and (b) the inverse of the mapping. Solid lines correspond to links in

the linear array and normal lines to links in the mesh.

Consider now the inverse of this mapping, i.e., we are given a mesh and we map vertices of the
mesh to those in a linear array using the inverse of the same mapping function. This mapping is
illustrated in Figure 2.32(b). As before, the solid lines correspond to edges in the linear array
and normal lines to edges in the mesh. As is evident from the figure, the congestion of the
mapping in this case is five – i.e., no solid line carries more than five normal lines. In general, it

is easy to show that the congestion of this (inverse) mapping is  for a general p-node

mapping (one for each of the  edges to the next row, and one additional edge).

While this is a simple mapping, the question at this point is whether we can do better. To
answer this question, we use the bisection width of the two networks. We know that the

bisection width of a 2-D mesh without wraparound links is , and that of a linear array is 1.



Assume that the best mapping of a 2-D mesh into a linear array has a congestion of r. This
implies that if we take the linear array and cut it in half (at the middle), we will cut only one
linear array link, or no more than r mesh links. We claim that r must be at least equal to the
bisection width of the mesh. This follows from the fact that an equi-partition of the linear array

into two also partitions the mesh into two. Therefore, at least  mesh links must cross the
partition, by definition of bisection width. Consequently, the one linear array link connecting the

two halves must carry at least  mesh links. Therefore, the congestion of any mapping is

lower bounded by . This is almost identical to the simple (inverse) mapping we have
illustrated in Figure 2.32(b).

The lower bound established above has a more general applicability when mapping denser
networks to sparser ones. One may reasonably believe that the lower bound on congestion of a
mapping of network S with x links into network Q with y links is x/y. In the case of the mapping
from a mesh to a linear array, this would be 2p/p, or 2. However, this lower bound is overly
conservative. A tighter lower bound is in fact possible by examining the bisection width of the
two networks. We illustrate this further in the next section.

Embedding a Hypercube into a 2-D Mesh

Consider the embedding of a p-node hypercube into a p-node 2-D mesh. For the sake of
convenience, we assume that p is an even power of two. In this scenario, it is possible to

visualize the hypercube as  subcubes, each with  nodes. We do this as follows: let d =
log p be the dimension of the hypercube. From our assumption, we know that d is even. We

take the d/2 least significant bits and use them to define individual subcubes of  nodes. For
example, in the case of a 4D hypercube, we use the lower two bits to define the subcubes as
(0000, 0001, 0011, 0010), (0100, 0101, 0111, 0110), (1100, 1101, 1111, 1110), and (1000,
1001, 1011, 1010). Note at this point that if we fix the d/2 least significant bits across all of
these subcubes, we will have another subcube as defined by the d/2 most significant bits. For
example, if we fix the lower two bits across the subcubes to 10, we get the nodes (0010, 0110,
1110, 1010). The reader can verify that this corresponds to a 2-D subcube.

The mapping from a hypercube to a mesh can now be defined as follows: each  node

subcube is mapped to a  node row of the mesh. We do this by simply inverting the linear-

array to hypercube mapping. The bisection width of the  node hypercube is . The

corresponding bisection width of a  node row is 1. Therefore the congestion of this subcube-

to-row mapping is  (at the edge that connects the two halves of the row). This is
illustrated for the cases of p = 16 and p = 32 in Figure 2.33(a) and (b). In this fashion, we can
map each subcube to a different row in the mesh. Note that while we have computed the
congestion resulting from the subcube-to-row mapping, we have not addressed the congestion
resulting from the column mapping. We map the hypercube nodes into the mesh in such a way
that nodes with identical d/2 least significant bits in the hypercube are mapped to the same

column. This results in a subcube-to-column mapping, where each subcube/column has 
nodes. Using the same argument as in the case of subcube-to-row mapping, this results in a

congestion of . Since the congestion from the row and column mappings affects disjoint

sets of edges, the total congestion of this mapping is .

Figure 2.33. Embedding a hypercube into a 2-D mesh.



To establish a lower bound on the congestion, we follow the same argument as in Section 2.7.1.

Since the bisection width of a hypercube is p/2 and that of a mesh is , the lower bound on

congestion is the ratio of these, i.e., . We notice that our mapping yields this lower bound
on congestion.

Process-Processor Mapping and Design of Interconnection Networks

Our analysis in previous sections reveals that it is possible to map denser networks into sparser
networks with associated congestion overheads. This implies that a sparser network whose link
bandwidth is increased to compensate for the congestion can be expected to perform as well as
the denser network (modulo dilation effects). For example, a mesh whose links are faster by a

factor of  will yield comparable performance to a hypercube. We call such a mesh a fat-
mesh. A fat-mesh has the same bisection-bandwidth as a hypercube; however it has a higher
diameter. As we have seen in Section 2.5.1, by using appropriate message routing techniques,
the effect of node distance can be minimized. It is important to note that higher dimensional
networks involve more complicated layouts, wire crossings, and variable wire-lengths. For these
reasons, fattened lower dimensional networks provide attractive alternate approaches to
designing interconnects. We now do a more formal examination of the cost-performance
tradeoffs of parallel architectures.

2.7.2 Cost-Performance Tradeoffs

We now examine how various cost metrics can be used to investigate cost-performance
tradeoffs in interconnection networks. We illustrate this by analyzing the performance of a mesh
and a hypercube network with identical costs.

If the cost of a network is proportional to the number of wires, then a square p-node
wraparound mesh with (log p)/4 wires per channel costs as much as a p-node hypercube with
one wire per channel. Let us compare the average communication times of these two networks.
The average distance lav between any two nodes in a two-dimensional wraparound mesh is



 and that in a hypercube is (log p)/2. The time for sending a message of size m between
nodes that are lav hops apart is given by ts + thlav + twm in networks that use cut-through
routing. Since the channel width of the mesh is scaled up by a factor of (log p)/4, the per-word
transfer time is reduced by the same factor. Hence, if the per-word transfer time on the
hypercube is tw, then the same time on a mesh with fattened channels is given by 4tw/(log p).
Hence, the average communication latency for a hypercube is given by ts + th (log p)/2 + twm

and that for a wraparound mesh of the same cost is .

Let us now investigate the behavior of these expressions. For a fixed number of nodes, as the
message size is increased, the communication term due to tw dominates. Comparing tw for the
two networks, we see that the time for a wraparound mesh (4twm/(log p))is less than the time
for a hypercube (twm)if p is greater than 16 and the message size m is sufficiently large. Under
these circumstances, point-to-point communication of large messages between random pairs of
nodes takes less time on a wraparound mesh with cut-through routing than on a hypercube of
the same cost. Furthermore, for algorithms in which communication is suited to a mesh, the
extra bandwidth of each channel results in better performance. Note that, with store-and-
forward routing, the mesh is no longer more cost-efficient than a hypercube. Similar cost-
performance tradeoffs can be analyzed for the general case of k-ary d-cubes (Problems
2.25–2.29).

The communication times above are computed under light load conditions in the network. As
the number of messages increases, there is contention on the network. Contention affects the
mesh network more adversely than the hypercube network. Therefore, if the network is heavily
loaded, the hypercube will outperform the mesh.

If the cost of a network is proportional to its bisection width, then a p-node wraparound mesh

with  wires per channel has a cost equal to a p-node hypercube with one wire per channel.
Let us perform an analysis similar to the one above to investigate cost-performance tradeoffs

using this cost metric. Since the mesh channels are wider by a factor of , the per-word
transfer time will be lower by an identical factor. Therefore, the communication times for the
hypercube and the mesh networks of the same cost are given by ts + th (log p)/2 + twm and

, respectively. Once again, as the message size m becomes large for a
given number of nodes, the tw term dominates. Comparing this term for the two networks, we
see that for p > 16 and sufficiently large message sizes, a mesh outperforms a hypercube of the
same cost. Therefore, for large enough messages, a mesh is always better than a hypercube of
the same cost, provided the network is lightly loaded. Even when the network is heavily loaded,
the performance of a mesh is similar to that of a hypercube of the same cost.
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2.8 Bibliographic Remarks

Several textbooks discuss various aspects of high-performance architectures [PH90, PH96,
Sto93]. Parallel architectures and interconnection networks have been well described [CSG98,
LW95, HX98, Fly95, AG94, DeC89, HB84, Lil92, Sie85, Sto93]. Historically, the classification of
parallel computers as SISD, SIMD, and MIMD was introduced by Flynn [Fly72]. He also
proposed the MISD (multiple instruction stream, single data stream) model. MISD is less
natural than the other classes, although it can be viewed as a model for pipelining. Darema
[DRGNP] introduced the Single Program Multiple Data (SPMD) paradigm. Ni [Ni91] provides a
layered classification of parallel computers based on hardware architecture, address space,
communication model, language, programming environment, and applications.

Interconnection networks have been an area of active interest for decades. Feng [Fen81]
provides a tutorial on static and dynamic interconnection networks. The perfect shuffle
interconnection pattern was introduced by Stone [Sto71]. Omega networks were introduced by
Lawrie [Law75]. Other multistage networks have also been proposed. These include the Flip
network [Bat76] and the Baseline network [WF80]. Mesh of trees and pyramidal mesh are
discussed by Leighton [Lei92]. Leighton [Lei92] also provides a detailed discussion of many
related networks.

The C.mmp was an early research prototype MIMD shared-address-space parallel computer
based on the Crossbar switch [WB72]. The Sun Ultra HPC Server and Fujitsu VPP 500 are
examples of crossbar-based parallel computers or their variants. Several parallel computers
were based on multistage interconnection networks including the BBN Butterfly [BBN89], the
NYU Ultracomputer [GGK+83], and the IBM RP-3 [PBG+85]. The SGI Origin 2000, Stanford
Dash [LLG+92] and the KSR-1 [Ken90] are NUMA shared-address-space computers.

The Cosmic Cube [Sei85] was among the first message-passing parallel computers based on a
hypercube-connected network. These were followed by the nCUBE 2 [nCU90] and the Intel
iPSC-1, iPSC-2, and iPSC/860. More recently, the SGI Origin 2000 uses a network similar to a
hypercube. Saad and Shultz [SS88, SS89a] derive interesting properties of the hypercube-
connected network and a variety of other static networks [SS89b]. Many parallel computers,
such as the Cray T3E, are based on the mesh network. The Intel Paragon XP/S [Sup91] and the
Mosaic C [Sei92] are earlier examples of two-dimensional mesh-based computers. The MIT J-
Machine [D+92] was based on a three-dimensional mesh network. The performance of mesh-
connected computers can be improved by augmenting the mesh network with broadcast buses
[KR87a]. The reconfigurable mesh architecture (Figure 2.35 in Problem 2.16) was introduced by
Miller et al. [MKRS88]. Other examples of reconfigurable meshes include the TRAC and PCHIP.

The DADO parallel computer was based on a tree network [SM86]. It used a complete binary
tree of depth 10. Leiserson [Lei85b] introduced the fat-tree interconnection network and proved
several interesting characteristics of it. He showed that for a given volume of hardware, no
network has much better performance than a fat tree. The Thinking Machines CM-5 [Thi91]
parallel computer was based on a fat tree interconnection network.

The Illiac IV [Bar68] was among the first SIMD parallel computers. Other SIMD computers
include the Goodyear MPP [Bat80], the DAP 610, and the CM-2 [Thi90], MasPar MP-1, and
MasPar MP-2 [Nic90]. The CM-5 and DADO incorporate both SIMD and MIMD features. Both are
MIMD computers but have extra hardware for fast synchronization, which enables them to
operate in SIMD mode. The CM-5 had a control network to augment the data network. The
control network provides such functions as broadcast, reduction, combining, and other global
operations.



Leighton [Lei92] and Ranka and Sahni [RS90b] discuss embedding one interconnection network
into another. Gray codes, used in embedding linear array and mesh topologies, are discussed
by Reingold [RND77]. Ranka and Sahni [RS90b] discuss the concepts of congestion, dilation,
and expansion.

A comprehensive survey of cut-through routing techniques is provided by Ni and McKinley
[NM93]. The wormhole routing technique was proposed by Dally and Seitz [DS86]. A related
technique called virtual cut-through, in which communication buffers are provided at
intermediate nodes, was described by Kermani and Kleinrock [KK79]. Dally and Seitz [DS87]
discuss deadlock-free wormhole routing based on channel dependence graphs. Deterministic
routing schemes based on dimension ordering are often used to avoid deadlocks. Cut-through
routing has been used in several parallel computers. The E-cube routing scheme for hypercubes
was proposed by [SB77].

Dally [Dal90b] discusses cost-performance tradeoffs of networks for message-passing
computers. Using the bisection bandwidth of a network as a measure of the cost of the network,
he shows that low-dimensional networks (such as two-dimensional meshes) are more cost-
effective than high-dimensional networks (such as hypercubes) [Dal87, Dal90b, Dal90a].
Kreeger and Vempaty [KV92] derive the bandwidth equalization factor for a mesh with respect
to a hypercube-connected computer for all-to-all personalized communication (Section 4.5).
Gupta and Kumar [GK93b] analyze the cost-performance tradeoffs of FFT computations on
mesh and hypercube networks.

The properties of PRAMs have been studied extensively [FW78, KR88, LY86, Sni82, Sni85].
Books by Akl [Akl89], Gibbons [GR90], and Jaja [Jaj92] address PRAM algorithms. Our
discussion of PRAM is based upon the book by Jaja [Jaj92]. A number of processor networks
have been proposed to simulate PRAM models [AHMP87, HP89, LPP88, LPP89, MV84, Upf84,
UW84]. Mehlhorn and Vishkin [MV84] propose the module parallel computer (MPC) to
simulate PRAM models. The MPC is a message-passing parallel computer composed of p
processors, each with a fixed amount of memory and connected by a completely-connected
network. The MPC is capable of probabilistically simulating T steps of a PRAM in T log p steps if
the total memory is increased by a factor of log p. The main drawback of the MPC model is that
a completely-connected network is difficult to construct for a large number of processors. Alt et
al. [AHMP87] propose another model called the bounded-degree network (BDN). In this
network, each processor is connected to a fixed number of other processors. Karlin and Upfal
[KU86] describe an O(T log p) time probabilistic simulation of a PRAM on a BDN. Hornick and
Preparata [HP89] propose a bipartite network that connects sets of processors and memory
pools. They investigate both the message-passing MPC and BDN based on a mesh of trees.

Many modifications of the PRAM model have been proposed that attempt to bring it closer to
practical parallel computers. Aggarwal, Chandra, and Snir [ACS89b] propose the LPRAM (local-
memory PRAM) model and the BPRAM (block PRAM) model [ACS89b]. They also introduce a
hierarchical memory model of computation [ACS89a]. In this model, memory units at different
levels are accessed in different times. Parallel algorithms for this model induce locality by
bringing data into faster memory units before using them and returning them to the slower
memory units. Other PRAM models such as phase PRAM [Gib89], XPRAM [Val90b], and the
delay model [PY88] have also been proposed. Many researchers have investigated abstract
universal models for parallel computers [CKP+93a, Sny86, Val90a]. Models such as BSP
[Val90a], Postal model [BNK92], LogP [CKP+93b], A3 [GKRS96], C3 [HK96], CGM [DFRC96],
and QSM [Ram97] have been proposed with similar objectives.
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Problems

2.1 Design an experiment (i.e., design and write programs and take measurements) to
determine the memory bandwidth of your computer and to estimate the caches at various
levels of the hierarchy. Use this experiment to estimate the bandwidth and L1 cache of
your computer. Justify your answer. (Hint: To test bandwidth, you do not want reuse. To
test cache size, you want reuse to see the effect of the cache and to increase this size until
the reuse decreases sharply.)

2.2 Consider a memory system with a level 1 cache of 32 KB and DRAM of 512 MB with
the processor operating at 1 GHz. The latency to L1 cache is one cycle and the latency to
DRAM is 100 cycles. In each memory cycle, the processor fetches four words (cache line
size is four words). What is the peak achievable performance of a dot product of two
vectors? Note: Where necessary, assume an optimal cache placement policy.

1        /* dot product loop */ 
2        for (i = 0; i < dim; i++) 
3                dot_prod += a[i] * b[i]; 

2.3 Now consider the problem of multiplying a dense matrix with a vector using a two-
loop dot-product formulation. The matrix is of dimension 4K x 4K. (Each row of the matrix
takes 16 KB of storage.) What is the peak achievable performance of this technique using
a two-loop dot-product based matrix-vector product?

1        /* matrix-vector product loop */ 
2        for (i = 0; i < dim; i++) 
3                for (j = 0; i < dim; j++) 
4                        c[i] += a[i][j] * b[j]; 

2.4 Extending this further, consider the problem of multiplying two dense matrices of
dimension 4K x 4K. What is the peak achievable performance using a three-loop dot-
product based formulation? (Assume that matrices are laid out in a row-major fashion.)

1        /* matrix-matrix product loop */ 
2        for (i = 0; i < dim; i++) 
3                for (j = 0; i < dim; j++) 
4                        for (k = 0; k < dim; k++) 
5                                c[i][j] += a[i][k] * b[k][j]; 

2.5 Restructure the matrix multiplication algorithm to achieve better cache performance.
The most obvious cause of the poor performance of matrix multiplication was the absence
of spatial locality. In some cases, we were wasting three of the four words fetched from
memory. To fix this problem, we compute the elements of the result matrix four at a time.
Using this approach, we can increase our FLOP count with a simple restructuring of the
program. However, it is possible to achieve much higher performance from this problem.
This is possible by viewing the matrix multiplication problem as a cube in which each
internal grid point corresponds to a multiply-add operation. Matrix multiplication
algorithms traverse this cube in different ways, which induce different partitions of the
cube. The data required for computing a partition grows as the surface area of the input



faces of the partition and the computation as the volume of the partition. For the
algorithms discussed above, we were slicing thin partitions of the cube for which the area
and volume were comparable (thus achieving poor cache performance). To remedy this,
we restructure the computation by partitioning the cube into subcubes of size k x k x k.
The data associated with this is 3 x k2 (k2 data for each of the three matrices) and the
computation is k3. To maximize performance, we would like 3 x k2 to be equal to 8K since
that is the amount of cache available (assuming the same machine parameters as in
Problem 2.2). This corresponds to k = 51. The computation associated with a cube of this
dimension is 132651 multiply-add operations or 265302 FLOPs. To perform this
computation, we needed to fetch two submatrices of size 51 x 51. This corresponds to
5202 words or 1301 cache lines. Accessing these cache lines takes 130100 ns. Since
265302 FLOPs are performed in 130100 ns, the peak computation rate of this formulation
is 2.04 GFLOPS. Code this example and plot the performance as a function of k. (Code on
any conventional microprocessor. Make sure you note the clock speed, the microprocessor
and the cache available at each level.)

2.6 Consider an SMP with a distributed shared-address-space. Consider a simple cost
model in which it takes 10 ns to access local cache, 100 ns to access local memory, and
400 ns to access remote memory. A parallel program is running on this machine. The
program is perfectly load balanced with 80% of all accesses going to local cache, 10% to
local memory, and 10% to remote memory. What is the effective memory access time for
this computation? If the computation is memory bound, what is the peak computation
rate?

Now consider the same computation running on one processor. Here, the processor hits
the cache 70% of the time and local memory 30% of the time. What is the effective peak
computation rate for one processor? What is the fractional computation rate of a processor
in a parallel configuration as compared to the serial configuration?

Hint: Notice that the cache hit for multiple processors is higher than that for one
processor. This is typically because the aggregate cache available on multiprocessors is
larger than on single processor systems.

2.7 What are the major differences between message-passing and shared-address-space
computers? Also outline the advantages and disadvantages of the two.

2.8 Why is it difficult to construct a true shared-memory computer? What is the minimum
number of switches for connecting p processors to a shared memory with b words (where
each word can be accessed independently)?

2.9 Of the four PRAM models (EREW, CREW, ERCW, and CRCW), which model is the most
powerful? Why?

2.10 [Lei92] The Butterfly network is an interconnection network composed of log p
levels (as the omega network). In a Butterfly network, each switching node i at a level l is
connected to the identically numbered element at level l + 1 and to a switching node
whose number differs from itself only at the lth most significant bit. Therefore, switching

node Si is connected to element S j at level l if j = i or j = i  (2log p-l ).

Figure 2.34 illustrates a Butterfly network with eight processing nodes. Show the
equivalence of a Butterfly network and an omega network.

Figure 2.34. A Butterfly network with eight processing nodes.



Hint: Rearrange the switches of an omega network so that it looks like a Butterfly
network.

2.11 Consider the omega network described in Section 2.4.3. As shown there, this
network is a blocking network (that is, a processor that uses the network to access a
memory location might prevent another processor from accessing another memory
location). Consider an omega network that connects p processors. Define a function f that
maps P = [0, 1, ..., p - 1] onto a permutation P' of P (that is, P'[i] = f(P[i]) and P'[i]  P

for all 0  i < p). Think of this function as mapping communication requests by the
processors so that processor P[i] requests communication with processor P'[i].

How many distinct permutation functions exist?1.

How many of these functions result in non-blocking communication?2.

What is the probability that an arbitrary function will result in non-blocking
communication?

3.

2.12 A cycle in a graph is defined as a path originating and terminating at the same node.
The length of a cycle is the number of edges in the cycle. Show that there are no odd-
length cycles in a d-dimensional hypercube.

2.13 The labels in a d-dimensional hypercube use d bits. Fixing any k of these bits, show
that the nodes whose labels differ in the remaining d - k bit positions form a (d - k)-
dimensional subcube composed of 2(d-k) nodes.

2.14 Let A and B be two nodes in a d-dimensional hypercube. Define H(A, B) to be the
Hamming distance between A and B, and P(A, B) to be the number of distinct paths
connecting A and B. These paths are called parallel paths and have no common nodes
other than A and B. Prove the following:

The minimum distance in terms of communication links between A and B is given by
H(A, B).

1.

The total number of parallel paths between any two nodes is P(A, B) = d .2.

3.

4.



2.

The number of parallel paths between A and B of length H(A, B) is Plength=H(A,B)(A, B)
= H(A, B).

3.

The length of the remaining d - H(A, B) parallel paths is H(A, B) + 2.4.

2.15 In the informal derivation of the bisection width of a hypercube, we used the
construction of a hypercube to show that a d-dimensional hypercube is formed from two (d
- 1)-dimensional hypercubes. We argued that because corresponding nodes in each of
these subcubes have a direct communication link, there are 2d - 1 links across the
partition. However, it is possible to partition a hypercube into two parts such that neither
of the partitions is a hypercube. Show that any such partitions will have more than 2d - 1
direct links between them.

2.16 [MKRS88] A  reconfigurable mesh consists of a  array of
processing nodes connected to a grid-shaped reconfigurable broadcast bus. A 4 x 4
reconfigurable mesh is shown in Figure 2.35. Each node has locally-controllable bus
switches. The internal connections among the four ports, north (N), east (E), west (W),
and south (S), of a node can be configured during the execution of an algorithm. Note that
there are 15 connection patterns. For example, {SW, EN} represents the configuration in
which port S is connected to port W and port N is connected to port E. Each bit of the bus
carries one of 1-signal or 0-signal at any time. The switches allow the broadcast bus to
be divided into subbuses, providing smaller reconfigurable meshes. For a given set of
switch settings, a subbus is a maximally-connected subset of the nodes. Other than the
buses and the switches, the reconfigurable mesh is similar to the standard two-
dimensional mesh. Assume that only one node is allowed to broadcast on a subbus shared
by multiple nodes at any time.

Figure 2.35. Switch connection patterns in a reconfigurable mesh.

Determine the bisection width, the diameter, and the number of switching nodes and

communication links for a reconfigurable mesh of  processing nodes. What are
the advantages and disadvantages of a reconfigurable mesh as compared to a wraparound
mesh?

2.17 [Lei92] A mesh of trees is a network that imposes a tree interconnection on a grid

of processing nodes. A  mesh of trees is constructed as follows. Starting with a

 grid, a complete binary tree is imposed on each row of the grid. Then a



complete binary tree is imposed on each column of the grid. Figure 2.36 illustrates the
construction of a 4 x 4 mesh of trees. Assume that the nodes at intermediate levels are
switching nodes. Determine the bisection width, diameter, and total number of switching

nodes in a  mesh.

Figure 2.36. The construction of a 4 x 4 mesh of trees: (a) a 4 x 4
grid, (b) complete binary trees imposed over individual rows, (c)

complete binary trees imposed over each column, and (d) the
complete 4 x 4 mesh of trees.

2.18 [Lei92] Extend the two-dimensional mesh of trees (Problem 2.17) to d dimensions to
construct a p1/d x p1/d x ··· x p1/d mesh of trees. We can do this by fixing grid positions in
all dimensions to different values and imposing a complete binary tree on the one
dimension that is being varied.

Derive the total number of switching nodes in a p1/d x p1/d x ··· x p1/d mesh of trees.
Calculate the diameter, bisection width, and wiring cost in terms of the total number of
wires. What are the advantages and disadvantages of a mesh of trees as compared to a
wraparound mesh?

2.19 [Lei92] A network related to the mesh of trees is the d-dimensional pyramidal
mesh. A d-dimensional pyramidal mesh imposes a pyramid on the underlying grid of
processing nodes (as opposed to a complete tree in the mesh of trees). The generalization



is as follows. In the mesh of trees, all dimensions except one are fixed and a tree is
imposed on the remaining dimension. In a pyramid, all but two dimensions are fixed and a
pyramid is imposed on the mesh formed by these two dimensions. In a tree, each node i
at level k is connected to node i/2 at level k - 1. Similarly, in a pyramid, a node (i, j) at
level k is connected to a node (i/2, j/2) at level k - 1. Furthermore, the nodes at each level
are connected in a mesh. A two-dimensional pyramidal mesh is illustrated in Figure 2.37.

Figure 2.37. A 4 x 4 pyramidal mesh.

For a  pyramidal mesh, assume that the intermediate nodes are switching
nodes, and derive the diameter, bisection width, arc connectivity, and cost in terms of the
number of communication links and switching nodes. What are the advantages and
disadvantages of a pyramidal mesh as compared to a mesh of trees?

2.20 [Lei92] One of the drawbacks of a hypercube-connected network is that different
wires in the network are of different lengths. This implies that data takes different times to
traverse different communication links. It appears that two-dimensional mesh networks
with wraparound connections suffer from this drawback too. However, it is possible to
fabricate a two-dimensional wraparound mesh using wires of fixed length. Illustrate this
layout by drawing such a 4 x 4 wraparound mesh.

2.21 Show how to embed a p-node three-dimensional mesh into a p-node hypercube.
What are the allowable values of p for your embedding?

2.22 Show how to embed a p-node mesh of trees into a p-node hypercube.

2.23 Consider a complete binary tree of 2d - 1 nodes in which each node is a processing
node. What is the minimum-dilation mapping of such a tree onto a d-dimensional
hypercube?

2.24 The concept of a minimum congestion mapping is very useful. Consider two
parallel computers with different interconnection networks such that a congestion-r
mapping of the first into the second exists. Ignoring the dilation of the mapping, if each
communication link in the second computer is more than r times faster than the first
computer, the second computer is strictly superior to the first.

Now consider mapping a d-dimensional hypercube onto a 2d-node mesh. Ignoring the
dilation of the mapping, what is the minimum-congestion mapping of the hypercube onto
the mesh? Use this result to determine whether a 1024-node mesh with communication
links operating at 25 million bytes per second is strictly better than a 1024-node
hypercube (whose nodes are identical to those used in the mesh) with communication links



operating at two million bytes per second.

2.25 Derive the diameter, number of links, and bisection width of a k-ary d-cube with p
nodes. Define lav to be the average distance between any two nodes in the network. Derive
lav for a k-ary d-cube.

2.26 Consider the routing of messages in a parallel computer that uses store-and-forward
routing. In such a network, the cost of sending a single message of size m from Psource to
Pdestination via a path of length d is ts + tw x d x m. An alternate way of sending a message
of size m is as follows. The user breaks the message into k parts each of size m/k, and
then sends these k distinct messages one by one from Psource to Pdestination. For this new
method, derive the expression for time to transfer a message of size m to a node d hops
away under the following two cases:

Assume that another message can be sent from Psource as soon as the previous
message has reached the next node in the path.

1.

Assume that another message can be sent from Psource only after the previous
message has reached Pdestination.

2.

For each case, comment on the value of this expression as the value of k varies between 1
and m. Also, what is the optimal value of k if ts is very large, or if ts = 0?

2.27 Consider a hypercube network of p nodes. Assume that the channel width of each
communication link is one. The channel width of the links in a k-ary d-cube (for d < log p)
can be increased by equating the cost of this network with that of a hypercube. Two
distinct measures can be used to evaluate the cost of a network.

The cost can be expressed in terms of the total number of wires in the network (the
total number of wires is a product of the number of communication links and the
channel width).

1.

The bisection bandwidth can be used as a measure of cost.2.

Using each of these cost metrics and equating the cost of a k-ary d-cube with a hypercube,
what is the channel width of a k-ary d-cube with an identical number of nodes, channel
rate, and cost?

2.28 The results from Problems 2.25 and 2.27 can be used in a cost-performance analysis
of static interconnection networks. Consider a k-ary d-cube network of p nodes with cut-
through routing. Assume a hypercube-connected network of p nodes with channel width
one. The channel width of other networks in the family is scaled up so that their cost is
identical to that of the hypercube. Let s and s' be the scaling factors for the channel width
derived by equating the costs specified by the two cost metrics in Problem 2.27.

For each of the two scaling factors s and s', express the average communication time
between any two nodes as a function of the dimensionality (d)of a k-ary d-cube and the
number of nodes. Plot the communication time as a function of the dimensionality for p =
256, 512, and 1024, message size m = 512 bytes, ts = 50.0µs, and th = tw = 0.5µs (for
the hypercube). For these values of p and m, what is the dimensionality of the network
that yields the best performance for a given cost?

2.29 Repeat Problem 2.28 for a k-ary d-cube with store-and-forward routing.
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Chapter 3. Principles of Parallel
Algorithm Design
Algorithm development is a critical component of problem solving using computers. A sequential
algorithm is essentially a recipe or a sequence of basic steps for solving a given problem using a
serial computer. Similarly, a parallel algorithm is a recipe that tells us how to solve a given
problem using multiple processors. However, specifying a parallel algorithm involves more than
just specifying the steps. At the very least, a parallel algorithm has the added dimension of
concurrency and the algorithm designer must specify sets of steps that can be executed
simultaneously. This is essential for obtaining any performance benefit from the use of a parallel
computer. In practice, specifying a nontrivial parallel algorithm may include some or all of the
following:

Identifying portions of the work that can be performed concurrently.

Mapping the concurrent pieces of work onto multiple processes running in parallel.

Distributing the input, output, and intermediate data associated with the program.

Managing accesses to data shared by multiple processors.

Synchronizing the processors at various stages of the parallel program execution.

Typically, there are several choices for each of the above steps, but usually, relatively few
combinations of choices lead to a parallel algorithm that yields performance commensurate with
the computational and storage resources employed to solve the problem. Often, different
choices yield the best performance on different parallel architectures or under different parallel
programming paradigms.

In this chapter, we methodically discuss the process of designing and implementing parallel
algorithms. We shall assume that the onus of providing a complete description of a parallel
algorithm or program lies on the programmer or the algorithm designer. Tools and compilers
for automatic parallelization at the current state of the art seem to work well only for highly
structured programs or portions of programs. Therefore, we do not consider these in this
chapter or elsewhere in this book.
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3.1 Preliminaries

Dividing a computation into smaller computations and assigning them to different processors for
parallel execution are the two key steps in the design of parallel algorithms. In this section, we
present some basic terminology and introduce these two key steps in parallel algorithm design
using matrix-vector multiplication and database query processing as examples.

3.1.1 Decomposition, Tasks, and Dependency Graphs

The process of dividing a computation into smaller parts, some or all of which may potentially
be executed in parallel, is called decomposition. Tasks are programmer-defined units of
computation into which the main computation is subdivided by means of decomposition.
Simultaneous execution of multiple tasks is the key to reducing the time required to solve the
entire problem. Tasks can be of arbitrary size, but once defined, they are regarded as indivisible
units of computation. The tasks into which a problem is decomposed may not all be of the same
size.

Example 3.1 Dense matrix-vector multiplication

Consider the multiplication of a dense n x n matrix A with a vector b to yield another
vector y. The ith element y[i] of the product vector is the dot-product of the ith row of

A with the input vector b; i.e., . As shown later in Figure 3.1,
the computation of each y[i] can be regarded as a task. Alternatively, as shown later
in Figure 3.4, the computation could be decomposed into fewer, say four, tasks where

each task computes roughly n/4 of the entries of the vector y. 

Figure 3.1. Decomposition of dense matrix-vector multiplication
into n tasks, where n is the number of rows in the matrix. The

portions of the matrix and the input and output vectors
accessed by Task 1 are highlighted.



Note that all tasks in Figure 3.1 are independent and can be performed all together or in any
sequence. However, in general, some tasks may use data produced by other tasks and thus
may need to wait for these tasks to finish execution. An abstraction used to express such
dependencies among tasks and their relative order of execution is known as a task-
dependency graph. A task-dependency graph is a directed acyclic graph in which the nodes
represent tasks and the directed edges indicate the dependencies amongst them. The task
corresponding to a node can be executed when all tasks connected to this node by incoming
edges have completed. Note that task-dependency graphs can be disconnected and the edge-
set of a task-dependency graph can be empty. This is the case for matrix-vector multiplication,
where each task computes a subset of the entries of the product vector. To see a more
interesting task-dependency graph, consider the following database query processing example.

Example 3.2 Database query processing

Table 3.1 shows a relational database of vehicles. Each row of the table is a record
that contains data corresponding to a particular vehicle, such as its ID, model, year,
color, etc. in various fields. Consider the computations performed in processing the
following query:

MODEL="Civic" AND YEAR="2001" AND (COLOR="Green" OR COLOR="White")

This query looks for all 2001 Civics whose color is either Green or White. On a
relational database, this query is processed by creating a number of intermediate
tables. One possible way is to first create the following four tables: a table containing
all Civics, a table containing all 2001-model cars, a table containing all green-colored
cars, and a table containing all white-colored cars. Next, the computation proceeds by
combining these tables by computing their pairwise intersections or unions. In
particular, it computes the intersection of the Civic-table with the 2001-model year
table, to construct a table of all 2001-model Civics. Similarly, it computes the union of
the green- and white-colored tables to compute a table storing all cars whose color is
either green or white. Finally, it computes the intersection of the table containing all
the 2001 Civics with the table containing all the green or white vehicles, and returns

the desired list. 

Table 3.1. A database storing information about used
vehicles.

ID# Model Year Color Dealer Price

4523 Civic 2002 Blue MN $18,000

3476 Corolla 1999 White IL $15,000

7623 Camry 2001 Green NY $21,000

9834 Prius 2001 Green CA $18,000

6734 Civic 2001 White OR $17,000

5342 Altima 2001 Green FL $19,000



ID# Model Year Color Dealer Price

3845 Maxima 2001 Blue NY $22,000

8354 Accord 2000 Green VT $18,000

4395 Civic 2001 Red CA $17,000

7352 Civic 2002 Red WA $18,000

The various computations involved in processing the query in Example 3.2 can be visualized by
the task-dependency graph shown in Figure 3.2. Each node in this figure is a task that
corresponds to an intermediate table that needs to be computed and the arrows between nodes
indicate dependencies between the tasks. For example, before we can compute the table that
corresponds to the 2001 Civics, we must first compute the table of all the Civics and a table of
all the 2001-model cars.

Figure 3.2. The different tables and their dependencies in a query
processing operation.

Note that often there are multiple ways of expressing certain computations, especially those
involving associative operators such as addition, multiplication, and logical AND or OR. Different
ways of arranging computations can lead to different task-dependency graphs with different
characteristics. For instance, the database query in Example 3.2 can be solved by first
computing a table of all green or white cars, then performing an intersection with a table of all
2001 model cars, and finally combining the results with the table of all Civics. This sequence of
computation results in the task-dependency graph shown in Figure 3.3.

Figure 3.3. An alternate data-dependency graph for the query
processing operation.
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3.1.2 Granularity, Concurrency, and Task-Interaction

The number and size of tasks into which a problem is decomposed determines the granularity
of the decomposition. A decomposition into a large number of small tasks is called fine-grained
and a decomposition into a small number of large tasks is called coarse-grained. For example,
the decomposition for matrix-vector multiplication shown in Figure 3.1 would usually be
considered fine-grained because each of a large number of tasks performs a single dot-product.
Figure 3.4 shows a coarse-grained decomposition of the same problem into four tasks, where
each tasks computes n/4 of the entries of the output vector of length n.

Figure 3.4. Decomposition of dense matrix-vector multiplication into
four tasks. The portions of the matrix and the input and output vectors

accessed by Task 1 are highlighted.



A concept related to granularity is that of degree of concurrency. The maximum number of
tasks that can be executed simultaneously in a parallel program at any given time is known as
its maximum degree of concurrency. In most cases, the maximum degree of concurrency is less
than the total number of tasks due to dependencies among the tasks. For example, the
maximum degree of concurrency in the task-graphs of Figures 3.2 and 3.3 is four. In these
task-graphs, maximum concurrency is available right at the beginning when tables for Model,
Year, Color Green, and Color White can be computed simultaneously. In general, for task-
dependency graphs that are trees, the maximum degree of concurrency is always equal to the
number of leaves in the tree.

A more useful indicator of a parallel program's performance is the average degree of
concurrency, which is the average number of tasks that can run concurrently over the entire
duration of execution of the program.

Both the maximum and the average degrees of concurrency usually increase as the granularity
of tasks becomes smaller (finer). For example, the decomposition of matrix-vector
multiplication shown in Figure 3.1 has a fairly small granularity and a large degree of
concurrency. The decomposition for the same problem shown in Figure 3.4 has a larger
granularity and a smaller degree of concurrency.

The degree of concurrency also depends on the shape of the task-dependency graph and the
same granularity, in general, does not guarantee the same degree of concurrency. For example,
consider the two task graphs in Figure 3.5, which are abstractions of the task graphs of Figures
3.2 and 3.3, respectively (Problem 3.1). The number inside each node represents the amount of
work required to complete the task corresponding to that node. The average degree of
concurrency of the task graph in Figure 3.5(a) is 2.33 and that of the task graph in Figure
3.5(b) is 1.88 (Problem 3.1), although both task-dependency graphs are based on the same
decomposition.

Figure 3.5. Abstractions of the task graphs of Figures 3.2 and 3.3,
respectively.

A feature of a task-dependency graph that determines the average degree of concurrency for a
given granularity is its critical path. In a task-dependency graph, let us refer to the nodes with
no incoming edges by start nodes and the nodes with no outgoing edges by finish nodes. The
longest directed path between any pair of start and finish nodes is known as the critical path.
The sum of the weights of nodes along this path is known as the critical path length, where
the weight of a node is the size or the amount of work associated with the corresponding task.
The ratio of the total amount of work to the critical-path length is the average degree of
concurrency. Therefore, a shorter critical path favors a higher degree of concurrency. For
example, the critical path length is 27 in the task-dependency graph shown in Figure 3.5(a) and



is 34 in the task-dependency graph shown in Figure 3.5(b). Since the total amount of work
required to solve the problems using the two decompositions is 63 and 64, respectively, the
average degree of concurrency of the two task-dependency graphs is 2.33 and 1.88,
respectively.

Although it may appear that the time required to solve a problem can be reduced simply by
increasing the granularity of decomposition and utilizing the resulting concurrency to perform
more and more tasks in parallel, this is not the case in most practical scenarios. Usually, there
is an inherent bound on how fine-grained a decomposition a problem permits. For instance,
there are n2 multiplications and additions in matrix-vector multiplication considered in Example
3.1 and the problem cannot be decomposed into more than O(n2) tasks even by using the most
fine-grained decomposition.

Other than limited granularity and degree of concurrency, there is another important practical
factor that limits our ability to obtain unbounded speedup (ratio of serial to parallel execution
time) from parallelization. This factor is the interaction among tasks running on different
physical processors. The tasks that a problem is decomposed into often share input, output, or
intermediate data. The dependencies in a task-dependency graph usually result from the fact
that the output of one task is the input for another. For example, in the database query
example, tasks share intermediate data; the table generated by one task is often used by
another task as input. Depending on the definition of the tasks and the parallel programming
paradigm, there may be interactions among tasks that appear to be independent in a task-
dependency graph. For example, in the decomposition for matrix-vector multiplication, although
all tasks are independent, they all need access to the entire input vector b. Since originally
there is only one copy of the vector b, tasks may have to send and receive messages for all of
them to access the entire vector in the distributed-memory paradigm.

The pattern of interaction among tasks is captured by what is known as a task-interaction
graph. The nodes in a task-interaction graph represent tasks and the edges connect tasks that
interact with each other. The nodes and edges of a task-interaction graph can be assigned
weights proportional to the amount of computation a task performs and the amount of
interaction that occurs along an edge, if this information is known. The edges in a task-
interaction graph are usually undirected, but directed edges can be used to indicate the
direction of flow of data, if it is unidirectional. The edge-set of a task-interaction graph is
usually a superset of the edge-set of the task-dependency graph. In the database query
example discussed earlier, the task-interaction graph is the same as the task-dependency
graph. We now give an example of a more interesting task-interaction graph that results from
the problem of sparse matrix-vector multiplication.

Example 3.3 Sparse matrix-vector multiplication

Consider the problem of computing the product y = Ab of a sparse n x n matrix A with
a dense n x 1 vector b. A matrix is considered sparse when a significant number of
entries in it are zero and the locations of the non-zero entries do not conform to a
predefined structure or pattern. Arithmetic operations involving sparse matrices can
often be optimized significantly by avoiding computations involving the zeros. For

instance, while computing the ith entry  of the product
vector, we need to compute the products A[i, j] x b[j] for only those values of j for

which A[i, j]  0. For example, y[0] = A[0, 0].b[0] + A[0, 1].b[1] + A[0, 4].b[4] +
A[0, 8].b[8].

One possible way of decomposing this computation is to partition the output vector y
and have each task compute an entry in it. Figure 3.6(a) illustrates this



decomposition. In addition to assigning the computation of the element y[i] of the
output vector to Task i, we also make it the "owner" of row A[i, *] of the matrix and
the element b[i] of the input vector. Note that the computation of y[i] requires access
to many elements of b that are owned by other tasks. So Task i must get these
elements from the appropriate locations. In the message-passing paradigm, with the
ownership of b[i],Task i also inherits the responsibility of sending b[i] to all the other
tasks that need it for their computation. For example, Task 4 must send b[4] to Tasks
0, 5, 8, and 9 and must get b[0], b[5], b[8], and b[9] to perform its own

computation. The resulting task-interaction graph is shown in Figure 3.6(b). 

Figure 3.6. A decomposition for sparse matrix-vector
multiplication and the corresponding task-interaction graph. In

the decomposition Task i computes .

Chapter 5 contains detailed quantitative analysis of overheads due to interaction and limited
concurrency and their effect on the performance and scalability of parallel algorithm-
architecture combinations. In this section, we have provided a basic introduction to these
factors because they require important consideration in designing parallel algorithms.

3.1.3 Processes and Mapping

The tasks, into which a problem is decomposed, run on physical processors. However, for
reasons that we shall soon discuss, we will use the term process in this chapter to refer to a
processing or computing agent that performs tasks. In this context, the term process does not
adhere to the rigorous operating system definition of a process. Instead, it is an abstract entity
that uses the code and data corresponding to a task to produce the output of that task within a
finite amount of time after the task is activated by the parallel program. During this time, in
addition to performing computations, a process may synchronize or communicate with other
processes, if needed. In order to obtain any speedup over a sequential implementation, a
parallel program must have several processes active simultaneously, working on different tasks.
The mechanism by which tasks are assigned to processes for execution is called mapping. For
example, four processes could be assigned the task of computing one submatrix of C each in the
matrix-multiplication computation of Example 3.5.

The task-dependency and task-interaction graphs that result from a choice of decomposition
play an important role in the selection of a good mapping for a parallel algorithm. A good
mapping should seek to maximize the use of concurrency by mapping independent tasks onto
different processes, it should seek to minimize the total completion time by ensuring that
processes are available to execute the tasks on the critical path as soon as such tasks become



executable, and it should seek to minimize interaction among processes by mapping tasks with
a high degree of mutual interaction onto the same process. In most nontrivial parallel
algorithms, these tend to be conflicting goals. For instance, the most efficient decomposition-
mapping combination is a single task mapped onto a single process. It wastes no time in idling
or interacting, but achieves no speedup either. Finding a balance that optimizes the overall
parallel performance is the key to a successful parallel algorithm. Therefore, mapping of tasks
onto processes plays an important role in determining how efficient the resulting parallel
algorithm is. Even though the degree of concurrency is determined by the decomposition, it is
the mapping that determines how much of that concurrency is actually utilized, and how
efficiently.

For example, Figure 3.7 shows efficient mappings for the decompositions and the task-
interaction graphs of Figure 3.5 onto four processes. Note that, in this case, a maximum of four
processes can be employed usefully, although the total number of tasks is seven. This is
because the maximum degree of concurrency is only four. The last three tasks can be mapped
arbitrarily among the processes to satisfy the constraints of the task-dependency graph.
However, it makes more sense to map the tasks connected by an edge onto the same process
because this prevents an inter-task interaction from becoming an inter-processes interaction.
For example, in Figure 3.7(b), if Task 5 is mapped onto process P2, then both processes P0 and
P1 will need to interact with P2. In the current mapping, only a single interaction between P0 and
P1 suffices.

Figure 3.7. Mappings of the task graphs of Figure 3.5 onto four
processes.

3.1.4 Processes versus Processors

In the context of parallel algorithm design, processes are logical computing agents that perform
tasks. Processors are the hardware units that physically perform computations. In this text, we
choose to express parallel algorithms and programs in terms of processes. In most cases, when
we refer to processes in the context of a parallel algorithm, there is a one-to-one
correspondence between processes and processors and it is appropriate to assume that there
are as many processes as the number of physical CPUs on the parallel computer. However,
sometimes a higher level of abstraction may be required to express a parallel algorithm,
especially if it is a complex algorithm with multiple stages or with different forms of parallelism.

Treating processes and processors separately is also useful when designing parallel programs
for hardware that supports multiple programming paradigms. For instance, consider a parallel
computer that consists of multiple computing nodes that communicate with each other via
message passing. Now each of these nodes could be a shared-address-space module with



multiple CPUs. Consider implementing matrix multiplication on such a parallel computer. The
best way to design a parallel algorithm is to do so in two stages. First, develop a decomposition
and mapping strategy suitable for the message-passing paradigm and use this to exploit
parallelism among the nodes. Each task that the original matrix multiplication problem
decomposes into is a matrix multiplication computation itself. The next step is to develop a
decomposition and mapping strategy suitable for the shared-memory paradigm and use this to
implement each task on the multiple CPUs of a node.
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3.2 Decomposition Techniques

As mentioned earlier, one of the fundamental steps that we need to undertake to solve a
problem in parallel is to split the computations to be performed into a set of tasks for
concurrent execution defined by the task-dependency graph. In this section, we describe some
commonly used decomposition techniques for achieving concurrency. This is not an exhaustive
set of possible decomposition techniques. Also, a given decomposition is not always guaranteed
to lead to the best parallel algorithm for a given problem. Despite these shortcomings, the
decomposition techniques described in this section often provide a good starting point for many
problems and one or a combination of these techniques can be used to obtain effective
decompositions for a large variety of problems.

These techniques are broadly classified as recursive decomposition, data-decomposition,
exploratory decomposition, and speculative decomposition. The recursive- and data-
decomposition techniques are relatively general purpose as they can be used to decompose a
wide variety of problems. On the other hand, speculative- and exploratory-decomposition
techniques are more of a special purpose nature because they apply to specific classes of
problems.

3.2.1 Recursive Decomposition

Recursive decomposition is a method for inducing concurrency in problems that can be solved
using the divide-and-conquer strategy. In this technique, a problem is solved by first dividing it
into a set of independent subproblems. Each one of these subproblems is solved by recursively
applying a similar division into smaller subproblems followed by a combination of their results.
The divide-and-conquer strategy results in natural concurrency, as different subproblems can be
solved concurrently.

Example 3.4 Quicksort

Consider the problem of sorting a sequence A of n elements using the commonly used
quicksort algorithm. Quicksort is a divide and conquer algorithm that starts by
selecting a pivot element x and then partitions the sequence A into two subsequences
A0 and A1 such that all the elements in A0 are smaller than x and all the elements in
A1 are greater than or equal to x. This partitioning step forms the divide step of the
algorithm. Each one of the subsequences A0 and A1 is sorted by recursively calling
quicksort. Each one of these recursive calls further partitions the sequences. This is
illustrated in Figure 3.8 for a sequence of 12 numbers. The recursion terminates when

each subsequence contains only a single element. 

Figure 3.8. The quicksort task-dependency graph based on
recursive decomposition for sorting a sequence of 12 numbers.



In Figure 3.8, we define a task as the work of partitioning a given subsequence. Therefore,
Figure 3.8 also represents the task graph for the problem. Initially, there is only one sequence
(i.e., the root of the tree), and we can use only a single process to partition it. The completion
of the root task results in two subsequences (A0 and A1, corresponding to the two nodes at the
first level of the tree) and each one can be partitioned in parallel. Similarly, the concurrency
continues to increase as we move down the tree.

Sometimes, it is possible to restructure a computation to make it amenable to recursive
decomposition even if the commonly used algorithm for the problem is not based on the divide-
and-conquer strategy. For example, consider the problem of finding the minimum element in an
unordered sequence A of n elements. The serial algorithm for solving this problem scans the
entire sequence A, recording at each step the minimum element found so far as illustrated in
Algorithm 3.1. It is easy to see that this serial algorithm exhibits no concurrency.

Algorithm 3.1 A serial program for finding the minimum in an array of
numbers A of length n.

1.   procedure SERIAL_MIN (A, n) 
2.   begin 

3.   min = A[0]; 

4.   for i := 1 to n - 1 do 

5.       if (A[i] < min) min := A[i]; 
6.   endfor; 

7.   return min; 
8.   end SERIAL_MIN 

Once we restructure this computation as a divide-and-conquer algorithm, we can use recursive
decomposition to extract concurrency. Algorithm 3.2 is a divide-and-conquer algorithm for
finding the minimum element in an array. In this algorithm, we split the sequence A into two
subsequences, each of size n/2, and we find the minimum for each of these subsequences by
performing a recursive call. Now the overall minimum element is found by selecting the
minimum of these two subsequences. The recursion terminates when there is only one element
left in each subsequence. Having restructured the serial computation in this manner, it is easy
to construct a task-dependency graph for this problem. Figure 3.9 illustrates such a task-
dependency graph for finding the minimum of eight numbers where each task is assigned the



work of finding the minimum of two numbers.

Figure 3.9. The task-dependency graph for finding the minimum
number in the sequence {4, 9, 1, 7, 8, 11, 2, 12}. Each node in the

tree represents the task of finding the minimum of a pair of numbers.

Algorithm 3.2 A recursive program for finding the minimum in an array
of numbers A of length n.

1.   procedure RECURSIVE_MIN (A, n) 
2.   begin 

3.   if (n = 1) then 

4.       min := A[0]; 
5.   else 

6.       lmin := RECURSIVE_MIN (A, n/2); 

7.       rmin := RECURSIVE_MIN (&(A[n/2]), n - n/2); 

8.       if (lmin < rmin) then 

9.           min := lmin; 
10.      else 

11.          min := rmin; 
12.      endelse; 
13.  endelse; 

14.  return min; 
15.  end RECURSIVE_MIN 

3.2.2 Data Decomposition

Data decomposition is a powerful and commonly used method for deriving concurrency in
algorithms that operate on large data structures. In this method, the decomposition of
computations is done in two steps. In the first step, the data on which the computations are
performed is partitioned, and in the second step, this data partitioning is used to induce a
partitioning of the computations into tasks. The operations that these tasks perform on different
data partitions are usually similar (e.g., matrix multiplication introduced in Example 3.5) or are
chosen from a small set of operations (e.g., LU factorization introduced in Example 3.10).

The partitioning of data can be performed in many possible ways as discussed next. In general,
one must explore and evaluate all possible ways of partitioning the data and determine which
one yields a natural and efficient computational decomposition.

Partitioning Output Data In many computations, each element of the output can be computed
independently of others as a function of the input. In such computations, a partitioning of the
output data automatically induces a decomposition of the problems into tasks, where each task
is assigned the work of computing a portion of the output. We introduce the problem of matrix-



multiplication in Example 3.5 to illustrate a decomposition based on partitioning output data.

Example 3.5 Matrix multiplication

Consider the problem of multiplying two n x n matrices A and B to yield a matrix C.
Figure 3.10 shows a decomposition of this problem into four tasks. Each matrix is
considered to be composed of four blocks or submatrices defined by splitting each
dimension of the matrix into half. The four submatrices of C, roughly of size n/2 x n/2
each, are then independently computed by four tasks as the sums of the appropriate

products of submatrices of A and B. 

Figure 3.10. (a) Partitioning of input and output matrices into 2
x 2 submatrices. (b) A decomposition of matrix multiplication

into four tasks based on the partitioning of the matrices in (a).

Most matrix algorithms, including matrix-vector and matrix-matrix multiplication, can be
formulated in terms of block matrix operations. In such a formulation, the matrix is viewed as
composed of blocks or submatrices and the scalar arithmetic operations on its elements are
replaced by the equivalent matrix operations on the blocks. The results of the element and the
block versions of the algorithm are mathematically equivalent (Problem 3.10). Block versions of
matrix algorithms are often used to aid decomposition.

The decomposition shown in Figure 3.10 is based on partitioning the output matrix C into four
submatrices and each of the four tasks computes one of these submatrices. The reader must
note that data-decomposition is distinct from the decomposition of the computation into tasks.
Although the two are often related and the former often aids the latter, a given data-
decomposition does not result in a unique decomposition into tasks. For example, Figure 3.11
shows two other decompositions of matrix multiplication, each into eight tasks, corresponding
to the same data-decomposition as used in Figure 3.10(a).

Figure 3.11. Two examples of decomposition of matrix multiplication
into eight tasks.



We now introduce another example to illustrate decompositions based on data partitioning.
Example 3.6 describes the problem of computing the frequency of a set of itemsets in a
transaction database, which can be decomposed based on the partitioning of output data.

Example 3.6 Computing frequencies of itemsets in a transaction
database

Consider the problem of computing the frequency of a set of itemsets in a transaction
database. In this problem we are given a set T containing n transactions and a set I
containing m itemsets. Each transaction and itemset contains a small number of
items, out of a possible set of items. For example, T could be a grocery stores
database of customer sales with each transaction being an individual grocery list of a
shopper and each itemset could be a group of items in the store. If the store desires to
find out how many customers bought each of the designated groups of items, then it
would need to find the number of times that each itemset in I appears in all the
transactions; i.e., the number of transactions of which each itemset is a subset of.
Figure 3.12(a) shows an example of this type of computation. The database shown in
Figure 3.12 consists of 10 transactions, and we are interested in computing the
frequency of the eight itemsets shown in the second column. The actual frequencies of
these itemsets in the database, which are the output of the frequency-computing
program, are shown in the third column. For instance, itemset {D, K} appears twice,

once in the second and once in the ninth transaction. 

Figure 3.12. Computing itemset frequencies in a transaction
database.



Figure 3.12(b) shows how the computation of frequencies of the itemsets can be decomposed
into two tasks by partitioning the output into two parts and having each task compute its half of
the frequencies. Note that, in the process, the itemsets input has also been partitioned, but the
primary motivation for the decomposition of Figure 3.12(b) is to have each task independently
compute the subset of frequencies assigned to it.

Partitioning Input Data Partitioning of output data can be performed only if each output can
be naturally computed as a function of the input. In many algorithms, it is not possible or
desirable to partition the output data. For example, while finding the minimum, maximum, or
the sum of a set of numbers, the output is a single unknown value. In a sorting algorithm, the
individual elements of the output cannot be efficiently determined in isolation. In such cases, it
is sometimes possible to partition the input data, and then use this partitioning to induce
concurrency. A task is created for each partition of the input data and this task performs as
much computation as possible using these local data. Note that the solutions to tasks induced
by input partitions may not directly solve the original problem. In such cases, a follow-up
computation is needed to combine the results. For example, while finding the sum of a sequence
of N numbers using p processes (N > p), we can partition the input into p subsets of nearly
equal sizes. Each task then computes the sum of the numbers in one of the subsets. Finally, the
p partial results can be added up to yield the final result.

The problem of computing the frequency of a set of itemsets in a transaction database described
in Example 3.6 can also be decomposed based on a partitioning of input data. Figure 3.13(a)
shows a decomposition based on a partitioning of the input set of transactions. Each of the two
tasks computes the frequencies of all the itemsets in its respective subset of transactions. The
two sets of frequencies, which are the independent outputs of the two tasks, represent
intermediate results. Combining the intermediate results by pairwise addition yields the final
result.



Figure 3.13. Some decompositions for computing itemset frequencies
in a transaction database.

Partitioning both Input and Output Data In some cases, in which it is possible to partition
the output data, partitioning of input data can offer additional concurrency. For example,
consider the 4-way decomposition shown in Figure 3.13(b) for computing itemset frequencies.
Here, both the transaction set and the frequencies are divided into two parts and a different one
of the four possible combinations is assigned to each of the four tasks. Each task then computes
a local set of frequencies. Finally, the outputs of Tasks 1 and 3 are added together, as are the
outputs of Tasks 2 and 4.

Partitioning Intermediate Data Algorithms are often structured as multi-stage computations
such that the output of one stage is the input to the subsequent stage. A decomposition of such
an algorithm can be derived by partitioning the input or the output data of an intermediate
stage of the algorithm. Partitioning intermediate data can sometimes lead to higher concurrency
than partitioning input or output data. Often, the intermediate data are not generated explicitly
in the serial algorithm for solving the problem and some restructuring of the original algorithm
may be required to use intermediate data partitioning to induce a decomposition.



Let us revisit matrix multiplication to illustrate a decomposition based on partitioning
intermediate data. Recall that the decompositions induced by a 2 x 2 partitioning of the output
matrix C, as shown in Figures 3.10 and 3.11, have a maximum degree of concurrency of four.
We can increase the degree of concurrency by introducing an intermediate stage in which eight
tasks compute their respective product submatrices and store the results in a temporary three-
dimensional matrix D, as shown in Figure 3.14. The submatrix Dk,i,j is the product of Ai,k and
Bk,j.

Figure 3.14. Multiplication of matrices A and B with partitioning of the
three-dimensional intermediate matrix D.

A partitioning of the intermediate matrix D induces a decomposition into eight tasks. Figure
3.15 shows this decomposition. After the multiplication phase, a relatively inexpensive matrix
addition step can compute the result matrix C. All submatrices D*,i,j with the same second and
third dimensions i and j are added to yield Ci,j. The eight tasks numbered 1 through 8 in Figure
3.15 perform O(n3/8) work each in multiplying n/2 x n/2 submatrices of A and B. Then, four
tasks numbered 9 through 12 spend O(n2/4) time each in adding the appropriate n/2 x n/2
submatrices of the intermediate matrix D to yield the final result matrix C. Figure 3.16 shows
the task-dependency graph corresponding to the decomposition shown in Figure 3.15.

Figure 3.15. A decomposition of matrix multiplication based on
partitioning the intermediate three-dimensional matrix.



Figure 3.16. The task-dependency graph of the decomposition shown
in Figure 3.15.

Note that all elements of D are computed implicitly in the original decomposition shown in
Figure 3.11, but are not explicitly stored. By restructuring the original algorithm and by
explicitly storing D, we have been able to devise a decomposition with higher concurrency. This,
however, has been achieved at the cost of extra aggregate memory usage.

The Owner-Computes Rule A decomposition based on partitioning output or input data is also
widely referred to as the owner-computes rule. The idea behind this rule is that each partition
performs all the computations involving data that it owns. Depending on the nature of the data
or the type of data-partitioning, the owner-computes rule may mean different things. For
instance, when we assign partitions of the input data to tasks, then the owner-computes rule
means that a task performs all the computations that can be done using these data. On the
other hand, if we partition the output data, then the owner-computes rule means that a task
computes all the data in the partition assigned to it.

3.2.3 Exploratory Decomposition



Exploratory decomposition is used to decompose problems whose underlying computations
correspond to a search of a space for solutions. In exploratory decomposition, we partition the
search space into smaller parts, and search each one of these parts concurrently, until the
desired solutions are found. For an example of exploratory decomposition, consider the 15-
puzzle problem.

Example 3.7 The 15-puzzle problem

The 15-puzzle consists of 15 tiles numbered 1 through 15 and one blank tile placed in
a 4 x 4 grid. A tile can be moved into the blank position from a position adjacent to it,
thus creating a blank in the tile's original position. Depending on the configuration of
the grid, up to four moves are possible: up, down, left, and right. The initial and final
configurations of the tiles are specified. The objective is to determine any sequence or
a shortest sequence of moves that transforms the initial configuration to the final
configuration. Figure 3.17 illustrates sample initial and final configurations and a

sequence of moves leading from the initial configuration to the final configuration. 

Figure 3.17. A 15-puzzle problem instance showing the initial
configuration (a), the final configuration (d), and a sequence of

moves leading from the initial to the final configuration.

The 15-puzzle is typically solved using tree-search techniques. Starting from the initial
configuration, all possible successor configurations are generated. A configuration may have 2,
3, or 4 possible successor configurations, each corresponding to the occupation of the empty
slot by one of its neighbors. The task of finding a path from initial to final configuration now
translates to finding a path from one of these newly generated configurations to the final
configuration. Since one of these newly generated configurations must be closer to the solution
by one move (if a solution exists), we have made some progress towards finding the solution.
The configuration space generated by the tree search is often referred to as a state space graph.
Each node of the graph is a configuration and each edge of the graph connects configurations
that can be reached from one another by a single move of a tile.

One method for solving this problem in parallel is as follows. First, a few levels of configurations
starting from the initial configuration are generated serially until the search tree has a sufficient
number of leaf nodes (i.e., configurations of the 15-puzzle). Now each node is assigned to a
task to explore further until at least one of them finds a solution. As soon as one of the
concurrent tasks finds a solution it can inform the others to terminate their searches. Figure
3.18 illustrates one such decomposition into four tasks in which task 4 finds the solution.

Figure 3.18. The states generated by an instance of the 15-puzzle
problem.





Note that even though exploratory decomposition may appear similar to data-decomposition
(the search space can be thought of as being the data that get partitioned) it is fundamentally
different in the following way. The tasks induced by data-decomposition are performed in their
entirety and each task performs useful computations towards the solution of the problem. On
the other hand, in exploratory decomposition, unfinished tasks can be terminated as soon as an
overall solution is found. Hence, the portion of the search space searched (and the aggregate
amount of work performed) by a parallel formulation can be very different from that searched
by a serial algorithm. The work performed by the parallel formulation can be either smaller or
greater than that performed by the serial algorithm. For example, consider a search space that
has been partitioned into four concurrent tasks as shown in Figure 3.19. If the solution lies right
at the beginning of the search space corresponding to task 3 (Figure 3.19(a)), then it will be
found almost immediately by the parallel formulation. The serial algorithm would have found
the solution only after performing work equivalent to searching the entire space corresponding
to tasks 1 and 2. On the other hand, if the solution lies towards the end of the search space
corresponding to task 1 (Figure 3.19(b)), then the parallel formulation will perform almost four
times the work of the serial algorithm and will yield no speedup.

Figure 3.19. An illustration of anomalous speedups resulting from
exploratory decomposition.

3.2.4 Speculative Decomposition

Speculative decomposition is used when a program may take one of many possible
computationally significant branches depending on the output of other computations that
precede it. In this situation, while one task is performing the computation whose output is used
in deciding the next computation, other tasks can concurrently start the computations of the
next stage. This scenario is similar to evaluating one or more of the branches of a switch
statement in C in parallel before the input for the switch is available. While one task is
performing the computation that will eventually resolve the switch, other tasks could pick up the
multiple branches of the switch in parallel. When the input for the switch has finally been



computed, the computation corresponding to the correct branch would be used while that
corresponding to the other branches would be discarded. The parallel run time is smaller than
the serial run time by the amount of time required to evaluate the condition on which the next
task depends because this time is utilized to perform a useful computation for the next stage in
parallel. However, this parallel formulation of a switch guarantees at least some wasteful
computation. In order to minimize the wasted computation, a slightly different formulation of
speculative decomposition could be used, especially in situations where one of the outcomes of
the switch is more likely than the others. In this case, only the most promising branch is taken
up a task in parallel with the preceding computation. In case the outcome of the switch is
different from what was anticipated, the computation is rolled back and the correct branch of
the switch is taken.

The speedup due to speculative decomposition can add up if there are multiple speculative
stages. An example of an application in which speculative decomposition is useful is discrete
event simulation. A detailed description of discrete event simulation is beyond the scope of
this chapter; however, we give a simplified description of the problem.

Example 3.8 Parallel discrete event simulation

Consider the simulation of a system that is represented as a network or a directed
graph. The nodes of this network represent components. Each component has an input
buffer of jobs. The initial state of each component or node is idle. An idle component
picks up a job from its input queue, if there is one, processes that job in some finite
amount of time, and puts it in the input buffer of the components which are connected
to it by outgoing edges. A component has to wait if the input buffer of one of its
outgoing neighbors if full, until that neighbor picks up a job to create space in the
buffer. There is a finite number of input job types. The output of a component (and
hence the input to the components connected to it) and the time it takes to process a
job is a function of the input job. The problem is to simulate the functioning of the
network for a given sequence or a set of sequences of input jobs and compute the
total completion time and possibly other aspects of system behavior. Figure 3.20

shows a simple network for a discrete event solution problem. 

Figure 3.20. A simple network for discrete event simulation.

The problem of simulating a sequence of input jobs on the network described in Example 3.8
appears inherently sequential because the input of a typical component is the output of another.
However, we can define speculative tasks that start simulating a subpart of the network, each



assuming one of several possible inputs to that stage. When an actual input to a certain stage
becomes available (as a result of the completion of another selector task from a previous
stage), then all or part of the work required to simulate this input would have already been
finished if the speculation was correct, or the simulation of this stage is restarted with the most
recent correct input if the speculation was incorrect.

Speculative decomposition is different from exploratory decomposition in the following way. In
speculative decomposition, the input at a branch leading to multiple parallel tasks is unknown,
whereas in exploratory decomposition, the output of the multiple tasks originating at a branch
is unknown. In speculative decomposition, the serial algorithm would strictly perform only one
of the tasks at a speculative stage because when it reaches the beginning of that stage, it knows
exactly which branch to take. Therefore, by preemptively computing for multiple possibilities
out of which only one materializes, a parallel program employing speculative decomposition
performs more aggregate work than its serial counterpart. Even if only one of the possibilities is
explored speculatively, the parallel algorithm may perform more or the same amount of work as
the serial algorithm. On the other hand, in exploratory decomposition, the serial algorithm too
may explore different alternatives one after the other, because the branch that may lead to the
solution is not known beforehand. Therefore, the parallel program may perform more, less, or
the same amount of aggregate work compared to the serial algorithm depending on the location
of the solution in the search space.

3.2.5 Hybrid Decompositions

So far we have discussed a number of decomposition methods that can be used to derive
concurrent formulations of many algorithms. These decomposition techniques are not exclusive,
and can often be combined together. Often, a computation is structured into multiple stages
and it is sometimes necessary to apply different types of decomposition in different stages. For
example, while finding the minimum of a large set of n numbers, a purely recursive
decomposition may result in far more tasks than the number of processes, P, available. An
efficient decomposition would partition the input into P roughly equal parts and have each task
compute the minimum of the sequence assigned to it. The final result can be obtained by finding
the minimum of the P intermediate results by using the recursive decomposition shown in
Figure 3.21.

Figure 3.21. Hybrid decomposition for finding the minimum of an array
of size 16 using four tasks.

As another example of an application of hybrid decomposition, consider performing quicksort in
parallel. In Example 3.4, we used a recursive decomposition to derive a concurrent formulation
of quicksort. This formulation results in O(n) tasks for the problem of sorting a sequence of size
n. But due to the dependencies among these tasks and due to uneven sizes of the tasks, the
effective concurrency is quite limited. For example, the first task for splitting the input list into
two parts takes O(n) time, which puts an upper limit on the performance gain possible via
parallelization. But the step of splitting lists performed by tasks in parallel quicksort can also be
decomposed using the input decomposition technique discussed in Section 9.4.1. The resulting
hybrid decomposition that combines recursive decomposition and the input data-decomposition



leads to a highly concurrent formulation of quicksort.
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3.3 Characteristics of Tasks and Interactions

The various decomposition techniques described in the previous section allow us to identify the
concurrency that is available in a problem and decompose it into tasks that can be executed in
parallel. The next step in the process of designing a parallel algorithm is to take these tasks and
assign (i.e., map) them onto the available processes. While devising a mapping scheme to
construct a good parallel algorithm, we often take a cue from the decomposition. The nature of
the tasks and the interactions among them has a bearing on the mapping. In this section, we
shall discuss the various properties of tasks and inter-task interactions that affect the choice of
a good mapping.

3.3.1 Characteristics of Tasks

The following four characteristics of the tasks have a large influence on the suitability of a
mapping scheme.

Task Generation The tasks that constitute a parallel algorithm may be generated either
statically or dynamically. Static task generation refers to the scenario where all the tasks are
known before the algorithm starts execution. Data decomposition usually leads to static task
generation. Examples of data-decomposition leading to a static task generation include matrix-
multiplication and LU factorization (Problem 3.5). Recursive decomposition can also lead to a
static task-dependency graph. Finding the minimum of a list of numbers (Figure 3.9) is an
example of a static recursive task-dependency graph.

Certain decompositions lead to a dynamic task generation during the execution of the
algorithm. In such decompositions, the actual tasks and the task-dependency graph are not
explicitly available a priori, although the high level rules or guidelines governing task generation
are known as a part of the algorithm. Recursive decomposition can lead to dynamic task
generation. For example, consider the recursive decomposition in quicksort (Figure 3.8). The
tasks are generated dynamically, and the size and shape of the task tree is determined by the
values in the input array to be sorted. An array of the same size can lead to task-dependency
graphs of different shapes and with a different total number of tasks.

Exploratory decomposition can be formulated to generate tasks either statically or dynamically.
For example, consider the 15-puzzle problem discussed in Section 3.2.3. One way to generate a
static task-dependency graph using exploratory decomposition is as follows. First, a
preprocessing task starts with the initial configuration and expands the search tree in a
breadth-first manner until a predefined number of configurations are generated. These
configuration now represent independent tasks, which can be mapped onto different processes
and run independently. A different decomposition that generates tasks dynamically would be
one in which a task takes a state as input, expands it through a predefined number of steps of
breadth-first search and spawns new tasks to perform the same computation on each of the
resulting states (unless it has found the solution, in which case the algorithm terminates).

Task Sizes The size of a task is the relative amount of time required to complete it. The
complexity of mapping schemes often depends on whether or not the tasks are uniform; i.e.,
whether or not they require roughly the same amount of time. If the amount of time required
by the tasks varies significantly, then they are said to be non-uniform. For example, the tasks
in the decompositions for matrix multiplication shown in Figures 3.10 and 3.11 would be
considered uniform. On the other hand, the tasks in quicksort in Figure 3.8 are non-uniform.



Knowledge of Task Sizes The third characteristic that influences the choice of mapping
scheme is knowledge of the task size. If the size of all the tasks is known, then this information
can often be used in mapping of tasks to processes. For example, in the various decompositions
for matrix multiplication discussed so far, the computation time for each task is known before
the parallel program starts. On the other hand, the size of a typical task in the 15-puzzle
problem is unknown. We do not know a priori how many moves will lead to the solution from a
given state.

Size of Data Associated with Tasks Another important characteristic of a task is the size of
data associated with it. The reason this is an important consideration for mapping is that the
data associated with a task must be available to the process performing that task, and the size
and the location of these data may determine the process that can perform the task without
incurring excessive data-movement overheads.

Different types of data associated with a task may have different sizes. For instance, the input
data may be small but the output may be large, or vice versa. For example, the input to a task
in the 15-puzzle problem may be just one state of the puzzle. This is a small input relative to
the amount of computation that may be required to find a sequence of moves from this state to
a solution state. In the problem of computing the minimum of a sequence, the size of the input
is proportional to the amount of computation, but the output is just one number. In the parallel
formulation of the quick sort, the size of both the input and the output data is of the same order
as the sequential time needed to solve the task.

3.3.2 Characteristics of Inter-Task Interactions

In any nontrivial parallel algorithm, tasks need to interact with each other to share data, work,
or synchronization information. Different parallel algorithms require different types of
interactions among concurrent tasks. The nature of these interactions makes them more
suitable for certain programming paradigms and mapping schemes, and less suitable for others.
The types of inter-task interactions can be described along different dimensions, each
corresponding to a distinct characteristic of the underlying computations.

Static versus Dynamic One way of classifying the type of interactions that take place among
concurrent tasks is to consider whether or not these interactions have a static or dynamic
pattern. An interaction pattern is static if for each task, the interactions happen at
predetermined times, and if the set of tasks to interact with at these times is known prior to the
execution of the algorithm. In other words, in a static interaction pattern, not only is the task-
interaction graph known a priori, but the stage of the computation at which each interaction
occurs is also known. An interaction pattern is dynamic if the timing of interactions or the set of
tasks to interact with cannot be determined prior to the execution of the algorithm.

Static interactions can be programmed easily in the message-passing paradigm, but dynamic
interactions are harder to program. The reason is that interactions in message-passing require
active involvement of both interacting tasks – the sender and the receiver of information. The
unpredictable nature of dynamic iterations makes it hard for both the sender and the receiver to
participate in the interaction at the same time. Therefore, when implementing a parallel
algorithm with dynamic interactions in the message-passing paradigm, the tasks must be
assigned additional synchronization or polling responsibility. Shared-address space
programming can code both types of interactions equally easily.

The decompositions for parallel matrix multiplication presented earlier in this chapter exhibit
static inter-task interactions. For an example of dynamic interactions, consider solving the 15-
puzzle problem in which tasks are assigned different states to explore after an initial step that
generates the desirable number of states by applying breadth-first search on the initial state. It



is possible that a certain state leads to all dead ends and a task exhausts its search space
without reaching the goal state, while other tasks are still busy trying to find a solution. The
task that has exhausted its work can pick up an unexplored state from the queue of another
busy task and start exploring it. The interactions involved in such a transfer of work from one
task to another are dynamic.

Regular versus Irregular Another way of classifying the interactions is based upon their
spatial structure. An interaction pattern is considered to be regular if it has some structure that
can be exploited for efficient implementation. On the other hand, an interaction pattern is called
irregular if no such regular pattern exists. Irregular and dynamic communications are harder
to handle, particularly in the message-passing programming paradigm. An example of a
decomposition with a regular interaction pattern is the problem of image dithering.

Example 3.9 Image dithering

In image dithering, the color of each pixel in the image is determined as the weighted
average of its original value and the values of its neighboring pixels. We can easily
decompose this computation, by breaking the image into square regions and using a
different task to dither each one of these regions. Note that each task needs to access
the pixel values of the region assigned to it as well as the values of the image
surrounding its region. Thus, if we regard the tasks as nodes of a graph with an edge
linking a pair of interacting tasks, the resulting pattern is a two-dimensional mesh, as

shown in Figure 3.22. 

Figure 3.22. The regular two-dimensional task-interaction
graph for image dithering. The pixels with dotted outline

require color values from the boundary pixels of the
neighboring tasks.

Sparse matrix-vector multiplication discussed in Section 3.1.2 provides a good example of
irregular interaction, which is shown in Figure 3.6. In this decomposition, even though each



task, by virtue of the decomposition, knows a priori which rows of matrix A it needs to access,
without scanning the row(s) of A assigned to it, a task cannot know which entries of vector b it
requires. The reason is that the access pattern for b depends on the structure of the sparse
matrix A.

Read-only versus Read-Write We have already learned that sharing of data among tasks
leads to inter-task interaction. However, the type of sharing may impact the choice of the
mapping. Data sharing interactions can be categorized as either read-only or read-write
interactions. As the name suggests, in read-only interactions, tasks require only a read-access
to the data shared among many concurrent tasks. For example, in the decomposition for
parallel matrix multiplication shown in Figure 3.10, the tasks only need to read the shared input
matrices A and B. In read-write interactions, multiple tasks need to read and write on some
shared data. For example, consider the problem of solving the 15-puzzle. The parallel
formulation method proposed in Section 3.2.3 uses an exhaustive search to find a solution. In
this formulation, each state is considered an equally suitable candidate for further expansion.
The search can be made more efficient if the states that appear to be closer to the solution are
given a priority for further exploration. An alternative search technique known as heuristic
search implements such a strategy. In heuristic search, we use a heuristic to provide a relative
approximate indication of the distance of each state from the solution (i.e. the potential number
of moves required to reach the solution). In the case of the 15-puzzle, the number of tiles that
are out of place in a given state could serve as such a heuristic. The states that need to be
expanded further are stored in a priority queue based on the value of this heuristic. While
choosing the states to expand, we give preference to more promising states, i.e. the ones that
have fewer out-of-place tiles and hence, are more likely to lead to a quick solution. In this
situation, the priority queue constitutes shared data and tasks need both read and write access
to it; they need to put the states resulting from an expansion into the queue and they need to
pick up the next most promising state for the next expansion.

One-way versus Two-way In some interactions, the data or work needed by a task or a
subset of tasks is explicitly supplied by another task or subset of tasks. Such interactions are
called two-way interactions and usually involve predefined producer and consumer tasks. In
other interactions, only one of a pair of communicating tasks initiates the interaction and
completes it without interrupting the other one. Such an interaction is called a one-way
interaction. All read-only interactions can be formulated as one-way interactions. Read-write
interactions can be either one-way or two-way.

The shared-address-space programming paradigms can handle both one-way and two-way
interactions equally easily. However, one-way interactions cannot be directly programmed in
the message-passing paradigm because the source of the data to be transferred must explicitly
send the data to the recipient. In the message-passing paradigm, all one-way interactions must
be converted to two-way interactions via program restructuring. Static one-way interactions can
be easily converted to two-way communications. Since the time and the location in the program
of a static one-way interaction is known a priori, introducing a matching interaction operation in
the partner task is enough to convert a one-way static interaction to a two-way static
interaction. On the other hand, dynamic one-way interactions can require some nontrivial
program restructuring to be converted to two-way interactions. The most common such
restructuring involves polling. Each task checks for pending requests from other tasks after
regular intervals, and services such requests, if any.

[ Team LiB ]  
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3.4 Mapping Techniques for Load Balancing

Once a computation has been decomposed into tasks, these tasks are mapped onto processes
with the objective that all tasks complete in the shortest amount of elapsed time. In order to
achieve a small execution time, the overheads of executing the tasks in parallel must be
minimized. For a given decomposition, there are two key sources of overhead. The time spent in
inter-process interaction is one source of overhead. Another important source of overhead is the
time that some processes may spend being idle. Some processes can be idle even before the
overall computation is finished for a variety of reasons. Uneven load distribution may cause
some processes to finish earlier than others. At times, all the unfinished tasks mapped onto a
process may be waiting for tasks mapped onto other processes to finish in order to satisfy the
constraints imposed by the task-dependency graph. Both interaction and idling are often a
function of mapping. Therefore, a good mapping of tasks onto processes must strive to achieve
the twin objectives of (1) reducing the amount of time processes spend in interacting with each
other, and (2) reducing the total amount of time some processes are idle while the others are
engaged in performing some tasks.

These two objectives often conflict with each other. For example, the objective of minimizing the
interactions can be easily achieved by assigning sets of tasks that need to interact with each
other onto the same process. In most cases, such a mapping will result in a highly unbalanced
workload among the processes. In fact, following this strategy to the limit will often map all
tasks onto a single process. As a result, the processes with a lighter load will be idle when those
with a heavier load are trying to finish their tasks. Similarly, to balance the load among
processes, it may be necessary to assign tasks that interact heavily to different processes. Due
to the conflicts between these objectives, finding a good mapping is a nontrivial problem.

In this section, we will discuss various schemes for mapping tasks onto processes with the
primary view of balancing the task workload of processes and minimizing their idle time.
Reducing inter-process interaction is the topic of Section 3.5. The reader should be aware that
assigning a balanced aggregate load of tasks to each process is a necessary but not sufficient
condition for reducing process idling. Recall that the tasks resulting from a decomposition are
not all ready for execution at the same time. A task-dependency graph determines which tasks
can execute in parallel and which must wait for some others to

finish at a given stage in the execution of a parallel algorithm. Therefore, it is possible in a
certain parallel formulation that although all processes perform the same aggregate amount of
work, at different times, only a fraction of the processes are active while the remainder contain
tasks that must wait for other tasks to finish. Similarly, poor synchronization among interacting
tasks can lead to idling if one of the tasks has to wait to send or receive data from another task.
A good mapping must ensure that the computations and interactions among processes at each
stage of the execution of the parallel algorithm are well balanced. Figure 3.23 shows two
mappings of 12-task decomposition in which the last four tasks can be started only after the
first eight are finished due to dependencies among tasks. As the figure shows, two mappings,
each with an overall balanced workload, can result in different completion times.

Figure 3.23. Two mappings of a hypothetical decomposition with a
synchronization.



Mapping techniques used in parallel algorithms can be broadly classified into two categories:
static and dynamic. The parallel programming paradigm and the characteristics of tasks and
the interactions among them determine whether a static or a dynamic mapping is more
suitable.

Static Mapping: Static mapping techniques distribute the tasks among processes prior to
the execution of the algorithm. For statically generated tasks, either static or dynamic
mapping can be used. The choice of a good mapping in this case depends on several
factors, including the knowledge of task sizes, the size of data associated with tasks, the
characteristics of inter-task interactions, and even the parallel programming paradigm.
Even when task sizes are known, in general, the problem of obtaining an optimal mapping
is an NP-complete problem for non-uniform tasks. However, for many practical cases,
relatively inexpensive heuristics provide fairly acceptable approximate solutions to the
optimal static mapping problem.

Algorithms that make use of static mapping are in general easier to design and program.

Dynamic Mapping: Dynamic mapping techniques distribute the work among processes
during the execution of the algorithm. If tasks are generated dynamically, then they must
be mapped dynamically too. If task sizes are unknown, then a static mapping can
potentially lead to serious load-imbalances and dynamic mappings are usually more
effective. If the amount of data associated with tasks is large relative to the computation,
then a dynamic mapping may entail moving this data among processes. The cost of this
data movement may outweigh some other advantages of dynamic mapping and may
render a static mapping more suitable. However, in a shared-address-space paradigm,
dynamic mapping may work well even with large data associated with tasks if the
interaction is read-only. The reader should be aware that the shared-address-space
programming paradigm does not automatically provide immunity against data-movement
costs. If the underlying hardware is NUMA (Section 2.3.2), then the data may physically
move from a distant memory. Even in a cc-UMA architecture, the data may have to move
from one cache to another.

Algorithms that require dynamic mapping are usually more complicated, particularly in the
message-passing programming paradigm.

Having discussed the guidelines for choosing between static and dynamic mappings, we now
describe various schemes of these two types of mappings in detail.

3.4.1 Schemes for Static Mapping



Static mapping is often, though not exclusively, used in conjunction with a decomposition based
on data partitioning. Static mapping is also used for mapping certain problems that are
expressed naturally by a static task-dependency graph. In the following subsections, we will
discuss mapping schemes based on data partitioning and task partitioning.

Mappings Based on Data Partitioning

In this section, we will discuss mappings based on partitioning two of the most common ways of
representing data in algorithms, namely, arrays and graphs. The data-partitioning actually
induces a decomposition, but the partitioning or the decomposition is selected with the final
mapping in mind.

Array Distribution Schemes In a decomposition based on partitioning data, the tasks are
closely associated with portions of data by the owner-computes rule. Therefore, mapping the
relevant data onto the processes is equivalent to mapping tasks onto processes. We now study
some commonly used techniques of distributing arrays or matrices among processes.

Block Distributions

Block distributions are some of the simplest ways to distribute an array and assign uniform
contiguous portions of the array to different processes. In these distributions, a d-dimensional
array is distributed among the processes such that each process receives a contiguous block of
array entries along a specified subset of array dimensions. Block distributions of arrays are
particularly suitable when there is a locality of interaction, i.e., computation of an element of an
array requires other nearby elements in the array.

For example, consider an n x n two-dimensional array A with n rows and n columns. We can
now select one of these dimensions, e.g., the first dimension, and partition the array into p

parts such that the kth part contains rows kn/p...(k + 1)n/p - 1, where 0  k < p. That is, each
partition contains a block of n/p consecutive rows of A. Similarly, if we partition A along the
second dimension, then each partition contains a block of n/p consecutive columns. These row-
and column-wise array distributions are illustrated in Figure 3.24.

Figure 3.24. Examples of one-dimensional partitioning of an array
among eight processes.

Similarly, instead of selecting a single dimension, we can select multiple dimensions to



partition. For instance, in the case of array A we can select both dimensions and partition the
matrix into blocks such that each block corresponds to a n/p1 x n/p2 section of the matrix, with
p = p1 x p2 being the number of processes. Figure 3.25 illustrates two different two-dimensional
distributions, on a 4 x 4 and 2x 8 process grid, respectively. In general, given a d-dimensional
array, we can distribute it using up to a d-dimensional block distribution.

Figure 3.25. Examples of two-dimensional distributions of an array,
(a) on a 4 x 4 process grid, and (b) on a 2 x 8 process grid.

Using these block distributions we can load-balance a variety of parallel computations that
operate on multi-dimensional arrays. For example, consider the n x n matrix multiplication C =
A x B , as discussed in Section 3.2.2. One way of decomposing this computation is to partition
the output matrix C . Since each entry of C requires the same amount of computation, we can
balance the computations by using either a one- or two-dimensional block distribution to
partition C uniformly among the p available processes. In the first case, each process will get a
block of n/p rows (or columns) of C, whereas in the second case, each process will get a block of

size . In either case, the process will be responsible for computing the entries of
the partition of C assigned to it.

As the matrix-multiplication example illustrates, quite often we have the choice of mapping the
computations using either a one- or a two-dimensional distribution (and even more choices in
the case of higher dimensional arrays). In general, higher dimensional distributions allow us to
use more processes. For example, in the case of matrix-matrix multiplication, a one-
dimensional distribution will allow us to use up to n processes by assigning a single row of C to
each process. On the other hand, a two-dimensional distribution will allow us to use up to n2

processes by assigning a single element of C to each process.

In addition to allowing a higher degree of concurrency, higher dimensional distributions also
sometimes help in reducing the amount of interactions among the different processes for many
problems. Figure 3.26 illustrates this in the case of dense matrix-multiplication. With a one-
dimensional partitioning along the rows, each process needs to access the corresponding n/p
rows of matrix A and the entire matrix B, as shown in Figure 3.26(a) for process P5. Thus the
total amount of data that needs to be accessed is n2/p + n2. However, with a two-dimensional

distribution, each process needs to access  rows of matrix A and  columns of matrix
B, as shown in Figure 3.26(b) for process P5. In the two-dimensional case, the total amount of

shared data that each process needs to access is , which is significantly smaller
compared to O(n2) shared data in the one-dimensional case.

Figure 3.26. Data sharing needed for matrix multiplication with (a)



one-dimensional and (b) two-dimensional partitioning of the output
matrix. Shaded portions of the input matrices A and B are required by
the process that computes the shaded portion of the output matrix C.

Cyclic and Block-Cyclic Distributions

If the amount of work differs for different elements of a matrix, a block distribution can
potentially lead to load imbalances. A classic example of this phenomenon is LU factorization of
a matrix, in which the amount of computation increases from the top left to the bottom right of
the matrix.

Example 3.10 Dense LU factorization

In its simplest form,the LU factorization algorithm factors a nonsingular square matrix
A into the product of a lower triangular matrix L with a unit diagonal and an upper
triangular matrix U. Algorithm 3.3 shows the serial algorithm. Let A be an n x n matrix
with rows and columns numbered from 1 to n. The factorization process consists of n
major steps – each consisting of an iteration of the outer loop starting at Line 3 in
Algorithm 3.3. In step k, first, the partial column A[k + 1 : n, k] is divided by A[k, k].
Then, the outer product A[k + 1 : n, k] x A[k, k + 1 : n] is subtracted from the (n - k)
x (n - k) submatrix A[k + 1 : n, k + 1 : n]. In a practical implementation of LU
factorization, separate arrays are not used for L and U and A is modified to store L
and U in its lower and upper triangular parts, respectively. The 1's on the principal
diagonal of L are implicit and the diagonal entries actually belong to U after
factorization.

Algorithm 3.3 A serial column-based algorithm to factor a



nonsingular matrix A into a lower-triangular matrix L and an
upper-triangular matrix U. Matrices L and U share space with A.
On Line 9, A[i, j] on the left side of the assignment is
equivalent to L [i, j] if i > j; otherwise, it is equivalent to U [i, j].

1.   procedure COL_LU (A) 
2.   begin 

3.      for k := 1 to n do 

4.          for j := k to n do 

5.              A[j, k]:= A[j, k]/A[k, k]; 
6.          endfor; 

7.          for j := k + 1 to n do 

8.              for i := k + 1 to n do 

9.                  A[i, j] := A[i, j] - A[i, k] x A[k, j]; 
10.             endfor; 
11.         endfor; 
   /* 

After this iteration, column A[k + 1 : n, k] is logically the kth 

column of L and row A[k, k : n] is logically the kth row of U. 
   */ 
12.     endfor; 
13.  end COL_LU 

Figure 3.27 shows a possible decomposition of LU factorization into 14 tasks using a 3

x 3 block partitioning of the matrix and using a block version of Algorithm 3.3. 

Figure 3.27. A decomposition of LU factorization into 14 tasks.

For each iteration of the outer loop k := 1 to n, the next nested loop in Algorithm 3.3 goes from
k + 1 to n. In other words, the active part of the matrix, as shown in Figure 3.28, shrinks
towards the bottom right corner of the matrix as the computation proceeds. Therefore, in a
block distribution, the processes assigned to the beginning rows and columns (i.e., left rows and
top columns) would perform far less work than those assigned to the later rows and columns.
For example, consider the decomposition for LU factorization shown in Figure 3.27 with a 3 x 3
two-dimensional block partitioning of the matrix. If we map all tasks associated with a certain
block onto a process in a 9-process ensemble, then a significant amount of idle time will result.
First, computing different blocks of the matrix requires different amounts of work. This is
illustrated in Figure 3.29. For example, computing the final value of A1,1 (which is actually L1,1

U1,1) requires only one task – Task 1. On the other hand, computing the final value of A3,3



requires three tasks – Task 9, Task 13, and Task 14. Secondly, the process working on a block
may idle even when there are unfinished tasks associated with that block. This idling can occur
if the constraints imposed by the task-dependency graph do not allow the remaining tasks on
this process to proceed until one or more tasks mapped onto other processes are completed.

Figure 3.28. A typical computation in Gaussian elimination and the
active part of the coefficient matrix during the kth iteration of the

outer loop.

Figure 3.29. A naive mapping of LU factorization tasks onto processes
based on a two-dimensional block distribution.

The block-cyclic distribution is a variation of the block distribution scheme that can be used
to alleviate the load-imbalance and idling problems. A detailed description of LU factorization
with block-cyclic mapping is covered in Chapter 8, where it is shown how a block-cyclic
mapping leads to a substantially more balanced work distribution than in Figure 3.29. The
central idea behind a block-cyclic distribution is to partition an array into many more blocks
than the number of available processes. Then we assign the partitions (and the associated
tasks) to processes in a round-robin manner so that each process gets several non-adjacent
blocks. More precisely, in a one-dimensional block-cyclic distribution of a matrix among p
processes, the rows (columns) of an n x n matrix are divided into ap groups of n/(ap)

consecutive rows (columns), where 1  a  n/p. Now, these blocks are distributed among the
p processes in a wraparound fashion such that block b i is assigned to process Pi %p ('%' is the



modulo operator). This distribution assigns a blocks of the matrix to each process, but each
subsequent block that gets assigned to the same process is p blocks away. We can obtain a
two-dimensional block-cyclic distribution of an n x n array by partitioning it into square blocks

of size  and distributing them on a hypothetical  array of processes in a
wraparound fashion. Similarly, the block-cyclic distribution can be extended to arrays of higher
dimensions. Figure 3.30 illustrates one- and two-dimensional block cyclic distributions of a two-
dimensional array.

Figure 3.30. Examples of one- and two-dimensional block-cyclic
distributions among four processes. (a) The rows of the array are
grouped into blocks each consisting of two rows, resulting in eight
blocks of rows. These blocks are distributed to four processes in a

wraparound fashion. (b) The matrix is blocked into 16 blocks each of
size 4 x 4, and it is mapped onto a 2 x 2 grid of processes in a

wraparound fashion.

The reason why a block-cyclic distribution is able to significantly reduce the amount of idling is
that all processes have a sampling of tasks from all parts of the matrix. As a result, even if
different parts of the matrix require different amounts of work, the overall work on each process
balances out. Also, since the tasks assigned to a process belong to different parts of the matrix,
there is a good chance that at least some of them are ready for execution at any given time.

Note that if we increase a to its upper limit of n/p, then each block is a single row (column) of
the matrix in a one-dimensional block-cyclic distribution and a single element of the matrix in a
two-dimensional block-cyclic distribution. Such a distribution is known as a cyclic distribution.
A cyclic distribution is an extreme case of a block-cyclic distribution and can result in an almost
perfect load balance due to the extreme fine-grained underlying decomposition. However, since
a process does not have any contiguous data to work on, the resulting lack of locality may result
in serious performance penalties. Additionally, such a decomposition usually leads to a high
degree of interaction relative to the amount computation in each task. The lower limit of 1 for
the value of a results in maximum locality and interaction optimality, but the distribution
degenerates to a block distribution. Therefore, an appropriate value of a must be used to strike
a balance between interaction conservation and load balance.

As in the case of block-distributions, higher dimensional block-cyclic distributions are usually
preferable as they tend to incur a lower volume of inter-task interaction.

Randomized Block Distributions



A block-cyclic distribution may not always be able to balance computations when the
distribution of work has some special patterns. For example, consider the sparse matrix shown
in Figure 3.31(a) in which the shaded areas correspond to regions containing nonzero elements.
If this matrix is distributed using a two-dimensional block-cyclic distribution, as illustrated in
Figure 3.31(b), then we will end up assigning more non-zero blocks to the diagonal processes
P0, P5, P10, and P15 than on any other processes. In fact some processes, like P12, will not get
any work.

Figure 3.31. Using the block-cyclic distribution shown in (b) to
distribute the computations performed in array (a) will lead to load

imbalances.

Randomized block distribution, a more general form of the block distribution, can be used in
situations illustrated in Figure 3.31. Just like a block-cyclic distribution, load balance is sought
by partitioning the array into many more blocks than the number of available processes.
However, the blocks are uniformly and randomly distributed among the processes. A one-
dimensional randomized block distribution can be achieved as follows. A vector V of length ap

(which is equal to the number of blocks) is used and V[j] is set to j for 0  j < ap. Now, V is
randomly permuted, and process Pi is assigned the blocks stored in V[ia...(i + 1)a - 1]. Figure
3.32 illustrates this for p = 4 and a = 3. A two-dimensional randomized block distribution of an

n x n array can be computed similarly by randomly permuting two vectors of length  each
and using them to choose the row and column indices of the blocks to be assigned to each
process. As illustrated in Figure 3.33, the random block distribution is more effective in load
balancing the computations performed in Figure 3.31.

Figure 3.32. A one-dimensional randomized block mapping of 12
blocks onto four process (i.e., a = 3).

Figure 3.33. Using a two-dimensional random block distribution shown



in (b) to distribute the computations performed in array (a), as shown
in (c).

Graph Partitioning The array-based distribution schemes that we described so far are quite
effective in balancing the computations and minimizing the interactions for a wide range of
algorithms that use dense matrices and have structured and regular interaction patterns.
However, there are many algorithms that operate on sparse data structures and for which the
pattern of interaction among data elements is data dependent and highly irregular. Numerical
simulations of physical phenomena provide a large source of such type of computations. In
these computations, the physical domain is discretized and represented by a mesh of elements.
The simulation of the physical phenomenon being modeled then involves computing the values
of certain physical quantities at each mesh point. The computation at a mesh point usually
requires data corresponding to that mesh point and to the points that are adjacent to it in the
mesh. For example, Figure 3.34 shows a mesh imposed on Lake Superior. The simulation of a
physical phenomenon such the dispersion of a water contaminant in the lake would now involve
computing the level of contamination at each vertex of this mesh at various intervals of time.

Figure 3.34. A mesh used to model Lake Superior.

Since, in general, the amount of computation at each point is the same, the load can be easily
balanced by simply assigning the same number of mesh points to each process. However, if a
distribution of the mesh points to processes does not strive to keep nearby mesh points
together, then it may lead to high interaction overheads due to excessive data sharing. For
example, if each process receives a random set of points as illustrated in Figure 3.35, then each
process will need to access a large set of points belonging to other processes to complete
computations for its assigned portion of the mesh.

Figure 3.35. A random distribution of the mesh elements to eight



processes.

Ideally, we would like to distribute the mesh points in a way that balances the load and at the
same time minimizes the amount of data that each process needs to access in order to complete
its computations. Therefore, we need to partition the mesh into p parts such that each part
contains roughly the same number of mesh-points or vertices, and the number of edges that
cross partition boundaries (i.e., those edges that connect points belonging to two different
partitions) is minimized. Finding an exact optimal partition is an NP-complete problem.
However, algorithms that employ powerful heuristics are available to compute reasonable
partitions. After partitioning the mesh in this manner, each one of these p partitions is assigned
to one of the p processes. As a result, each process is assigned a contiguous region of the mesh
such that the total number of mesh points that needs to be accessed across partition boundaries
is minimized. Figure 3.36 shows a good partitioning of the Lake Superior mesh – the kind that a
typical graph partitioning software would generate.

Figure 3.36. A distribution of the mesh elements to eight processes, by
using a graph-partitioning algorithm.

Mappings Based on Task Partitioning

A mapping based on partitioning a task-dependency graph and mapping its nodes onto
processes can be used when the computation is naturally expressible in the form of a static
task-dependency graph with tasks of known sizes. As usual, this mapping must seek to achieve



the often conflicting objectives of minimizing idle time and minimizing the interaction time of
the parallel algorithm. Determining an optimal mapping for a general task-dependency graph is
an NP-complete problem. However, specific situations often lend themselves to a simpler
optimal or acceptable approximate solution.

As a simple example of a mapping based on task partitioning, consider a task-dependency
graph that is a perfect binary tree. Such a task-dependency graph can occur in practical
problems with recursive decomposition, such as the decomposition for finding the minimum of a
list of numbers (Figure 3.9). Figure 3.37 shows a mapping of this task-dependency graph onto
eight processes. It is easy to see that this mapping minimizes the interaction overhead by
mapping many interdependent tasks onto the same process (i.e., the tasks along a straight
branch of the tree) and others on processes only one communication link away from each other.
Although there is some inevitable idling (e.g., when process 0 works on the root task, all other
processes are idle), this idling is inherent in the task-dependency graph. The mapping shown in
Figure 3.37 does not introduce any further idling and all tasks that are permitted to be
concurrently active by the task-dependency graph are mapped onto different processes for
parallel execution.

Figure 3.37. Mapping of a binary tree task-dependency graph onto a
hypercube of processes.

For some problems, an approximate solution to the problem of finding a good mapping can be
obtained by partitioning the task-interaction graph. In the problem of modeling contaminant
dispersion in Lake Superior discussed earlier in the context of data partitioning, we can define
tasks such that each one of them is responsible for the computations associated with a certain
mesh point. Now the mesh used to discretize the lake also acts as a task-interaction graph.
Therefore, for this problem, using graph-partitioning to find a good mapping can also be viewed
as task partitioning.

Another similar problem where task partitioning is applicable is that of sparse matrix-vector
multiplication discussed in Section 3.1.2. A simple mapping of the task-interaction graph of
Figure 3.6 is shown in Figure 3.38. This mapping assigns tasks corresponding to four
consecutive entries of b to each process. Figure 3.39 shows another partitioning for the task-
interaction graph of the sparse matrix vector multiplication problem shown in Figure 3.6 for
three processes. The list Ci contains the indices of b that the tasks on Process i need to access
from tasks mapped onto other processes. A quick comparison of the lists C0, C1, and C2 in the
two cases readily reveals that the mapping based on partitioning the task interaction graph



entails fewer exchanges of elements of b between processes than the naive mapping.

Figure 3.38. A mapping for sparse matrix-vector multiplication onto
three processes. The list Ci contains the indices of b that Process i

needs to access from other processes.

Figure 3.39. Reducing interaction overhead in sparse matrix-vector
multiplication by partitioning the task-interaction graph.

Hierarchical Mappings

Certain algorithms are naturally expressed as task-dependency graphs; however, a mapping
based solely on the task-dependency graph may suffer from load-imbalance or inadequate
concurrency. For example, in the binary-tree task-dependency graph of Figure 3.37, only a few
tasks are available for concurrent execution in the top part of the tree. If the tasks are large
enough, then a better mapping can be obtained by a further decomposition of the tasks into
smaller subtasks. In the case where the task-dependency graph is a binary tree with four levels,
the root task can be partitioned among eight processes, the tasks at the next level can be
partitioned among four processes each, followed by tasks partitioned among two processes each
at the next level. The eight leaf tasks can have a one-to-one mapping onto the processes.
Figure 3.40 illustrates such a hierarchical mapping. Parallel quicksort introduced in Example 3.4
has a task-dependency graph similar to the one shown in Figure 3.37, and hence is an ideal



candidate for a hierarchical mapping of the type shown in Figure 3.40.

Figure 3.40. An example of hierarchical mapping of a task-dependency
graph. Each node represented by an array is a supertask. The

partitioning of the arrays represents subtasks, which are mapped onto
eight processes.

An important practical problem to which the hierarchical mapping example discussed above
applies directly is that of sparse matrix factorization. The high-level computations in sparse
matrix factorization are guided by a task-dependency graph which is known as an elimination
graph (elimination tree if the matrix is symmetric). However, the tasks in the elimination graph
(especially the ones closer to the root) usually involve substantial computations and are further
decomposed into subtasks using data-decomposition. A hierarchical mapping, using task
partitioning at the top layer and array partitioning at the bottom layer, is then applied to this
hybrid decomposition. In general, a hierarchical mapping can have many layers and different
decomposition and mapping techniques may be suitable for different layers.

3.4.2 Schemes for Dynamic Mapping

Dynamic mapping is necessary in situations where a static mapping may result in a highly
imbalanced distribution of work among processes or where the task-dependency graph itself if
dynamic, thus precluding a static mapping. Since the primary reason for using a dynamic
mapping is balancing the workload among processes, dynamic mapping is often referred to as
dynamic load-balancing. Dynamic mapping techniques are usually classified as either
centralized or distributed.

Centralized Schemes

In a centralized dynamic load balancing scheme, all executable tasks are maintained in a
common central data structure or they are maintained by a special process or a subset of
processes. If a special process is designated to manage the pool of available tasks, then it is
often referred to as the master and the other processes that depend on the master to obtain
work are referred to as slaves. Whenever a process has no work, it takes a portion of available
work from the central data structure or the master process. Whenever a new task is generated,
it is added to this centralized data structure or reported to the master process. Centralized load-
balancing schemes are usually easier to implement than distributed schemes, but may have



limited scalability. As more and more processes are used, the large number of accesses to the
common data structure or the master process tends to become a bottleneck.

As an example of a scenario where centralized mapping may be applicable, consider the
problem of sorting the entries in each row of an n x n matrix A. Serially, this can be
accomplished by the following simple program segment:

1   for (i=1; i<n; i++) 
2     sort(A[i],n); 

Recall that the time to sort an array using some of the commonly used sorting algorithms, such
as quicksort, can vary significantly depending on the initial order of the elements to be sorted.
Therefore, each iteration of the loop in the program shown above can take different amounts of
time. A naive mapping of the task of sorting an equal number of rows to each process may lead
to load-imbalance. A possible solution to the potential load-imbalance problem in this case
would be to maintain a central pool of indices of the rows that have yet to be sorted. Whenever
a process is idle, it picks up an available index, deletes it, and sorts the row with that index, as
long as the pool of indices is not empty. This method of scheduling the independent iterations of
a loop among parallel processes is known as self scheduling.

The assignment of a single task to a process at a time is quite effective in balancing the
computation; however, it may lead to bottlenecks in accessing the shared work queue,
especially if each task (i.e., each loop iteration in this case) does not require a large enough
amount of computation. If the average size of each task is M, and it takes D time to assign work
to a process, then at most M/D processes can be kept busy effectively. The bottleneck can be
eased by getting more than one task at a time. In chunk scheduling, every time a process
runs out of work it gets a group of tasks. The potential problem with such a scheme is that it
may lead to load-imbalances if the number of tasks (i.e., chunk) assigned in a single step is
large. The danger of load-imbalance due to large chunk sizes can be reduced by decreasing the
chunk-size as the program progresses. That is, initially the chunk size is large, but as the
number of iterations left to be executed decreases, the chunk size also decreases. A variety of
schemes have been developed for gradually adjusting the chunk size, that decrease the chunk
size either linearly or non-linearly.

Distributed Schemes

In a distributed dynamic load balancing scheme, the set of executable tasks are distributed
among processes which exchange tasks at run time to balance work. Each process can send
work to or receive work from any other process. These methods do not suffer from the
bottleneck associated with the centralized schemes. Some of the critical parameters of a
distributed load balancing scheme are as follows:

How are the sending and receiving processes paired together?

Is the work transfer initiated by the sender or the receiver?

How much work is transferred in each exchange? If too little work is transferred, then the
receiver may not receive enough work and frequent transfers resulting in excessive
interaction may be required. If too much work is transferred, then the sender may be out
of work soon, again resulting in frequent transfers.

When is the work transfer performed? For example, in receiver initiated load balancing,
work may be requested when the process has actually run out of work or when the
receiver has too little work left and anticipates being out of work soon.



A detailed study of each of these parameters is beyond the scope of this chapter. These load
balancing schemes will be revisited in the context of parallel algorithms to which they apply
when we discuss these algorithms in the later chapters – in particular, Chapter 11 in the context
of parallel search algorithms.

Suitability to Parallel Architectures

Note that, in principle, both centralized and distributed mapping schemes can be implemented
in both message-passing and shared-address-space paradigms. However, by its very nature
any dynamic load balancing scheme requires movement of tasks from one process to another.
Hence, for such schemes to be effective on message-passing computers, the size of the tasks in
terms of computation should be much higher than the size of the data associated with the tasks.
In a shared-address-space paradigm, the tasks don't need to be moved explicitly, although
there is some implied movement of data to local caches or memory banks of processes. In
general, the computational granularity of tasks to be moved can be much smaller on shared-
address architecture than on message-passing architectures.
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3.5 Methods for Containing Interaction Overheads

As noted earlier, reducing the interaction overhead among concurrent tasks is important for an
efficient parallel program. The overhead that a parallel program incurs due to interaction
among its processes depends on many factors, such as the volume of data exchanged during
interactions, the frequency of interaction, the spatial and temporal pattern of interactions, etc.

In this section, we will discuss some general techniques that can be used to reduce the
interaction overheads incurred by parallel programs. These techniques manipulate one or more
of the three factors above in order to reduce the interaction overhead. Some of these are
applicable while devising the decomposition and mapping schemes for the algorithms and some
are applicable while programming the algorithm in a given paradigm. All techniques may not be
applicable in all parallel programming paradigms and some of them may require support from
the underlying hardware.

3.5.1 Maximizing Data Locality

In most nontrivial parallel programs, the tasks executed by different processes require access to
some common data. For example, in sparse matrix-vector multiplication y = Ab, in which tasks
correspond to computing individual elements of vector y (Figure 3.6), all elements of the input
vector b need to be accessed by multiple tasks. In addition to sharing the original input data,
interaction may result if processes require data generated by other processes. The interaction
overheads can be reduced by using techniques that promote the use of local data or data that
have been recently fetched. Data locality enhancing techniques encompass a wide range of
schemes that try to minimize the volume of nonlocal data that are accessed, maximize the
reuse of recently accessed data, and minimize the frequency of accesses. In many cases, these
schemes are similar in nature to the data reuse optimizations often performed in modern cache
based microprocessors.

Minimize Volume of Data-Exchange A fundamental technique for reducing the interaction
overhead is to minimize the overall volume of shared data that needs to be accessed by
concurrent processes. This is akin to maximizing the temporal data locality, i.e., making as
many of the consecutive references to the same data as possible. Clearly, performing as much
of the computation as possible using locally available data obviates the need for bringing in
more data into local memory or cache for a process to perform its tasks. As discussed
previously, one way of achieving this is by using appropriate decomposition and mapping
schemes. For example, in the case of matrix multiplication, we saw that by using a two-
dimensional mapping of the computations to the processes we were able to reduce the amount

of shared data (i.e., matrices A and B) that needs to be accessed by each task to  as
opposed to n2/p + n2 required by a one-dimensional mapping (Figure 3.26). In general, using
higher dimensional distribution often helps in reducing the volume of nonlocal data that needs
to be accessed.

Another way of decreasing the amount of shared data that are accessed by multiple processes is
to use local data to store intermediate results, and perform the shared data access to only place
the final results of the computation. For example, consider computing the dot product of two
vectors of length n in parallel such that each of the p tasks multiplies n/p pairs of elements.
Rather than adding each individual product of a pair of numbers to the final result, each task
can first create a partial dot product of its assigned portion of the vectors of length n/p in its



own local location, and only access the final shared location once to add this partial result. This
will reduce the number of accesses to the shared location where the result is stored to p from n.

Minimize Frequency of Interactions Minimizing interaction frequency is important in
reducing the interaction overheads in parallel programs because there is a relatively high
startup cost associated with each interaction on many architectures. Interaction frequency can
be reduced by restructuring the algorithm such that shared data are accessed and used in large
pieces. Thus, by amortizing the startup cost over large accesses, we can reduce the overall
interaction overhead, even if such restructuring does not necessarily reduce the overall volume
of shared data that need to be accessed. This is akin to increasing the spatial locality of data
access, i.e., ensuring the proximity of consecutively accessed data locations. On a shared-
address-space architecture, each time a word is accessed, an entire cache line containing many
words is fetched. If the program is structured to have spatial locality, then fewer cache lines are
accessed. On a message-passing system, spatial locality leads to fewer message-transfers over
the network because each message can transfer larger amounts of useful data. The number of
messages can sometimes be reduced further on a message-passing system by combining
messages between the same source-destination pair into larger messages if the interaction
pattern permits and if the data for multiple messages are available at the same time, albeit in
separate data structures.

Sparse matrix-vector multiplication is a problem whose parallel formulation can use this
technique to reduce interaction overhead. In typical applications, repeated sparse matrix-vector
multiplication is performed with matrices of the same nonzero pattern but different numerical
nonzero values. While solving this problem in parallel, a process interacts with others to access
elements of the input vector that it may need for its local computation. Through a one-time
scanning of the nonzero pattern of the rows of the sparse matrix that a process is responsible
for, it can determine exactly which elements of the input vector it needs and from which
processes. Then, before starting each multiplication, a process can first collect all the nonlocal
entries of the input vector that it requires, and then perform an interaction-free multiplication.
This strategy is far superior than trying to access a nonlocal element of the input vector as and
when required in the computation.

3.5.2 Minimizing Contention and Hot Spots

Our discussion so far has been largely focused on reducing interaction overheads by directly or
indirectly reducing the frequency and volume of data transfers. However, the data-access and
inter-task interaction patterns can often lead to contention that can increase the overall
interaction overhead. In general, contention occurs when multiple tasks try to access the same
resources concurrently. Multiple simultaneous transmissions of data over the same
interconnection link, multiple simultaneous accesses to the same memory block, or multiple
processes sending messages to the same process at the same time, can all lead to contention.
This is because only one of the multiple operations can proceed at a time and the others are
queued and proceed sequentially.

Consider the problem of multiplying two matrices C = AB, using the two-dimensional
partitioning shown in Figure 3.26(b). Let p be the number of tasks with a one-to-one mapping
of tasks onto processes. Let each task be responsible for computing a unique Ci,j, for

. The straightforward way of performing this computation is for Ci,j to be
computed according to the following formula (written in matrix-block notation):

Equation 3.1



Looking at the memory access patterns of the above equation, we see that at any one of the 

steps,  tasks will be accessing the same block of A and B. In particular, all the tasks that

work on the same row of C will be accessing the same block of A. For example, all 

processes computing  will attempt to read A0,0 at once. Similarly, all the
tasks working on the same column of C will be accessing the same block of B. The need to
concurrently access these blocks of matrices A and B will create contention on both NUMA
shared-address-space and message-passing parallel architectures.

One way of reducing contention is to redesign the parallel algorithm to access data in
contention-free patterns. For the matrix multiplication algorithm, this contention can be
eliminated by modifying the order in which the block multiplications are performed in Equation
3.1. A contention-free way of performing these block-multiplications is to compute Ci,j by using
the formula

Equation 3.2

where '%' denotes the modulo operation. By using this formula, all the tasks P*,j that work on

the same row of C will be accessing block , which is different for each task.
Similarly, all the tasks Pi,* that work on the same column of C will be accessing block

, which is also different for each task. Thus, by simply rearranging the order in
which the block-multiplications are performed, we can completely eliminate the contention. For
example, among the processes computing the first block row of C, the process computing C0,j

will access A0,j from the first block row of A instead of A0,0.

Centralized schemes for dynamic mapping (Section 3.4.2) are a frequent source of contention
for shared data structures or communication channels leading to the master process. The
contention may be reduced by choosing a distributed mapping scheme over a centralized one,
even though the former may be harder to implement.

3.5.3 Overlapping Computations with Interactions

The amount of time that processes spend waiting for shared data to arrive or to receive
additional work after an interaction has been initiated can be reduced, often substantially, by
doing some useful computations during this waiting time. There are a number of techniques
that can be used to overlap computations with interactions.

A simple way of overlapping is to initiate an interaction early enough so that it is completed
before it is needed for computation. To achieve this, we must be able to identify computations
that can be performed before the interaction and do not depend on it. Then the parallel
program must be structured to initiate the interaction at an earlier point in the execution than it
is needed in the original algorithm. Typically, this is possible if the interaction pattern is
spatially and temporally static (and therefore, predictable) or if multiple tasks that are ready for
execution are available on the same process so that if one blocks to wait for an interaction to
complete, the process can work on another task. The reader should note that by increasing the



number of parallel tasks to promote computation-interaction overlap, we are reducing the
granularity of the tasks, which in general tends to increase overheads. Therefore, this technique
must be used judiciously.

In certain dynamic mapping schemes, as soon as a process runs out of work, it requests and
gets additional work from another process. It then waits for the request to be serviced. If the
process can anticipate that it is going to run out of work and initiate a work transfer interaction
in advance, then it may continue towards finishing the tasks at hand while the request for more
work is being serviced. Depending on the problem, estimating the amount of remaining work
may be easy or hard.

In most cases, overlapping computations with interaction requires support from the
programming paradigm, the operating system, and the hardware. The programming paradigm
must provide a mechanism to allow interactions and computations to proceed concurrently. This
mechanism should be supported by the underlying hardware. Disjoint address-space paradigms
and architectures usually provide this support via non-blocking message passing primitives. The
programming paradigm provides functions for sending and receiving messages that return
control to the user's program before they have actually completed. Thus, the program can use
these primitives to initiate the interactions, and then proceed with the computations. If the
hardware permits computation to proceed concurrently with message transfers, then the
interaction overhead can be reduced significantly.

On a shared-address-space architecture, the overlapping of computations and interaction is
often assisted by prefetching hardware. In this case, an access to shared data is nothing more
than a regular load or store instruction. The prefetch hardware can anticipate the memory
addresses that will need to be accessed in the immediate future, and can initiate the access in
advance of when they are needed. In the absence of prefetching hardware, the same effect can
be achieved by a compiler that detects the access pattern and places pseudo-references to
certain key memory locations before these locations are actually utilized by the computation.
The degree of success of this scheme is dependent upon the available structure in the program
that can be inferred by the prefetch hardware and by the degree of independence with which
the prefetch hardware can function while computation is in progress.

3.5.4 Replicating Data or Computations

Replication of data or computations is another technique that may be useful in reducing
interaction overheads.

In some parallel algorithms, multiple processes may require frequent read-only access to
shared data structure, such as a hash-table, in an irregular pattern. Unless the additional
memory requirements are prohibitive, it may be best in a situation like this to replicate a copy
of the shared data structure on each process so that after the initial interaction during
replication, all subsequent accesses to this data structure are free of any interaction overhead.

In the shared-address-space paradigm, replication of frequently accessed read-only data is
often affected by the caches without explicit programmer intervention. Explicit data replication
is particularly suited for architectures and programming paradigms in which read-only access to
shared data is significantly more expensive or harder to express than local data accesses.
Therefore, the message-passing programming paradigm benefits the most from data
replication, which may reduce interaction overhead and also significantly simplify the writing of
the parallel program.

Data replication, however, does not come without its own cost. Data replication increases the
memory requirements of a parallel program. The aggregate amount of memory required to
store the replicated data increases linearly with the number of concurrent processes. This may



limit the size of the problem that can be solved on a given parallel computer. For this reason,
data replication must be used selectively to replicate relatively small amounts of data.

In addition to input data, the processes in a parallel program often share intermediate results.
In some situations, it may be more cost-effective for a process to compute these intermediate
results than to get them from another process that generates them. In such situations,
interaction overhead can be traded for replicated computation. For example, while performing
the Fast Fourier Transform (see Section 13.2.3 for more details), on an N-point series, N distinct
powers of w or "twiddle factors" are computed and used at various points in the computation. In
a parallel implementation of FFT, different processes require overlapping subsets of these N
twiddle factors. In a message-passing paradigm, it is best for each process to locally compute
all the twiddle factors it needs. Although the parallel algorithm may perform many more twiddle
factor computations than the serial algorithm, it may still be faster than sharing the twiddle
factors.

3.5.5 Using Optimized Collective Interaction Operations

As discussed in Section 3.3.2, often the interaction patterns among concurrent activities are
static and regular. A class of such static and regular interaction patterns are those that are
performed by groups of tasks, and they are used to achieve regular data accesses or to perform
certain type of computations on distributed data. A number of key such collective interaction
operations have been identified that appear frequently in many parallel algorithms.
Broadcasting some data to all the processes or adding up numbers, each belonging to a
different process, are examples of such collective operations. The collective data-sharing
operations can be classified into three categories. The first category contains operations that are
used by the tasks to access data, the second category of operations are used to perform some
communication-intensive computations, and finally, the third category is used for
synchronization.

Highly optimized implementations of these collective operations have been developed that
minimize the overheads due to data transfer as well as contention. Chapter 4 describes
algorithms for implementing some of the commonly used collective interaction operations.
Optimized implementations of these operations are available in library form from the vendors of
most parallel computers, e.g., MPI (message passing interface). As a result, the algorithm
designer does not need to think about how these operations are implemented and needs to
focus only on the functionality achieved by these operations. However, as discussed in Section
3.5.6, sometimes the interaction pattern may make it worthwhile for the parallel programmer
to implement one's own collective communication procedure.

3.5.6 Overlapping Interactions with Other Interactions

If the data-transfer capacity of the underlying hardware permits, then overlapping interactions
between multiple pairs of processes can reduce the effective volume of communication. As an
example of overlapping interactions, consider the commonly used collective communication
operation of one-to-all broadcast in a message-passing paradigm with four processes P0, P1, P2,
and P3. A commonly used algorithm to broadcast some data from P0 to all other processes
works as follows. In the first step, P0 sends the data to P2. In the second step, P0 sends the data
to P1, and concurrently, P2 sends the same data that it had received from P0 to P3. The entire
operation is thus complete in two steps because the two interactions of the second step require
only one time step. This operation is illustrated in Figure 3.41(a). On the other hand, a naive
broadcast algorithm would send the data from P0 to P1 to P2 to P3, thereby consuming three
steps as illustrated in Figure 3.41(b).



Figure 3.41. Illustration of overlapping interactions in broadcasting
data from one to four processes.

Interestingly, however, there are situations when the naive broadcast algorithm shown in
Figure 3.41(b) may be adapted to actually increase the amount of overlap. Assume that a
parallel algorithm needs to broadcast four data structures one after the other. The entire
interaction would require eight steps using the first two-step broadcast algorithm. However,
using the naive algorithm accomplishes the interaction in only six steps as shown in Figure
3.41(c). In the first step, P0 sends the first message to P1. In the second step P0 sends the
second message to P1 while P1 simultaneously sends the first message to P2. In the third step,
P0 sends the third message to P1, P1 sends the second message to P2, and P2 sends the first
message to P3. Proceeding similarly in a pipelined fashion, the last of the four messages is sent
out of P0 after four steps and reaches P3 in six. Since this method is rather expensive for a
single broadcast operation, it is unlikely to be included in a collective communication library.
However, the programmer must infer from the interaction pattern of the algorithm that in this
scenario, it is better to make an exception to the suggestion of Section 3.5.5 and write your
own collective communication function.
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3.6 Parallel Algorithm Models

Having discussed the techniques for decomposition, mapping, and minimizing interaction
overheads, we now present some of the commonly used parallel algorithm models. An
algorithm model is typically a way of structuring a parallel algorithm by selecting a
decomposition and mapping technique and applying the appropriate strategy to minimize
interactions.

3.6.1 The Data-Parallel Model

The data-parallel model is one of the simplest algorithm models. In this model, the tasks are
statically or semi-statically mapped onto processes and each task performs similar operations
on different data. This type of parallelism that is a result of identical operations being applied
concurrently on different data items is called data parallelism. The work may be done in
phases and the data operated upon in different phases may be different. Typically, data-parallel
computation phases are interspersed with interactions to synchronize the tasks or to get fresh
data to the tasks. Since all tasks perform similar computations, the decomposition of the
problem into tasks is usually based on data partitioning because a uniform partitioning of data
followed by a static mapping is sufficient to guarantee load balance.

Data-parallel algorithms can be implemented in both shared-address-space and message-
passing paradigms. However, the partitioned address-space in a message-passing paradigm
may allow better control of placement, and thus may offer a better handle on locality. On the
other hand, shared-address space can ease the programming effort, especially if the distribution
of data is different in different phases of the algorithm.

Interaction overheads in the data-parallel model can be minimized by choosing a locality
preserving decomposition and, if applicable, by overlapping computation and interaction and by
using optimized collective interaction routines. A key characteristic of data-parallel problems is
that for most problems, the degree of data parallelism increases with the size of the problem,
making it possible to use more processes to effectively solve larger problems.

An example of a data-parallel algorithm is dense matrix multiplication described in Section
3.1.1. In the decomposition shown in Figure 3.10, all tasks are identical; they are applied to
different data.

3.6.2 The Task Graph Model

As discussed in Section 3.1, the computations in any parallel algorithm can be viewed as a task-
dependency graph. The task-dependency graph may be either trivial, as in the case of matrix
multiplication, or nontrivial (Problem 3.5). However, in certain parallel algorithms, the task-
dependency graph is explicitly used in mapping. In the task graph model, the interrelationships
among the tasks are utilized to promote locality or to reduce interaction costs. This model is
typically employed to solve problems in which the amount of data associated with the tasks is
large relative to the amount of computation associated with them. Usually, tasks are mapped
statically to help optimize the cost of data movement among tasks. Sometimes a decentralized
dynamic mapping may be used, but even then, the mapping uses the information about the
task-dependency graph structure and the interaction pattern of tasks to minimize interaction



overhead. Work is more easily shared in paradigms with globally addressable space, but
mechanisms are available to share work in disjoint address space.

Typical interaction-reducing techniques applicable to this model include reducing the volume
and frequency of interaction by promoting locality while mapping the tasks based on the
interaction pattern of tasks, and using asynchronous interaction methods to overlap the
interaction with computation.

Examples of algorithms based on the task graph model include parallel quicksort (Section
9.4.1), sparse matrix factorization, and many parallel algorithms derived via divide-and-
conquer decomposition. This type of parallelism that is naturally expressed by independent
tasks in a task-dependency graph is called task parallelism.

3.6.3 The Work Pool Model

The work pool or the task pool model is characterized by a dynamic mapping of tasks onto
processes for load balancing in which any task may potentially be performed by any process.
There is no desired premapping of tasks onto processes. The mapping may be centralized or
decentralized. Pointers to the tasks may be stored in a physically shared list, priority queue,
hash table, or tree, or they could be stored in a physically distributed data structure. The work
may be statically available in the beginning, or could be dynamically generated; i.e., the
processes may generate work and add it to the global (possibly distributed) work pool. If the
work is generated dynamically and a decentralized mapping is used, then a termination
detection algorithm (Section 11.4.4) would be required so that all processes can actually detect
the completion of the entire program (i.e., exhaustion of all potential tasks) and stop looking for
more work.

In the message-passing paradigm, the work pool model is typically used when the amount of
data associated with tasks is relatively small compared to the computation associated with the
tasks. As a result, tasks can be readily moved around without causing too much data interaction
overhead. The granularity of the tasks can be adjusted to attain the desired level of tradeoff
between load-imbalance and the overhead of accessing the work pool for adding and extracting
tasks.

Parallelization of loops by chunk scheduling (Section 3.4.2) or related methods is an example of
the use of the work pool model with centralized mapping when the tasks are statically available.
Parallel tree search where the work is represented by a centralized or distributed data structure
is an example of the use of the work pool model where the tasks are generated dynamically.

3.6.4 The Master-Slave Model

In the master-slave or the manager-worker model, one or more master processes generate
work and allocate it to worker processes. The tasks may be allocated a priori if the manager can
estimate the size of the tasks or if a random mapping can do an adequate job of load balancing.
In another scenario, workers are assigned smaller pieces of work at different times. The latter
scheme is preferred if it is time consuming for the master to generate work and hence it is not
desirable to make all workers wait until the master has generated all work pieces. In some
cases, work may need to be performed in phases, and work in each phase must finish before
work in the next phases can be generated. In this case, the manager may cause all workers to
synchronize after each phase. Usually, there is no desired premapping of work to processes,
and any worker can do any job assigned to it. The manager-worker model can be generalized to
the hierarchical or multi-level manager-worker model in which the top-level manager feeds
large chunks of tasks to second-level managers, who further subdivide the tasks among their



own workers and may perform part of the work themselves. This model is generally equally
suitable to shared-address-space or message-passing paradigms since the interaction is
naturally two-way; i.e., the manager knows that it needs to give out work and workers know
that they need to get work from the manager.

While using the master-slave model, care should be taken to ensure that the master does not
become a bottleneck, which may happen if the tasks are too small (or the workers are relatively
fast). The granularity of tasks should be chosen such that the cost of doing work dominates the
cost of transferring work and the cost of synchronization. Asynchronous interaction may help
overlap interaction and the computation associated with work generation by the master. It may
also reduce waiting times if the nature of requests from workers is non-deterministic.

3.6.5 The Pipeline or Producer-Consumer Model

In the pipeline model, a stream of data is passed on through a succession of processes, each of
which perform some task on it. This simultaneous execution of different programs on a data
stream is called stream parallelism. With the exception of the process initiating the pipeline,
the arrival of new data triggers the execution of a new task by a process in the pipeline. The
processes could form such pipelines in the shape of linear or multidimensional arrays, trees, or
general graphs with or without cycles. A pipeline is a chain of producers and consumers. Each
process in the pipeline can be viewed as a consumer of a sequence of data items for the process
preceding it in the pipeline and as a producer of data for the process following it in the pipeline.
The pipeline does not need to be a linear chain; it can be a directed graph. The pipeline model
usually involves a static mapping of tasks onto processes.

Load balancing is a function of task granularity. The larger the granularity, the longer it takes to
fill up the pipeline, i.e. for the trigger produced by the first process in the chain to propagate to
the last process, thereby keeping some of the processes waiting. However, too fine a granularity
may increase interaction overheads because processes will need to interact to receive fresh data
after smaller pieces of computation. The most common interaction reduction technique
applicable to this model is overlapping interaction with computation.

An example of a two-dimensional pipeline is the parallel LU factorization algorithm, which is
discussed in detail in Section 8.3.1.

3.6.6 Hybrid Models

In some cases, more than one model may be applicable to the problem at hand, resulting in a
hybrid algorithm model. A hybrid model may be composed either of multiple models applied
hierarchically or multiple models applied sequentially to different phases of a parallel algorithm.
In some cases, an algorithm formulation may have characteristics of more than one algorithm
model. For instance, data may flow in a pipelined manner in a pattern guided by a task-
dependency graph. In another scenario, the major computation may be described by a task-
dependency graph, but each node of the graph may represent a supertask comprising multiple
subtasks that may be suitable for data-parallel or pipelined parallelism. Parallel quicksort
(Sections 3.2.5 and 9.4.1) is one of the applications for which a hybrid model is ideally suited.
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3.7 Bibliographic Remarks

Various texts, such as those by Wilson [Wil95], Akl [Akl97], Hwang and Xu [HX98], Wilkinson
and Allen [WA99], and Culler and Singh [CSG98], among others, present similar or slightly
varying models for parallel programs and steps in developing parallel algorithms. The book by
Goedecker and Hoisie [GH01] is among the relatively few textbooks that focus on the practical
aspects of writing high-performance parallel programs. Kwok and Ahmad [KA99a, KA99b]
present comprehensive surveys of techniques for mapping tasks onto processes.

Most of the algorithms used in this chapter as examples are discussed in detail in other chapters
in this book dedicated to the respective class of problems. Please refer to the bibliographic
remarks in those chapters for further references on these algorithms.
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Problems

3.1 In Example 3.2, each union and intersection operation can be performed in time
proportional to the sum of the number of records in the two input tables. Based on this,
construct the weighted task-dependency graphs corresponding to Figures 3.2 and 3.3,
where the weight of each node is equivalent to the amount of work required by the
corresponding task. What is the average degree of concurrency of each graph?

3.2 For the task graphs given in Figure 3.42, determine the following:

Maximum degree of concurrency.1.

Critical path length.2.

Maximum achievable speedup over one process assuming that an arbitrarily large
number of processes is available.

3.

The minimum number of processes needed to obtain the maximum possible speedup.4.

The maximum achievable speedup if the number of processes is limited to (a) 2, (b)
4, and (c) 8.

5.

Figure 3.42. Task-dependency graphs for Problem 3.2.

3.3 What are the average degrees of concurrency and critical-path lengths of task-
dependency graphs corresponding to the decompositions for matrix multiplication shown
in Figures 3.10 and 3.11?



3.4 Let d be the maximum degree of concurrency in a task-dependency graph with t tasks

and a critical-path length l. Prove that .

3.5 Consider LU factorization of a dense matrix shown in Algorithm 3.3. Figure 3.27 shows
the decomposition of LU factorization into 14 tasks based on a two-dimensional

partitioning of the matrix A into nine blocks Ai,j, 1  i, j  3. The blocks of A are
modified into corresponding blocks of L and U as a result of factorization. The diagonal
blocks of L are lower triangular submatrices with unit diagonals and the diagonal blocks of
U are upper triangular submatrices. Task 1 factors the submatrix A1,1 using Algorithm 3.3.
Tasks 2 and 3 implement the block versions of the loop on Lines 4–6 of Algorithm 3.3.
Tasks 4 and 5 are the upper-triangular counterparts of tasks 2 and 3. The element version
of LU factorization in Algorithm 3.3 does not show these steps because the diagonal
entries of L are 1; however, a block version must compute a block-row of U as a product of
the inverse of the corresponding diagonal block of L with the block-row of A. Tasks 6–9
implement the block version of the loops on Lines 7–11 of Algorithm 3.3. Thus, Tasks 1–9
correspond to the block version of the first iteration of the outermost loop of Algorithm
3.3. The remainder of the tasks complete the factorization of A. Draw a task-dependency
graph corresponding to the decomposition shown in Figure 3.27.

3.6 Enumerate the critical paths in the decomposition of LU factorization shown in Figure
3.27.

3.7 Show an efficient mapping of the task-dependency graph of the decomposition shown
in Figure 3.27 onto three processes. Prove informally that your mapping is the best
possible mapping for three processes.

3.8 Describe and draw an efficient mapping of the task-dependency graph of the
decomposition shown in Figure 3.27 onto four processes and prove that your mapping is
the best possible mapping for four processes.

3.9 Assuming that each task takes a unit amount of time, [1] which of the two mappings –
the one onto three processes or the one onto four processes – solves the problem faster?

[1] In practice, for a block size b  1, Tasks 1, 10, and 14 require about 2/3b3 arithmetic operations;
Tasks 2, 3, 4, 5, 11, and 12 require about b3 operations; and Tasks 6, 7, 8, 9, and 13 require about
2b3 operations.

3.10 Prove that block steps 1 through 14 in Figure 3.27 with block size b (i.e., each Ai,j,
Li,j, and Ui,j is a b x b submatrix) are mathematically equivalent to running the algorithm
of Algorithm 3.3 on an n x n matrix A, where n = 3b.

Hint: Using induction on b is one possible approach.

3.11 Figure 3.27 shows the decomposition into 14 tasks of LU factorization of a matrix
split into blocks using a 3 x 3 two-dimensional partitioning. If an m x m partitioning is
used, derive an expression for the number of tasks t(m) as a function of m in a
decomposition along similar lines.

Hint: Show that t(m) = t(m - 1) + m2.

3.12 In the context of Problem 3.11, derive an expression for the maximum degree of
concurrency d(m) as a function of m.

3.13 In the context of Problem 3.11, derive an expression for the critical-path length l(m)
as a function of m.



3.14 Show efficient mappings for the decompositions for the database query problem
shown in Figures 3.2 and 3.3. What is the maximum number of processes that you would
use in each case?

3.15 In the algorithm shown in Algorithm 3.4, assume a decomposition such that each
execution of Line 7 is a task. Draw a task-dependency graph and a task-interaction graph.

Algorithm 3.4 A sample serial program to be parallelized.

1.   procedure FFT_like_pattern(A, n) 
2.   begin 

3.      m := log2 n; 

4.      for j := 0 to m - 1 do 

5.          k := 2j; 

6.          for i := 0 to n - 1 do 

7.              A[i] := A[i] + A[i XOR 2j]; 
8.      endfor 
9.   end FFT_like_pattern 

3.16 In Algorithm 3.4, if n = 16, devise a good mapping for 16 processes.

3.17 In Algorithm 3.4, if n = 16, devise a good mapping for 8 processes.

3.18 Repeat Problems 3.15, 3.16, and 3.17 if the statement of Line 3 in Algorithm 3.4 is
changed to m = (log2 n) - 1.

3.19 Consider a simplified version of bucket-sort. You are given an array A of n random
integers in the range [1...r] as input. The output data consist of r buckets, such that at the
end of the algorithm, Bucket i contains indices of all the elements in A that are equal to i.

Describe a decomposition based on partitioning the input data (i.e., the array A) and
an appropriate mapping onto p processes. Describe briefly how the resulting parallel
algorithm would work.

Describe a decomposition based on partitioning the output data (i.e., the set of r
buckets) and an appropriate mapping onto p processes. Describe briefly how the
resulting parallel algorithm would work.

3.20 In the context of Problem 3.19, which of the two decompositions leads to a better
parallel algorithm? Should the relative values of n and r have a bearing on the selection of
one of the two decomposition schemes?

3.21 Consider seven tasks with running times of 1, 2, 3, 4, 5, 5, and 10 units,
respectively. Assuming that it does not take any time to assign work to a process, compute
the best- and worst-case speedup for a centralized scheme for dynamic mapping with two
processes.

3.22 Suppose there are M tasks that are being mapped using a centralized dynamic load
balancing scheme and we have the following information about these tasks:

Average task size is 1.

Minimum task size is 0.



Maximum task size is m.

It takes a process  time to pick up a task.

Compute the best- and worst-case speedups for self-scheduling and chunk-scheduling
assuming that tasks are available in batches of l (l < M). What are the actual values of the

best- and worst-case speedups for the two scheduling methods when p = 10,  = 0.2, m
= 20, M = 100, and l = 2?
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Chapter 4. Basic Communication
Operations
In most parallel algorithms, processes need to exchange data with other processes. This
exchange of data can significantly impact the efficiency of parallel programs by introducing
interaction delays during their execution. For instance, recall from Section 2.5 that it takes
roughly ts + mtw time for a simple exchange of an m-word message between two processes
running on different nodes of an interconnection network with cut-through routing. Here ts is
the latency or the startup time for the data transfer and tw is the per-word transfer time, which
is inversely proportional to the available bandwidth between the nodes. Many interactions in
practical parallel programs occur in well-defined patterns involving more than two processes.
Often either all processes participate together in a single global interaction operation, or subsets
of processes participate in interactions local to each subset. These common basic patterns of
interprocess interaction or communication are frequently used as building blocks in a variety of
parallel algorithms. Proper implementation of these basic communication operations on various
parallel architectures is a key to the efficient execution of the parallel algorithms that use them.

In this chapter, we present algorithms to implement some commonly used communication
patterns on simple interconnection networks, such as the linear array, two-dimensional mesh,
and the hypercube. The choice of these interconnection networks is motivated primarily by
pedagogical reasons. For instance, although it is unlikely that large scale parallel computers will
be based on the linear array or ring topology, it is important to understand various
communication operations in the context of linear arrays because the rows and columns of
meshes are linear arrays. Parallel algorithms that perform rowwise or columnwise
communication on meshes use linear array algorithms. The algorithms for a number of
communication operations on a mesh are simple extensions of the corresponding linear array
algorithms to two dimensions. Furthermore, parallel algorithms using regular data structures
such as arrays often map naturally onto one- or two-dimensional arrays of processes. This too
makes it important to study interprocess interaction on a linear array or mesh interconnection
network. The hypercube architecture, on the other hand, is interesting because many
algorithms with recursive interaction patterns map naturally onto a hypercube topology. Most of
these algorithms may perform equally well on interconnection networks other than the
hypercube, but it is simpler to visualize their communication patterns on a hypercube.

The algorithms presented in this chapter in the context of simple network topologies are
practical and are highly suitable for modern parallel computers, even though most such
computers are unlikely to have an interconnection network that exactly matches one of the
networks considered in this chapter. The reason is that on a modern parallel computer, the time
to transfer data of a certain size between two nodes is often independent of the relative location
of the nodes in the interconnection network. This homogeneity is afforded by a variety of
firmware and hardware features such as randomized routing algorithms and cut-through
routing, etc. Furthermore, the end user usually does not have explicit control over mapping
processes onto physical processors. Therefore, we assume that the transfer of m words of data
between any pair of nodes in an interconnection network incurs a cost of ts + mtw. On most
architectures, this assumption is reasonably accurate as long as a free link is available between
the source and destination nodes for the data to traverse. However, if many pairs of nodes are
communicating simultaneously, then the messages may take longer. This can happen if the
number of messages passing through a cross-section of the network exceeds the cross-section
bandwidth (Section 2.4.4) of the network. In such situations, we need to adjust the value of tw



to reflect the slowdown due to congestion. As discussed in Section 2.5.1, we refer to the
adjusted value of tw as effective tw. We will make a note in the text when we come across
communication operations that may cause congestion on certain networks.

As discussed in Section 2.5.2, the cost of data-sharing among processors in the shared-
address-space paradigm can be modeled using the same expression ts + mtw, usually with
different values of ts and tw relative to each other as well as relative to the computation speed
of the processors of the parallel computer. Therefore, parallel algorithms requiring one or more
of the interaction patterns discussed in this chapter can be assumed to incur costs whose
expression is close to one derived in the context of message-passing.

In the following sections we describe various communication operations and derive expressions
for their time complexity. We assume that the interconnection network supports cut-through
routing (Section 2.5.1) and that the communication time between any pair of nodes is
practically independent of of the number of intermediate nodes along the paths between them.
We also assume that the communication links are bidirectional; that is, two directly-connected
nodes can send messages of size m to each other simultaneously in time ts + twm. We assume a
single-port communication model, in which a node can send a message on only one of its links
at a time. Similarly, it can receive a message on only one link at a time. However, a node can
receive a message while sending another message at the same time on the same or a different
link.

Many of the operations described here have duals and other related operations that we can
perform by using procedures very similar to those for the original operations. The dual of a
communication operation is the opposite of the original operation and can be performed by
reversing the direction and sequence of messages in the original operation. We will mention
such operations wherever applicable.
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4.1 One-to-All Broadcast and All-to-One Reduction

Parallel algorithms often require a single process to send identical data to all other processes or
to a subset of them. This operation is known as one-to-all broadcast . Initially, only the
source process has the data of size m that needs to be broadcast. At the termination of the
procedure, there are p copies of the initial data – one belonging to each process. The dual of
one-to-all broadcast is all-to-one reduction . In an all-to-one reduction operation, each of the
p participating processes starts with a buffer M containing m words. The data from all processes
are combined through an associative operator and accumulated at a single destination process
into one buffer of size m . Reduction can be used to find the sum, product, maximum, or
minimum of sets of numbers – the i th word of the accumulated M is the sum, product,
maximum, or minimum of the i th words of each of the original buffers. Figure 4.1 shows one-
to-all broadcast and all-to-one reduction among p processes.

Figure 4.1. One-to-all broadcast and all-to-one reduction.

One-to-all broadcast and all-to-one reduction are used in several important parallel algorithms
including matrix-vector multiplication, Gaussian elimination, shortest paths, and vector inner
product. In the following subsections, we consider the implementation of one-to-all broadcast in
detail on a variety of interconnection topologies.

4.1.1 Ring or Linear Array

A naive way to perform one-to-all broadcast is to sequentially send p - 1 messages from the
source to the other p - 1 processes. However, this is inefficient because the source process
becomes a bottleneck. Moreover, the communication network is underutilized because only the
connection between a single pair of nodes is used at a time. A better broadcast algorithm can
be devised using a technique commonly known as recursive doubling . The source process
first sends the message to another process. Now both these processes can simultaneously send
the message to two other processes that are still waiting for the message. By continuing this
procedure until all the processes have received the data, the message can be broadcast in log p
steps.

The steps in a one-to-all broadcast on an eight-node linear array or ring are shown in Figure
4.2 . The nodes are labeled from 0 to 7. Each message transmission step is shown by a
numbered, dotted arrow from the source of the message to its destination. Arrows indicating
messages sent during the same time step have the same number.

Figure 4.2. One-to-all broadcast on an eight-node ring. Node 0 is the
source of the broadcast. Each message transfer step is shown by a

numbered, dotted arrow from the source of the message to its
destination. The number on an arrow indicates the time step during



which the message is transferred.

Note that on a linear array, the destination node to which the message is sent in each step must
be carefully chosen. In Figure 4.2 , the message is first sent to the farthest node (4) from the
source (0). In the second step, the distance between the sending and receiving nodes is halved,
and so on. The message recipients are selected in this manner at each step to avoid congestion
on the network. For example, if node 0 sent the message to node 1 in the first step and then
nodes 0 and 1 attempted to send messages to nodes 2 and 3, respectively, in the second step,
the link between nodes 1 and 2 would be congested as it would be a part of the shortest route
for both the messages in the second step.

Reduction on a linear array can be performed by simply reversing the direction and the
sequence of communication, as shown in Figure 4.3 . In the first step, each odd numbered node
sends its buffer to the even numbered node just before itself, where the contents of the two
buffers are combined into one. After the first step, there are four buffers left to be reduced on
nodes 0, 2, 4, and 6, respectively. In the second step, the contents of the buffers on nodes 0
and 2 are accumulated on node 0 and those on nodes 6 and 4 are accumulated on node 4.
Finally, node 4 sends its buffer to node 0, which computes the final result of the reduction.

Figure 4.3. Reduction on an eight-node ring with node 0 as the
destination of the reduction.



Example 4.1 Matrix-vector multiplication

Consider the problem of multiplying an n x n matrix A with an n x 1 vector x on an n x
n mesh of nodes to yield an n x 1 result vector y . Algorithm 8.1 shows a serial
algorithm for this problem. Figure 4.4 shows one possible mapping of the matrix and
the vectors in which each element of the matrix belongs to a different process, and the
vector is distributed among the processes in the topmost row of the mesh and the
result vector is generated on the leftmost column of processes.

Figure 4.4. One-to-all broadcast and all-to-one reduction in the
multiplication of a 4 x 4 matrix with a 4 x 1 vector.

Since all the rows of the matrix must be multiplied with the vector, each process
needs the element of the vector residing in the topmost process of its column. Hence,
before computing the matrix-vector product, each column of nodes performs a one-to-
all broadcast of the vector elements with the topmost process of the column as the
source. This is done by treating each column of the n x n mesh as an n -node linear
array, and simultaneously applying the linear array broadcast procedure described
previously to all columns.

After the broadcast, each process multiplies its matrix element with the result of the
broadcast. Now, each row of processes needs to add its result to generate the
corresponding element of the product vector. This is accomplished by performing all-
to-one reduction on each row of the process mesh with the first process of each row as
the destination of the reduction operation.

For example, P 9 will receive x [1] from P 1 as a result of the broadcast, will multiply it
with A [2, 1] and will participate in an all-to-one reduction with P 8 , P 10 , and P 11 to

accumulate y [2] on P 8 . 



4.1.2 Mesh

We can regard each row and column of a square mesh of p nodes as a linear array of 
nodes. So a number of communication algorithms on the mesh are simple extensions of their
linear array counterparts. A linear array communication operation can be performed in two
phases on a mesh. In the first phase, the operation is performed along one or all rows by
treating the rows as linear arrays. In the second phase, the columns are treated similarly.

Consider the problem of one-to-all broadcast on a two-dimensional square mesh with  rows

and  columns. First, a one-to-all broadcast is performed from the source to the remaining (

) nodes of the same row. Once all the nodes in a row of the mesh have acquired the
data, they initiate a one-to-all broadcast in their respective columns. At the end of the second
phase, every node in the mesh has a copy of the initial message. The communication steps for
one-to-all broadcast on a mesh are illustrated in Figure 4.5 for p = 16, with node 0 at the
bottom-left corner as the source. Steps 1 and 2 correspond to the first phase, and steps 3 and 4
correspond to the second phase.

Figure 4.5. One-to-all broadcast on a 16-node mesh.

We can use a similar procedure for one-to-all broadcast on a three-dimensional mesh as well.
In this case, rows of p 1 /3 nodes in each of the three dimensions of the mesh would be treated
as linear arrays. As in the case of a linear array, reduction can be performed on two- and three-
dimensional meshes by simply reversing the direction and the order of messages.

4.1.3 Hypercube

The previous subsection showed that one-to-all broadcast is performed in two phases on a two-
dimensional mesh, with the communication taking place along a different dimension in each
phase. Similarly, the process is carried out in three phases on a three-dimensional mesh. A
hypercube with 2d nodes can be regarded as a d -dimensional mesh with two nodes in each



dimension. Hence, the mesh algorithm can be extended to the hypercube, except that the
process is now carried out in d steps – one in each dimension.

Figure 4.6 shows a one-to-all broadcast on an eight-node (three-dimensional) hypercube with
node 0 as the source. In this figure, communication starts along the highest dimension (that is,
the dimension specified by the most significant bit of the binary representation of a node label)
and proceeds along successively lower dimensions in subsequent steps. Note that the source
and the destination nodes in three communication steps of the algorithm shown in Figure 4.6
are identical to the ones in the broadcast algorithm on a linear array shown in Figure 4.2 .
However, on a hypercube, the order in which the dimensions are chosen for communication
does not affect the outcome of the procedure. Figure 4.6 shows only one such order. Unlike a
linear array, the hypercube broadcast would not suffer from congestion if node 0 started out by
sending the message to node 1 in the first step, followed by nodes 0 and 1 sending messages to
nodes 2 and 3, respectively, and finally nodes 0, 1, 2, and 3 sending messages to nodes 4, 5, 6,
and 7, respectively.

Figure 4.6. One-to-all broadcast on a three-dimensional hypercube.
The binary representations of node labels are shown in parentheses.

4.1.4 Balanced Binary Tree

The hypercube algorithm for one-to-all broadcast maps naturally onto a balanced binary tree in
which each leaf is a processing node and intermediate nodes serve only as switching units. This
is illustrated in Figure 4.7 for eight nodes. In this figure, the communicating nodes have the
same labels as in the hypercube algorithm illustrated in Figure 4.6 . Figure 4.7 shows that there
is no congestion on any of the communication links at any time. The difference between the
communication on a hypercube and the tree shown in Figure 4.7 is that there is a different
number of switching nodes along different paths on the tree.

Figure 4.7. One-to-all broadcast on an eight-node tree.



4.1.5 Detailed Algorithms

A careful look at Figures 4.2 , 4.5 , 4.6 , and 4.7 would reveal that the basic communication
pattern for one-to-all broadcast is identical on all the four interconnection networks considered
in this section. We now describe procedures to implement the broadcast and reduction
operations. For the sake of simplicity, the algorithms are described here in the context of a
hypercube and assume that the number of communicating processes is a power of 2. However,
they apply to any network topology, and can be easily extended to work for any number of
processes (Problem 4.1).

Algorithm 4.1 shows a one-to-all broadcast procedure on a 2d -node network when node 0 is
the source of the broadcast. The procedure is executed at all the nodes. At any node, the value
of my_id is the label of that node. Let X be the message to be broadcast, which initially resides
at the source node 0. The procedure performs d communication steps, one along each
dimension of a hypothetical hypercube. In Algorithm 4.1 , communication proceeds from the
highest to the lowest dimension (although the order in which dimensions are chosen does not
matter). The loop counter i indicates the current dimension of the hypercube in which
communication is taking place. Only the nodes with zero in the i least significant bits of their
labels participate in communication along dimension i . For instance, on the three-dimensional
hypercube shown in Figure 4.6 , i is equal to 2 in the first time step. Therefore, only nodes 0
and 4 communicate, since their two least significant bits are zero. In the next time step, when i
= 1, all nodes (that is, 0, 2, 4, and 6) with zero in their least significant bits participate in
communication. The procedure terminates after communication has taken place along all
dimensions.

The variable mask helps determine which nodes communicate in a particular iteration of the
loop. The variable mask has d (= log p ) bits, all of which are initially set to one (Line 3). At the
beginning of each iteration, the most significant nonzero bit of mask is reset to zero (Line 5).
Line 6 determines which nodes communicate in the current iteration of the outer loop. For
instance, for the hypercube of Figure 4.6 , mask is initially set to 111, and it would be 011
during the iteration corresponding to i = 2 (the i least significant bits of mask are ones). The
AND operation on Line 6 selects only those nodes that have zeros in their i least significant bits.

Among the nodes selected for communication along dimension i , the nodes with a zero at bit
position i send the data, and the nodes with a one at bit position i receive it. The test to
determine the sending and receiving nodes is performed on Line 7. For example, in Figure 4.6 ,
node 0 (000) is the sender and node 4 (100) is the receiver in the iteration corresponding to i =
2. Similarly, for i = 1, nodes 0 (000) and 4 (100) are senders while nodes 2 (010) and 6 (110)
are receivers.

Algorithm 4.1 works only if node 0 is the source of the broadcast. For an arbitrary source, we



must relabel the nodes of the hypothetical hypercube by XORing the label of each node with the
label of the source node before we apply this procedure. A modified one-to-all broadcast
procedure that works for any value of source between 0 and p - 1 is shown in Algorithm 4.2 . By
performing the XOR operation at Line 3, Algorithm 4.2 relabels the source node to 0, and
relabels the other nodes relative to the source. After this relabeling, the algorithm of Algorithm
4.1 can be applied to perform the broadcast.

Algorithm 4.3 gives a procedure to perform an all-to-one reduction on a hypothetical d -
dimensional hypercube such that the final result is accumulated on node 0. Single node-
accumulation is the dual of one-to-all broadcast. Therefore, we obtain the communication
pattern required to implement reduction by reversing the order and the direction of messages in
one-to-all broadcast. Procedure ALL_TO_ONE_REDUCE(d , my_id , m , X , sum ) shown in
Algorithm 4.3 is very similar to procedure ONE_TO_ALL_BC(d , my_id , X ) shown in Algorithm
4.1 . One difference is that the communication in all-to-one reduction proceeds from the lowest
to the highest dimension. This change is reflected in the way that variables mask and i are
manipulated in Algorithm 4.3 . The criterion for determining the source and the destination
among a pair of communicating nodes is also reversed (Line 7). Apart from these differences,
procedure ALL_TO_ONE_REDUCE has extra instructions (Lines 13 and 14) to add the contents
of the messages received by a node in each iteration (any associative operation can be used in
place of addition).

Algorithm 4.1 One-to-all broadcast of a message X from node 0 of a d -
dimensional p -node hypercube (d = log p ). AND and XOR are bitwise
logical-and and exclusive-or operations, respectively.

1.    procedure ONE_TO_ALL_BC(d, my_id, X) 
2.    begin 

3.       mask := 2d - 1;                  /* Set all d bits of mask to 1 */ 

4.       for i := d - 1 downto 0 do       /* Outer loop */ 

5.           mask := mask XOR 2i;         /* Set bit i of mask to 0 */ 

6.           if (my_id AND mask) = 0 then /* If lower i bits of my_id are 0 */ 

7.               if (my_id AND 2i) = 0 then 

8.                   msg_destination := my_id XOR 2i; 

9.                   send X to msg_destination; 
10.              else 

11.                  msg_source := my_id XOR 2i; 

12.                  receive X from msg_source; 
13.              endelse; 
14.          endif; 
15.      endfor; 
16.   end ONE_TO_ALL_BC 

Algorithm 4.2 One-to-all broadcast of a message X initiated by source
on a d -dimensional hypothetical hypercube. The AND and XOR
operations are bitwise logical operations.

1.   procedure GENERAL_ONE_TO_ALL_BC(d, my_id, source, X) 
2.   begin 

3.      my_virtual id := my_id XOR source; 

4.      mask := 2d - 1; 

5.      for i := d - 1 downto 0 do   /* Outer loop */ 

6.          mask := mask XOR 2i;    /* Set bit i of mask to 0 */ 



7.          if (my_virtual_id AND mask) = 0 then 

8.              if (my_virtual_id AND 2i) = 0 then 

9.                  virtual_dest := my_virtual_id XOR 2i; 

10.                 send X to (virtual_dest XOR source); 

        /* Convert virtual_dest to the label of the physical destination */ 
11.             else 

12.                 virtual_source := my_virtual_id XOR 2i; 

13.                 receive X from (virtual_source XOR source); 

        /* Convert virtual_source to the label of the physical source */ 
14.             endelse; 
15.     endfor; 
16.  end GENERAL_ONE_TO_ALL_BC 

Algorithm 4.3 Single-node accumulation on a d -dimensional
hypercube. Each node contributes a message X containing m words,
and node 0 is the destination of the sum. The AND and XOR operations
are bitwise logical operations.

1.   procedure ALL_TO_ONE_REDUCE(d, my_id, m, X, sum) 
2.   begin 

3.      for j := 0 to m - 1 do sum[j] := X[j]; 

4.      mask := 0; 

5.      for i := 0 to d - 1 do 

            /* Select nodes whose lower i bits are 0 */ 

6.          if (my_id AND mask) = 0 then 

7.              if (my_id AND 2i)  0 then 

8.                  msg_destination := my_id XOR 2i; 

9.                  send sum to msg_destination; 
10.             else 

11.                 msg_source := my_id XOR 2i; 

12.                 receive X from msg_source; 

13.                 for j := 0 to m - 1 do 

14.                     sum[j] :=sum[j] + X[j]; 
15.             endelse; 

16.          mask := mask XOR 2i; /* Set bit i of mask to 1 */ 
17.     endfor; 
18.  end ALL_TO_ONE_REDUCE 

4.1.6 Cost Analysis

Analyzing the cost of one-to-all broadcast and all-to-one reduction is fairly straightforward.
Assume that p processes participate in the operation and the data to be broadcast or reduced
contains m words. The broadcast or reduction procedure involves log p point-to-point simple
message transfers, each at a time cost of ts + tw m . Therefore, the total time taken by the
procedure is

Equation 4.1
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4.2 All-to-All Broadcast and Reduction

All-to-all broadcast is a generalization of one-to-all broadcast in which all p nodes
simultaneously initiate a broadcast. A process sends the same m-word message to every other
process, but different processes may broadcast different messages. All-to-all broadcast is used
in matrix operations, including matrix multiplication and matrix-vector multiplication. The dual
of all-to-all broadcast is all-to-all reduction, in which every node is the destination of an all-
to-one reduction (Problem 4.8). Figure 4.8 illustrates all-to-all broadcast and all-to-all
reduction.

Figure 4.8. All-to-all broadcast and all-to-all reduction.

One way to perform an all-to-all broadcast is to perform p one-to-all broadcasts, one starting at
each node. If performed naively, on some architectures this approach may take up to p times as
long as a one-to-all broadcast. It is possible to use the communication links in the
interconnection network more efficiently by performing all p one-to-all broadcasts
simultaneously so that all messages traversing the same path at the same time are
concatenated into a single message whose size is the sum of the sizes of individual messages.

The following sections describe all-to-all broadcast on linear array, mesh, and hypercube
topologies.

4.2.1 Linear Array and Ring

While performing all-to-all broadcast on a linear array or a ring, all communication links can be
kept busy simultaneously until the operation is complete because each node always has some
information that it can pass along to its neighbor. Each node first sends to one of its neighbors
the data it needs to broadcast. In subsequent steps, it forwards the data received from one of
its neighbors to its other neighbor.

Figure 4.9 illustrates all-to-all broadcast for an eight-node ring. The same procedure would also
work on a linear array with bidirectional links. As with the previous figures, the integer label of
an arrow indicates the time step during which the message is sent. In all-to-all broadcast, p
different messages circulate in the p-node ensemble. In Figure 4.9, each message is identified
by its initial source, whose label appears in parentheses along with the time step. For instance,
the arc labeled 2 (7) between nodes 0 and 1 represents the data communicated in time step 2
that node 0 received from node 7 in the preceding step. As Figure 4.9 shows, if communication
is performed circularly in a single direction, then each node receives all (p - 1) pieces of
information from all other nodes in (p - 1) steps.

Figure 4.9. All-to-all broadcast on an eight-node ring. The label of each



arrow shows the time step and, within parentheses, the label of the
node that owned the current message being transferred before the
beginning of the broadcast. The number(s) in parentheses next to

each node are the labels of nodes from which data has been received
prior to the current communication step. Only the first, second, and

last communication steps are shown.

Algorithm 4.4 gives a procedure for all-to-all broadcast on a p-node ring. The initial message to
be broadcast is known locally as my_msg at each node. At the end of the procedure, each node
stores the collection of all p messages in result. As the program shows, all-to-all broadcast on a
mesh applies the linear array procedure twice, once along the rows and once along the
columns.

Algorithm 4.4 All-to-all broadcast on a p-node ring.

1.   procedure ALL_TO_ALL_BC_RING(my_id, my_msg, p, result) 
2.   begin 



3.      left := (my_id - 1) mod p; 

4.      right := (my_id + 1) mod p; 

5.      result := my_msg; 

6.      msg := result; 

7.      for i := 1 to p - 1 do 

8.          send msg to right; 

9.          receive msg from left; 

10.         result := result  msg; 
11.     endfor; 
12.  end ALL_TO_ALL_BC_RING 

In all-to-all reduction, the dual of all-to-all broadcast, each node starts with p messages, each
one destined to be accumulated at a distinct node. All-to-all reduction can be performed by
reversing the direction and sequence of the messages. For example, the first communication
step for all-to-all reduction on an 8-node ring would correspond to the last step of Figure 4.9
with node 0 sending msg[1] to 7 instead of receiving it. The only additional step required is that
upon receiving a message, a node must combine it with the local copy of the message that has
the same destination as the received message before forwarding the combined message to the
next neighbor. Algorithm 4.5 gives a procedure for all-to-all reduction on a p-node ring.

Algorithm 4.5 All-to-all reduction on a p-node ring.

1.   procedure ALL_TO_ALL_RED_RING(my_id, my_msg, p, result) 
2.   begin 

3.      left := (my_id - 1) mod p; 

4.      right := (my_id + 1) mod p; 

5.      recv := 0; 

6.      for i := 1 to p - 1 do 

7.          j := (my_id + i) mod p; 

8.          temp := msg[j] + recv; 

9.          send temp to left; 

10.         receive recv from right; 
11.     endfor; 

12.     result := msg[my_id] + recv; 
13.  end ALL_TO_ALL_RED_RING 

4.2.2 Mesh

Just like one-to-all broadcast, the all-to-all broadcast algorithm for the 2-D mesh is based on
the linear array algorithm, treating rows and columns of the mesh as linear arrays. Once again,
communication takes place in two phases. In the first phase, each row of the mesh performs an

all-to-all broadcast using the procedure for the linear array. In this phase, all nodes collect 

messages corresponding to the  nodes of their respective rows. Each node consolidates this

information into a single message of size , and proceeds to the second communication
phase of the algorithm. The second communication phase is a columnwise all-to-all broadcast of
the consolidated messages. By the end of this phase, each node obtains all p pieces of m-word
data that originally resided on different nodes. The distribution of data among the nodes of a 3
x 3 mesh at the beginning of the first and the second phases of the algorithm is shown in Figure
4.10.

Figure 4.10. All-to-all broadcast on a 3 x 3 mesh. The groups of nodes



communicating with each other in each phase are enclosed by dotted
boundaries. By the end of the second phase, all nodes get

(0,1,2,3,4,5,6,7) (that is, a message from each node).

Algorithm 4.6 gives a procedure for all-to-all broadcast on a  mesh. The mesh
procedure for all-to-all reduction is left as an exercise for the reader (Problem 4.4).

Algorithm 4.6 All-to-all broadcast on a square mesh of p nodes.

1.   procedure ALL_TO_ALL_BC_MESH(my_id, my_msg, p, result) 
2.   begin 

/* Communication along rows */ 

3.      left := my_id - (my_id mod ) + (my_id - 1)mod ; 

4.      right := my_id - (my_id mod ) + (my_id + 1) mod ; 

5.      result := my_msg; 

6.      msg := result; 

7.      for i := 1 to  - 1 do 

8.          send msg to right; 

9.          receive msg from left; 

10.         result := result  msg; 
11.     endfor; 

/* Communication along columns */ 

12.     up := (my_id - ) mod p; 

13.     down := (my_id + ) mod p; 

14.     msg := result; 

15.     for i := 1 to  - 1 do 

16.         send msg to down; 

17.         receive msg from up; 

18.         result := result  msg; 
19.     endfor; 
20.  end ALL_TO_ALL_BC_MESH 



4.2.3 Hypercube

The hypercube algorithm for all-to-all broadcast is an extension of the mesh algorithm to log p
dimensions. The procedure requires log p steps. Communication takes place along a different
dimension of the p-node hypercube in each step. In every step, pairs of nodes exchange their
data and double the size of the message to be transmitted in the next step by concatenating the
received message with their current data. Figure 4.11 shows these steps for an eight-node
hypercube with bidirectional communication channels.

Figure 4.11. All-to-all broadcast on an eight-node hypercube.

Algorithm 4.7 gives a procedure for implementing all-to-all broadcast on a d-dimensional
hypercube. Communication starts from the lowest dimension of the hypercube and then
proceeds along successively higher dimensions (Line 4). In each iteration, nodes communicate
in pairs so that the labels of the nodes communicating with each other in the i th iteration differ
in the i th least significant bit of their binary representations (Line 5). After an iteration's
communication steps, each node concatenates the data it receives during that iteration with its
resident data (Line 8). This concatenated message is transmitted in the following iteration.

Algorithm 4.7 All-to-all broadcast on a d-dimensional hypercube.



1.   procedure ALL_TO_ALL_BC_HCUBE(my_id, my_msg, d, result) 
2.   begin 

3.      result := my_msg; 

4.      for i := 0 to d - 1 do 

5.          partner := my id XOR 2i; 

6.          send result to partner; 

7.          receive msg from partner; 

8.          result := result  msg; 
9.      endfor; 
10.  end ALL_TO_ALL_BC_HCUBE 

As usual, the algorithm for all-to-all reduction can be derived by reversing the order and
direction of messages in all-to-all broadcast. Furthermore, instead of concatenating the
messages, the reduction operation needs to select the appropriate subsets of the buffer to send
out and accumulate received messages in each iteration. Algorithm 4.8 gives a procedure for
all-to-all reduction on a d-dimensional hypercube. It uses senloc to index into the starting
location of the outgoing message and recloc to index into the location where the incoming
message is added in each iteration.

Algorithm 4.8 All-to-all broadcast on a d-dimensional hypercube. AND
and XOR are bitwise logical-and and exclusive-or operations,
respectively.

1.   procedure ALL_TO_ALL_RED_HCUBE(my_id, msg, d, result) 
2.   begin 

3.      recloc := 0; 

4.      for i := d - 1 to 0 do 

5.          partner := my_id XOR 2i; 

6.          j := my_id AND 2i; 

7.          k := (my_id XOR 2i) AND 2i; 

8.          senloc := recloc + k; 

9.          recloc := recloc + j; 

10.         send msg[senloc .. senloc + 2i - 1] to partner; 

11.         receive temp[0 .. 2i - 1] from partner; 

12.         for j := 0 to 2i - 1 do 

13.             msg[recloc + j] := msg[recloc + j] + temp[j]; 
14.         endfor; 
15.     endfor; 

16.     result := msg[my_id]; 
17.  end ALL_TO_ALL_RED_HCUBE 

4.2.4 Cost Analysis

On a ring or a linear array, all-to-all broadcast involves p - 1 steps of communication between
nearest neighbors. Each step, involving a message of size m, takes time ts + tw m. Therefore,
the time taken by the entire operation is

Equation 4.2



Similarly, on a mesh, the first phase of  simultaneous all-to-all broadcasts (each among 

nodes) concludes in time . The number of nodes participating in each all-to-all

broadcast in the second phase is also , but the size of each message is now .

Therefore, this phase takes time  to complete. The time for the entire all-
to-all broadcast on a p-node two-dimensional square mesh is the sum of the times spent in the
individual phases, which is

Equation 4.3

On a p-node hypercube, the size of each message exchanged in the i th of the log p steps is 2i-

1m. It takes a pair of nodes time ts + 2i-1twm to send and receive messages from each other
during the i th step. Hence, the time to complete the entire procedure is

Equation 4.4

Equations 4.2, 4.3, and 4.4 show that the term associated with tw in the expressions for the
communication time of all-to-all broadcast is twm(p - 1) for all the architectures. This term also
serves as a lower bound for the communication time of all-to-all broadcast for parallel
computers on which a node can communicate on only one of its ports at a time. This is because
each node receives at least m(p - 1) words of data, regardless of the architecture. Thus, for
large messages, a highly connected network like a hypercube is no better than a simple ring in
performing all-to-all broadcast or all-to-all reduction. In fact, the straightforward all-to-all
broadcast algorithm for a simple architecture like a ring has great practical importance. A close
look at the algorithm reveals that it is a sequence of p one-to-all broadcasts, each with a
different source. These broadcasts are pipelined so that all of them are complete in a total of p
nearest-neighbor communication steps. Many parallel algorithms involve a series of one-to-all
broadcasts with different sources, often interspersed with some computation. If each one-to-all
broadcast is performed using the hypercube algorithm of Section 4.1.3, then n broadcasts
would require time n(ts + twm) log p. On the other hand, by pipelining the broadcasts as shown
in Figure 4.9, all of them can be performed spending no more than time (ts + twm)(p - 1) in

communication, provided that the sources of all broadcasts are different and n  p. In later
chapters, we show how such pipelined broadcast improves the performance of some parallel
algorithms such as Gaussian elimination (Section 8.3.1), back substitution (Section 8.3.3), and
Floyd's algorithm for finding the shortest paths in a graph (Section 10.4.2).

Another noteworthy property of all-to-all broadcast is that, unlike one-to-all broadcast, the
hypercube algorithm cannot be applied unaltered to mesh and ring architectures. The reason is
that the hypercube procedure for all-to-all broadcast would cause congestion on the
communication channels of a smaller-dimensional network with the same number of nodes. For
instance, Figure 4.12 shows the result of performing the third step (Figure 4.11(c)) of the
hypercube all-to-all broadcast procedure on a ring. One of the links of the ring is traversed by
all four messages and would take four times as much time to complete the communication step.



Figure 4.12. Contention for a channel when the communication step of
Figure 4.11(c) for the hypercube is mapped onto a ring.
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4.3 All-Reduce and Prefix-Sum Operations

The communication pattern of all-to-all broadcast can be used to perform some other
operations as well. One of these operations is a third variation of reduction, in which each node
starts with a buffer of size m and the final results of the operation are identical buffers of size m
on each node that are formed by combining the original p buffers using an associative operator.
Semantically, this operation, often referred to as the all-reduce operation, is identical to
performing an all-to-one reduction followed by a one-to-all broadcast of the result. This
operation is different from all-to-all reduction, in which p simultaneous all-to-one reductions
take place, each with a different destination for the result.

An all-reduce operation with a single-word message on each node is often used to implement
barrier synchronization on a message-passing computer. The semantics of the reduction
operation are such that, while executing a parallel program, no node can finish the reduction
before each node has contributed a value.

A simple method to perform all-reduce is to perform an all-to-one reduction followed by a one-
to-all broadcast. However, there is a faster way to perform all-reduce by using the
communication pattern of all-to-all broadcast. Figure 4.11 illustrates this algorithm for an eight-
node hypercube. Assume that each integer in parentheses in the figure, instead of denoting a
message, denotes a number to be added that originally resided at the node with that integer
label. To perform reduction, we follow the communication steps of the all-to-all broadcast
procedure, but at the end of each step, add two numbers instead of concatenating two
messages. At the termination of the reduction procedure, each node holds the sum (0 + 1 + 2 +
··· + 7) (rather than eight messages numbered from 0 to 7, as in the case of all-to-all
broadcast). Unlike all-to-all broadcast, each message transferred in the reduction operation has
only one word. The size of the messages does not double in each step because the numbers are
added instead of being concatenated. Therefore, the total communication time for all log p steps
is

Equation 4.5

Algorithm 4.7 can be used to perform a sum of p numbers if my_msg, msg, and result are

numbers (rather than messages), and the union operation (' ') on Line 8 is replaced by
addition.

Finding prefix sums (also known as the scan operation) is another important problem that can
be solved by using a communication pattern similar to that used in all-to-all broadcast and all-
reduce operations. Given p numbers n0, n1, ..., np-1 (one on each node), the problem is to

compute the sums  for all k between 0 and p - 1. For example, if the original
sequence of numbers is <3, 1, 4, 0, 2>, then the sequence of prefix sums is <3, 4, 8, 8, 10>.
Initially, nk resides on the node labeled k, and at the end of the procedure, the same node holds
sk . Instead of starting with a single numbers, each node could start with a buffer or vector of
size m and the m-word result would be the sum of the corresponding elements of buffers.

Figure 4.13 illustrates the prefix sums procedure for an eight-node hypercube. This figure is a



modification of Figure 4.11. The modification is required to accommodate the fact that in prefix
sums the node with label k uses information from only the k-node subset of those nodes whose
labels are less than or equal to k. To accumulate the correct prefix sum, every node maintains
an additional result buffer. This buffer is denoted by square brackets in Figure 4.13. At the end
of a communication step, the content of an incoming message is added to the result buffer only
if the message comes from a node with a smaller label than that of the recipient node. The
contents of the outgoing message (denoted by parentheses in the figure) are updated with
every incoming message, just as in the case of the all-reduce operation. For instance, after the
first communication step, nodes 0, 2, and 4 do not add the data received from nodes 1, 3, and 5
to their result buffers. However, the contents of the outgoing messages for the next step are
updated.

Figure 4.13. Computing prefix sums on an eight-node hypercube. At
each node, square brackets show the local prefix sum accumulated in

the result buffer and parentheses enclose the contents of the outgoing
message buffer for the next step.

Since not all of the messages received by a node contribute to its final result, some of the
messages it receives may be redundant. We have omitted these steps of the standard all-to-all
broadcast communication pattern from Figure 4.13, although the presence or absence of these
messages does not affect the results of the algorithm. Algorithm 4.9 gives a procedure to solve
the prefix sums problem on a d-dimensional hypercube.

Algorithm 4.9 Prefix sums on a d-dimensional hypercube.



1.   procedure PREFIX_SUMS_HCUBE(my_id, my number, d, result) 
2.   begin 

3.      result := my_number; 

4.      msg := result; 

5.      for i := 0 to d - 1 do 

6.          partner := my_id XOR 2i; 

7.          send msg to partner; 

8.          receive number from partner; 

9.          msg := msg + number; 

10.         if (partner < my_id) then result := result + number; 
11.     endfor; 
12.  end PREFIX_SUMS_HCUBE 
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4.4 Scatter and Gather

In the scatter operation, a single node sends a unique message of size m to every other node.
This operation is also known as one-to-all personalized communication. One-to-all
personalized communication is different from one-to-all broadcast in that the source node starts
with p unique messages, one destined for each node. Unlike one-to-all broadcast, one-to-all
personalized communication does not involve any duplication of data. The dual of one-to-all
personalized communication or the scatter operation is the gather operation, or
concatenation, in which a single node collects a unique message from each node. A gather
operation is different from an all-to-one reduce operation in that it does not involve any
combination or reduction of data. Figure 4.14 illustrates the scatter and gather operations.

Figure 4.14. Scatter and gather operations.

Although the scatter operation is semantically different from one-to-all broadcast, the scatter
algorithm is quite similar to that of the broadcast. Figure 4.15 shows the communication steps
for the scatter operation on an eight-node hypercube. The communication patterns of one-to-all
broadcast (Figure 4.6) and scatter (Figure 4.15) are identical. Only the size and the contents of
messages are different. In Figure 4.15, the source node (node 0) contains all the messages. The
messages are identified by the labels of their destination nodes. In the first communication
step, the source transfers half of the messages to one of its neighbors. In subsequent steps,
each node that has some data transfers half of it to a neighbor that has yet to receive any data.
There is a total of log p communication steps corresponding to the log p dimensions of the
hypercube.

Figure 4.15. The scatter operation on an eight-node hypercube.



The gather operation is simply the reverse of scatter. Each node starts with an m word
message. In the first step, every odd numbered node sends its buffer to an even numbered
neighbor behind it, which concatenates the received message with its own buffer. Only the even
numbered nodes participate in the next communication step which results in nodes with
multiples of four labels gathering more data and doubling the sizes of their data. The process
continues similarly, until node 0 has gathered the entire data.

Just like one-to-all broadcast and all-to-one reduction, the hypercube algorithms for scatter and
gather can be applied unaltered to linear array and mesh interconnection topologies without
any increase in the communication time.

Cost Analysis All links of a p-node hypercube along a certain dimension join two p/2-node
subcubes (Section 2.4.3). As Figure 4.15 illustrates, in each communication step of the scatter
operations, data flow from one subcube to another. The data that a node owns before starting
communication in a certain dimension are such that half of them need to be sent to a node in
the other subcube. In every step, a communicating node keeps half of its data, meant for the
nodes in its subcube, and sends the other half to its neighbor in the other subcube. The time in
which all data are distributed to their respective destinations is

Equation 4.6

The scatter and gather operations can also be performed on a linear array and on a 2-D square



mesh in time ts log p + twm(p - 1) (Problem 4.7). Note that disregarding the term due to
message-startup time, the cost of scatter and gather operations for large messages on any k-d
mesh interconnection network (Section 2.4.3) is similar. In the scatter operation, at least m(p -
1) words of data must be transmitted out of the source node, and in the gather operation, at
least m(p - 1) words of data must be received by the destination node. Therefore, as in the case
of all-to-all broadcast, twm(p - 1) is a lower bound on the communication time of scatter and
gather operations. This lower bound is independent of the interconnection network.
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4.5 All-to-All Personalized Communication

In all-to-all personalized communication, each node sends a distinct message of size m to
every other node. Each node sends different messages to different nodes, unlike all-to-all
broadcast, in which each node sends the same message to all other nodes. Figure 4.16
illustrates the all-to-all personalized communication operation. A careful observation of this
figure would reveal that this operation is equivalent to transposing a two-dimensional array of
data distributed among p processes using one-dimensional array partitioning (Figure 3.24). All-
to-all personalized communication is also known as total exchange. This operation is used in a
variety of parallel algorithms such as fast Fourier transform, matrix transpose, sample sort, and
some parallel database join operations.

Figure 4.16. All-to-all personalized communication.

Example 4.2 Matrix transposition

The transpose of an n x n matrix A is a matrix AT of the same size, such that AT [i, j] =

A[j, i] for 0  i, j < n. Consider an n x n matrix mapped onto n processors such that
each processor contains one full row of the matrix. With this mapping, processor Pi

initially contains the elements of the matrix with indices [i, 0], [i, 1], ..., [i, n - 1].
After the transposition, element [i, 0] belongs to P0, element [i, 1] belongs to P1, and
so on. In general, element [i, j] initially resides on Pi , but moves to Pj during the
transposition. The data-communication pattern of this procedure is shown in Figure
4.17 for a 4 x 4 matrix mapped onto four processes using one-dimensional rowwise
partitioning. Note that in this figure every processor sends a distinct element of the
matrix to every other processor. This is an example of all-to-all personalized
communication.

Figure 4.17. All-to-all personalized communication in
transposing a 4 x 4 matrix using four processes.



In general, if we use p processes such that p  n, then each process initially holds
n/p rows (that is, n2/p elements) of the matrix. Performing the transposition now
involves an all-to-all personalized communication of matrix blocks of size n/p x n/p,

instead of individual elements. 

We now discuss the implementation of all-to-all personalized communication on parallel
computers with linear array, mesh, and hypercube interconnection networks. The
communication patterns of all-to-all personalized communication are identical to those of all-to-
all broadcast on all three architectures. Only the size and the contents of messages are
different.

4.5.1 Ring

Figure 4.18 shows the steps in an all-to-all personalized communication on a six-node linear
array. To perform this operation, every node sends p - 1 pieces of data, each of size m. In the
figure, these pieces of data are identified by pairs of integers of the form {i, j}, where i is the
source of the message and j is its final destination. First, each node sends all pieces of data as
one consolidated message of size m(p - 1) to one of its neighbors (all nodes communicate in the
same direction). Of the m(p - 1) words of data received by a node in this step, one m-word
packet belongs to it. Therefore, each node extracts the information meant for it from the data
received, and forwards the remaining (p - 2) pieces of size m each to the next node. This
process continues for p - 1 steps. The total size of data being transferred between nodes
decreases by m words in each successive step. In every step, each node adds to its collection
one m-word packet originating from a different node. Hence, in p - 1 steps, every node receives
the information from all other nodes in the ensemble.

Figure 4.18. All-to-all personalized communication on a six-node ring.
The label of each message is of the form {x, y}, where x is the label of
the node that originally owned the message, and y is the label of the
node that is the final destination of the message. The label ({x1, y1},

{x2, y2}, ..., {xn, yn}) indicates a message that is formed by
concatenating n individual messages.



In the above procedure, all messages are sent in the same direction. If half of the messages are
sent in one direction and the remaining half are sent in the other direction, then the
communication cost due to the tw can be reduced by a factor of two. For the sake of simplicity,
we ignore this constant-factor improvement.

Cost Analysis On a ring or a bidirectional linear array, all-to-all personalized communication
involves p - 1 communication steps. Since the size of the messages transferred in the i th step is
m(p - i), the total time taken by this operation is

Equation 4.7

In the all-to-all personalized communication procedure described above, each node sends m(p -
1) words of data because it has an m-word packet for every other node. Assume that all
messages are sent either clockwise or counterclockwise. The average distance that an m-word

packet travels is , which is equal to p/2. Since there are p nodes, each
performing the same type of communication, the total traffic (the total number of data words
transferred between directly-connected nodes) on the network is m(p - 1) x p/2 x p. The total
number of inter-node links in the network to share this load is p. Hence, the communication
time for this operation is at least (tw x m(p - 1)p2/2)/p, which is equal to twm(p - 1)p/2.
Disregarding the message startup time ts, this is exactly the time taken by the linear array
procedure. Therefore, the all-to-all personalized communication algorithm described in this
section is optimal.

4.5.2 Mesh



In all-to-all personalized communication on a  mesh, each node first groups its p
messages according to the columns of their destination nodes. Figure 4.19 shows a 3 x 3 mesh,
in which every node initially has nine m-word messages, one meant for each node. Each node

assembles its data into three groups of three messages each (in general,  groups of 
messages each). The first group contains the messages destined for nodes labeled 0, 3, and 6;
the second group contains the messages for nodes labeled 1, 4, and 7; and the last group has
messages for nodes labeled 2, 5, and 8.

Figure 4.19. The distribution of messages at the beginning of each
phase of all-to-all personalized communication on a 3 x 3 mesh. At the

end of the second phase, node i has messages ({0, i}, ..., {8, i}),

where 0  i  8. The groups of nodes communicating together in each
phase are enclosed in dotted boundaries.

After the messages are grouped, all-to-all personalized communication is performed

independently in each row with clustered messages of size . One cluster contains the

information for all  nodes of a particular column. Figure 4.19(b) shows the distribution of
data among the nodes at the end of this phase of communication.

Before the second communication phase, the messages in each node are sorted again, this time
according to the rows of their destination nodes; then communication similar to the first phase
takes place in all the columns of the mesh. By the end of this phase, each node receives a
message from every other node.

Cost Analysis We can compute the time spent in the first phase by substituting  for the



number of nodes, and  for the message size in Equation 4.7. The result of this substitution

is . The time spent in the second phase is the same as that in the first
phase. Therefore, the total time for all-to-all personalized communication of messages of size m
on a p-node two-dimensional square mesh is

Equation 4.8

The expression for the communication time of all-to-all personalized communication in Equation
4.8 does not take into account the time required for the local rearrangement of data (that is,
sorting the messages by rows or columns). Assuming that initially the data is ready for the first
communication phase, the second communication phase requires the rearrangement of mp
words of data. If tr is the time to perform a read and a write operation on a single word of data
in a node's local memory, then the total time spent in data rearrangement by a node during the
entire procedure is trmp (Problem 4.21). This time is much smaller than the time spent by each
node in communication.

An analysis along the lines of that for the linear array would show that the communication time
given by Equation 4.8 for all-to-all personalized communication on a square mesh is optimal
within a small constant factor (Problem 4.11).

4.5.3 Hypercube

One way of performing all-to-all personalized communication on a p-node hypercube is to
simply extend the two-dimensional mesh algorithm to log p dimensions. Figure 4.20 shows the
communication steps required to perform this operation on a three-dimensional hypercube. As
shown in the figure, communication takes place in log p steps. Pairs of nodes exchange data in
a different dimension in each step. Recall that in a p-node hypercube, a set of p/2 links in the
same dimension connects two subcubes of p/2 nodes each (Section 2.4.3). At any stage in all-
to-all personalized communication, every node holds p packets of size m each. While
communicating in a particular dimension, every node sends p/2 of these packets (consolidated
as one message). The destinations of these packets are the nodes of the other subcube
connected by the links in current dimension.

Figure 4.20. An all-to-all personalized communication algorithm on a
three-dimensional hypercube.



In the preceding procedure, a node must rearrange its messages locally before each of the log p
communication steps. This is necessary to make sure that all p/2 messages destined for the
same node in a communication step occupy contiguous memory locations so that they can be
transmitted as a single consolidated message.

Cost Analysis In the above hypercube algorithm for all-to-all personalized communication,
mp/2 words of data are exchanged along the bidirectional channels in each of the log p
iterations. The resulting total communication time is

Equation 4.9

Before each of the log p communication steps, a node rearranges mp words of data. Hence, a
total time of trmp log p is spent by each node in local rearrangement of data during the entire
procedure. Here tr is the time needed to perform a read and a write operation on a single word
of data in a node's local memory. For most practical computers, tr is much smaller than tw;
hence, the time to perform an all-to-all personalized communication is dominated by the
communication time.

Interestingly, unlike the linear array and mesh algorithms described in this section, the



hypercube algorithm is not optimal. Each of the p nodes sends and receives m(p - 1) words of
data and the average distance between any two nodes on a hypercube is (log p)/2. Therefore,
the total data traffic on the network is p x m(p - 1) x (log p)/2. Since there is a total of (p log
p)/2 links in the hypercube network, the lower bound on the all-to-all personalized
communication time is

An Optimal Algorithm

An all-to-all personalized communication effectively results in all pairs of nodes exchanging
some data. On a hypercube, the best way to perform this exchange is to have every pair of
nodes communicate directly with each other. Thus, each node simply performs p - 1
communication steps, exchanging m words of data with a different node in every step. A node
must choose its communication partner in each step so that the hypercube links do not suffer
congestion. Figure 4.21 shows one such congestion-free schedule for pairwise exchange of data
in a three-dimensional hypercube. As the figure shows, in the j th communication step, node i
exchanges data with node (i XOR j). For example, in part (a) of the figure (step 1), the labels of
communicating partners differ in the least significant bit. In part (g) (step 7), the labels of
communicating partners differ in all the bits, as the binary representation of seven is 111. In
this figure, all the paths in every communication step are congestion-free, and none of the
bidirectional links carry more than one message in the same direction. This is true in general for
a hypercube of any dimension. If the messages are routed appropriately, a congestion-free
schedule exists for the p - 1 communication steps of all-to-all personalized communication on a
p-node hypercube. Recall from Section 2.4.3 that a message traveling from node i to node j on
a hypercube must pass through at least l links, where l is the Hamming distance between i and j
(that is, the number of nonzero bits in the binary representation of (i XOR j)). A message
traveling from node i to node j traverses links in l dimensions (corresponding to the nonzero
bits in the binary representation of (i XOR j)). Although the message can follow one of the
several paths of length l that exist between i and j (assuming l > 1), a distinct path is obtained
by sorting the dimensions along which the message travels in ascending order. According to this
strategy, the first link is chosen in the dimension corresponding to the least significant nonzero
bit of (i XOR j), and so on. This routing scheme is known as E-cube routing.

Figure 4.21. Seven steps in all-to-all personalized communication on
an eight-node hypercube.



Algorithm 4.10 for all-to-all personalized communication on a d-dimensional hypercube is based
on this strategy.

Algorithm 4.10 A procedure to perform all-to-all personalized
communication on a d-dimensional hypercube. The message Mi,j

initially resides on node i and is destined for node j.

1.   procedure ALL_TO_ALL_PERSONAL(d, my_id) 
2.   begin 

3.      for i := 1 to 2d - 1 do 
4.      begin 

5.         partner := my_id XOR i; 

6.         send Mmy_id, partner to partner; 

7.         receive Mpartner,my_id from partner; 
8.      endfor; 
9.   end ALL_TO_ALL_PERSONAL 



Cost Analysis E-cube routing ensures that by choosing communication pairs according to
Algorithm 4.10, a communication time of ts + twm is guaranteed for a message transfer
between node i and node j because there is no contention with any other message traveling in
the same direction along the link between nodes i and j. The total communication time for the
entire operation is

Equation 4.10

A comparison of Equations 4.9 and 4.10 shows the term associated with ts is higher for the
second hypercube algorithm, while the term associated with tw is higher for the first algorithm.
Therefore, for small messages, the startup time may dominate, and the first algorithm may still
be useful.
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4.6 Circular Shift

Circular shift is a member of a broader class of global communication operations known as
permutation. A permutation is a simultaneous, one-to-one data redistribution operation in
which each node sends a packet of m words to a unique node. We define a circular q-shift as
the operation in which node i sends a data packet to node (i + q) mod p in a p-node ensemble
(0 < q < p). The shift operation finds application in some matrix computations and in string and
image pattern matching.

4.6.1 Mesh

The implementation of a circular q-shift is fairly intuitive on a ring or a bidirectional linear
array. It can be performed by min{q , p - q} neighbor-to-neighbor communications in one
direction. Mesh algorithms for circular shift can be derived by using the ring algorithm.

If the nodes of the mesh have row-major labels, a circular q-shift can be performed on a p-node
square wraparound mesh in two stages. This is illustrated in Figure 4.22 for a circular 5-shift on

a 4 x 4 mesh. First, the entire set of data is shifted simultaneously by (q mod ) steps along

the rows. Then it is shifted by  steps along the columns. During the circular row shifts,
some of the data traverse the wraparound connection from the highest to the lowest labeled
nodes of the rows. All such data packets must shift an additional step forward along the

columns to compensate for the  distance that they lost while traversing the backward edge
in their respective rows. For example, the 5-shift in Figure 4.22 requires one row shift, a
compensatory column shift, and finally one column shift.

Figure 4.22. The communication steps in a circular 5-shift on a 4 x 4
mesh.



In practice, we can choose the direction of the shifts in both the rows and the columns to
minimize the number of steps in a circular shift. For instance, a 3-shift on a 4 x 4 mesh can be
performed by a single backward row shift. Using this strategy, the number of unit shifts in a

direction cannot exceed .

Cost Analysis Taking into account the compensating column shift for some packets, the total
time for any circular q-shift on a p-node mesh using packets of size m has an upper bound of

4.6.2 Hypercube

In developing a hypercube algorithm for the shift operation, we map a linear array with 2d

nodes onto a d-dimensional hypercube. We do this by assigning node i of the linear array to
node j of the hypercube such that j is the d-bit binary reflected Gray code (RGC) of i. Figure
4.23 illustrates this mapping for eight nodes. A property of this mapping is that any two nodes
at a distance of 2i on the linear array are separated by exactly two links on the hypercube. An



exception is i = 0 (that is, directly-connected nodes on the linear array) when only one
hypercube link separates the two nodes.

Figure 4.23. The mapping of an eight-node linear array onto a three-
dimensional hypercube to perform a circular 5-shift as a combination

of a 4-shift and a 1-shift.

To perform a q-shift, we expand q as a sum of distinct powers of 2. The number of terms in the
sum is the same as the number of ones in the binary representation of q. For example, the
number 5 can be expressed as 22 + 20. These two terms correspond to bit positions 0 and 2 in
the binary representation of 5, which is 101. If q is the sum of s distinct powers of 2, then the
circular q-shift on a hypercube is performed in s phases.

In each phase of communication, all data packets move closer to their respective destinations
by short cutting the linear array (mapped onto the hypercube) in leaps of the powers of 2. For
example, as Figure 4.23 shows, a 5-shift is performed by a 4-shift followed by a 1-shift. The
number of communication phases in a q-shift is exactly equal to the number of ones in the
binary representation of q. Each phase consists of two communication steps, except the 1-shift,
which, if required (that is, if the least significant bit of q is 1), consists of a single step. For
example, in a 5-shift, the first phase of a 4-shift (Figure 4.23(a)) consists of two steps and the
second phase of a 1-shift (Figure 4.23(b)) consists of one step. Thus, the total number of steps
for any q in a p-node hypercube is at most 2 log p - 1.



All communications in a given time step are congestion-free. This is ensured by the property of
the linear array mapping that all nodes whose mutual distance on the linear array is a power of
2 are arranged in disjoint subarrays on the hypercube. Thus, all nodes can freely communicate
in a circular fashion in their respective subarrays. This is shown in Figure 4.23(a), in which
nodes labeled 0, 3, 4, and 7 form one subarray and nodes labeled 1, 2, 5, and 6 form another
subarray.

The upper bound on the total communication time for any shift of m-word packets on a p-node
hypercube is

Equation 4.11

We can reduce this upper bound to (ts + twm) log p by performing both forward and backward
shifts. For example, on eight nodes, a 6-shift can be performed by a single backward 2-shift
instead of a forward 4-shift followed by a forward 2-shift.

We now show that if the E-cube routing introduced in Section 4.5 is used, then the time for
circular shift on a hypercube can be improved by almost a factor of log p for large messages.

This is because with E-cube routing, each pair of nodes with a constant distance l (i  l < p)
has a congestion-free path (Problem 4.22) in a p-node hypercube with bidirectional channels.
Figure 4.24 illustrates the non-conflicting paths of all the messages in circular q -shift

operations for 1  q < 8 on an eight-node hypercube. In a circular q-shift on a p-node
hypercube, the longest path contains log p - g(q) links, where g(q) is the highest integer j such
that q is divisible by 2j (Problem 4.23). Thus, the total communication time for messages of
length m is

Equation 4.12

Figure 4.24. Circular q-shifts on an 8-node hypercube for 1  q < 8.
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4.7 Improving the Speed of Some Communication
Operations

So far in this chapter, we have derived procedures for various communication operations and
their communication times under the assumptions that the original messages could not be split
into smaller parts and that each node had a single port for sending and receiving data. In this
section, we briefly discuss the impact of relaxing these assumptions on some of the
communication operations.

4.7.1 Splitting and Routing Messages in Parts

In the procedures described in Sections 4.1–4.6, we assumed that an entire m-word packet of
data travels between the source and the destination nodes along the same path. If we split
large messages into smaller parts and then route these parts through different paths, we can
sometimes utilize the communication network better. We have already shown that, with a few
exceptions like one-to-all broadcast, all-to-one reduction, all-reduce, etc., the communication
operations discussed in this chapter are asymptotically optimal for large messages; that is, the
terms associated with tw in the costs of these operations cannot be reduced asymptotically. In
this section, we present asymptotically optimal algorithms for three global communication
operations.

Note that the algorithms of this section rely on m being large enough to be split into p roughly
equal parts. Therefore, the earlier algorithms are still useful for shorter messages. A comparison
of the cost of the algorithms in this section with those presented earlier in this chapter for the
same operations would reveal that the term associated with ts increases and the term
associated with tw decreases when the messages are split. Therefore, depending on the actual
values of ts, tw, and p, there is a cut-off value for the message size m and only the messages
longer than the cut-off would benefit from the algorithms in this section.

One-to-All Broadcast

Consider broadcasting a single message M of size m from one source node to all the nodes in a
p-node ensemble. If m is large enough so that M can be split into p parts M0, M1, ..., M p-1 of
size m/p each, then a scatter operation (Section 4.4) can place Mi on node i in time ts log p +

tw(m/p)(p - 1). Note that the desired result of the one-to-all broadcast is to place M = M0 M1

··· Mp-1 on all nodes. This can be accomplished by an all-to-all broadcast of the messages of
size m/p residing on each node after the scatter operation. This all-to-all broadcast can be
completed in time ts log p + tw(m/p)(p - 1) on a hypercube. Thus, on a hypercube, one-to-all
broadcast can be performed in time

Equation 4.13



Compared to Equation 4.1, this algorithm has double the startup cost, but the cost due to the tw
term has been reduced by a factor of (log p)/2. Similarly, one-to-all broadcast can be improved
on linear array and mesh interconnection networks as well.

All-to-One Reduction

All-to-one reduction is a dual of one-to-all broadcast. Therefore, an algorithm for all-to-one
reduction can be obtained by reversing the direction and the sequence of communication in
one-to-all broadcast. We showed above how an optimal one-to-all broadcast algorithm can be
obtained by performing a scatter operation followed by an all-to-all broadcast. Therefore, using
the notion of duality, we should be able to perform an all-to-one reduction by performing all-to-
all reduction (dual of all-to-all broadcast) followed by a gather operation (dual of scatter). We
leave the details of such an algorithm as an exercise for the reader (Problem 4.17).

All-Reduce

Since an all-reduce operation is semantically equivalent to an all-to-one reduction followed by a
one-to-all broadcast, the asymptotically optimal algorithms for these two operations presented
above can be used to construct a similar algorithm for the all-reduce operation. Breaking all-to-
one reduction and one-to-all broadcast into their component operations, it can be shown that an
all-reduce operation can be accomplished by an all-to-all reduction followed by a gather
followed by a scatter followed by an all-to-all broadcast. Since the intermediate gather and
scatter would simply nullify each other's effect, all-reduce just requires an all-to-all reduction
and an all-to-all broadcast. First, the m-word messages on each of the p nodes are logically
split into p components of size roughly m/p words. Then, an all-to-all reduction combines all the
i th components on pi. After this step, each node is left with a distinct m/p-word component of
the final result. An all-to-all broadcast can construct the concatenation of these components on
each node.

A p-node hypercube interconnection network allows all-to-one reduction and one-to-all
broadcast involving messages of size m/p in time ts log p + tw(m/p)(p - 1) each. Therefore, the
all-reduce operation can be completed in time

Equation 4.14

4.7.2 All-Port Communication

In a parallel architecture, a single node may have multiple communication ports with links to
other nodes in the ensemble. For example, each node in a two-dimensional wraparound mesh
has four ports, and each node in a d-dimensional hypercube has d ports. In this book, we
generally assume what is known as the single-port communication model. In single-port
communication, a node can send data on only one of its ports at a time. Similarly, a node can
receive data on only one port at a time. However, a node can send and receive data
simultaneously, either on the same port or on separate ports. In contrast to the single-port



model, an all-port communication model permits simultaneous communication on all the
channels connected to a node.

On a p-node hypercube with all-port communication, the coefficients of tw in the expressions for
the communication times of one-to-all and all-to-all broadcast and personalized communication
are all smaller than their single-port counterparts by a factor of log p. Since the number of
channels per node for a linear array or a mesh is constant, all-port communication does not
provide any asymptotic improvement in communication time on these architectures.

Despite the apparent speedup, the all-port communication model has certain limitations. For
instance, not only is it difficult to program, but it requires that the messages are large enough
to be split efficiently among different channels. In several parallel algorithms, an increase in the
size of messages means a corresponding increase in the granularity of computation at the
nodes. When the nodes are working with large data sets, the internode communication time is
dominated by the computation time if the computational complexity of the algorithm is higher
than the communication complexity. For example, in the case of matrix multiplication, there are
n3 computations for n2 words of data transferred among the nodes. If the communication time
is a small fraction of the total parallel run time, then improving the communication by using
sophisticated techniques is not very advantageous in terms of the overall run time of the
parallel algorithm.

Another limitation of all-port communication is that it can be effective only if data can be
fetched and stored in memory at a rate sufficient to sustain all the parallel communication. For
example, to utilize all-port communication effectively on a p-node hypercube, the memory
bandwidth must be greater than the communication bandwidth of a single channel by a factor of
at least log p; that is, the memory bandwidth must increase with the number of nodes to
support simultaneous communication on all ports. Some modern parallel computers, like the
IBM SP, have a very natural solution for this problem. Each node of the distributed-memory
parallel computer is a NUMA shared-memory multiprocessor. Multiple ports are then served by
separate memory banks and full memory and communication bandwidth can be utilized if the
buffers for sending and receiving data are placed appropriately across different memory banks.
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4.8 Summary

Table 4.1 summarizes the communication times for various collective communications
operations discussed in this chapter. The time for one-to-all broadcast, all-to-one reduction,
and the all-reduce operations is the minimum of two expressions. This is because, depending on
the message size m, either the algorithms described in Sections 4.1 and 4.3 or the ones
described in Section 4.7 are faster. Table 4.1 assumes that the algorithm most suitable for the
given message size is chosen. The communication-time expressions in Table 4.1 have been
derived in the earlier sections of this chapter in the context of a hypercube interconnection
network with cut-through routing. However, these expressions and the corresponding
algorithms are valid for any architecture with a Q(p) cross-section bandwidth (Section 2.4.4). In
fact, the terms associated with tw for the expressions for all operations listed in Table 4.1,
except all-to-all personalized communication and circular shift, would remain unchanged even
on ring and mesh networks (or any k-d mesh network) provided that the logical processes are
mapped onto the physical nodes of the network appropriately. The last column of Table 4.1
gives the asymptotic cross-section bandwidth required to perform an operation in the time
given by the second column of the table, assuming an optimal mapping of processes to nodes.
For large messages, only all-to-all personalized communication and circular shift require the full
Q(p) cross-section bandwidth. Therefore, as discussed in Section 2.5.1, when applying the
expressions for the time of these operations on a network with a smaller cross-section
bandwidth, the tw term must reflect the effective bandwidth. For example, the bisection width of

a p-node square mesh is Q  and that of a p-node ring is Q(1). Therefore, while performing
all-to-all personalized communication on a square mesh, the effective per-word transfer time

would be Q  times the tw of individual links, and on a ring, it would be Q(p) times the tw of
individual links.

Table 4.1. Summary of communication times of various operations
discussed in Sections 4.1–4.7 on a hypercube interconnection

network. The message size for each operation is m and the number of
nodes is p.

Operation Hypercube Time B/W Requirement

One-to-all broadcast,

All-to-one reduction

min((ts + twm) log p, 2(ts log p + twm)) Q(1)

All-to-all broadcast,

All-to-all reduction

ts log p + twm(p - 1) Q(1)

All-reduce min((ts + twm) log p, 2(ts log p + twm)) Q(1)

Scatter, Gather ts log p + twm(p - 1) Q(1)

All-to-all personalized (ts + twm)(p - 1) Q(p)

Circular shift ts + twm Q(p)



Table 4.2. MPI names of the various operations discussed in this
chapter.

Operation MPI Name

One-to-all broadcast MPI_Bcast

All-to-one reduction MPI_Reduce

All-to-all broadcast MPI_Allgather

All-to-all reduction MPI_Reduce_scatter

All-reduce MPI_Allreduce

Gather MPI_Gather

Scatter MPI_Scatter

All-to-all personalized MPI_Alltoall

The collective communications operations discussed in this chapter occur frequently in many
parallel algorithms. In order to facilitate speedy and portable design of efficient parallel
programs, most parallel computer vendors provide pre-packaged software for performing these
collective communications operations. The most commonly used standard API for these
operations is known as the Message Passing Interface, or MPI. Table 4.2 gives the names of the
MPI functions that correspond to the communications operations described in this chapter.
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4.9 Bibliographic Remarks

In this chapter, we studied a variety of data communication operations for the linear array,
mesh, and hypercube interconnection topologies. Saad and Schultz [SS89b] discuss
implementation issues for these operations on these and other architectures, such as shared-
memory and a switch or bus interconnect. Most parallel computer vendors provide standard
APIs for inter-process communications via message-passing. Two of the most common APIs are
the message passing interface (MPI) [SOHL+96] and the parallel virtual machine (PVM)
[GBD+94].

The hypercube algorithm for a certain communication operation is often the best algorithm for
other less-connected architectures too, if they support cut-through routing. Due to the
versatility of the hypercube architecture and the wide applicability of its algorithms, extensive
work has been done on implementing various communication operations on hypercubes
[BOS+91, BR90, BT97, FF86, JH89, Joh90, MdV87, RS90b, SS89a, SW87]. The properties of a
hypercube network that are used in deriving the algorithms for various communication
operations on it are described by Saad and Schultz [SS88].

The all-to-all personalized communication problem in particular has been analyzed for the
hypercube architecture by Boppana and Raghavendra [BR90], Johnsson and Ho [JH91], Seidel
[Sei89], and Take [Tak87]. E-cube routing that guarantees congestion-free communication in
Algorithm 4.10 for all-to-all personalized communication is described by Nugent [Nug88].

The all-reduce and the prefix sums algorithms of Section 4.3 are described by Ranka and Sahni
[RS90b]. Our discussion of the circular shift operation is adapted from Bertsekas and Tsitsiklis
[BT97]. A generalized form of prefix sums, often referred to as scan, has been used by some
researchers as a basic primitive in data-parallel programming. Blelloch [Ble90] defines a scan
vector model, and describes how a wide variety of parallel programs can be expressed in
terms of the scan primitive and its variations.

The hypercube algorithm for one-to-all broadcast using spanning binomial trees is described by
Bertsekas and Tsitsiklis [BT97] and Johnsson and Ho [JH89]. In the spanning tree algorithm
described in Section 4.7.1, we split the m-word message to be broadcast into log p parts of size
m/log p for ease of presenting the algorithm. Johnsson and Ho [JH89] show that the optimal

size of the parts is . In this case, the number of messages may be greater than
log p. These smaller messages are sent from the root of the spanning binomial tree to its log p
subtrees in a circular fashion. With this strategy, one-to-all broadcast on a p-node hypercube

can be performed in time .

Algorithms using the all-port communication model have been described for a variety of
communication operations on the hypercube architecture by Bertsekas and Tsitsiklis [BT97],
Johnsson and Ho [JH89], Ho and Johnsson [HJ87], Saad and Schultz [SS89a], and Stout and
Wagar [SW87]. Johnsson and Ho [JH89] show that on a p-node hypercube with all-port
communication, the coefficients of tw in the expressions for the communication times of one-to-
all and all-to-all broadcast and personalized communication are all smaller than those of their
single-port counterparts by a factor of log p. Gupta and Kumar [GK91] show that all-port
communication may not improve the scalability of an algorithm on a parallel architecture over
single-port communication.

The elementary operations described in this chapter are not the only ones used in parallel
applications. A variety of other useful operations for parallel computers have been described in



literature, including selection [Akl89], pointer jumping [HS86, Jaj92], BPC permutations
[Joh90, RS90b], fetch-and-op [GGK+83], packing [Lev87, Sch80], bit reversal [Loa92], and
keyed-scan or multi-prefix [Ble90, Ran89].

Sometimes data communication does not follow any predefined pattern, but is arbitrary,
depending on the application. In such cases, a simplistic approach of routing the messages
along the shortest data paths between their respective sources and destinations leads to
contention and imbalanced communication. Leighton, Maggs, and Rao [LMR88], Valiant [Val82],
and Valiant and Brebner [VB81] discuss efficient routing methods for arbitrary permutations of
messages.

[ Team LiB ]  



[ Team LiB ]  

Problems

4.1 Modify Algorithms 4.1, 4.2, and 4.3 so that they work for any number of processes,
not just the powers of 2.

4.2 Section 4.1 presents the recursive doubling algorithm for one-to-all broadcast, for all
three networks (ring, mesh, hypercube). Note that in the hypercube algorithm of Figure
4.6, a message is sent along the highest dimension first, and then sent to lower
dimensions (in Algorithm 4.1, line 4, i goes down from d - 1 to 0). The same algorithm can
be used for mesh and ring and ensures that messages sent in different time steps do not
interfere with each other.

Let's now change the algorithm so that the message is sent along the lowest dimension
first (i.e., in Algorithm 3.1, line 4, i goes up from 0 to d - 1). So in the first time step,
processor 0 will communicate with processor 1; in the second time step, processors 0 and
1 will communicate with 2 and 3, respectively; and so on.

What is the run time of this revised algorithm on hypercube?1.

What is the run time of this revised algorithm on ring?2.

For these derivations, if k messages have to traverse the same link at the same time, then
assume that the effective per-word-transfer time for these messages is ktw.

4.3 On a ring, all-to-all broadcast can be implemented in two different ways: (a) the
standard ring algorithm as shown in Figure 4.9 and (b) the hypercube algorithm as shown
in Figure 4.11.

What is the run time for case (a)?1.

What is the run time for case (b)?2.

If k messages have to traverse the same link at the same time, then assume that the
effective per-word-transfer time for these messages is ktw. Also assume that ts = 100 x tw.

Which of the two methods, (a) or (b), above is better if the message size m is very
large?

1.

Which method is better if m is very small (may be one word)?2.

4.4 Write a procedure along the lines of Algorithm 4.6 for performing all-to-all reduction
on a mesh.

4.5 (All-to-all broadcast on a tree) Given a balanced binary tree as shown in Figure
4.7, describe a procedure to perform all-to-all broadcast that takes time (ts + twmp/2) log
p for m-word messages on p nodes. Assume that only the leaves of the tree contain nodes,
and that an exchange of two m-word messages between any two nodes connected by
bidirectional channels takes time ts + twmk if the communication channel (or a part of it) is
shared by k simultaneous messages.



4.6 Consider the all-reduce operation in which each processor starts with an array of m
words, and needs to get the global sum of the respective words in the array at each
processor. This operation can be implemented on a ring using one of the following three
alternatives:

All-to-all broadcast of all the arrays followed by a local computation of the sum of the
respective elements of the array.

i.

Single node accumulation of the elements of the array, followed by a one-to-all
broadcast of the result array.

ii.

An algorithm that uses the pattern of the all-to-all broadcast, but simply adds
numbers rather than concatenating messages.

iii.

For each of the above cases, compute the run time in terms of m, ts, and tw.1.

Assume that ts = 100, tw = 1, and m is very large. Which of the three alternatives
(among (i), (ii) or (iii)) is better?

2.

Assume that ts = 100, tw = 1, and m is very small (say 1). Which of the three
alternatives (among (i), (ii) or (iii)) is better?

3.

4.7 (One-to-all personalized communication on a linear array and a mesh) Give the
procedures and their communication times for one-to-all personalized communication of
m-word messages on p nodes for the linear array and the mesh architectures.

Hint: For the mesh, the algorithm proceeds in two phases as usual and starts with the

source distributing pieces of  words among the  nodes in its row such that each of

these nodes receives the data meant for all the  nodes in its column.

4.8 (All-to-all reduction) The dual of all-to-all broadcast is all-to-all reduction, in which
each node is the destination of an all-to-one reduction. For example, consider the scenario

where p nodes have a vector of p elements each, and the i th node (for all i such that 0 
i < p) gets the sum of the i th elements of all the vectors. Describe an algorithm to
perform all-to-all reduction on a hypercube with addition as the associative operator. If
each message contains m words and tadd is the time to perform one addition, how much
time does your algorithm take (in terms of m, p, tadd, ts and tw)?

Hint: In all-to-all broadcast, each node starts with a single message and collects p such
messages by the end of the operation. In all-to-all reduction, each node starts with p
distinct messages (one meant for each node) but ends up with a single message.

4.9 Parts (c), (e), and (f) of Figure 4.21 show that for any node in a three-dimensional
hypercube, there are exactly three nodes whose shortest distance from the node is two
links. Derive an exact expression for the number of nodes (in terms of p and l) whose
shortest distance from any given node in a p-node hypercube is l.

4.10 Give a hypercube algorithm to compute prefix sums of n numbers if p is the number
of nodes and n/p is an integer greater than 1. Assuming that it takes time tadd to add two
numbers and time ts to send a message of unit length between two directly-connected
nodes, give an exact expression for the total time taken by the algorithm.

4.11 Show that if the message startup time ts is zero, then the expression 

for the time taken by all-to-all personalized communication on a  mesh is



optimal within a small (  4) constant factor.

4.12 Modify the linear array and the mesh algorithms in Sections 4.1–4.5 to work without
the end-to-end wraparound connections. Compare the new communication times with
those of the unmodified procedures. What is the maximum factor by which the time for
any of the operations increases on either the linear array or the mesh?

4.13 (3-D mesh) Give optimal (within a small constant) algorithms for one-to-all and all-
to-all broadcasts and personalized communications on a p1/3 x p1/3 x p1/3 three-
dimensional mesh of p nodes with store-and-forward routing. Derive expressions for the
total communication times of these procedures.

4.14 Assume that the cost of building a parallel computer with p nodes is proportional to
the total number of communication links within it. Let the cost effectiveness of an
architecture be inversely proportional to the product of the cost of a p-node ensemble of
this architecture and the communication time of a certain operation on it. Assuming ts to
be zero, which architecture is more cost effective for each of the operations discussed in
this chapter – a standard 3-D mesh or a sparse 3-D mesh?

4.15 Repeat Problem 4.14 when ts is a nonzero constant but tw = 0. Under this model of
communication, the message transfer time between two directly-connected nodes is fixed,
regardless of the size of the message. Also, if two packets are combined and transmitted
as one message, the communication latency is still ts.

4.16 (k-to-all broadcast) Let k-to-all broadcast be an operation in which k nodes
simultaneously perform a one-to-all broadcast of m-word messages. Give an algorithm for
this operation that has a total communication time of ts log p + twm(k log(p/k) + k - 1) on
a p-node hypercube. Assume that the m-word messages cannot be split, k is a power of 2,

and 1  k  p.

4.17 Give a detailed description of an algorithm for performing all-to-one reduction in
time 2(ts log p + twm(p - 1)/ p) on a p-node hypercube by splitting the original messages
of size m into p nearly equal parts of size m/p each.

4.18 If messages can be split and their parts can be routed independently, then derive an
algorithm for k-to-all broadcast such that its communication time is less than that of the
algorithm in Problem 4.16 for a p-node hypercube.

4.19 Show that, if m  p, then all-to-one reduction with message size m can be
performed on a p-node hypercube spending time 2(ts log p + twm) in communication.

Hint: Express all-to-one reduction as a combination of all-to-all reduction and gather.

4.20 (k-to-all personalized communication) In k-to-all personalized communication, k

nodes simultaneously perform a one-to-all personalized communication (1  k  p) in a
p-node ensemble with individual packets of size m. Show that, if k is a power of 2, then
this operation can be performed on a hypercube in time ts (log( p/k) + k - 1) + twm(p - 1).

4.21 Assuming that it takes time tr to perform a read and a write operation on a single
word of data in a node's local memory, show that all-to-all personalized communication on
a p-node mesh (Section 4.5.2) spends a total of time trmp in internal data movement on
the nodes, where m is the size of an individual message.

Hint: The internal data movement is equivalent to transposing a  array of
messages of size m.



4.22 Show that in a p-node hypercube, all the p data paths in a circular q-shift are
congestion-free if E-cube routing (Section 4.5) is used.

Hint: (1) If q > p/2, then a q-shift is isomorphic to a (p - q)-shift on a p-node hypercube.
(2) Prove by induction on hypercube dimension. If all paths are congestion-free for a q-

shift (1  q < p) on a p-node hypercube, then all these paths are congestion-free on a 2
p-node hypercube also.

4.23 Show that the length of the longest path of any message in a circular q-shift on a p-
node hypercube is log p - g(q), where g(q) is the highest integer j such that q is divisible by
2j.

Hint: (1) If q = p/2, then g(q) = log p - 1 on a p-node hypercube. (2) Prove by induction
on hypercube dimension. For a given q, g(q) increases by one each time the number of
nodes is doubled.

4.24 Derive an expression for the parallel run time of the hypercube algorithms for one-
to-all broadcast, all-to-all broadcast, one-to-all personalized communication, and all-to-all
personalized communication adapted unaltered for a mesh with identical communication
links (same channel width and channel rate). Compare the performance of these
adaptations with that of the best mesh algorithms.

4.25 As discussed in Section 2.4.4, two common measures of the cost of a network are (1)
the total number of wires in a parallel computer (which is a product of number of
communication links and channel width); and (2) the bisection bandwidth. Consider a
hypercube in which the channel width of each link is one, that is tw = 1. The channel width
of a mesh-connected computer with equal number of nodes and identical cost is higher,
and is determined by the cost metric used. Let s and s' represent the factors by which the
channel width of the mesh is increased in accordance with the two cost metrics. Derive the
values of s and s'. Using these, derive the communication time of the following operations
on a mesh:

One-to-all broadcast1.

All-to-all broadcast2.

One-to-all personalized communication3.

All-to-all personalized communication4.

Compare these times with the time taken by the same operations on a hypercube with
equal cost.

4.26 Consider a completely-connected network of p nodes. For the four communication
operations in Problem 4.25 derive an expression for the parallel run time of the hypercube
algorithms on the completely-connected network. Comment on whether the added
connectivity of the network yields improved performance for these operations.
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Chapter 5. Analytical Modeling of Parallel
Programs
A sequential algorithm is usually evaluated in terms of its execution time, expressed as a
function of the size of its input. The execution time of a parallel algorithm depends not only on
input size but also on the number of processing elements used, and their relative computation
and interprocess communication speeds. Hence, a parallel algorithm cannot be evaluated in
isolation from a parallel architecture without some loss in accuracy. A parallel system is the
combination of an algorithm and the parallel architecture on which it is implemented. In this
chapter, we study various metrics for evaluating the performance of parallel systems.

A number of measures of performance are intuitive. Perhaps the simplest of these is the wall-
clock time taken to solve a given problem on a given parallel platform. However, as we shall
see, a single figure of merit of this nature cannot be extrapolated to other problem instances or
larger machine configurations. Other intuitive measures quantify the benefit of parallelism, i.e.,
how much faster the parallel program runs with respect to the serial program. However, this
characterization suffers from other drawbacks, in addition to those mentioned above. For
instance, what is the impact of using a poorer serial algorithm that is more amenable to parallel
processing? For these reasons, more complex measures for extrapolating performance to larger
machine configurations or problems are often necessary. With these objectives in mind, this
chapter focuses on metrics for quantifying the performance of parallel programs.
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5.1 Sources of Overhead in Parallel Programs

Using twice as many hardware resources, one can reasonably expect a program to run twice as
fast. However, in typical parallel programs, this is rarely the case, due to a variety of overheads
associated with parallelism. An accurate quantification of these overheads is critical to the
understanding of parallel program performance.

A typical execution profile of a parallel program is illustrated in Figure 5.1. In addition to
performing essential computation (i.e., computation that would be performed by the serial
program for solving the same problem instance), a parallel program may also spend time in
interprocess communication, idling, and excess computation (computation not performed by the
serial formulation).

Figure 5.1. The execution profile of a hypothetical parallel program
executing on eight processing elements. Profile indicates times spent
performing computation (both essential and excess), communication,

and idling.

Interprocess Interaction Any nontrivial parallel system requires its processing elements to
interact and communicate data (e.g., intermediate results). The time spent communicating data
between processing elements is usually the most significant source of parallel processing
overhead.

Idling Processing elements in a parallel system may become idle due to many reasons such as
load imbalance, synchronization, and presence of serial components in a program. In many
parallel applications (for example, when task generation is dynamic), it is impossible (or at
least difficult) to predict the size of the subtasks assigned to various processing elements.
Hence, the problem cannot be subdivided statically among the processing elements while
maintaining uniform workload. If different processing elements have different workloads, some
processing elements may be idle during part of the time that others are working on the
problem. In some parallel programs, processing elements must synchronize at certain points
during parallel program execution. If all processing elements are not ready for synchronization
at the same time, then the ones that are ready sooner will be idle until all the rest are ready.
Parts of an algorithm may be unparallelizable, allowing only a single processing element to
work on it. While one processing element works on the serial part, all the other processing
elements must wait.



Excess Computation The fastest known sequential algorithm for a problem may be difficult or
impossible to parallelize, forcing us to use a parallel algorithm based on a poorer but easily
parallelizable (that is, one with a higher degree of concurrency) sequential algorithm. The
difference in computation performed by the parallel program and the best serial program is the
excess computation overhead incurred by the parallel program.

A parallel algorithm based on the best serial algorithm may still perform more aggregate
computation than the serial algorithm. An example of such a computation is the Fast Fourier
Transform algorithm. In its serial version, the results of certain computations can be reused.
However, in the parallel version, these results cannot be reused because they are generated by
different processing elements. Therefore, some computations are performed multiple times on
different processing elements. Chapter 13 discusses these algorithms in detail.

Since different parallel algorithms for solving the same problem incur varying overheads, it is
important to quantify these overheads with a view to establishing a figure of merit for each
algorithm.
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5.2 Performance Metrics for Parallel Systems

It is important to study the performance of parallel programs with a view to determining the
best algorithm, evaluating hardware platforms, and examining the benefits from parallelism. A
number of metrics have been used based on the desired outcome of performance analysis.

5.2.1 Execution Time

The serial runtime of a program is the time elapsed between the beginning and the end of its
execution on a sequential computer. The parallel runtime is the time that elapses from the
moment a parallel computation starts to the moment the last processing element finishes
execution. We denote the serial runtime by TS and the parallel runtime by TP.

5.2.2 Total Parallel Overhead

The overheads incurred by a parallel program are encapsulated into a single expression referred
to as the overhead function. We define overhead function or total overhead of a parallel
system as the total time collectively spent by all the processing elements over and above that
required by the fastest known sequential algorithm for solving the same problem on a single
processing element. We denote the overhead function of a parallel system by the symbol To.

The total time spent in solving a problem summed over all processing elements is pTP . TS units
of this time are spent performing useful work, and the remainder is overhead. Therefore, the
overhead function (To) is given by

Equation 5.1

5.2.3 Speedup

When evaluating a parallel system, we are often interested in knowing how much performance
gain is achieved by parallelizing a given application over a sequential implementation. Speedup
is a measure that captures the relative benefit of solving a problem in parallel. It is defined as
the ratio of the time taken to solve a problem on a single processing element to the time
required to solve the same problem on a parallel computer with p identical processing elements.
We denote speedup by the symbol S.

Example 5.1 Adding n numbers using n processing elements

Consider the problem of adding n numbers by using n processing elements. Initially,
each processing element is assigned one of the numbers to be added and, at the end



of the computation, one of the processing elements stores the sum of all the numbers.
Assuming that n is a power of two, we can perform this operation in log n steps by
propagating partial sums up a logical binary tree of processing elements. Figure 5.2
illustrates the procedure for n = 16. The processing elements are labeled from 0 to 15.
Similarly, the 16 numbers to be added are labeled from 0 to 15. The sum of the

numbers with consecutive labels from i to j is denoted by .

Figure 5.2. Computing the globalsum of 16 partial sums using

16 processing elements.  denotes the sum of numbers with
consecutive labels from i to j.

Each step shown in Figure 5.2 consists of one addition and the communication of a
single word. The addition can be performed in some constant time, say tc, and the
communication of a single word can be performed in time ts + tw. Therefore, the
addition and communication operations take a constant amount of time. Thus,

Equation 5.2



Since the problem can be solved in Q(n) time on a single processing element, its
speedup is

Equation 5.3

For a given problem, more than one sequential algorithm may be available, but all of these may
not be equally suitable for parallelization. When a serial computer is used, it is natural to use
the sequential algorithm that solves the problem in the least amount of time. Given a parallel
algorithm, it is fair to judge its performance with respect to the fastest sequential algorithm for
solving the same problem on a single processing element. Sometimes, the asymptotically
fastest sequential algorithm to solve a problem is not known, or its runtime has a large constant
that makes it impractical to implement. In such cases, we take the fastest known algorithm that
would be a practical choice for a serial computer to be the best sequential algorithm. We
compare the performance of a parallel algorithm to solve a problem with that of the best
sequential algorithm to solve the same problem. We formally define the speedup S as the ratio
of the serial runtime of the best sequential algorithm for solving a problem to the time taken by
the parallel algorithm to solve the same problem on p processing elements. The p processing
elements used by the parallel algorithm are assumed to be identical to the one used by the
sequential algorithm.

Example 5.2 Computing speedups of parallel programs

Consider the example of parallelizing bubble sort (Section 9.3.1). Assume that a serial
version of bubble sort of 105 records takes 150 seconds and a serial quicksort can sort
the same list in 30 seconds. If a parallel version of bubble sort, also called odd-even
sort, takes 40 seconds on four processing elements, it would appear that the parallel
odd-even sort algorithm results in a speedup of 150/40 or 3.75. However, this
conclusion is misleading, as in reality the parallel algorithm results in a speedup of

30/40 or 0.75 with respect to the best serial algorithm. 

Theoretically, speedup can never exceed the number of processing elements, p. If the best
sequential algorithm takes TS units of time to solve a given problem on a single processing
element, then a speedup of p can be obtained on p processing elements if none of the
processing elements spends more than time TS /p. A speedup greater than p is possible only if
each processing element spends less than time TS /p solving the problem. In this case, a single
processing element could emulate the p processing elements and solve the problem in fewer
than TS units of time. This is a contradiction because speedup, by definition, is computed with
respect to the best sequential algorithm. If TS is the serial runtime of the algorithm, then the
problem cannot be solved in less than time TS on a single processing element.



In practice, a speedup greater than p is sometimes observed (a phenomenon known as
superlinear speedup). This usually happens when the work performed by a serial algorithm is
greater than its parallel formulation or due to hardware features that put the serial
implementation at a disadvantage. For example, the data for a problem might be too large to fit
into the cache of a single processing element, thereby degrading its performance due to the use
of slower memory elements. But when partitioned among several processing elements, the
individual data-partitions would be small enough to fit into their respective processing elements'
caches. In the remainder of this book, we disregard superlinear speedup due to hierarchical
memory.

Example 5.3 Superlinearity effects from caches

Consider the execution of a parallel program on a two-processor parallel system. The
program attempts to solve a problem instance of size W. With this size and available
cache of 64 KB on one processor, the program has a cache hit rate of 80%. Assuming
the latency to cache of 2 ns and latency to DRAM of 100 ns, the effective memory
access time is 2 x 0.8 + 100 x 0.2, or 21.6 ns. If the computation is memory bound
and performs one FLOP/memory access, this corresponds to a processing rate of 46.3
MFLOPS. Now consider a situation when each of the two processors is effectively
executing half of the problem instance (i.e., size W/2). At this problem size, the cache
hit ratio is expected to be higher, since the effective problem size is smaller. Let us
assume that the cache hit ratio is 90%, 8% of the remaining data comes from local
DRAM, and the other 2% comes from the remote DRAM (communication overhead).
Assuming that remote data access takes 400 ns, this corresponds to an overall access
time of 2 x 0.9 + 100 x 0.08 + 400 x 0.02, or 17.8 ns. The corresponding execution
rate at each processor is therefore 56.18, for a total execution rate of 112.36 MFLOPS.
The speedup in this case is given by the increase in speed over serial formulation, i.e.,
112.36/46.3 or 2.43! Here, because of increased cache hit ratio resulting from lower

problem size per processor, we notice superlinear speedup. 

Example 5.4 Superlinearity effects due to exploratory
decomposition

Consider an algorithm for exploring leaf nodes of an unstructured tree. Each leaf has a
label associated with it and the objective is to find a node with a specified label, in this
case 'S'. Such computations are often used to solve combinatorial problems, where
the label 'S' could imply the solution to the problem (Section 11.6). In Figure 5.3, we
illustrate such a tree. The solution node is the rightmost leaf in the tree. A serial
formulation of this problem based on depth-first tree traversal explores the entire
tree, i.e., all 14 nodes. If it takes time tc to visit a node, the time for this traversal is
14tc. Now consider a parallel formulation in which the left subtree is explored by
processing element 0 and the right subtree by processing element 1. If both
processing elements explore the tree at the same speed, the parallel formulation
explores only the shaded nodes before the solution is found. Notice that the total work
done by the parallel algorithm is only nine node expansions, i.e., 9tc. The
corresponding parallel time, assuming the root node expansion is serial, is 5tc (one
root node expansion, followed by four node expansions by each processing element).
The speedup of this two-processor execution is therefore 14tc/5tc , or 2.8!



Figure 5.3. Searching an unstructured tree for a node with a
given label, 'S', on two processing elements using depth-first

traversal. The two-processor version with processor 0
searching the left subtree and processor 1 searching the right
subtree expands only the shaded nodes before the solution is

found. The corresponding serial formulation expands the entire
tree. It is clear that the serial algorithm does more work than

the parallel algorithm.

The cause for this superlinearity is that the work performed by parallel and serial
algorithms is different. Indeed, if the two-processor algorithm was implemented as
two processes on the same processing element, the algorithmic superlinearity would
disappear for this problem instance. Note that when exploratory decomposition is
used, the relative amount of work performed by serial and parallel algorithms is
dependent upon the location of the solution, and it is often not possible to find a serial
algorithm that is optimal for all instances. Such effects are further analyzed in greater

detail in Chapter 11. 

5.2.4 Efficiency

Only an ideal parallel system containing p processing elements can deliver a speedup equal to
p. In practice, ideal behavior is not achieved because while executing a parallel algorithm, the
processing elements cannot devote 100% of their time to the computations of the algorithm. As
we saw in Example 5.1, part of the time required by the processing elements to compute the
sum of n numbers is spent idling (and communicating in real systems). Efficiency is a measure
of the fraction of time for which a processing element is usefully employed; it is defined as the
ratio of speedup to the number of processing elements. In an ideal parallel system, speedup is
equal to p and efficiency is equal to one. In practice, speedup is less than p and efficiency is
between zero and one, depending on the effectiveness with which the processing elements are
utilized. We denote efficiency by the symbol E. Mathematically, it is given by

Equation 5.4

Example 5.5 Efficiency of adding n numbers on n processing



elements

From Equation 5.3 and the preceding definition, the efficiency of the algorithm for
adding n numbers on n processing elements is

We also illustrate the process of deriving the parallel runtime, speedup, and efficiency while
preserving various constants associated with the parallel platform.

Example 5.6 Edge detection on images

Given an n x n pixel image, the problem of detecting edges corresponds to applying
a3x 3 template to each pixel. The process of applying the template corresponds to
multiplying pixel values with corresponding template values and summing across the
template (a convolution operation). This process is illustrated in Figure 5.4(a) along
with typical templates (Figure 5.4(b)). Since we have nine multiply-add operations for
each pixel, if each multiply-add takes time tc, the entire operation takes time 9tcn2 on
a serial computer.

Figure 5.4. Example of edge detection: (a) an 8 x 8 image; (b)
typical templates for detecting edges; and (c) partitioning of

the image across four processors with shaded regions
indicating image data that must be communicated from

neighboring processors to processor 1.

A simple parallel algorithm for this problem partitions the image equally across the



processing elements and each processing element applies the template to its own
subimage. Note that for applying the template to the boundary pixels, a processing
element must get data that is assigned to the adjoining processing element.
Specifically, if a processing element is assigned a vertically sliced subimage of
dimension n x (n/p), it must access a single layer of n pixels from the processing
element to the left and a single layer of n pixels from the processing element to the
right (note that one of these accesses is redundant for the two processing elements
assigned the subimages at the extremities). This is illustrated in Figure 5.4(c).

On a message passing machine, the algorithm executes in two steps: (i) exchange a
layer of n pixels with each of the two adjoining processing elements; and (ii) apply
template on local subimage. The first step involves two n-word messages (assuming
each pixel takes a word to communicate RGB data). This takes time 2(ts + twn). The
second step takes time 9tcn2/p. The total time for the algorithm is therefore given by:

The corresponding values of speedup and efficiency are given by:

and

5.2.5 Cost

We define the cost of solving a problem on a parallel system as the product of parallel runtime
and the number of processing elements used. Cost reflects the sum of the time that each
processing element spends solving the problem. Efficiency can also be expressed as the ratio of
the execution time of the fastest known sequential algorithm for solving a problem to the cost of
solving the same problem on p processing elements.

The cost of solving a problem on a single processing element is the execution time of the fastest
known sequential algorithm. A parallel system is said to be cost-optimal if the cost of solving a
problem on a parallel computer has the same asymptotic growth (in Q terms) as a function of
the input size as the fastest-known sequential algorithm on a single processing element. Since
efficiency is the ratio of sequential cost to parallel cost, a cost-optimal parallel system has an
efficiency of Q(1).



Cost is sometimes referred to as work or processor-time product, and a cost-optimal system
is also known as a pTP -optimal system.

Example 5.7 Cost of adding n numbers on n processing
elements

The algorithm given in Example 5.1 for adding n numbers on n processing elements
has a processor-time product of Q(n log n). Since the serial runtime of this operation

is Q(n), the algorithm is not cost optimal. 

Cost optimality is a very important practical concept although it is defined in terms of
asymptotics. We illustrate this using the following example.

Example 5.8 Performance of non-cost optimal algorithms

Consider a sorting algorithm that uses n processing elements to sort the list in time
(log n)2. Since the serial runtime of a (comparison-based) sort is n log n, the speedup
and efficiency of this algorithm are given by n/log n and 1/log n, respectively. The pTP

product of this algorithm is n(log n)2. Therefore, this algorithm is not cost optimal but
only by a factor of log n. Let us consider a realistic scenario in which the number of
processing elements p is much less than n. An assignment of these n tasks to p < n
processing elements gives us a parallel time less than n(log n)2/p. This follows from
the fact that if n processing elements take time (log n)2, then one processing element
would take time n(log n)2; and p processing elements would take time n(log n)2/p.
The corresponding speedup of this formulation is p/log n. Consider the problem of
sorting 1024 numbers (n = 1024, log n = 10) on 32 processing elements. The
speedup expected is only p/log n or 3.2. This number gets worse as n increases. For n
= 106, log n = 20 and the speedup is only 1.6. Clearly, there is a significant cost
associated with not being cost-optimal even by a very small factor (note that a factor

of log p is smaller than even ). This emphasizes the practical importance of cost-

optimality. 
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5.3 The Effect of Granularity on Performance

Example 5.7 illustrated an instance of an algorithm that is not cost-optimal. The algorithm
discussed in this example uses as many processing elements as the number of inputs, which is
excessive in terms of the number of processing elements. In practice, we assign larger pieces of
input data to processing elements. This corresponds to increasing the granularity of
computation on the processing elements. Using fewer than the maximum possible number of
processing elements to execute a parallel algorithm is called scaling down a parallel system in
terms of the number of processing elements. A naive way to scale down a parallel system is to
design a parallel algorithm for one input element per processing element, and then use fewer
processing elements to simulate a large number of processing elements. If there are n inputs
and only p processing elements (p < n), we can use the parallel algorithm designed for n
processing elements by assuming n virtual processing elements and having each of the p
physical processing elements simulate n/p virtual processing elements.

As the number of processing elements decreases by a factor of n/p, the computation at each
processing element increases by a factor of n/p because each processing element now performs
the work of n/p processing elements. If virtual processing elements are mapped appropriately
onto physical processing elements, the overall communication time does not grow by more than
a factor of n/p. The total parallel runtime increases, at most, by a factor of n/p, and the
processor-time product does not increase. Therefore, if a parallel system with n processing
elements is cost-optimal, using p processing elements (where p < n)to simulate n processing
elements preserves cost-optimality.

A drawback of this naive method of increasing computational granularity is that if a parallel
system is not cost-optimal to begin with, it may still not be cost-optimal after the granularity of
computation increases. This is illustrated by the following example for the problem of adding n
numbers.

Example 5.9 Adding n numbers on p processing elements

Consider the problem of adding n numbers on p processing elements such that p < n
and both n and p are powers of 2. We use the same algorithm as in Example 5.1 and
simulate n processing elements on p processing elements. The steps leading to the
solution are shown in Figure 5.5 for n = 16 and p = 4. Virtual processing element i is
simulated by the physical processing element labeled i mod p; the numbers to be
added are distributed similarly. The first log p of the log n steps of the original
algorithm are simulated in (n/p) log p steps on p processing elements. In the
remaining steps, no communication is required because the processing elements that
communicate in the original algorithm are simulated by the same processing element;
hence, the remaining numbers are added locally. The algorithm takes Q((n/p) log p)
time in the steps that require communication, after which a single processing element
is left with n/p numbers to add, taking time Q(n/p). Thus, the overall parallel
execution time of this parallel system is Q((n/p) log p). Consequently, its cost is Q(n
log p), which is asymptotically higher than the Q(n) cost of adding n numbers

sequentially. Therefore, the parallel system is not cost-optimal. 

Figure 5.5. Four processing elements simulating 16 processing



elements to compute the sum of 16 numbers (first two steps).

 denotes the sum of numbers with consecutive labels from i
to j . Four processing elements simulating 16 processing

elements to compute the sum of 16 numbers (last three steps).



Example 5.1 showed that n numbers can be added on an n-processor machine in time Q(log n).
When using p processing elements to simulate n virtual processing elements (p < n), the
expected parallel runtime is Q((n/p) log n). However, in Example 5.9 this task was performed in
time Q((n/p) log p) instead. The reason is that every communication step of the original
algorithm does not have to be simulated; at times, communication takes place between virtual
processing elements that are simulated by the same physical processing element. For these
operations, there is no associated overhead. For example, the simulation of the third and fourth
steps (Figure 5.5(c) and (d)) did not require any communication. However, this reduction in
communication was not enough to make the algorithm cost-optimal. Example 5.10 illustrates
that the same problem (adding n numbers on p processing elements) can be performed cost-
optimally with a smarter assignment of data to processing elements.

Example 5.10 Adding n numbers cost-optimally

An alternate method for adding n numbers using p processing elements is illustrated
in Figure 5.6 for n = 16 and p = 4. In the first step of this algorithm, each processing
element locally adds its n/p numbers in time Q(n/p). Now the problem is reduced to
adding the p partial sums on p processing elements, which can be done in time Q(log
p) by the method described in Example 5.1. The parallel runtime of this algorithm is

Equation 5.5

and its cost is Q(n + p log p). As long as n = W(p log p), the cost is Q(n), which is the



same as the serial runtime. Hence, this parallel system is cost-optimal. 

Figure 5.6. A cost-optimal way of computing the sum of 16 numbers
using four processing elements.

These simple examples demonstrate that the manner in which the computation is mapped onto
processing elements may determine whether a parallel system is cost-optimal. Note, however,
that we cannot make all non-cost-optimal systems cost-optimal by scaling down the number of
processing elements.
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5.4 Scalability of Parallel Systems

Very often, programs are designed and tested for smaller problems on fewer processing
elements. However, the real problems these programs are intended to solve are much larger,
and the machines contain larger number of processing elements. Whereas code development is
simplified by using scaled-down versions of the machine and the problem, their performance
and correctness (of programs) is much more difficult to establish based on scaled-down
systems. In this section, we will investigate techniques for evaluating the scalability of parallel
programs using analytical tools.

Example 5.11 Why is performance extrapolation so difficult?

Consider three parallel algorithms for computing an n-point Fast Fourier Transform
(FFT) on 64 processing elements. Figure 5.7 illustrates speedup as the value of n is
increased to 18 K. Keeping the number of processing elements constant, at smaller
values of n, one would infer from observed speedups that binary exchange and 3-D
transpose algorithms are the best. However, as the problem is scaled up to 18 K
points or more, it is evident from Figure 5.7 that the 2-D transpose algorithm yields

best speedup. (These algorithms are discussed in greater detail in Chapter 13.) 

Figure 5.7. A comparison of the speedups obtained by the
binary-exchange, 2-D transpose and 3-D transpose algorithms
on 64 processing elements with tc = 2, tw = 4, ts = 25, and th =

2 (see Chapter 13 for details).



Similar results can be shown relating to the variation in number of processing elements as the
problem size is held constant. Unfortunately, such parallel performance traces are the norm as
opposed to the exception, making performance prediction based on limited observed data very
difficult.

5.4.1 Scaling Characteristics of Parallel Programs

The efficiency of a parallel program can be written as:

Using the expression for parallel overhead (Equation 5.1), we can rewrite this expression as

Equation 5.6

The total overhead function To is an increasing function of p. This is because every program
must contain some serial component. If this serial component of the program takes time tserial,
then during this time all the other processing elements must be idle. This corresponds to a total
overhead function of (p - 1) x tserial. Therefore, the total overhead function To grows at least
linearly with p. In addition, due to communication, idling, and excess computation, this function
may grow superlinearly in the number of processing elements. Equation 5.6 gives us several
interesting insights into the scaling of parallel programs. First, for a given problem size (i.e. the
value of TS remains constant), as we increase the number of processing elements, To increases.
In such a scenario, it is clear from Equation 5.6 that the overall efficiency of the parallel
program goes down. This characteristic of decreasing efficiency with increasing number of
processing elements for a given problem size is common to all parallel programs.

Example 5.12 Speedup and efficiency as functions of the
number of processing elements

Consider the problem of adding n numbers on p processing elements. We use the
same algorithm as in Example 5.10. However, to illustrate actual speedups, we work
with constants here instead of asymptotics. Assuming unit time for adding two
numbers, the first phase (local summations) of the algorithm takes roughly n/p time.
The second phase involves log p steps with a communication and an addition at each
step. If a single communication takes unit time as well, the time for this phase is 2 log
p. Therefore, we can derive parallel time, speedup, and efficiency as:

Equation 5.7



Equation 5.8

Equation 5.9

These expressions can be used to calculate the speedup and efficiency for any pair of n
and p. Figure 5.8 shows the S versus p curves for a few different values of n and p.
Table 5.1 shows the corresponding efficiencies.

Figure 5.8. Speedup versus the number of processing elements
for adding a list of numbers.

Figure 5.8 and Table 5.1 illustrate that the speedup tends to saturate and efficiency
drops as a consequence of Amdahl's law (Problem 5.1). Furthermore, a larger
instance of the same problem yields higher speedup and efficiency for the same
number of processing elements, although both speedup and efficiency continue to

drop with increasing p. 

Let us investigate the effect of increasing the problem size keeping the number of processing
elements constant. We know that the total overhead function To is a function of both problem
size TS and the number of processing elements p. In many cases, To grows sublinearly with



respect to TS . In such cases, we can see that efficiency increases if the problem size is
increased keeping the number of processing elements constant. For such algorithms, it should
be possible to keep the efficiency fixed by increasing both the size of the problem and the
number of processing elements simultaneously. For instance, in Table 5.1, the efficiency of
adding 64 numbers using four processing elements is 0.80. If the number of processing
elements is increased to 8 and the size of the problem is scaled up to add 192 numbers, the
efficiency remains 0.80. Increasing p to 16 and n to 512 results in the same efficiency. This
ability to maintain efficiency at a fixed value by simultaneously increasing the number of
processing elements and the size of the problem is exhibited by many parallel systems. We call
such systems scalable parallel systems. The scalability of a parallel system is a measure of its
capacity to increase speedup in proportion to the number of processing elements. It reflects a
parallel system's ability to utilize increasing processing resources effectively.

Table 5.1. Efficiency as a function of n and p for adding n numbers on
p processing elements.

n p = 1 p = 4 p = 8 p = 16 p = 32

64 1.0 0.80 0.57 0.33 0.17

192 1.0 0.92 0.80 0.60 0.38

320 1.0 0.95 0.87 0.71 0.50

512 1.0 0.97 0.91 0.80 0.62

Recall from Section 5.2.5 that a cost-optimal parallel system has an efficiency of Q(1).
Therefore, scalability and cost-optimality of parallel systems are related. A scalable parallel
system can always be made cost-optimal if the number of processing elements and the size of
the computation are chosen appropriately. For instance, Example 5.10 shows that the parallel
system for adding n numbers on p processing elements is cost-optimal when n = W(p log p).
Example 5.13 shows that the same parallel system is scalable if n is increased in proportion to
Q(p log p) as p is increased.

Example 5.13 Scalability of adding n numbers

For the cost-optimal addition of n numbers on p processing elements n = W(p log p).
As shown in Table 5.1, the efficiency is 0.80 for n = 64 and p = 4. At this point, the
relation between n and p is n = 8 p log p. If the number of processing elements is
increased to eight, then 8 p log p = 192. Table 5.1 shows that the efficiency is indeed
0.80 with n = 192 for eight processing elements. Similarly, for p = 16, the efficiency is
0.80 for n = 8 p log p = 512. Thus, this parallel system remains cost-optimal at an

efficiency of 0.80 if n is increased as 8 p log p. 

5.4.2 The Isoefficiency Metric of Scalability

We summarize the discussion in the section above with the following two observations:

1.



For a given problem size, as we increase the number of processing elements, the overall
efficiency of the parallel system goes down. This phenomenon is common to all parallel
systems.

1.

In many cases, the efficiency of a parallel system increases if the problem size is increased
while keeping the number of processing elements constant.

2.

These two phenomena are illustrated in Figure 5.9(a) and (b), respectively. Following from
these two observations, we define a scalable parallel system as one in which the efficiency can
be kept constant as the number of processing elements is increased, provided that the problem
size is also increased. It is useful to determine the rate at which the problem size must increase
with respect to the number of processing elements to keep the efficiency fixed. For different
parallel systems, the problem size must increase at different rates in order to maintain a fixed
efficiency as the number of processing elements is increased. This rate determines the degree of
scalability of the parallel system. As we shall show, a lower rate is more desirable than a higher
growth rate in problem size. Let us now investigate metrics for quantitatively determining the
degree of scalability of a parallel system. However, before we do that, we must define the
notion of problem size precisely.

Figure 5.9. Variation of efficiency: (a) as the number of processing
elements is increased for a given problem size; and (b) as the problem

size is increased for a given number of processing elements. The
phenomenon illustrated in graph (b) is not common to all parallel

systems.

Problem Size When analyzing parallel systems, we frequently encounter the notion of the size
of the problem being solved. Thus far, we have used the term problem size informally, without
giving a precise definition. A naive way to express problem size is as a parameter of the input
size; for instance, n in case of a matrix operation involving n x n matrices. A drawback of this
definition is that the interpretation of problem size changes from one problem to another. For
example, doubling the input size results in an eight-fold increase in the execution time for
matrix multiplication and a four-fold increase for matrix addition (assuming that the
conventional Q(n3) algorithm is the best matrix multiplication algorithm, and disregarding more
complicated algorithms with better asymptotic complexities).

A consistent definition of the size or the magnitude of the problem should be such that,
regardless of the problem, doubling the problem size always means performing twice the
amount of computation. Therefore, we choose to express problem size in terms of the total
number of basic operations required to solve the problem. By this definition, the problem size is
Q(n3) for n x n matrix multiplication (assuming the conventional algorithm) and Q(n2) for n x n
matrix addition. In order to keep it unique for a given problem, we define problem size as the
number of basic computation steps in the best sequential algorithm to solve the problem on a



single processing element, where the best sequential algorithm is defined as in Section 5.2.3.
Because it is defined in terms of sequential time complexity, the problem size is a function of
the size of the input. The symbol we use to denote problem size is W.

In the remainder of this chapter, we assume that it takes unit time to perform one basic
computation step of an algorithm. This assumption does not impact the analysis of any parallel
system because the other hardware-related constants, such as message startup time, per-word
transfer time, and per-hop time, can be normalized with respect to the time taken by a basic
computation step. With this assumption, the problem size W is equal to the serial runtime TS of
the fastest known algorithm to solve the problem on a sequential computer.

The Isoefficiency Function

Parallel execution time can be expressed as a function of problem size, overhead function, and
the number of processing elements. We can write parallel runtime as:

Equation 5.10

The resulting expression for speedup is

Equation 5.11

Finally, we write the expression for efficiency as

Equation 5.12

In Equation 5.12, if the problem size is kept constant and p is increased, the efficiency
decreases because the total overhead To increases with p. If W is increased keeping the number
of processing elements fixed, then for scalable parallel systems, the efficiency increases. This is
because To grows slower than Q(W) for a fixed p. For these parallel systems, efficiency can be
maintained at a desired value (between 0 and 1) for increasing p, provided W is also increased.



For different parallel systems, W must be increased at different rates with respect to p in order
to maintain a fixed efficiency. For instance, in some cases, W might need to grow as an
exponential function of p to keep the efficiency from dropping as p increases. Such parallel
systems are poorly scalable. The reason is that on these parallel systems it is difficult to obtain
good speedups for a large number of processing elements unless the problem size is enormous.
On the other hand, if W needs to grow only linearly with respect to p, then the parallel system is
highly scalable. That is because it can easily deliver speedups proportional to the number of
processing elements for reasonable problem sizes.

For scalable parallel systems, efficiency can be maintained at a fixed value (between 0 and 1) if
the ratio To/W in Equation 5.12 is maintained at a constant value. For a desired value E of
efficiency,

Equation 5.13

Let K = E/(1 - E) be a constant depending on the efficiency to be maintained. Since To is a
function of W and p, Equation 5.13 can be rewritten as

Equation 5.14

From Equation 5.14, the problem size W can usually be obtained as a function of p by algebraic
manipulations. This function dictates the growth rate of W required to keep the efficiency fixed
as p increases. We call this function the isoefficiency function of the parallel system. The
isoefficiency function determines the ease with which a parallel system can maintain a constant
efficiency and hence achieve speedups increasing in proportion to the number of processing
elements. A small isoefficiency function means that small increments in the problem size are
sufficient for the efficient utilization of an increasing number of processing elements, indicating
that the parallel system is highly scalable. However, a large isoefficiency function indicates a
poorly scalable parallel system. The isoefficiency function does not exist for unscalable parallel
systems, because in such systems the efficiency cannot be kept at any constant value as p
increases, no matter how fast the problem size is increased.

Example 5.14 Isoefficiency function of adding numbers

The overhead function for the problem of adding n numbers on p processing elements
is approximately 2 p log p, as given by Equations 5.9 and 5.1. Substituting To by 2 p
log p in Equation 5.14, we get

Equation 5.15



Thus, the asymptotic isoefficiency function for this parallel system is Q(p log p). This
means that, if the number of processing elements is increased from p to p', the
problem size (in this case, n) must be increased by a factor of (p' log p')/(p log p) to
get the same efficiency as on p processing elements. In other words, increasing the
number of processing elements by a factor of p'/p requires that n be increased by a

factor of (p' log p')/(p log p) to increase the speedup by a factor of p'/p. 

In the simple example of adding n numbers, the overhead due to communication (hereafter
referred to as the communication overhead) is a function of p only. In general,
communication overhead can depend on both the problem size and the number of processing
elements. A typical overhead function can have several distinct terms of different orders of
magnitude with respect to p and W. In such a case, it can be cumbersome (or even impossible)
to obtain the isoefficiency function as a closed function of p. For example, consider a
hypothetical parallel system for which To = p3/2 + p3/4 W 3/4. For this overhead function,
Equation 5.14 can be rewritten as W = Kp3/2 + Kp3/4 W 3/4. It is hard to solve this equation for
W in terms of p.

Recall that the condition for constant efficiency is that the ratio To/W remains fixed. As p and W
increase, the efficiency is nondecreasing as long as none of the terms of To grow faster than W.
If To has multiple terms, we balance W against each term of To and compute the respective
isoefficiency functions for individual terms. The component of To that requires the problem size
to grow at the highest rate with respect to p determines the overall asymptotic isoefficiency
function of the parallel system. Example 5.15 further illustrates this technique of isoefficiency
analysis.

Example 5.15 Isoefficiency function of a parallel system with a
complex overhead function

Consider a parallel system for which To = p3/2 + p3/4 W 3/4. Using only the first term of
To in Equation 5.14, we get

Equation 5.16

Using only the second term, Equation 5.14 yields the following relation between W and
p:

Equation 5.17



To ensure that the efficiency does not decrease as the number of processing elements
increases, the first and second terms of the overhead function require the problem
size to grow as Q(p3/2) and Q(p3), respectively. The asymptotically higher of the two
rates, Q(p3), gives the overall asymptotic isoefficiency function of this parallel system,
since it subsumes the rate dictated by the other term. The reader may indeed verify
that if the problem size is increased at this rate, the efficiency is Q(1) and that any

rate lower than this causes the efficiency to fall with increasing p. 

In a single expression, the isoefficiency function captures the characteristics of a parallel
algorithm as well as the parallel architecture on which it is implemented. After performing
isoefficiency analysis, we can test the performance of a parallel program on a few processing
elements and then predict its performance on a larger number of processing elements.
However, the utility of isoefficiency analysis is not limited to predicting the impact on
performance of an increasing number of processing elements. Section 5.4.5 shows how the
isoefficiency function characterizes the amount of parallelism inherent in a parallel algorithm.
We will see in Chapter 13 that isoefficiency analysis can also be used to study the behavior of a
parallel system with respect to changes in hardware parameters such as the speed of processing
elements and communication channels. Chapter 11 illustrates how isoefficiency analysis can be
used even for parallel algorithms for which we cannot derive a value of parallel runtime.

5.4.3 Cost-Optimality and the Isoefficiency Function

In Section 5.2.5, we stated that a parallel system is cost-optimal if the product of the number of
processing elements and the parallel execution time is proportional to the execution time of the
fastest known sequential algorithm on a single processing element. In other words, a parallel
system is cost-optimal if and only if

Equation 5.18

Substituting the expression for TP from the right-hand side of Equation 5.10, we get the
following:

Equation 5.19

Equation 5.20

Equations 5.19 and 5.20 suggest that a parallel system is cost-optimal if and only if its



overhead function does not asymptotically exceed the problem size. This is very similar to the
condition given by Equation 5.14 for maintaining a fixed efficiency while increasing the number
of processing elements in a parallel system. If Equation 5.14 yields an isoefficiency function
f(p), then it follows from Equation 5.20 that the relation W = W(f(p)) must be satisfied to ensure
the cost-optimality of a parallel system as it is scaled up. The following example further
illustrates the relationship between cost-optimality and the isoefficiency function.

Example 5.16 Relationship between cost-optimality and
isoefficiency

Consider the cost-optimal solution to the problem of adding n numbers on p

processing elements, presented in Example 5.10. For this parallel system, W  n, and
To = Q(p log p). From Equation 5.14, its isoefficiency function is Q(p log p); that is,
the problem size must increase as Q(p log p) to maintain a constant efficiency. In

Example 5.10 we also derived the condition for cost-optimality as W = W(p log p). 

5.4.4 A Lower Bound on the Isoefficiency Function

We discussed earlier that a smaller isoefficiency function indicates higher scalability.
Accordingly, an ideally-scalable parallel system must have the lowest possible isoefficiency
function. For a problem consisting of W units of work, no more than W processing elements can
be used cost-optimally; additional processing elements will be idle. If the problem size grows at
a rate slower than Q(p) as the number of processing elements increases, then the number of
processing elements will eventually exceed W. Even for an ideal parallel system with no
communication, or other overhead, the efficiency will drop because processing elements added
beyond p = W will be idle. Thus, asymptotically, the problem size must increase at least as fast
as Q(p) to maintain fixed efficiency; hence, W(p) is the asymptotic lower bound on the
isoefficiency function. It follows that the isoefficiency function of an ideally scalable parallel
system is Q(p).

5.4.5 The Degree of Concurrency and the Isoefficiency Function

A lower bound of W(p) is imposed on the isoefficiency function of a parallel system by the
number of operations that can be performed concurrently. The maximum number of tasks that
can be executed simultaneously at any time in a parallel algorithm is called its degree of
concurrency. The degree of concurrency is a measure of the number of operations that an
algorithm can perform in parallel for a problem of size W; it is independent of the parallel
architecture. If C(W) is the degree of concurrency of a parallel algorithm, then for a problem of
size W, no more than C(W) processing elements can be employed effectively.

Example 5.17 Effect of concurrency on isoefficiency function

Consider solving a system of n equations in n variables by using Gaussian elimination
(Section 8.3.1). The total amount of computation is Q(n3). But then variables must be
eliminated one after the other, and eliminating each variable requires Q(n2)



computations. Thus, at most Q(n2) processing elements can be kept busy at any time.
Since W = Q(n3) for this problem, the degree of concurrency C(W) is Q(W2/3) and at
most Q(W2/3) processing elements can be used efficiently. On the other hand, given p
processing elements, the problem size should be at least W(p3/2) to use them all. Thus,

the isoefficiency function of this computation due to concurrency is Q(p3/2). 

The isoefficiency function due to concurrency is optimal (that is, Q(p)) only if the degree of
concurrency of the parallel algorithm is Q(W). If the degree of concurrency of an algorithm is
less than Q(W), then the isoefficiency function due to concurrency is worse (that is, greater)
than Q(p). In such cases, the overall isoefficiency function of a parallel system is given by the
maximum of the isoefficiency functions due to concurrency, communication, and other
overheads.
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5.5 Minimum Execution Time and Minimum Cost-
Optimal Execution Time

We are often interested in knowing how fast a problem can be solved, or what the minimum
possible execution time of a parallel algorithm is, provided that the number of processing
elements is not a constraint. As we increase the number of processing elements for a given
problem size, either the parallel runtime continues to decrease and asymptotically approaches a
minimum value, or it starts rising after attaining a minimum value (Problem 5.12). We can

determine the minimum parallel runtime  for a given W by differentiating the expression
for TP with respect to p and equating the derivative to zero (assuming that the function TP (W,
p) is differentiable with respect to p). The number of processing elements for which TP is
minimum is determined by the following equation:

Equation 5.21

Let p0 be the value of the number of processing elements that satisfies Equation 5.21. The value

of  can be determined by substituting p0 for p in the expression for TP . In the following

example, we derive the expression for  for the problem of adding n numbers.

Example 5.18 Minimum execution time for adding n numbers

Under the assumptions of Example 5.12, the parallel run time for the problem of
adding n numbers on p processing elements can be approximated by

Equation 5.22

Equating the derivative with respect to p of the right-hand side of Equation 5.22 to
zero we get the solutions for p as follows:

Equation 5.23



Substituting p = n/2 in Equation 5.22, we get

Equation 5.24

In Example 5.18, the processor-time product for p = p0 is Q(n log n), which is higher than the
Q(n) serial complexity of the problem. Hence, the parallel system is not cost-optimal for the
value of p that yields minimum parallel runtime. We now derive an important result that gives a
lower bound on parallel runtime if the problem is solved cost-optimally.

Let  be the minimum time in which a problem can be solved by a cost-optimal parallel
system. From the discussion regarding the equivalence of cost-optimality and the isoefficiency
function in Section 5.4.3, we conclude that if the isoefficiency function of a parallel system is
Q(f(p)), then a problem of size W can be solved cost-optimally if and only if W = W(f(p)). In
other words, given a problem of size W, a cost-optimal solution requires that p = O(f-1(W)).
Since the parallel runtime is Q(W/p) for a cost-optimal parallel system (Equation 5.18), the
lower bound on the parallel runtime for solving a problem of size W cost-optimally is

Equation 5.25

Example 5.19 Minimum cost-optimal execution time for adding
n numbers

As derived in Example 5.14, the isoefficiency function f(p) of this parallel system is
Q(p log p). If W = n = f(p) = p log p, then log n = log p + log log p. Ignoring the

double logarithmic term, log n  log p. If n = f (p) = p log p, then p = f -1(n) = n/log

p  n/log n. Hence, f-1(W) = Q(n/log n). As a consequence of the relation between
cost-optimality and the isoefficiency function, the maximum number of processing
elements that can be used to solve this problem cost-optimally is Q(n/log n). Using p
= n/log n in Equation 5.2, we get

Equation 5.26



It is interesting to observe that both  and  for adding n numbers are Q(log n)
(Equations 5.24 and 5.26). Thus, for this problem, a cost-optimal solution is also the
asymptotically fastest solution. The parallel execution time cannot be reduced asymptotically by
using a value of p greater than that suggested by the isoefficiency function for a given problem
size (due to the equivalence between cost-optimality and the isoefficiency function). This is not

true for parallel systems in general, however, and it is quite possible that .
The following example illustrates such a parallel system.

Example 5.20 A parallel system with

Consider the hypothetical parallel system of Example 5.15, for which

Equation 5.27

From Equation 5.10, the parallel runtime for this system is

Equation 5.28

Using the methodology of Example 5.18,

From the preceding analysis, p0 = Q(W). Substituting p by the value of p0 in Equation
5.28, we get

Equation 5.29



According to Example 5.15, the overall isoefficiency function for this parallel system is
Q(p3), which implies that the maximum number of processing elements that can be
used cost-optimally is Q(W1/3). Substituting p = Q(W1/3) in Equation 5.28, we get

Equation 5.30

A comparison of Equations 5.29 and 5.30 shows that  is asymptotically

greater than . 

In this section, we have seen examples of both types of parallel systems: those for which

 is asymptotically equal to , and those for which  is asymptotically greater

than . Most parallel systems presented in this book are of the first type. Parallel systems for
which the runtime can be reduced by an order of magnitude by using an asymptotically higher
number of processing elements than indicated by the isoefficiency function are rare.

While deriving the minimum execution time for any parallel system, it is important to be aware
that the maximum number of processing elements that can be utilized is bounded by the degree
of concurrency C(W) of the parallel algorithm. It is quite possible that p0 is greater than C(W)
for a parallel system (Problems 5.13 and 5.14). In such cases, the value of p0 is meaningless,

and  is given by

Equation 5.31
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5.6 Asymptotic Analysis of Parallel Programs

At this point, we have accumulated an arsenal of powerful tools for quantifying the performance
and scalability of an algorithm. Let us illustrate the use of these tools for evaluating a set of
parallel programs for solving a given problem. Often, we ignore constants and concern
ourselves with the asymptotic behavior of quantities. In many cases, this can yield a clearer
picture of relative merits and demerits of various parallel programs.

Table 5.2. Comparison of four different algorithms for sorting a given
list of numbers. The table shows number of processing elements,

parallel runtime, speedup, efficiency and the pTP product.

Algorithm A1 A2 A3 A4

p n2 log n n

TP 1 n

S n log n log n

E 1 1

pTP n2 n log n n1.5 n log n

Consider the problem of sorting a list of n numbers. The fastest serial programs for this problem
run in time O (n log n). Let us look at four different parallel algorithms A1, A2, A3, and A4, for
sorting a given list. The parallel runtime of the four algorithms along with the number of
processing elements they can use is given in Table 5.2. The objective of this exercise is to
determine which of these four algorithms is the best. Perhaps the simplest metric is one of
speed; the algorithm with the lowest TP is the best. By this metric, algorithm A1 is the best,
followed by A3, A4, and A2. This is also reflected in the fact that the speedups of the set of
algorithms are also in this order.

However, in practical situations, we will rarely have n2 processing elements as are required by
algorithm A1. Furthermore, resource utilization is an important aspect of practical program
design. So let us look at how efficient each of these algorithms are. This metric of evaluating the
algorithm presents a starkly different image. Algorithms A2 and A4 are the best, followed by A3
and A1. The last row of Table 5.2 presents the cost of the four algorithms. From this row, it is
evident that the costs of algorithms A1 and A3 are higher than the serial runtime of n log n and
therefore neither of these algorithms is cost optimal. However, algorithms A2 and A4 are cost
optimal.

This set of algorithms illustrate that it is important to first understand the objectives of parallel
algorithm analysis and to use appropriate metrics. This is because use of different metrics may
often result in contradictory outcomes.
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5.7 Other Scalability Metrics

A number of other metrics of scalability of parallel systems have been proposed. These metrics
are specifically suited to different system requirements. For example, in real time applications,
the objective is to scale up a system to accomplish a task in a specified time bound. One such
application is multimedia decompression, where MPEG streams must be decompressed at the
rate of 25 frames/second. Consequently, a parallel system must decode a single frame in 40 ms
(or with buffering, at an average of 1 frame in 40 ms over the buffered frames). Other such
applications arise in real-time control, where a control vector must be generated in real-time.
Several scalability metrics consider constraints on physical architectures. In many applications,
the maximum size of a problem is constrained not by time, efficiency, or underlying models, but
by the memory available on the machine. In such cases, metrics make assumptions on the
growth function of available memory (with number of processing elements) and estimate how
the performance of the parallel system changes with such scaling. In this section, we examine
some of the related metrics and how they can be used in various parallel applications.

Scaled Speedup This metric is defined as the speedup obtained when the problem size is
increased linearly with the number of processing elements. If the scaled-speedup curve is close
to linear with respect to the number of processing elements, then the parallel system is
considered scalable. This metric is related to isoefficiency if the parallel algorithm under
consideration has linear or near-linear isoefficiency function. In this case the scaled-speedup
metric provides results very close to those of isoefficiency analysis, and the scaled-speedup is
linear or near-linear with respect to the number of processing elements. For parallel systems
with much worse isoefficiencies, the results provided by the two metrics may be quite different.
In this case, the scaled-speedup versus number of processing elements curve is sublinear.

Two generalized notions of scaled speedup have been examined. They differ in the methods by
which the problem size is scaled up with the number of processing elements. In one method,
the size of the problem is increased to fill the available memory on the parallel computer. The
assumption here is that aggregate memory of the system increases with the number of
processing elements. In the other method, the size of the problem grows with p subject to an
upper-bound on execution time.

Example 5.21 Memory and time-constrained scaled speedup for
matrix-vector products

The serial runtime of multiplying a matrix of dimension n x n with a vector is tcn2,
where tc is the time for a single multiply-add operation. The corresponding parallel
runtime using a simple parallel algorithm is given by:

and the speedup S is given by:

Equation 5.32



The total memory requirement of the algorithm is Q(n2). Let us consider the two cases
of problem scaling. In the case of memory constrained scaling, we assume that the
memory of the parallel system grows linearly with the number of processing elements,
i.e., m = Q(p). This is a reasonable assumption for most current parallel platforms.
Since m = Q(n2), we have n2 = c x p, for some constant c. Therefore, the scaled
speedup S' is given by:

or

In the limiting case, .

In the case of time constrained scaling, we have TP = O(n2/p). Since this is
constrained to be constant, n2 = O(p). We notice that this case is identical to the
memory constrained case. This happened because the memory and runtime of the

algorithm are asymptotically identical. 

Example 5.22 Memory and time-constrained scaled speedup for
matrix-matrix products

The serial runtime of multiplying two matrices of dimension n x n is tcn3, where tc, as
before, is the time for a single multiply-add operation. The corresponding parallel
runtime using a simple parallel algorithm is given by:

and the speedup S is given by:

Equation 5.33



The total memory requirement of the algorithm is Q(n2). Let us consider the two cases
of problem scaling. In the case of memory constrained scaling, as before, we assume
that the memory of the parallel system grows linearly with the number of processing
elements, i.e., m = Q(p). Since m = Q(n2), we have n2 = c x p, for some constant c.
Therefore, the scaled speedup S' is given by:

In the case of time constrained scaling, we have TP = O(n3/p). Since this is
constrained to be constant, n3 = O(p), or n3 = c x p (for some constant c).

Therefore, the time-constrained speedup S" is given by:

This example illustrates that memory-constrained scaling yields linear speedup,
whereas time-constrained speedup yields sublinear speedup in the case of matrix

multiplication. 

Serial Fraction f The experimentally determined serial fraction f can be used to quantify the
performance of a parallel system on a fixed-size problem. Consider a case when the serial
runtime of a computation can be divided into a totally parallel and a totally serial component,
i.e.,

Here, Tser and Tpar correspond to totally serial and totally parallel components. From this, we
can write:

Here, we have assumed that all of the other parallel overheads such as excess computation and
communication are captured in the serial component Tser. From these equations, it follows that:

Equation 5.34



The serial fraction f of a parallel program is defined as:

Therefore, from Equation 5.34, we have:

Since S = W/TP , we have

Solving for f , we get:

Equation 5.35

It is easy to see that smaller values of f are better since they result in higher efficiencies. If f
increases with the number of processing elements, then it is considered as an indicator of rising
communication overhead, and thus an indicator of poor scalability.

Example 5.23 Serial component of the matrix-vector product

From Equations 5.35 and 5.32, we have

Equation 5.36

Simplifying the above expression, we get



It is useful to note that the denominator of this equation is the serial runtime of the

algorithm and the numerator corresponds to the overhead in parallel execution. 

In addition to these metrics, a number of other metrics of performance have been proposed in
the literature. We refer interested readers to the bibliography for references to these.
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5.8 Bibliographic Remarks

To use today's massively parallel computers effectively, larger problems must be solved as
more processing elements are added. However, when the problem size is fixed, the objective is
to attain the best compromise between efficiency and parallel runtime. Performance issues for
fixed-size problems have been addressed by several researchers [FK89, GK93a, KF90, NW88,
TL90, Wor90]. In most situations, additional computing power derived from increasing the
number of processing elements can be used to solve bigger problems. In some situations,
however, different ways of increasing the problem size may apply, and a variety of constraints
may guide the scaling up of the workload with respect to the number of processing elements
[SHG93]. Time-constrained scaling and memory-constrained scaling have been explored by
Gustafson et al. [GMB88, Gus88, Gus92], Sun and Ni [SN90, SN93], and Worley [Wor90,
Wor88, Wor91] (Problem 5.9).

An important scenario is one in which we want to make the most efficient use of the parallel
system; in other words, we want the overall performance of the parallel system to increase
linearly with p. This is possible only for scalable parallel systems, which are exactly those for
which a fixed efficiency can be maintained for arbitrarily large p by simply increasing the
problem size. For such systems, it is natural to use the isoefficiency function or related metrics
[GGK93, CD87, KR87b, KRS88]. Isoefficiency analysis has been found to be very useful in
characterizing the scalability of a variety of parallel algorithms [GK91, GK93b, GKS92, HX98,
KN91, KR87b, KR89, KS91b, RS90b, SKAT91b, TL90, WS89, WS91]. Gupta and Kumar [GK93a,
KG94] have demonstrated the relevance of the isoefficiency function in the fixed time case as
well. They have shown that if the isoefficiency function is greater than Q(p), then the problem
size cannot be increased indefinitely while maintaining a fixed execution time, no matter how
many processing elements are used. A number of other researchers have analyzed the
performance of parallel systems with concern for overall efficiency [EZL89, FK89, MS88, NW88,
TL90, Zho89, ZRV89].

Kruskal, Rudolph, and Snir [KRS88] define the concept of parallel efficient (PE) problems.
Their definition is related to the concept of isoefficiency function. Problems in the class PE have
algorithms with a polynomial isoefficiency function at some efficiency. The class PE makes an
important distinction between algorithms with polynomial isoefficiency functions and those with
worse isoefficiency functions. Kruskal et al. proved the invariance of the class PE over a variety
of parallel computational models and interconnection schemes. An important consequence of
this result is that an algorithm with a polynomial isoefficiency on one architecture will have a
polynomial isoefficiency on many other architectures as well. There can be exceptions, however;
for instance, Gupta and Kumar [GK93b] show that the fast Fourier transform algorithm has a
polynomial isoefficiency on a hypercube but an exponential isoefficiency on a mesh.

Vitter and Simons [VS86] define a class of problems called PC*. PC* includes problems with
efficient parallel algorithms on a PRAM. A problem in class P (the polynomial-time class) is in
PC* if it has a parallel algorithm on a PRAM that can use a polynomial (in terms of input size)
number of processing elements and achieve a minimal efficiency . Any problem in PC* has at
least one parallel algorithm such that, for an efficiency , its isoefficiency function exists and is a
polynomial.

A discussion of various scalability and performance measures can be found in the survey by
Kumar and Gupta [KG94]. Besides the ones cited so far, a number of other metrics of
performance and scalability of parallel systems have been proposed [BW89, CR89, CR91, Fla90,
Hil90, Kun86, Mol87, MR, NA91, SG91, SR91, SZ96, VC89].



Flatt and Kennedy [FK89, Fla90] show that if the overhead function satisfies certain
mathematical properties, then there exists a unique value p0 of the number of processing
elements for which TP is minimum for a given W. A property of To on which their analysis
depends heavily is that To > Q(p). Gupta and Kumar [GK93a] show that there exist parallel
systems that do not obey this condition, and in such cases the point of peak performance is
determined by the degree of concurrency of the algorithm being used.

Marinescu and Rice [MR] develop a model to describe and analyze a parallel computation on an
MIMD computer in terms of the number of threads of control p into which the computation is
divided and the number of events g(p) as a function of p. They consider the case where each
event is of a fixed duration q and hence To = qg(p). Under these assumptions on To, they
conclude that with increasing number of processing elements, the speedup saturates at some

value if To = Q(p), and it asymptotically approaches zero if To = Q(pm),where m  2. Gupta
and Kumar [GK93a] generalize these results for a wider class of overhead functions. They show

that the speedup saturates at some maximum value if To  Q(p), and the speedup attains a
maximum value and then drops monotonically with p if To > Q(p).

Eager et al. [EZL89] and Tang and Li [TL90] have proposed a criterion of optimality of a parallel
system so that a balance is struck between efficiency and speedup. They propose that a good
choice of operating point on the execution time versus efficiency curve is that where the

incremental benefit of adding processing elements is roughly  per processing element or, in
other words, efficiency is 0.5. They conclude that for To = Q(p), this is also equivalent to
operating at a point where the ES product is maximum or p(TP)2 is minimum. This conclusion is
a special case of the more general case presented by Gupta and Kumar [GK93a].

Belkhale and Banerjee [BB90], Leuze et al. [LDP89], Ma and Shea [MS88], and Park and
Dowdy [PD89] address the important problem of optimal partitioning of the processing
elements of a parallel computer among several applications of different scalabilities executing
simultaneously.
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Problems

5.1 (Amdahl's law [Amd67]) If a problem of size W has a serial component WS, prove
that W/WS is an upper bound on its speedup, no matter how many processing elements
are used.

5.2 (Superlinear speedup) Consider the search tree shown in Figure 5.10(a), in which
the dark node represents the solution.

Figure 5.10. Superlinear(?) speedup in parallel depth first search.

If a sequential search of the tree is performed using the standard depth-first search
(DFS) algorithm (Section 11.2.1), how much time does it take to find the solution if
traversing each arc of the tree takes one unit of time?

a.

Assume that the tree is partitioned between two processing elements that are
assigned to do the search job, as shown in Figure 5.10(b). If both processing
elements perform a DFS on their respective halves of the tree, how much time does it
take for the solution to be found? What is the speedup? Is there a speedup anomaly?
If so, can you explain the anomaly?

b.

5.3 (The DAG model of parallel computation) Parallel algorithms can often be
represented by dependency graphs. Four such dependency graphs are shown in Figure
5.11. If a program can be broken into several tasks, then each node of the graph
represents one task. The directed edges of the graph represent the dependencies between
the tasks or the order in which they must be performed to yield correct results. A node of
the dependency graph can be scheduled for execution as soon as the tasks at all the nodes
that have incoming edges to that node have finished execution. For example, in Figure
5.11(b), the nodes on the second level from the root can begin execution only after the
task at the root is finished. Any deadlock-free dependency graph must be a directed
acyclic graph (DAG); that is, it is devoid of any cycles. All the nodes that are scheduled
for execution can be worked on in parallel provided enough processing elements are
available. If N is the number of nodes in a graph, and n is an integer, then N = 2n - 1 for
graphs (a) and (b), N = n2 for graph (c), and N = n(n + 1)/2 for graph (d) (graphs (a)
and (b) are drawn for n = 4 and graphs (c) and (d) are drawn for n = 8). Assuming that
each task takes one unit of time and that interprocessor communication time is zero, for
the algorithms represented by each of these graphs:

1.

2.



Compute the degree of concurrency.1.

Compute the maximum possible speedup if an unlimited number of processing
elements is available.

2.

Compute the values of speedup, efficiency, and the overhead function if the number
of processing elements is (i) the same as the degree of concurrency and (ii) equal to
half of the degree of concurrency.

3.

Figure 5.11. Dependency graphs for Problem 5.3.

5.4 Consider a parallel system containing p processing elements solving a problem
consisting of W units of work. Prove that if the isoefficiency function of the system is worse
(greater) than Q(p), then the problem cannot be solved cost-optimally with p = (W). Also
prove the converse that if the problem can be solved cost-optimally only for p < Q(W),
then the isoefficiency function of the parallel system is worse than linear.

5.5 (Scaled speedup) Scaled speedup is defined as the speedup obtained when the
problem size is increased linearly with the number of processing elements; that is, if W is
chosen as a base problem size for a single processing element, then

Equation 5.37

For the problem of adding n numbers on p processing elements (Example 5.1), plot the
speedup curves, assuming that the base problem for p = 1 is that of adding 256 numbers.



Use p = 1, 4, 16, 64, and 256. Assume that it takes 10 time units to communicate a
number between two processing elements, and that it takes one unit of time to add two
numbers. Now plot the standard speedup curve for the base problem size and compare it
with the scaled speedup curve.

Hint: The parallel runtime is (n/p - 1) + 11 log p.

5.6 Plot a third speedup curve for Problem 5.5, in which the problem size is scaled up
according to the isoefficiency function, which is Q(p log p). Use the same expression for TP

.

Hint: The scaled speedup under this method of scaling is given by the following equation:

5.7 Plot the efficiency curves for the problem of adding n numbers on p processing
elements corresponding to the standard speedup curve (Problem 5.5), the scaled speedup
curve (Problem 5.5), and the speedup curve when the problem size is increased according
to the isoefficiency function (Problem 5.6).

5.8 A drawback of increasing the number of processing elements without increasing the
total workload is that the speedup does not increase linearly with the number of
processing elements, and the efficiency drops monotonically. Based on your experience
with Problems 5.5 and 5.7, discuss whether or not scaled speedup increases linearly with
the number of processing elements in general. What can you say about the isoefficiency
function of a parallel system whose scaled speedup curve matches the speedup curve
determined by increasing the problem size according to the isoefficiency function?

5.9 (Time-constrained scaling) Using the expression for TP from Problem 5.5 for p = 1,
4, 16, 64, 256, 1024, and 4096, what is the largest problem that can be solved if the total
execution time is not to exceed 512 time units? In general, is it possible to solve an
arbitrarily large problem in a fixed amount of time, provided that an unlimited number of
processing elements is available? Why?

5.10 (Prefix sums) Consider the problem of computing the prefix sums (Example 5.1) of
n numbers on n processing elements. What is the parallel runtime, speedup, and efficiency
of this algorithm? Assume that adding two numbers takes one unit of time and that
communicating one number between two processing elements takes 10 units of time. Is
the algorithm cost-optimal?

5.11 Design a cost-optimal version of the prefix sums algorithm (Problem 5.10) for
computing all prefix-sums of n numbers on p processing elements where p < n. Assuming
that adding two numbers takes one unit of time and that communicating one number
between two processing elements takes 10 units of time, derive expressions for TP , S, E ,
cost, and the isoefficiency function.

5.12 [GK93a] Prove that if To  (p) for a given problem size, then the parallel execution
time will continue to decrease as p is increased and will asymptotically approach a
constant value. Also prove that if To > Q(p), then TP first decreases and then increases
with p; hence, it has a distinct minimum.

5.13 The parallel runtime of a parallel implementation of the FFT algorithm with p
processing elements is given by TP = (n/p) log n + tw(n/p) log p for an input sequence of



length n (Equation 13.4 with ts = 0). The maximum number of processing elements that
the algorithm can use for an n-point FFT is n. What are the values of p0 (the value of p that

satisfies Equation 5.21) and  for tw = 10?

5.14 [GK93a] Consider two parallel systems with the same overhead function, but with
different degrees of concurrency. Let the overhead function of both parallel systems be W

1/3 p3/2 + 0.1W 2/3 p. Plot the TP versus p curve for W = 106, and 1  p  2048. If the
degree of concurrency is W1/3 for the first algorithm and W2/3 for the second algorithm,

compute the values of  for both parallel systems. Also compute the cost and efficiency
for both the parallel systems at the point on the TP versus p curve where their respective
minimum runtimes are achieved.
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Chapter 6. Programming Using the
Message-Passing Paradigm
Numerous programming languages and libraries have been developed for explicit parallel
programming. These differ in their view of the address space that they make available to the
programmer, the degree of synchronization imposed on concurrent activities, and the
multiplicity of programs. The message-passing programming paradigm is one of the oldest
and most widely used approaches for programming parallel computers. Its roots can be traced
back in the early days of parallel processing and its wide-spread adoption can be attributed to
the fact that it imposes minimal requirements on the underlying hardware.

In this chapter, we first describe some of the basic concepts of the message-passing
programming paradigm and then explore various message-passing programming techniques
using the standard and widely-used Message Passing Interface.
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6.1 Principles of Message-Passing Programming

There are two key attributes that characterize the message-passing programming paradigm.
The first is that it assumes a partitioned address space and the second is that it supports only
explicit parallelization.

The logical view of a machine supporting the message-passing paradigm consists of p
processes, each with its own exclusive address space. Instances of such a view come naturally
from clustered workstations and non-shared address space multicomputers. There are two
immediate implications of a partitioned address space. First, each data element must belong to
one of the partitions of the space; hence, data must be explicitly partitioned and placed. This
adds complexity to programming, but encourages locality of access that is critical for achieving
high performance on non-UMA architecture, since a processor can access its local data much
faster than non-local data on such architectures. The second implication is that all interactions
(read-only or read/write) require cooperation of two processes – the process that has the data
and the process that wants to access the data. This requirement for cooperation adds a great
deal of complexity for a number of reasons. The process that has the data must participate in
the interaction even if it has no logical connection to the events at the requesting process. In
certain circumstances, this requirement leads to unnatural programs. In particular, for dynamic
and/or unstructured interactions the complexity of the code written for this type of paradigm
can be very high for this reason. However, a primary advantage of explicit two-way interactions
is that the programmer is fully aware of all the costs of non-local interactions, and is more likely
to think about algorithms (and mappings) that minimize interactions. Another major advantage
of this type of programming paradigm is that it can be efficiently implemented on a wide variety
of architectures.

The message-passing programming paradigm requires that the parallelism is coded explicitly by
the programmer. That is, the programmer is responsible for analyzing the underlying serial
algorithm/application and identifying ways by which he or she can decompose the computations
and extract concurrency. As a result, programming using the message-passing paradigm tends
to be hard and intellectually demanding. However, on the other hand, properly written
message-passing programs can often achieve very high performance and scale to a very large
number of processes.

Structure of Message-Passing Programs Message-passing programs are often written using
the asynchronous or loosely synchronous paradigms. In the asynchronous paradigm, all
concurrent tasks execute asynchronously. This makes it possible to implement any parallel
algorithm. However, such programs can be harder to reason about, and can have non-
deterministic behavior due to race conditions. Loosely synchronous programs are a good
compromise between these two extremes. In such programs, tasks or subsets of tasks
synchronize to perform interactions. However, between these interactions, tasks execute
completely asynchronously. Since the interaction happens synchronously, it is still quite easy to
reason about the program. Many of the known parallel algorithms can be naturally implemented
using loosely synchronous programs.

In its most general form, the message-passing paradigm supports execution of a different
program on each of the p processes. This provides the ultimate flexibility in parallel
programming, but makes the job of writing parallel programs effectively unscalable. For this
reason, most message-passing programs are written using the single program multiple data
(SPMD) approach. In SPMD programs the code executed by different processes is identical
except for a small number of processes (e.g., the "root" process). This does not mean that the



processes work in lock-step. In an extreme case, even in an SPMD program, each process could
execute a different code (the program contains a large case statement with code for each
process). But except for this degenerate case, most processes execute the same code. SPMD
programs can be loosely synchronous or completely asynchronous.
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6.2 The Building Blocks: Send and Receive Operations

Since interactions are accomplished by sending and receiving messages, the basic operations in
the message-passing programming paradigm are send and receive . In their simplest form,

the prototypes of these operations are defined as follows:

send(void *sendbuf, int nelems, int dest) 
receive(void *recvbuf, int nelems, int source) 

The sendbuf points to a buffer that stores the data to be sent, recvbuf points to a buffer that
stores the data to be received, nelems is the number of data units to be sent and received, dest
is the identifier of the process that receives the data, and source is the identifier of the process

that sends the data.

However, to stop at this point would be grossly simplifying the programming and performance
ramifications of how these functions are implemented. To motivate the need for further
investigation, let us start with a simple example of a process sending a piece of data to another
process as illustrated in the following code-fragment:

1         P0                               P1 
2 
3         a = 100;                         receive(&a, 1, 0) 
4         send(&a, 1, 1);                  printf("%d\n", a); 
5         a=0; 

In this simple example, process P0 sends a message to process P1 which receives and prints the
message. The important thing to note is that process P0 changes the value of a to 0
immediately following the send . The semantics of the send operation require that the value
received by process P1 must be 100 as opposed to 0. That is, the value of a at the time of the
send operation must be the value that is received by process P1 .

It may seem that it is quite straightforward to ensure the semantics of the send and receive
operations. However, based on how the send and receive operations are implemented this may
not be the case. Most message passing platforms have additional hardware support for sending
and receiving messages. They may support DMA (direct memory access) and asynchronous
message transfer using network interface hardware. Network interfaces allow the transfer of
messages from buffer memory to desired location without CPU intervention. Similarly, DMA
allows copying of data from one memory location to another (e.g., communication buffers)
without CPU support (once they have been programmed). As a result, if the send operation
programs the communication hardware and returns before the communication operation has
been accomplished, process P1 might receive the value 0 in a instead of 100!

While this is undesirable, there are in fact reasons for supporting such send operations for
performance reasons. In the rest of this section, we will discuss send and receive operations in
the context of such a hardware environment, and motivate various implementation details and
message-passing protocols that help in ensuring the semantics of the send and receive
operations.



6.2.1 Blocking Message Passing Operations

A simple solution to the dilemma presented in the code fragment above is for the send
operation to return only when it is semantically safe to do so. Note that this is not the same as
saying that the send operation returns only after the receiver has received the data. It simply
means that the sending operation blocks until it can guarantee that the semantics will not be
violated on return irrespective of what happens in the program subsequently. There are two
mechanisms by which this can be achieved.

Blocking Non-Buffered Send/Receive

In the first case, the send operation does not return until the matching receive has been
encountered at the receiving process. When this happens, the message is sent and the send
operation returns upon completion of the communication operation. Typically, this process
involves a handshake between the sending and receiving processes. The sending process sends
a request to communicate to the receiving process. When the receiving process encounters the
target receive, it responds to the request. The sending process upon receiving this response
initiates a transfer operation. The operation is illustrated in Figure 6.1 . Since there are no
buffers used at either sending or receiving ends, this is also referred to as a non-buffered
blocking operation .

Figure 6.1. Handshake for a blocking non-buffered send/receive
operation. It is easy to see that in cases where sender and receiver do

not reach communication point at similar times, there can be
considerable idling overheads.

Idling Overheads in Blocking Non-Buffered Operations In Figure 6.1 , we illustrate three
scenarios in which the send is reached before the receive is posted, the send and receive are
posted around the same time, and the receive is posted before the send is reached. In cases (a)
and (c), we notice that there is considerable idling at the sending and receiving process. It is
also clear from the figures that a blocking non-buffered protocol is suitable when the send and
receive are posted at roughly the same time. However, in an asynchronous environment, this
may be impossible to predict. This idling overhead is one of the major drawbacks of this
protocol.

Deadlocks in Blocking Non-Buffered Operations Consider the following simple exchange of
messages that can lead to a deadlock:



1          P0                               P1 
2 
3          send(&a, 1, 1);                  send(&a, 1, 0); 
4          receive(&b, 1, 1);               receive(&b, 1, 0); 

The code fragment makes the values of a available to both processes P0 and P1. However, if the

send and receive operations are implemented using a blocking non-buffered protocol, the send
at P0 waits for the matching receive at P1 whereas the send at process P1 waits for the
corresponding receive at P0, resulting in an infinite wait.

As can be inferred, deadlocks are very easy in blocking protocols and care must be taken to
break cyclic waits of the nature outlined. In the above example, this can be corrected by
replacing the operation sequence of one of the processes by a receive and a send as opposed

to the other way around. This often makes the code more cumbersome and buggy.

Blocking Buffered Send/Receive

A simple solution to the idling and deadlocking problem outlined above is to rely on buffers at
the sending and receiving ends. We start with a simple case in which the sender has a buffer
pre-allocated for communicating messages. On encountering a send operation, the sender
simply copies the data into the designated buffer and returns after the copy operation has been
completed. The sender process can now continue with the program knowing that any changes to
the data will not impact program semantics. The actual communication can be accomplished in
many ways depending on the available hardware resources. If the hardware supports
asynchronous communication (independent of the CPU), then a network transfer can be
initiated after the message has been copied into the buffer. Note that at the receiving end, the
data cannot be stored directly at the target location since this would violate program semantics.
Instead, the data is copied into a buffer at the receiver as well. When the receiving process
encounters a receive operation, it checks to see if the message is available in its receive buffer.
If so, the data is copied into the target location. This operation is illustrated in Figure 6.2(a) .

Figure 6.2. Blocking buffered transfer protocols: (a) in the presence of
communication hardware with buffers at send and receive ends; and

(b) in the absence of communication hardware, sender interrupts
receiver and deposits data in buffer at receiver end.

In the protocol illustrated above, buffers are used at both sender and receiver and
communication is handled by dedicated hardware. Sometimes machines do not have such
communication hardware. In this case, some of the overhead can be saved by buffering only on



one side. For example, on encountering a send operation, the sender interrupts the receiver,
both processes participate in a communication operation and the message is deposited in a
buffer at the receiver end. When the receiver eventually encounters a receive operation, the
message is copied from the buffer into the target location. This protocol is illustrated in Figure
6.2(b) . It is not difficult to conceive a protocol in which the buffering is done only at the sender
and the receiver initiates a transfer by interrupting the sender.

It is easy to see that buffered protocols alleviate idling overheads at the cost of adding buffer
management overheads. In general, if the parallel program is highly synchronous (i.e., sends
and receives are posted around the same time), non-buffered sends may perform better than
buffered sends. However, in general applications, this is not the case and buffered sends are
desirable unless buffer capacity becomes an issue.

Example 6.1 Impact of finite buffers in message passing

Consider the following code fragment:

1         P0                                   P1 
2 
3         for (i = 0; i < 1000; i++) {         for (i = 0; i < 1000; i++) { 
4           produce_data(&a);                    receive(&a, 1, 0); 
5           send(&a, 1, 1);                      consume_data(&a); 
6         }                                    } 

In this code fragment, process P0 produces 1000 data items and process P1 consumes
them. However, if process P1 was slow getting to this loop, process P0 might have sent all of
its data. If there is enough buffer space, then both processes can proceed; however, if the
buffer is not sufficient (i.e., buffer overflow), the sender would have to be blocked until
some of the corresponding receive operations had been posted, thus freeing up buffer space.
This can often lead to unforeseen overheads and performance degradation. In general, it is

a good idea to write programs that have bounded buffer requirements. 

Deadlocks in Buffered Send and Receive Operations While buffering alleviates many of the
deadlock situations, it is still possible to write code that deadlocks. This is due to the fact that as
in the non-buffered case, receive calls are always blocking (to ensure semantic consistency).
Thus, a simple code fragment such as the following deadlocks since both processes wait to
receive data but nobody sends it.

1         P0                                  P1 
2 
3         receive(&a, 1, 1);                  receive(&a, 1, 0); 
4         send(&b, 1, 1);                     send(&b, 1, 0); 

Once again, such circular waits have to be broken. However, deadlocks are caused only by waits
on receive operations in this case.

6.2.2 Non-Blocking Message Passing Operations

In blocking protocols, the overhead of guaranteeing semantic correctness was paid in the form
of idling (non-buffered) or buffer management (buffered). Often, it is possible to require the



programmer to ensure semantic correctness and provide a fast send/receive operation that
incurs little overhead. This class of non-blocking protocols returns from the send or receive
operation before it is semantically safe to do so. Consequently, the user must be careful not to
alter data that may be potentially participating in a communication operation. Non-blocking
operations are generally accompanied by a check-status operation, which indicates whether

the semantics of a previously initiated transfer may be violated or not. Upon return from a non-
blocking send or receive operation, the process is free to perform any computation that does not
depend upon the completion of the operation. Later in the program, the process can check
whether or not the non-blocking operation has completed, and, if necessary, wait for its
completion.

As illustrated in Figure 6.3 , non-blocking operations can themselves be buffered or non-
buffered. In the non-buffered case, a process wishing to send data to another simply posts a
pending message and returns to the user program. The program can then do other useful work.
At some point in the future, when the corresponding receive is posted, the communication
operation is initiated. When this operation is completed, the check-status operation indicates
that it is safe for the programmer to touch this data. This transfer is indicated in Figure 6.4(a) .

Figure 6.3. Space of possible protocols for send and receive
operations.

Figure 6.4. Non-blocking non-buffered send and receive operations (a)
in absence of communication hardware; (b) in presence of

communication hardware.



Comparing Figures 6.4(a) and 6.1(a) , it is easy to see that the idling time when the process is
waiting for the corresponding receive in a blocking operation can now be utilized for
computation, provided it does not update the data being sent. This alleviates the major
bottleneck associated with the former at the expense of some program restructuring. The
benefits of non-blocking operations are further enhanced by the presence of dedicated
communication hardware. This is illustrated in Figure 6.4(b) . In this case, the communication
overhead can be almost entirely masked by non-blocking operations. In this case, however, the
data being received is unsafe for the duration of the receive operation.

Non-blocking operations can also be used with a buffered protocol. In this case, the sender
initiates a DMA operation and returns immediately. The data becomes safe the moment the
DMA operation has been completed. At the receiving end, the receive operation initiates a
transfer from the sender's buffer to the receiver's target location. Using buffers with non-
blocking operation has the effect of reducing the time during which the data is unsafe.

Typical message-passing libraries such as Message Passing Interface (MPI) and Parallel Virtual
Machine (PVM) implement both blocking and non-blocking operations. Blocking operations
facilitate safe and easier programming and non-blocking operations are useful for performance
optimization by masking communication overhead. One must, however, be careful using non-
blocking protocols since errors can result from unsafe access to data that is in the process of
being communicated.
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6.3 MPI: the Message Passing Interface

Many early generation commercial parallel computers were based on the message-passing
architecture due to its lower cost relative to shared-address-space architectures. Since
message-passing is the natural programming paradigm for these machines, this resulted in the
development of many different message-passing libraries. In fact, message-passing became the
modern-age form of assembly language, in which every hardware vendor provided its own
library, that performed very well on its own hardware, but was incompatible with the parallel
computers offered by other vendors. Many of the differences between the various vendor-
specific message-passing libraries were only syntactic; however, often enough there were some
serious semantic differences that required significant re-engineering to port a message-passing
program from one library to another.

The message-passing interface, or MPI as it is commonly known, was created to essentially
solve this problem. MPI defines a standard library for message-passing that can be used to
develop portable message-passing programs using either C or Fortran. The MPI standard
defines both the syntax as well as the semantics of a core set of library routines that are very
useful in writing message-passing programs. MPI was developed by a group of researchers from
academia and industry, and has enjoyed wide support by almost all the hardware vendors.
Vendor implementations of MPI are available on almost all commercial parallel computers.

The MPI library contains over 125 routines, but the number of key concepts is much smaller. In
fact, it is possible to write fully-functional message-passing programs by using only the six
routines shown in Table 6.1 . These routines are used to initialize and terminate the MPI library,
to get information about the parallel computing environment, and to send and receive
messages.

In this section we describe these routines as well as some basic concepts that are essential in
writing correct and efficient message-passing programs using MPI.

MPI_Init

Initializes MPI.

MPI_Finalize

Terminates MPI.

MPI_Comm_size

Determines the number of processes.

MPI_Comm_rank

Determines the label of the calling process.

MPI_Send

Sends a message.

MPI_Recv



Receives a message.

Table 6.1. The minimal set of MPI routines.

6.3.1 Starting and Terminating the MPI Library

MPI_Init is called prior to any calls to other MPI routines. Its purpose is to initialize the MPI
environment. Calling MPI_Init more than once during the execution of a program will lead to
an error. MPI_Finalize is called at the end of the computation, and it performs various clean-
up tasks to terminate the MPI environment. No MPI calls may be performed after MPI_Finalize
has been called, not even MPI_Init . Both MPI_Init and MPI_Finalize must be called by all

the processes, otherwise MPI's behavior will be undefined. The exact calling sequences of these
two routines for C are as follows:

int MPI_Init(int *argc, char ***argv) 
int MPI_Finalize() 

The arguments argc and argv of MPI_Init are the command-line arguments of the C program.
An MPI implementation is expected to remove from the argv array any command-line

arguments that should be processed by the implementation before returning back to the
program, and to decrement argc accordingly. Thus, command-line processing should be
performed only after MPI_Init has been called. Upon successful execution, MPI_Init and
MPI_Finalize return MPI_SUCCESS ; otherwise they return an implementation-defined error

code.

The bindings and calling sequences of these two functions are illustrative of the naming
practices and argument conventions followed by MPI. All MPI routines, data-types, and
constants are prefixed by "MPI_ ". The return code for successful completion is MPI_SUCCESS .
This and other MPI constants and data-structures are defined for C in the file "mpi.h" . This

header file must be included in each MPI program.

6.3.2 Communicators

A key concept used throughout MPI is that of the communication domain . A communication
domain is a set of processes that are allowed to communicate with each other. Information
about communication domains is stored in variables of type MPI_Comm ,that are called

communicators . These communicators are used as arguments to all message transfer MPI
routines and they uniquely identify the processes participating in the message transfer
operation. Note that each process can belong to many different (possibly overlapping)
communication domains.

The communicator is used to define a set of processes that can communicate with each other.
This set of processes form a communication domain . In general, all the processes may need
to communicate with each other. For this reason, MPI defines a default communicator called
MPI_COMM_WORLD which includes all the processes involved in the parallel execution. However, in

many cases we want to perform communication only within (possibly overlapping) groups of
processes. By using a different communicator for each such group, we can ensure that no
messages will ever interfere with messages destined to any other group. How to create and use
such communicators is described at a later point in this chapter. For now, it suffices to use
MPI_COMM_WORLD as the communicator argument to all the MPI functions that require a

communicator.



6.3.3 Getting Information

The MPI_Comm_size and MPI_Comm_rank functions are used to determine the number of

processes and the label of the calling process, respectively. The calling sequences of these
routines are as follows:

int MPI_Comm_size(MPI_Comm comm, int *size) 
int MPI_Comm_rank(MPI_Comm comm, int *rank) 

The function MPI_Comm_size returns in the variable size the number of processes that belong
to the communicator comm . So, when there is a single process per processor, the call
MPI_Comm_size(MPI_COMM_WORLD, &size) will return in size the number of processors used

by the program. Every process that belongs to a communicator is uniquely identified by its rank
. The rank of a process is an integer that ranges from zero up to the size of the communicator
minus one. A process can determine its rank in a communicator by using the MPI_Comm_rank
function that takes two arguments: the communicator and an integer variable rank . Up on
return, the variable rank stores the rank of the process. Note that each process that calls either

one of these functions must belong in the supplied communicator, otherwise an error will occur.

Example 6.2 Hello World

We can use the four MPI functions just described to write a program that prints out a
"Hello World" message from each processor.

1   #include <mpi.h> 
2 
3   main(int argc, char *argv[]) 
4   { 
5     int npes, myrank; 
6 
7     MPI_Init(&argc, &argv); 
8     MPI_Comm_size(MPI_COMM_WORLD, &npes); 
9     MPI_Comm_rank(MPI_COMM_WORLD, &myrank); 
10    printf("From process %d out of %d, Hello World!\n", 
11            myrank, npes); 
12    MPI_Finalize(); 
13  } 

6.3.4 Sending and Receiving Messages

The basic functions for sending and receiving messages in MPI are the MPI_Send and MPI_Recv

, respectively. The calling sequences of these routines are as follows:

int MPI_Send(void *buf, int count, MPI_Datatype datatype, 
        int dest, int tag, MPI_Comm comm) 



int MPI_Recv(void *buf, int count, MPI_Datatype datatype, 
        int source, int tag, MPI_Comm comm, MPI_Status *status) 

MPI_Send sends the data stored in the buffer pointed by buf . This buffer consists of consecutive
entries of the type specified by the parameter datatype . The number of entries in the buffer is
given by the parameter count . The correspondence between MPI datatypes and those provided

by C is shown in Table 6.2 . Note that for all C datatypes, an equivalent MPI datatype is
provided. However, MPI allows two additional datatypes that are not part of the C language.
These are MPI_BYTE and MPI_PACKED .

MPI_BYTE corresponds to a byte (8 bits) and MPI_PACKED corresponds to a collection of data

items that has been created by packing non-contiguous data. Note that the length of the
message in MPI_Send , as well as in other MPI routines, is specified in terms of the number of

entries being sent and not in terms of the number of bytes. Specifying the length in terms of the
number of entries has the advantage of making the MPI code portable, since the number of
bytes used to store various datatypes can be different for different architectures.

The destination of the message sent by MPI_Send is uniquely specified by the dest and comm
arguments. The dest argument is the rank of the destination process in the communication
domain specified by the communicator comm . Each message has an integer-valued tag
associated with it. This is used to distinguish different types of messages. The message-tag can
take values ranging from zero up to the MPI defined constant MPI_TAG_UB . Even though the
value of MPI_TAG_UB is implementation specific, it is at least 32,767.

MPI_Recv receives a message sent by a process whose rank is given by the source in the
communication domain specified by the comm argument. The tag of the sent message must be
that specified by the tag argument. If there are many messages with identical tag from the

same process, then any one of these messages is received. MPI allows specification of wildcard
arguments for both source and tag . If source is set to MPI_ANY_SOURCE , then any process of
the communication domain can be the source of the message. Similarly, if tag is set to
MPI_ANY_TAG , then messages with any tag are accepted. The received message is stored in
continuous locations in the buffer pointed to by buf . The count and datatype arguments of
MPI_Recv are used to specify the length of the supplied buffer. The received message should be

of length equal to or less than this length. This allows the receiving process to not know the
exact size of the message being sent. If the received message is larger than the supplied buffer,
then an overflow error will occur, and the routine will return the error MPI_ERR_TRUNCATE .

MPI_CHAR

signed char

MPI_SHORT

signed short int

MPI_INT

signed int

MPI_LONG

signed long int

MPI_UNSIGNED_CHAR

unsigned char



MPI_UNSIGNED_SHORT

unsigned short int

MPI_UNSIGNED

unsigned int

MPI_UNSIGNED_LONG

unsigned long int

MPI_FLOAT

float

MPI_DOUBLE

double

MPI_LONG_DOUBLE

long double

MPI_BYTE

 

MPI_PACKED

 

Table 6.2. Correspondence between the datatypes supported by MPI
and those supported by C.

MPI Datatype C Datatype

After a message has been received, the status variable can be used to get information about
the MPI_Recv operation. In C, status is stored using the MPI_Status data-structure. This is

implemented as a structure with three fields, as follows:

typedef struct MPI_Status { 
  int MPI_SOURCE; 
  int MPI_TAG; 
  int MPI_ERROR; 
}; 

MPI_SOURCE and MPI_TAG store the source and the tag of the received message. They are
particularly useful when MPI_ANY_SOURCE and MPI_ANY_TAG are used for the source and tag
arguments. MPI_ERROR stores the error-code of the received message.

The status argument also returns information about the length of the received message. This
information is not directly accessible from the status variable, but it can be retrieved by calling
the MPI_Get_count function. The calling sequence of this function is as follows:



int MPI_Get_count(MPI_Status *status, MPI_Datatype datatype, 
        int *count) 

MPI_Get_count takes as arguments the status returned by MPI_Recv and the type of the
received data in datatype , and returns the number of entries that were actually received in the
count variable.

The MPI_Recv returns only after the requested message has been received and copied into the
buffer. That is, MPI_Recv is a blocking receive operation. However, MPI allows two different
implementations for MPI_Send . In the first implementation, MPI_Send returns only after the
corresponding MPI_Recv have been issued and the message has been sent to the receiver. In
the second implementation, MPI_Send first copies the message into a buffer and then returns,
without waiting for the corresponding MPI_Recv to be executed. In either implementation, the
buffer that is pointed by the buf argument of MPI_Send can be safely reused and overwritten.

MPI programs must be able to run correctly regardless of which of the two methods is used for
implementing MPI_Send . Such programs are called safe . In writing safe MPI programs,
sometimes it is helpful to forget about the alternate implementation of MPI_Send and just think

of it as being a blocking send operation.

Avoiding Deadlocks The semantics of MPI_Send and MPI_Recv place some restrictions on how

we can mix and match send and receive operations. For example, consider the following piece
of code in which process 0 sends two messages with different tags to process 1, and process 1
receives them in the reverse order.

1   int a[10], b[10], myrank; 
2   MPI_Status status; 
3   ... 
4   MPI_Comm_rank(MPI_COMM_WORLD, &myrank); 
5   if (myrank == 0) { 
6     MPI_Send(a, 10, MPI_INT, 1, 1, MPI_COMM_WORLD); 
7     MPI_Send(b, 10, MPI_INT, 1, 2, MPI_COMM_WORLD); 
8   } 
9   else if (myrank == 1) { 
10    MPI_Recv(b, 10, MPI_INT, 0, 2, MPI_COMM_WORLD); 
11    MPI_Recv(a, 10, MPI_INT, 0, 1, MPI_COMM_WORLD); 
12  } 
13  ... 

If MPI_Send is implemented using buffering, then this code will run correctly provided that
sufficient buffer space is available. However, if MPI_Send is implemented by blocking until the

matching receive has been issued, then neither of the two processes will be able to proceed.
This is because process zero (i.e., myrank == 0 ) will wait until process one issues the matching
MPI_Recv (i.e., the one with tag equal to 1), and at the same time process one will wait until
process zero performs the matching MPI_Send (i.e., the one with tag equal to 2). This code

fragment is not safe, as its behavior is implementation dependent. It is up to the programmer
to ensure that his or her program will run correctly on any MPI implementation. The problem in
this program can be corrected by matching the order in which the send and receive operations
are issued . Similar deadlock situations can also occur when a process sends a message to itself.
Even though this is legal, its behavior is implementation dependent and must be avoided.

Improper use of MPI_Send and MPI_Recv can also lead to deadlocks in situations when each

processor needs to send and receive a message in a circular fashion. Consider the following
piece of code, in which process i sends a message to process i + 1 (modulo the number of
processes) and receives a message from process i - 1 (module the number of processes).



1   int a[10], b[10], npes, myrank; 
2   MPI_Status status; 
3   ... 
4   MPI_Comm_size(MPI_COMM_WORLD, &npes); 
5   MPI_Comm_rank(MPI_COMM_WORLD, &myrank); 
6   MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1, MPI_COMM_WORLD); 
7   MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1, MPI_COMM_WORLD); 
8   ... 

When MPI_Send is implemented using buffering, the program will work correctly, since every
call to MPI_Send will get buffered, allowing the call of the MPI_Recv to be performed, which will
transfer the required data. However, if MPI_Send blocks until the matching receive has been

issued, all processes will enter an infinite wait state, waiting for the neighboring process to
issue a MPI_Recv operation. Note that the deadlock still remains even when we have only two

processes. Thus, when pairs of processes need to exchange data, the above method leads to an
unsafe program. The above example can be made safe, by rewriting it as follows:

1   int a[10], b[10], npes, myrank; 
2   MPI_Status status; 
3   ... 
4   MPI_Comm_size(MPI_COMM_WORLD, &npes); 
5   MPI_Comm_rank(MPI_COMM_WORLD, &myrank); 
6   if (myrank%2 == 1) { 
7     MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1, MPI_COMM_WORLD); 
8     MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1, MPI_COMM_WORLD); 
9   } 
10  else { 
11    MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1, MPI_COMM_WORLD); 
12    MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1, MPI_COMM_WORLD); 
13  } 
14  ... 

This new implementation partitions the processes into two groups. One consists of the odd-
numbered processes and the other of the even-numbered processes. The odd-numbered
processes perform a send followed by a receive, and the even-numbered processes perform a
receive followed by a send. Thus, when an odd-numbered process calls MPI_Send ,the target
process (which has an even number) will call MPI_Recv to receive that message, before

attempting to send its own message.

Sending and Receiving Messages Simultaneously The above communication pattern
appears frequently in many message-passing programs, and for this reason MPI provides the
MPI_Sendrecv function that both sends and receives a message.

MPI_Sendrecv does not suffer from the circular deadlock problems of MPI_Send and MPI_Recv .
You can think of MPI_Sendrecv as allowing data to travel for both send and receive
simultaneously. The calling sequence of MPI_Sendrecv is the following:

int MPI_Sendrecv(void *sendbuf, int sendcount, 
        MPI_Datatype senddatatype, int dest, int sendtag, 
        void *recvbuf, int recvcount, MPI_Datatype recvdatatype, 
        int source, int recvtag, MPI_Comm comm, 
        MPI_Status *status) 

The arguments of MPI_Sendrecv are essentially the combination of the arguments of MPI_Send
and MPI_Recv . The send and receive buffers must be disjoint, and the source and destination of



the messages can be the same or different. The safe version of our earlier example using
MPI_Sendrecv is as follows.

1   int a[10], b[10], npes, myrank; 
2   MPI_Status status; 
3   ... 
4   MPI_Comm_size(MPI_COMM_WORLD, &npes); 
5   MPI_Comm_rank(MPI_COMM_WORLD, &myrank); 
6   MPI_SendRecv(a, 10, MPI_INT, (myrank+1)%npes, 1, 
7                b, 10, MPI_INT, (myrank-1+npes)%npes, 1, 
8                MPI_COMM_WORLD, &status); 
9   ... 

In many programs, the requirement for the send and receive buffers of MPI_Sendrecv be

disjoint may force us to use a temporary buffer. This increases the amount of memory required
by the program and also increases the overall run time due to the extra copy. This problem can
be solved by using that MPI_Sendrecv_replace MPI function. This function performs a blocking

send and receive, but it uses a single buffer for both the send and receive operation. That is, the
received data replaces the data that was sent out of the buffer. The calling sequence of this
function is the following:

int MPI_Sendrecv_replace(void *buf, int count, 
        MPI_Datatype datatype, int dest, int sendtag, 
        int source, int recvtag, MPI_Comm comm, 
        MPI_Status *status) 

Note that both the send and receive operations must transfer data of the same datatype.

6.3.5 Example: Odd-Even Sort

We will now use the MPI functions described in the previous sections to write a complete
message-passing program that will sort a list of numbers using the odd-even sorting algorithm.
Recall from Section 9.3.1 that the odd-even sorting algorithm sorts a sequence of n elements
using p processes in a total of p phases. During each of these phases, the odd-or even-
numbered processes perform a compare-split step with their right neighbors. The MPI program
for performing the odd-even sort in parallel is shown in Program 6.1 . To simplify the
presentation, this program assumes that n is divisible by p .

Program 6.1 Odd-Even Sorting

[View full width]

  1  #include <stdlib.h> 

  2  #include <mpi.h> /* Include MPI's header file */ 
  3 
  4  main(int argc, char *argv[]) 
  5  { 

  6    int n;         /* The total number of elements to be sorted */ 

  7    int npes;      /* The total number of processes */ 

  8    int myrank;    /* The rank of the calling process */ 

  9    int nlocal;    /* The local number of elements, and the array that stores them */ 

 10    int *elmnts;   /* The array that stores the local elements */ 

 11    int *relmnts;  /* The array that stores the received elements */ 



 12    int oddrank;   /* The rank of the process during odd-phase communication */ 

 13    int evenrank;  /* The rank of the process during even-phase communication */ 

 14    int *wspace;   /* Working space during the compare-split operation */ 
 15    int i; 
 16    MPI_Status status; 
 17 

 18    /* Initialize MPI and get system information */ 
 19    MPI_Init(&argc, &argv); 
 20    MPI_Comm_size(MPI_COMM_WORLD, &npes); 
 21    MPI_Comm_rank(MPI_COMM_WORLD, &myrank); 
 22 
 23    n = atoi(argv[1]); 

 24    nlocal = n/npes; /* Compute the number of elements to be stored locally. */ 
 25 

 26    /* Allocate memory for the various arrays */ 
 27    elmnts  = (int *)malloc(nlocal*sizeof(int)); 
 28    relmnts = (int *)malloc(nlocal*sizeof(int)); 
 29    wspace  = (int *)malloc(nlocal*sizeof(int)); 
 30 

 31    /* Fill-in the elmnts array with random elements */ 
 32    srandom(myrank); 
 33    for (i=0; i<nlocal; i++) 
 34      elmnts[i] = random(); 
 35 

 36    /* Sort the local elements using the built-in quicksort routine */ 
 37    qsort(elmnts, nlocal, sizeof(int), IncOrder); 
 38 

 39    /* Determine the rank of the processors that myrank needs to communicate during 

the */ 

 40    /* odd and even phases of the algorithm */ 
 41    if (myrank%2 == 0) { 
 42      oddrank  = myrank-1; 
 43      evenrank = myrank+1; 
 44    } 
 45    else { 
 46      oddrank  = myrank+1; 
 47      evenrank = myrank-1; 
 48    } 
 49 

 50    /* Set the ranks of the processors at the end of the linear */ 
 51    if (oddrank == -1 || oddrank == npes) 
 52      oddrank = MPI_PROC_NULL; 
 53    if (evenrank == -1 || evenrank == npes) 
 54      evenrank = MPI_PROC_NULL; 
 55 

 56    /* Get into the main loop of the odd-even sorting algorithm */ 
 57    for (i=0; i<npes-1; i++) { 

 58      if (i%2 == 1) /* Odd phase */ 
 59        MPI_Sendrecv(elmnts, nlocal, MPI_INT, oddrank, 1, relmnts, 
 60            nlocal, MPI_INT, oddrank, 1, MPI_COMM_WORLD, &status); 

 61      else /* Even phase */ 
 62        MPI_Sendrecv(elmnts, nlocal, MPI_INT, evenrank, 1, relmnts, 
 63            nlocal, MPI_INT, evenrank, 1, MPI_COMM_WORLD, &status); 
 64 
 65      CompareSplit(nlocal, elmnts, relmnts, wspace, 



 66                   myrank < status.MPI_SOURCE); 
 67    } 
 68 
 69    free(elmnts); free(relmnts); free(wspace); 
 70    MPI_Finalize(); 
 71  } 
 72 

 73  /* This is the CompareSplit function */ 
 74  CompareSplit(int nlocal, int *elmnts, int *relmnts, int *wspace, 
 75               int keepsmall) 
 76  { 
 77    int i, j, k; 
 78 
 79    for (i=0; i<nlocal; i++) 

 80      wspace[i] = elmnts[i]; /* Copy the elmnts array into the wspace array */ 
 81 

 82    if (keepsmall) { /* Keep the nlocal smaller elements */ 
 83      for (i=j=k=0; k<nlocal; k++) { 
 84        if (j == nlocal || (i < nlocal && wspace[i] < relmnts[j])) 
 85          elmnts[k] = wspace[i++]; 
 86        else 
 87          elmnts[k] = relmnts[j++]; 
 88      } 
 89    } 

 90    else { /* Keep the nlocal larger elements */ 
 91      for (i=k=nlocal-1, j=nlocal-1; k>=0; k--) { 
 92        if (j == 0 || (i >= 0 && wspace[i] >= relmnts[j])) 
 93          elmnts[k] = wspace[i--]; 
 94        else 
 95          elmnts[k] = relmnts[j--]; 
 96      } 
 97    } 
 98  } 
 99 

100  /* The IncOrder function that is called by qsort is defined as follows */ 
101  int IncOrder(const void *e1, const void *e2) 
102  { 
103    return (*((int *)e1) - *((int *)e2)); 
104  } 
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6.4 Topologies and Embedding

MPI views the processes as being arranged in a one-dimensional topology and uses a linear
ordering to number the processes. However, in many parallel programs, processes are naturally
arranged in higher-dimensional topologies (e.g., two- or three-dimensional). In such programs,
both the computation and the set of interacting processes are naturally identified by their
coordinates in that topology. For example, in a parallel program in which the processes are
arranged in a two-dimensional topology, process (i , j ) may need to send message to (or
receive message from) process (k , l ). To implement these programs in MPI, we need to map
each MPI process to a process in that higher-dimensional topology.

Many such mappings are possible. Figure 6.5 illustrates some possible mappings of eight MPI
processes onto a 4 x 4 two-dimensional topology. For example, for the mapping shown in
Figure 6.5(a) , an MPI process with rank rank corresponds to process (row , col ) in the grid
such that row = rank/4 and col = rank%4 (where '%' is C's module operator). As an
illustration, the process with rank 7 is mapped to process (1, 3) in the grid.

Figure 6.5. Different ways to map a set of processes to a two-
dimensional grid. (a) and (b) show a row- and column-wise mapping
of these processes, (c) shows a mapping that follows a space-filling
curve (dotted line), and (d) shows a mapping in which neighboring

processes are directly connected in a hypercube.

In general, the goodness of a mapping is determined by the pattern of interaction among the
processes in the higher-dimensional topology, the connectivity of physical processors, and the
mapping of MPI processes to physical processors. For example, consider a program that uses a
two-dimensional topology and each process needs to communicate with its neighboring
processes along the x and y directions of this topology. Now, if the processors of the underlying
parallel system are connected using a hypercube interconnection network, then the mapping
shown in Figure 6.5(d) is better, since neighboring processes in the grid are also neighboring
processors in the hypercube topology.

However, the mechanism used by MPI to assign ranks to the processes in a communication
domain does not use any information about the interconnection network, making it impossible
to perform topology embeddings in an intelligent manner. Furthermore, even if we had that
information, we will need to specify different mappings for different interconnection networks,
diminishing the architecture independent advantages of MPI. A better approach is to let the
library itself compute the most appropriate embedding of a given topology to the processors of
the underlying parallel computer. This is exactly the approach facilitated by MPI. MPI provides a
set of routines that allows the programmer to arrange the processes in different topologies



without having to explicitly specify how these processes are mapped onto the processors. It is
up to the MPI library to find the most appropriate mapping that reduces the cost of sending and
receiving messages.

6.4.1 Creating and Using Cartesian Topologies

MPI provides routines that allow the specification of virtual process topologies of arbitrary
connectivity in terms of a graph. Each node in the graph corresponds to a process and two
nodes are connected if they communicate with each other. Graphs of processes can be used to
specify any desired topology. However, most commonly used topologies in message-passing
programs are one-, two-, or higher-dimensional grids, that are also referred to as Cartesian
topologies . For this reason, MPI provides a set of specialized routines for specifying and
manipulating this type of multi-dimensional grid topologies.

MPI's function for describing Cartesian topologies is called MPI_Cart_create . Its calling

sequence is as follows.

int MPI_Cart_create(MPI_Comm comm_old, int ndims, int *dims, 
        int *periods, int reorder, MPI_Comm *comm_cart) 

This function takes the group of processes that belong to the communicator comm_old and

creates a virtual process topology. The topology information is attached to a new communicator
comm_cart that is created by MPI_Cart_create . Any subsequent MPI routines that want to
take advantage of this new Cartesian topology must use comm_cart as the communicator
argument. Note that all the processes that belong to the comm_old communicator must call this
function. The shape and properties of the topology are specified by the arguments ndims , dims
, and periods . The argument ndims specifies the number of dimensions of the topology. The
array dims specify the size along each dimension of the topology. The i th element of this array
stores the size of the i th dimension of the topology. The array periods is used to specify
whether or not the topology has wraparound connections. In particular, if periods[i] is true

(non-zero in C), then the topology has wraparound connections along dimension i , otherwise it
does not. Finally, the argument reorder is used to determine if the processes in the new group
(i.e., communicator) are to be reordered or not. If reorder is false, then the rank of each
process in the new group is identical to its rank in the old group. Otherwise, MPI_Cart_create

may reorder the processes if that leads to a better embedding of the virtual topology onto the
parallel computer. If the total number of processes specified in the dims array is smaller than
the number of processes in the communicator specified by comm_old , then some processes will
not be part of the Cartesian topology. For this set of processes, the value of comm_cart will be
set to MPI_COMM_NULL (an MPI defined constant). Note that it will result in an error if the total
number of processes specified by dims is greater than the number of processes in the comm_old

communicator.

Process Naming When a Cartesian topology is used, each process is better identified by its
coordinates in this topology. However, all MPI functions that we described for sending and
receiving messages require that the source and the destination of each message be specified
using the rank of the process. For this reason, MPI provides two functions, MPI_Cart_rank and
MPI_Cart_coord , for performing coordinate-to-rank and rank-to-coordinate translations,

respectively. The calling sequences of these routines are the following:

int MPI_Cart_rank(MPI_Comm comm_cart, int *coords, int *rank) 
int MPI_Cart_coord(MPI_Comm comm_cart, int rank, int maxdims, 
        int *coords) 

The MPI_Cart_rank takes the coordinates of the process as argument in the coords array and



returns its rank in rank . The MPI_Cart_coords takes the rank of the process rank and returns
its Cartesian coordinates in the array coords , of length maxdims . Note that maxdims should be

at least as large as the number of dimensions in the Cartesian topology specified by the
communicator comm_cart .

Frequently, the communication performed among processes in a Cartesian topology is that of
shifting data along a dimension of the topology. MPI provides the function MPI_Cart_shift ,

that can be used to compute the rank of the source and destination processes for such
operation. The calling sequence of this function is the following:

int MPI_Cart_shift(MPI_Comm comm_cart, int dir, int s_step, 
        int *rank_source, int *rank_dest) 

The direction of the shift is specified in the dir argument, and is one of the dimensions of the
topology. The size of the shift step is specified in the s_step argument. The computed ranks are
returned in rank_source and rank_dest . If the Cartesian topology was created with
wraparound connections (i.e., the periods[dir] entry was set to true), then the shift wraps
around. Otherwise, a MPI_PROC_NULL value is returned for rank_source and/or rank_dest for

those processes that are outside the topology.

6.4.2 Example: Cannon's Matrix-Matrix Multiplication

To illustrate how the various topology functions are used we will implement Cannon's algorithm
for multiplying two matrices A and B , described in Section 8.2.2 . Cannon's algorithm views the
processes as being arranged in a virtual two-dimensional square array. It uses this array to
distribute the matrices A , B , and the result matrix C in a block fashion. That is, if n x n is the
size of each matrix and p is the total number of process, then each matrix is divided into square

blocks of size  (assuming that p is a perfect square). Now, process Pi , j in the grid
is assigned the Ai , j , Bi , j , and C i , j blocks of each matrix. After an initial data alignment

phase, the algorithm proceeds in  steps. In each step, every process multiplies the locally
available blocks of matrices A and B , and then sends the block of A to the leftward process, and
the block of B to the upward process.

Program 6.2 shows the MPI function that implements Cannon's algorithm. The dimension of the
matrices is supplied in the parameter n . The parameters a , b , and c point to the locally stored

portions of the matrices A , B , and C , respectively. The size of these arrays is ,
where p is the number of processes. This routine assumes that p is a perfect square and that n

is a multiple of . The parameter comm stores the communicator describing the processes that
call the MatrixMatrixMultiply function. Note that the remaining programs in this chapter will

be provided in the form of a function, as opposed to complete stand-alone programs.

Program 6.2 Cannon's Matrix-Matrix Multiplication with MPI's
Topologies

 1  MatrixMatrixMultiply(int n, double *a, double *b, double *c, 
 2                       MPI_Comm comm) 
 3  { 
 4    int i; 
 5    int nlocal; 
 6    int npes, dims[2], periods[2]; 
 7    int myrank, my2drank, mycoords[2]; 
 8    int uprank, downrank, leftrank, rightrank, coords[2]; 



 9    int shiftsource, shiftdest; 
10    MPI_Status status; 
11    MPI_Comm comm_2d; 
12 

13    /* Get the communicator related information */ 
14    MPI_Comm_size(comm, &npes); 
15    MPI_Comm_rank(comm, &myrank); 
16 

17    /* Set up the Cartesian topology */ 
18    dims[0] = dims[1] = sqrt(npes); 
19 

20    /* Set the periods for wraparound connections */ 
21    periods[0] = periods[1] = 1; 
22 

23    /* Create the Cartesian topology, with rank reordering */ 
24    MPI_Cart_create(comm, 2, dims, periods, 1, &comm_2d); 
25 

26    /* Get the rank and coordinates with respect to the new topology */ 
27    MPI_Comm_rank(comm_2d, &my2drank); 
28    MPI_Cart_coords(comm_2d, my2drank, 2, mycoords); 
29 

30    /* Compute ranks of the up and left shifts */ 
31    MPI_Cart_shift(comm_2d, 0, -1, &rightrank, &leftrank); 
32    MPI_Cart_shift(comm_2d, 1, -1, &downrank, &uprank); 
33 

34    /* Determine the dimension of the local matrix block */ 
35    nlocal = n/dims[0]; 
36 

37    /* Perform the initial matrix alignment. First for A and then for B */ 
38    MPI_Cart_shift(comm_2d, 0, -mycoords[0], &shiftsource, &shiftdest); 
39    MPI_Sendrecv_replace(a, nlocal*nlocal, MPI_DOUBLE, shiftdest, 
40        1, shiftsource, 1, comm_2d, &status); 
41 
42    MPI_Cart_shift(comm_2d, 1, -mycoords[1], &shiftsource, &shiftdest); 
43    MPI_Sendrecv_replace(b, nlocal*nlocal, MPI_DOUBLE, 
44        shiftdest, 1, shiftsource, 1, comm_2d, &status); 
45 

46    /* Get into the main computation loop */ 
47    for (i=0; i<dims[0]; i++) { 

48      MatrixMultiply(nlocal, a, b, c); /*c=c+a*b*/ 
49 

50      /* Shift matrix a left by one */ 
51      MPI_Sendrecv_replace(a, nlocal*nlocal, MPI_DOUBLE, 
52          leftrank, 1, rightrank, 1, comm_2d, &status); 
53 

54      /* Shift matrix b up by one */ 
55      MPI_Sendrecv_replace(b, nlocal*nlocal, MPI_DOUBLE, 
56          uprank, 1, downrank, 1, comm_2d, &status); 
57    } 
58 

59    /* Restore the original distribution of a and b */ 
60    MPI_Cart_shift(comm_2d, 0, +mycoords[0], &shiftsource, &shiftdest); 
61    MPI_Sendrecv_replace(a, nlocal*nlocal, MPI_DOUBLE, 
62        shiftdest, 1, shiftsource, 1, comm_2d, &status); 
63 



64    MPI_Cart_shift(comm_2d, 1, +mycoords[1], &shiftsource, &shiftdest); 
65    MPI_Sendrecv_replace(b, nlocal*nlocal, MPI_DOUBLE, 
66        shiftdest, 1, shiftsource, 1, comm_2d, &status); 
67 

68    MPI_Comm_free(&comm_2d); /* Free up communicator */ 
69  } 
70 

71  /* This function performs a serial matrix-matrix multiplication c = a*b */ 
72  MatrixMultiply(int n, double *a, double *b, double *c) 
73  { 
74    int i, j, k; 
75 
76    for (i=0; i<n; i++) 
77      for (j=0; j<n; j++) 
78        for (k=0; k<n; k++) 
79          c[i*n+j] += a[i*n+k]*b[k*n+j]; 
80  } 
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6.5 Overlapping Communication with Computation

The MPI programs we developed so far used blocking send and receive operations whenever
they needed to perform point-to-point communication. Recall that a blocking send operation
remains blocked until the message has been copied out of the send buffer (either into a system
buffer at the source process or sent to the destination process). Similarly, a blocking receive
operation returns only after the message has been received and copied into the receive buffer.
For example, consider Cannon's matrix-matrix multiplication program described in Program
6.2. During each iteration of its main computational loop (lines 47– 57), it first computes the
matrix multiplication of the sub-matrices stored in a and b, and then shifts the blocks of a and
b, using MPI_Sendrecv_replace which blocks until the specified matrix block has been sent and

received by the corresponding processes. In each iteration, each process spends O (n3/ p1.5)
time for performing the matrix-matrix multiplication and O(n2/p) time for shifting the blocks of
matrices A and B. Now, since the blocks of matrices A and B do not change as they are shifted
among the processors, it will be preferable if we can overlap the transmission of these blocks
with the computation for the matrix-matrix multiplication, as many recent distributed-memory
parallel computers have dedicated communication controllers that can perform the transmission
of messages without interrupting the CPUs.

6.5.1 Non-Blocking Communication Operations

In order to overlap communication with computation, MPI provides a pair of functions for
performing non-blocking send and receive operations. These functions are MPI_Isend and
MPI_Irecv. MPI_Isend starts a send operation but does not complete, that is, it returns before
the data is copied out of the buffer. Similarly, MPI_Irecv starts a receive operation but returns

before the data has been received and copied into the buffer. With the support of appropriate
hardware, the transmission and reception of messages can proceed concurrently with the
computations performed by the program upon the return of the above functions.

However, at a later point in the program, a process that has started a non-blocking send or
receive operation must make sure that this operation has completed before it proceeds with its
computations. This is because a process that has started a non-blocking send operation may
want to overwrite the buffer that stores the data that are being sent, or a process that has
started a non-blocking receive operation may want to use the data it requested. To check the
completion of non-blocking send and receive operations, MPI provides a pair of functions
MPI_Test and MPI_Wait. The first tests whether or not a non-blocking operation has finished

and the second waits (i.e., gets blocked) until a non-blocking operation actually finishes.

The calling sequences of MPI_Isend and MPI_Irecv are the following:

int MPI_Isend(void *buf, int count, MPI_Datatype datatype, 
        int dest, int tag, MPI_Comm comm, MPI_Request *request) 
int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, 
        int source, int tag, MPI_Comm comm, MPI_Request *request) 

Note that these functions have similar arguments as the corresponding blocking send and
receive functions. The main difference is that they take an additional argument request.
MPI_Isend and MPI_Irecv functions allocate a request object and return a pointer to it in the
request variable. This request object is used as an argument in the MPI_Test and MPI_Wait



functions to identify the operation whose status we want to query or to wait for its completion.

Note that the MPI_Irecv function does not take a status argument similar to the blocking

receive function, but the status information associated with the receive operation is returned by
the MPI_Test and MPI_Wait functions.

int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status) 
int MPI_Wait(MPI_Request *request, MPI_Status *status) 

MPI_Test tests whether or not the non-blocking send or receive operation identified by its
request has finished. It returns flag = {true} (non-zero value in C) if it completed, otherwise
it returns {false} (a zero value in C). In the case that the non-blocking operation has finished,
the request object pointed to by request is deallocated and request is set to
MPI_REQUEST_NULL. Also the status object is set to contain information about the operation. If
the operation has not finished, request is not modified and the value of the status object is
undefined. The MPI_Wait function blocks until the non-blocking operation identified by request
completes. In that case it deal-locates the request object, sets it to MPI_REQUEST_NULL, and
returns information about the completed operation in the status object.

For the cases that the programmer wants to explicitly deallocate a request object, MPI provides
the following function.

int MPI_Request_free(MPI_Request *request) 

Note that the deallocation of the request object does not have any effect on the associated non-
blocking send or receive operation. That is, if it has not yet completed it will proceed until its
completion. Hence, one must be careful before explicitly deallocating a request object, since
without it, we cannot check whether or not the non-blocking operation has completed.

A non-blocking communication operation can be matched with a corresponding blocking
operation. For example, a process can send a message using a non-blocking send operation and
this message can be received by the other process using a blocking receive operation.

Avoiding Deadlocks By using non-blocking communication operations we can remove most of
the deadlocks associated with their blocking counterparts. For example, as we discussed in
Section 6.3 the following piece of code is not safe.

 1   int a[10], b[10], myrank; 
 2   MPI_Status status; 
 3   ... 
 4   MPI_Comm_rank(MPI_COMM_WORLD, &myrank); 
 5   if (myrank == 0) { 
 6     MPI_Send(a, 10, MPI_INT, 1, 1, MPI_COMM_WORLD); 
 7     MPI_Send(b, 10, MPI_INT, 1, 2, MPI_COMM_WORLD); 
 8   } 
 9   else if (myrank == 1) { 
10     MPI_Recv(b, 10, MPI_INT, 0, 2, &status, MPI_COMM_WORLD); 
11     MPI_Recv(a, 10, MPI_INT, 0, 1, &status, MPI_COMM_WORLD); 
12   } 
13   ... 

However, if we replace either the send or receive operations with their non-blocking
counterparts, then the code will be safe, and will correctly run on any MPI implementation.



 1   int a[10], b[10], myrank; 
 2   MPI_Status status; 
 3   MPI_Request requests[2]; 
 4   ... 
 5   MPI_Comm_rank(MPI_COMM_WORLD, &myrank); 
 6   if (myrank == 0) { 
 7     MPI_Send(a, 10, MPI_INT, 1, 1, MPI_COMM_WORLD); 
 8     MPI_Send(b, 10, MPI_INT, 1, 2, MPI_COMM_WORLD); 
 9   } 
10   else if (myrank == 1) { 
11     MPI_Irecv(b, 10, MPI_INT, 0, 2, &requests[0], MPI_COMM_WORLD); 
12     MPI_Irecv(a, 10, MPI_INT, 0, 1, &requests[1], MPI_COMM_WORLD); 
13   } 
14   ... 

This example also illustrates that the non-blocking operations started by any process can finish
in any order depending on the transmission or reception of the corresponding messages. For
example, the second receive operation will finish before the first does.

Example: Cannon's Matrix-Matrix Multiplication (Using Non-Blocking Operations)

Program 6.3 shows the MPI program that implements Cannon's algorithm using non-blocking
send and receive operations. The various parameters are identical to those of Program 6.2.

Program 6.3 Non-Blocking Cannon's Matrix-Matrix Multiplication

 1   MatrixMatrixMultiply_NonBlocking(int n, double *a, double *b, 
 2                                    double *c, MPI_Comm comm) 
 3   { 
 4     int i, j, nlocal; 
 5     double *a_buffers[2], *b_buffers[2]; 
 6     int npes, dims[2], periods[2]; 
 7     int myrank, my2drank, mycoords[2]; 
 8     int uprank, downrank, leftrank, rightrank, coords[2]; 
 9     int shiftsource, shiftdest; 
10     MPI_Status status; 
11     MPI_Comm comm_2d; 
12     MPI_Request reqs[4]; 
13 

14     /* Get the communicator related information */ 
15     MPI_Comm_size(comm, &npes); 
16     MPI_Comm_rank(comm, &myrank); 
17 

18     /* Set up the Cartesian topology */ 
19     dims[0] = dims[1] = sqrt(npes); 
20 

21     /* Set the periods for wraparound connections */ 
22     periods[0] = periods[1] = 1; 
23 

24     /* Create the Cartesian topology, with rank reordering */ 
25     MPI_Cart_create(comm, 2, dims, periods, 1, &comm_2d); 
26 

27     /* Get the rank and coordinates with respect to the new topology */ 



28     MPI_Comm_rank(comm_2d, &my2drank); 
29     MPI_Cart_coords(comm_2d, my2drank, 2, mycoords); 
30 

31     /* Compute ranks of the up and left shifts */ 
32     MPI_Cart_shift(comm_2d, 0, -1, &rightrank, &leftrank); 
33     MPI_Cart_shift(comm_2d, 1, -1, &downrank, &uprank); 
34 

35     /* Determine the dimension of the local matrix block */ 
36     nlocal = n/dims[0]; 
37 

38     /* Setup the a_buffers and b_buffers arrays */ 
39     a_buffers[0] = a; 
40     a_buffers[1] = (double *)malloc(nlocal*nlocal*sizeof(double)); 
41     b_buffers[0] = b; 
42     b_buffers[1] = (double *)malloc(nlocal*nlocal*sizeof(double)); 
43 

44     /* Perform the initial matrix alignment. First for A and then for B */ 
45     MPI_Cart_shift(comm_2d, 0, -mycoords[0], &shiftsource, &shiftdest); 
46     MPI_Sendrecv_replace(a_buffers[0], nlocal*nlocal, MPI_DOUBLE, 
47         shiftdest, 1, shiftsource, 1, comm_2d, &status); 
48 
49     MPI_Cart_shift(comm_2d, 1, -mycoords[1], &shiftsource, &shiftdest); 
50     MPI_Sendrecv_replace(b_buffers[0], nlocal*nlocal, MPI_DOUBLE, 
51         shiftdest, 1, shiftsource, 1, comm_2d, &status); 
52 

53     /* Get into the main computation loop */ 
54     for (i=0; i<dims[0]; i++) { 
55       MPI_Isend(a_buffers[i%2], nlocal*nlocal, MPI_DOUBLE, 
56           leftrank, 1, comm_2d, &reqs[0]); 
57       MPI_Isend(b_buffers[i%2], nlocal*nlocal, MPI_DOUBLE, 
58           uprank, 1, comm_2d, &reqs[1]); 
59       MPI_Irecv(a_buffers[(i+1)%2], nlocal*nlocal, MPI_DOUBLE, 
60           rightrank, 1, comm_2d, &reqs[2]); 
61       MPI_Irecv(b_buffers[(i+1)%2], nlocal*nlocal, MPI_DOUBLE, 
62           downrank, 1, comm_2d, &reqs[3]); 
63 

64       /* c = c + a*b */ 
65       MatrixMultiply(nlocal, a_buffers[i%2], b_buffers[i%2], c); 
66 
67       for (j=0; j<4; j++) 
68         MPI_Wait(&reqs[j], &status); 
69     } 
70 

71     /* Restore the original distribution of a and b */ 
72     MPI_Cart_shift(comm_2d, 0, +mycoords[0], &shiftsource, &shiftdest); 
73     MPI_Sendrecv_replace(a_buffers[i%2], nlocal*nlocal, MPI_DOUBLE, 
74         shiftdest, 1, shiftsource, 1, comm_2d, &status); 
75 
76     MPI_Cart_shift(comm_2d, 1, +mycoords[1], &shiftsource, &shiftdest); 
77     MPI_Sendrecv_replace(b_buffers[i%2], nlocal*nlocal, MPI_DOUBLE, 
78         shiftdest, 1, shiftsource, 1, comm_2d, &status); 
79 

80     MPI_Comm_free(&comm_2d); /* Free up communicator */ 
81 
82     free(a_buffers[1]); 



83     free(b_buffers[1]); 
84  } 

There are two main differences between the blocking program (Program 6.2) and this non-
blocking one. The first difference is that the non-blocking program requires the use of the
additional arrays a_buffers and b_buffers, that are used as the buffer of the blocks of A and B
that are being received while the computation involving the previous blocks is performed. The
second difference is that in the main computational loop, it first starts the non-blocking send
operations to send the locally stored blocks of A and B to the processes left and up the grid, and
then starts the non-blocking receive operations to receive the blocks for the next iteration from
the processes right and down the grid. Having initiated these four non-blocking operations, it
proceeds to perform the matrix-matrix multiplication of the blocks it currently stores. Finally,
before it proceeds to the next iteration, it uses MPI_Wait to wait for the send and receive

operations to complete.

Note that in order to overlap communication with computation we have to use two auxiliary
arrays – one for A and one for B. This is to ensure that incoming messages never overwrite the
blocks of A and B that are used in the computation, which proceeds concurrently with the data
transfer. Thus, increased performance (by overlapping communication with computation) comes
at the expense of increased memory requirements. This is a trade-off that is often made in
message-passing programs, since communication overheads can be quite high for loosely
coupled distributed memory parallel computers.
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6.6 Collective Communication and Computation
Operations

MPI provides an extensive set of functions for performing many commonly used collective
communication operations. In particular, the majority of the basic communication operations
described in Chapter 4 are supported by MPI. All of the collective communication functions
provided by MPI take as an argument a communicator that defines the group of processes that
participate in the collective operation. All the processes that belong to this communicator
participate in the operation, and all of them must call the collective communication function.
Even though collective communication operations do not act like barriers (i.e., it is possible for
a processor to go past its call for the collective communication operation even before other
processes have reached it), it acts like a virtual synchronization step in the following sense: the
parallel program should be written such that it behaves correctly even if a global
synchronization is performed before and after the collective call. Since the operations are
virtually synchronous, they do not require tags. In some of the collective functions data is
required to be sent from a single process (source-process) or to be received by a single process
(target-process). In these functions, the source- or target-process is one of the arguments
supplied to the routines. All the processes in the group (i.e., communicator) must specify the
same source- or target-process. For most collective communication operations, MPI provides
two different variants. The first transfers equal-size data to or from each process, and the
second transfers data that can be of different sizes.

6.6.1 Barrier

The barrier synchronization operation is performed in MPI using the MPI_Barrier function.

int MPI_Barrier(MPI_Comm comm) 

The only argument of MPI_Barrier is the communicator that defines the group of processes
that are synchronized. The call to MPI_Barrier returns only after all the processes in the group

have called this function.

6.6.2 Broadcast

The one-to-all broadcast operation described in Section 4.1 is performed in MPI using the
MPI_Bcast function.

int MPI_Bcast(void *buf, int count, MPI_Datatype datatype, 
        int source, MPI_Comm comm) 

MPI_Bcast sends the data stored in the buffer buf of process source to all the other processes
in the group. The data received by each process is stored in the buffer buf . The data that is
broadcast consist of count entries of type datatype . The amount of data sent by the source

process must be equal to the amount of data that is being received by each process; i.e., the
count and datatype fields must match on all processes.



6.6.3 Reduction

The all-to-one reduction operation described in Section 4.1 is performed in MPI using the
MPI_Reduce function.

int MPI_Reduce(void *sendbuf, void *recvbuf, int count, 
        MPI_Datatype datatype, MPI_Op op, int target, 
        MPI_Comm comm) 

MPI_Reduce combines the elements stored in the buffer sendbuf of each process in the group,
using the operation specified in op , and returns the combined values in the buffer recvbuf of
the process with rank target . Both the sendbuf and recvbuf must have the same number of
count items of type datatype . Note that all processes must provide a recvbuf array, even if
they are not the target of the reduction operation. When count is more than one, then the

combine operation is applied element-wise on each entry of the sequence. All the processes
must call MPI_Reduce with the same value for count , datatype , op , target , and comm .

MPI provides a list of predefined operations that can be used to combine the elements stored in
sendbuf . MPI also allows programmers to define their own operations, which is not covered in

this book. The predefined operations are shown in Table 6.3 . For example, in order to compute
the maximum of the elements stored in sendbuf , the MPI_MAX value must be used for the op

argument. Not all of these operations can be applied to all possible data-types supported by
MPI. For example, a bit-wise OR operation (i.e., op = MPI_BOR ) is not defined for real-valued
data-types such as MPI_FLOAT and MPI_REAL . The last column of Table 6.3 shows the various

data-types that can be used with each operation.

MPI_MAX

Maximum

C integers and floating point

MPI_MIN

Minimum

C integers and floating point

MPI_SUM

Sum

C integers and floating point

MPI_PROD

Product

C integers and floating point

MPI_LAND

Logical AND

C integers



MPI_BAND

Bit-wise AND

C integers and byte

MPI_LOR

Logical OR

C integers

MPI_BOR

Bit-wise OR

C integers and byte

MPI_LXOR

Logical XOR

C integers

MPI_BXOR

Bit-wise XOR

C integers and byte

MPI_MAXLOC

max-min value-location

Data-pairs

MPI_MINLOC

min-min value-location

Data-pairs

Table 6.3. Predefined reduction operations.

Operation Meaning Datatypes

The operation MPI_MAXLOC combines pairs of values (vi , li ) and returns the pair (v , l ) such

that v is the maximum among all vi 's and l is the smallest among all li 's such that v = vi .
Similarly, MPI_MINLOC combines pairs of values and returns the pair (v , l ) such that v is the

minimum among all vi 's and l is the smallest among all li 's such that v = vi . One possible
application of MPI_MAXLOC or MPI_MINLOC is to compute the maximum or minimum of a list of

numbers each residing on a different process and also the rank of the first process that stores
this maximum or minimum, as illustrated in Figure 6.6 . Since both MPI_MAXLOC and
MPI_MINLOC require datatypes that correspond to pairs of values, a new set of MPI datatypes

have been defined as shown in Table 6.4 . In C, these datatypes are implemented as structures
containing the corresponding types.



Figure 6.6. An example use of the MPI_MINLOC and MPI_MAXLOC operators.

When the result of the reduction operation is needed by all the processes, MPI provides the
MPI_Allreduce operation that returns the result to all the processes. This function provides the

functionality of the all-reduce operation described in Section 4.3 .

MPI_2INT

pair of int s

MPI_SHORT_INT

short and int

MPI_LONG_INT

long and int

MPI_LONG_DOUBLE_INT

long double and int

MPI_FLOAT_INT

float and int

MPI_DOUBLE_INT

double and int

Table 6.4. MPI datatypes for data-pairs used with the MPI_MAXLOC and
MPI_MINLOC reduction operations.

MPI Datatype C Datatype

int MPI_Allreduce(void *sendbuf, void *recvbuf, int count, 
        MPI_Datatype datatype, MPI_Op op, MPI_Comm comm) 

Note that there is no target argument since all processes receive the result of the operation.

6.6.4 Prefix

The prefix-sum operation described in Section 4.3 is performed in MPI using the MPI_Scan

function.



int MPI_Scan(void *sendbuf, void *recvbuf, int count, 
        MPI_Datatype datatype, MPI_Op op, MPI_Comm comm) 

MPI_Scan performs a prefix reduction of the data stored in the buffer sendbuf at each process
and returns the result in the buffer recvbuf . The receive buffer of the process with rank i will

store, at the end of the operation, the reduction of the send buffers of the processes whose
ranks range from 0 up to and including i . The type of supported operations (i.e., op ) as well as
the restrictions on the various arguments of MPI_Scan are the same as those for the reduction
operation MPI_Reduce .

6.6.5 Gather

The gather operation described in Section 4.4 is performed in MPI using the MPI_Gather

function.

int MPI_Gather(void *sendbuf, int sendcount, 
        MPI_Datatype senddatatype, void *recvbuf, int recvcount, 
        MPI_Datatype recvdatatype, int target, MPI_Comm comm) 

Each process, including the target process, sends the data stored in the array sendbuf to the
target process. As a result, if p is the number of processors in the communication comm , the
target process receives a total of p buffers. The data is stored in the array recvbuf of the target
process, in a rank order. That is, the data from process with rank i are stored in the recvbuf
starting at location i * sendcount (assuming that the array recvbuf is of the same type as
recvdatatype ).

The data sent by each process must be of the same size and type. That is, MPI_Gather must be
called with the sendcount and senddatatype arguments having the same values at each

process. The information about the receive buffer, its length and type applies only for the target
process and is ignored for all the other processes. The argument recvcount specifies the

number of elements received by each process and not the total number of elements it receives.
So, recvcount must be the same as sendcount and their datatypes must be matching.

MPI also provides the MPI_Allgather function in which the data are gathered to all the

processes and not only at the target process.

int MPI_Allgather(void *sendbuf, int sendcount, 
        MPI_Datatype senddatatype, void *recvbuf, int recvcount, 
        MPI_Datatype recvdatatype, MPI_Comm comm) 

The meanings of the various parameters are similar to those for MPI_Gather ; however, each
process must now supply a recvbuf array that will store the gathered data.

In addition to the above versions of the gather operation, in which the sizes of the arrays sent
by each process are the same, MPI also provides versions in which the size of the arrays can be
different. MPI refers to these operations as the vector variants. The vector variants of the
MPI_Gather and MPI_Allgather operations are provided by the functions MPI_Gatherv and
MPI_Allgatherv , respectively.

int MPI_Gatherv(void *sendbuf, int sendcount, 
        MPI_Datatype senddatatype, void *recvbuf, 
        int *recvcounts, int *displs, 



        MPI_Datatype recvdatatype, int target, MPI_Comm comm) 

int MPI_Allgatherv(void *sendbuf, int sendcount, 
        MPI_Datatype senddatatype, void *recvbuf, 
        int *recvcounts, int *displs, MPI_Datatype recvdatatype, 
        MPI_Comm comm) 

These functions allow a different number of data elements to be sent by each process by
replacing the recvcount parameter with the array recvcounts . The amount of data sent by
process i is equal to recvcounts[i] . Note that the size of recvcounts is equal to the size of
the communicator comm . The array parameter displs , which is also of the same size, is used
to determine where in recvbuf the data sent by each process will be stored. In particular, the
data sent by process i are stored in recvbuf starting at location displs[i] . Note that, as
opposed to the non-vector variants, the sendcount parameter can be different for different

processes.

6.6.6 Scatter

The scatter operation described in Section 4.4 is performed in MPI using the MPI_Scatter

function.

int MPI_Scatter(void *sendbuf, int sendcount, 
        MPI_Datatype senddatatype, void *recvbuf, int recvcount, 
        MPI_Datatype recvdatatype, int source, MPI_Comm comm) 

The source process sends a different part of the send buffer sendbuf to each processes,
including itself. The data that are received are stored in recvbuf . Process i receives sendcount
contiguous elements of type senddatatype starting from the i * sendcount location of the
sendbuf of the source process (assuming that sendbuf is of the same type as senddatatype ).
MPI_Scatter must be called by all the processes with the same values for the sendcount ,
senddatatype , recvcount , recvdatatype , source , and comm arguments. Note again that
sendcount is the number of elements sent to each individual process.

Similarly to the gather operation, MPI provides a vector variant of the scatter operation, called
MPI_Scatterv , that allows different amounts of data to be sent to different processes.

int MPI_Scatterv(void *sendbuf, int *sendcounts, int *displs, 
        MPI_Datatype senddatatype, void *recvbuf, int recvcount, 
        MPI_Datatype recvdatatype, int source, MPI_Comm comm) 

As we can see, the parameter sendcount has been replaced by the array sendcounts that
determines the number of elements to be sent to each process. In particular, the target
process sends sendcounts[i] elements to process i . Also, the array displs is used to
determine where in sendbuf these elements will be sent from. In particular, if sendbuf is of the
same type is senddatatype , the data sent to process i start at location displs[i] of array
sendbuf . Both the sendcounts and displs arrays are of size equal to the number of processes
in the communicator. Note that by appropriately setting the displs array we can use
MPI_Scatterv to send overlapping regions of sendbuf .

6.6.7 All-to-All

The all-to-all personalized communication operation described in Section 4.5 is performed in
MPI by using the MPI_Alltoall function.



int MPI_Alltoall(void *sendbuf, int sendcount, 
        MPI_Datatype senddatatype, void *recvbuf, int recvcount, 
        MPI_Datatype recvdatatype, MPI_Comm comm) 

Each process sends a different portion of the sendbuf array to each other process, including
itself. Each process sends to process i sendcount contiguous elements of type senddatatype
starting from the i * sendcount location of its sendbuf array. The data that are received are
stored in the recvbuf array. Each process receives from process i recvcount elements of type
recvdatatype and stores them in its recvbuf array starting at location i * recvcount .
MPI_Alltoall must be called by all the processes with the same values for the sendcount ,
senddatatype , recvcount , recvdatatype , and comm arguments. Note that sendcount and
recvcount are the number of elements sent to, and received from, each individual process.

MPI also provides a vector variant of the all-to-all personalized communication operation called
MPI_Alltoallv that allows different amounts of data to be sent to and received from each

process.

int MPI_Alltoallv(void *sendbuf, int *sendcounts, int *sdispls 
        MPI_Datatype senddatatype, void *recvbuf, int *recvcounts, 
        int *rdispls, MPI_Datatype recvdatatype, MPI_Comm comm) 

The parameter sendcounts is used to specify the number of elements sent to each process, and
the parameter sdispls is used to specify the location in sendbuf in which these elements are
stored. In particular, each process sends to process i , starting at location sdispls[i] of the
array sendbuf , sendcounts[i] contiguous elements. The parameter recvcounts is used to
specify the number of elements received by each process, and the parameter rdispls is used to
specify the location in recvbuf in which these elements are stored. In particular, each process
receives from process i recvcounts[i] elements that are stored in contiguous locations of
recvbuf starting at location rdispls[i] . MPI_Alltoallv must be called by all the processes
with the same values for the senddatatype , recvdatatype , and comm arguments.

6.6.8 Example: One-Dimensional Matrix-Vector Multiplication

Our first message-passing program using collective communications will be to multiply a dense
n x n matrix A with a vector b , i.e., x = Ab . As discussed in Section 8.1 , one way of
performing this multiplication in parallel is to have each process compute different portions of
the product-vector x . In particular, each one of the p processes is responsible for computing n
/p consecutive elements of x . This algorithm can be implemented in MPI by distributing the
matrix A in a row-wise fashion, such that each process receives the n /p rows that correspond
to the portion of the product-vector x it computes. Vector b is distributed in a fashion similar to
x .

Program 6.4 shows the MPI program that uses a row-wise distribution of matrix A . The
dimension of the matrices is supplied in the parameter n , the parameters a and b point to the
locally stored portions of matrix A and vector b , respectively, and the parameter x points to the

local portion of the output matrix-vector product. This program assumes that n is a multiple of
the number of processors.

Program 6.4 Row-wise Matrix-Vector Multiplication

 1   RowMatrixVectorMultiply(int n, double *a, double *b, double *x, 
 2                           MPI_Comm comm) 



 3   { 
 4     int i, j; 

 5     int nlocal;        /* Number of locally stored rows of A */ 

 6     double *fb;        /* Will point to a buffer that stores the entire vector b */ 
 7     int npes, myrank; 
 8     MPI_Status status; 
 9 

10     /* Get information about the communicator */ 
11     MPI_Comm_size(comm, &npes); 
12     MPI_Comm_rank(comm, &myrank); 
13 

14     /* Allocate the memory that will store the entire vector b */ 
15     fb = (double *)malloc(n*sizeof(double)); 
16 
17     nlocal = n/npes; 
18 

19     /* Gather the entire vector b on each processor using MPI's ALLGATHER operation */ 
20     MPI_Allgather(b, nlocal, MPI_DOUBLE, fb, nlocal, MPI_DOUBLE, 
21         comm); 
22 

23     /* Perform the matrix-vector multiplication involving the locally stored submatrix */ 
24     for (i=0; i<nlocal; i++) { 
25       x[i] = 0.0; 
26       for (j=0; j<n; j++) 
27         x[i] += a[i*n+j]*fb[j]; 
28     } 
29 
30     free(fb); 
31   } 

An alternate way of computing x is to parallelize the task of performing the dot-product for each
element of x . That is, for each element xi , of vector x , all the processes will compute a part of
it, and the result will be obtained by adding up these partial dot-products. This algorithm can be
implemented in MPI by distributing matrix A in a column-wise fashion. Each process gets n /p
consecutive columns of A , and the elements of vector b that correspond to these columns.
Furthermore, at the end of the computation we want the product-vector x to be distributed in a
fashion similar to vector b . Program 6.5 shows the MPI program that implements this column-
wise distribution of the matrix.

Program 6.5 Column-wise Matrix-Vector Multiplication

 1   ColMatrixVectorMultiply(int n, double *a, double *b, double *x, 
 2                           MPI_Comm comm) 
 3   { 
 4     int i, j; 
 5     int nlocal; 
 6     double *px; 
 7     double *fx; 
 8     int npes, myrank; 
 9     MPI_Status status; 
10 

11     /* Get identity and size information from the communicator */ 
12     MPI_Comm_size(comm, &npes); 
13     MPI_Comm_rank(comm, &myrank); 



14 
15     nlocal = n/npes; 
16 

17     /* Allocate memory for arrays storing intermediate results. */ 
18     px = (double *)malloc(n*sizeof(double)); 
19     fx = (double *)malloc(n*sizeof(double)); 
20 

21     /* Compute the partial-dot products that correspond to the local columns of A.*/ 
22     for (i=0; i<n; i++) { 
23       px[i] = 0.0; 
24       for (j=0; j<nlocal; j++) 
25         px[i] += a[i*nlocal+j]*b[j]; 
26     } 
27 

28     /* Sum-up the results by performing an element-wise reduction operation */ 
29     MPI_Reduce(px, fx, n, MPI_DOUBLE, MPI_SUM, 0, comm); 
30 

31     /* Redistribute fx in a fashion similar to that of vector b */ 
32     MPI_Scatter(fx, nlocal, MPI_DOUBLE, x, nlocal, MPI_DOUBLE, 0, 
33         comm); 
34 
35     free(px); free(fx); 
36   } 

Comparing these two programs for performing matrix-vector multiplication we see that the row-
wise version needs to perform only a MPI_Allgather operation whereas the column-wise
program needs to perform a MPI_Reduce and a MPI_Scatter operation. In general, a row-wise

distribution is preferable as it leads to small communication overhead (see Problem 6.6 ).
However, many times, an application needs to compute not only Ax but also AT x . In that case,
the row-wise distribution can be used to compute Ax , but the computation of AT x requires the
column-wise distribution (a row-wise distribution of A is a column-wise distribution of its
transpose AT ). It is much cheaper to use the program for the column-wise distribution than to
transpose the matrix and then use the row-wise program. We must also note that using a dual
of the all-gather operation, it is possible to develop a parallel formulation for column-wise
distribution that is as fast as the program using row-wise distribution (see Problem 6.7 ).
However, this dual operation is not available in MPI.

6.6.9 Example: Single-Source Shortest-Path

Our second message-passing program that uses collective communication operations computes
the shortest paths from a source-vertex s to all the other vertices in a graph using Dijkstra's
single-source shortest-path algorithm described in Section 10.3 . This program is shown in
Program 6.6.

The parameter n stores the total number of vertices in the graph, and the parameter source

stores the vertex from which we want to compute the single-source shortest path. The
parameter wgt points to the locally stored portion of the weighted adjacency matrix of the
graph. The parameter lengths points to a vector that will store the length of the shortest paths
from source to the locally stored vertices. Finally, the parameter comm is the communicator to

be used by the MPI routines. Note that this routine assumes that the number of vertices is a
multiple of the number of processors.

Program 6.6 Dijkstra's Single-Source Shortest-Path

[View full width]



 1   SingleSource(int n, int source, int *wgt, int *lengths, MPI_Comm comm) 
 2   { 
 3     int i, j; 

 4     int nlocal;  /* The number of vertices stored locally */ 

 5     int *marker;  /* Used to mark the vertices belonging to Vo */ 

 6     int firstvtx;  /* The index number of the first vertex that is stored locally */ 

 7     int lastvtx;  /* The index number of the last vertex that is stored locally */ 
 8     int u, udist; 
 9     int lminpair[2], gminpair[2]; 
10     int npes, myrank; 
11     MPI_Status status; 
12 
13     MPI_Comm_size(comm, &npes); 
14     MPI_Comm_rank(comm, &myrank); 
15 
16     nlocal   = n/npes; 
17     firstvtx = myrank*nlocal; 
18     lastvtx  = firstvtx+nlocal-1; 
19 

20     /* Set the initial distances from source to all the other vertices */ 
21     for (j=0; j<nlocal; j++) 
22       lengths[j] = wgt[source*nlocal + j]; 
23 

24     /* This array is used to indicate if the shortest part to a vertex has been found 

or not. */ 

25     /* if marker [v] is one, then the shortest path to v has been found, otherwise it 

has not. */ 
26     marker = (int *)malloc(nlocal*sizeof(int)); 
27     for (j=0; j<nlocal; j++) 
28       marker[j] = 1; 
29 

30     /* The process that stores the source vertex, marks it as being seen */ 
31     if (source >= firstvtx && source <= lastvtx) 
32       marker[source-firstvtx] = 0; 
33 

34     /* The main loop of Dijkstra's algorithm */ 
35     for (i=1; i<n; i++) { 

36       /* Step 1: Find the local vertex that is at the smallest distance from source */ 

37       lminpair[0] = MAXINT; /* set it to an architecture dependent large number */ 
38       lminpair[1] = -1; 
39       for (j=0; j<nlocal; j++) { 
40         if (marker[j] && lengths[j] < lminpair[0]) { 
41           lminpair[0] = lengths[j]; 
42           lminpair[1] = firstvtx+j; 
43         } 
44       } 
45 

46       /* Step 2: Compute the global minimum vertex, and insert it into Vc */ 
47       MPI_Allreduce(lminpair, gminpair, 1, MPI_2INT, MPI_MINLOC, 
48           comm); 
49       udist = gminpair[0]; 
50       u = gminpair[1]; 
51 

52       /* The process that stores the minimum vertex, marks it as being seen */ 



53       if (u == lminpair[1]) 
54         marker[u-firstvtx] = 0; 
55 

56       /* Step 3: Update the distances given that u got inserted */ 
57       for (j=0; j<nlocal; j++) { 
58         if (marker[j] && udist + wgt[u*nlocal+j] < lengths[j]) 
59           lengths[j] = udist + wgt[u*nlocal+j]; 
60       } 
61     } 
62 
63     free(marker); 
64   } 

The main computational loop of Dijkstra's parallel single-source shortest path algorithm
performs three steps. First, each process finds the locally stored vertex in Vo that has the
smallest distance from the source. Second, the vertex that has the smallest distance over all
processes is determined, and it is included in Vc . Third, all processes update their distance
arrays to reflect the inclusion of the new vertex in Vc .

The first step is performed by scanning the locally stored vertices in Vo and determining the one
vertex v with the smaller lengths [v ] value. The result of this computation is stored in the array
lminpair . In particular, lminpair [0] stores the distance of the vertex, and lminpair [1] stores
the vertex itself. The reason for using this storage scheme will become clear when we consider
the next step, in which we must compute the vertex that has the smallest overall distance from
the source. We can find the overall shortest distance by performing a min-reduction on the
distance values stored in lminpair [0]. However, in addition to the shortest distance, we also
need to know the vertex that is at that shortest distance. For this reason, the appropriate
reduction operation is the MPI_MINLOC which returns both the minimum as well as an index
value associated with that minimum. Because of MPI_MINLOC we use the two-element array

lminpair to store the distance as well as the vertex that achieves this distance. Also, because the
result of the reduction operation is needed by all the processes to perform the third step, we use
the MPI_Allreduce operation to perform the reduction. The result of the reduction operation is

returned in the gminpair array. The third and final step during each iteration is performed by
scanning the local vertices that belong in Vo and updating their shortest distances from the
source vertex.

Avoiding Load Imbalances Program 6.6 assigns n /p consecutive columns of W to each
processor and in each iteration it uses the MPI_MINLOC reduction operation to select the vertex v
to be included in Vc . Recall that the MPI_MINLOC operation for the pairs (a , i ) and (a , j ) will

return the one that has the smaller index (since both of them have the same value).
Consequently, among the vertices that are equally close to the source vertex, it favors the
smaller numbered vertices. This may lead to load imbalances, because vertices stored in lower-
ranked processes will tend to be included in Vc faster than vertices in higher-ranked processes
(especially when many vertices in Vo are at the same minimum distance from the source).
Consequently, the size of the set Vo will be larger in higher-ranked processes, dominating the
overall runtime.

One way of correcting this problem is to distribute the columns of W using a cyclic distribution.
In this distribution process i gets every p th vertex starting from vertex i . This scheme also
assigns n /p vertices to each process but these vertices have indices that span almost the entire
graph. Consequently, the preference given to lower-numbered vertices by MPI_MINLOC does not

lead to load-imbalance problems.

6.6.10 Example: Sample Sort

The last problem requiring collective communications that we will consider is that of sorting a



sequence A of n elements using the sample sort algorithm described in Section 9.5 . The
program is shown in Program 6.7 .

The SampleSort function takes as input the sequence of elements stored at each process and

returns a pointer to an array that stores the sorted sequence as well as the number of elements
in this sequence. The elements of this SampleSort function are integers and they are sorted in
increasing order. The total number of elements to be sorted is specified by the parameter n and
a pointer to the array that stores the local portion of these elements is specified by elmnts . On
return, the parameter nsorted will store the number of elements in the returned sorted array.
This routine assumes that n is a multiple of the number of processes.

Program 6.7 Samplesort

[View full width]

 1   int *SampleSort(int n, int *elmnts, int *nsorted, MPI_Comm comm) 
 2   { 
 3     int i, j, nlocal, npes, myrank; 
 4     int *sorted_elmnts, *splitters, *allpicks; 
 5     int *scounts, *sdispls, *rcounts, *rdispls; 
 6 

 7     /* Get communicator-related information */ 
 8     MPI_Comm_size(comm, &npes); 
 9     MPI_Comm_rank(comm, &myrank); 
10 
11     nlocal = n/npes; 
12 

13     /* Allocate memory for the arrays that will store the splitters */ 
14     splitters = (int *)malloc(npes*sizeof(int)); 
15     allpicks = (int *)malloc(npes*(npes-1)*sizeof(int)); 
16 

17     /* Sort local array */ 
18     qsort(elmnts, nlocal, sizeof(int), IncOrder); 
19 

20     /* Select local npes-1 equally spaced elements */ 
21     for (i=1; i<npes; i++) 
22       splitters[i-1] = elmnts[i*nlocal/npes]; 
23 

24     /* Gather the samples in the processors */ 
25     MPI_Allgather(splitters, npes-1, MPI_INT, allpicks, npes-1, 
26         MPI_INT, comm); 
27 

28     /* sort these samples */ 
29     qsort(allpicks, npes*(npes-1), sizeof(int), IncOrder); 
30 

31     /* Select splitters */ 
32     for (i=1; i<npes; i++) 
33       splitters[i-1] = allpicks[i*npes]; 
34     splitters[npes-1] = MAXINT; 
35 

36     /* Compute the number of elements that belong to each bucket */ 
37     scounts = (int *)malloc(npes*sizeof(int)); 
38     for (i=0; i<npes; i++) 
39       scounts[i] = 0; 
40 



41     for (j=i=0; i<nlocal; i++) { 
42       if (elmnts[i] < splitters[j]) 
43         scounts[j]++; 
44       else 
45         scounts[++j]++; 
46     } 
47 

48     /* Determine the starting location of each bucket's elements in the elmnts array */ 
49     sdispls = (int *)malloc(npes*sizeof(int)); 
50     sdispls[0] = 0; 
51     for (i=1; i<npes; i++) 
52       sdispls[i] = sdispls[i-1]+scounts[i-1]; 
53 

54     /* Perform an all-to-all to inform the corresponding processes of the number of 

elements */ 

55     /* they are going to receive. This information is stored in rcounts array */ 
56     rcounts = (int *)malloc(npes*sizeof(int)); 
57     MPI_Alltoall(scounts, 1, MPI_INT, rcounts, 1, MPI_INT, comm); 
58 

59     /* Based on rcounts determine where in the local array the data from each 

processor */ 

60     /* will be stored. This array will store the received elements as well as the 

final */ 

61     /* sorted sequence */ 
62     rdispls = (int *)malloc(npes*sizeof(int)); 
63     rdispls[0] = 0; 
64     for (i=1; i<npes; i++) 
65       rdispls[i] = rdispls[i-1]+rcounts[i-1]; 
66 
67     *nsorted = rdispls[npes-1]+rcounts[i-1]; 
68     sorted_elmnts = (int *)malloc((*nsorted)*sizeof(int)); 
69 

70     /* Each process sends and receives the corresponding elements, using the 

MPI_Alltoallv */ 

71     /* operation. The arrays scounts and sdispls are used to specify the number of 

elements */ 

72     /* to be sent and where these elements are stored, respectively. The arrays 

rcounts */ 

73     /* and rdispls are used to specify the number of elements to be received, and 

where these */ 

74     /* elements will be stored, respectively. */ 
75     MPI_Alltoallv(elmnts, scounts, sdispls, MPI_INT, sorted_elmnts, 
76         rcounts, rdispls, MPI_INT, comm); 
77 

78     /* Perform the final local sort */ 
79     qsort(sorted_elmnts, *nsorted, sizeof(int), IncOrder); 
80 
81     free(splitters); free(allpicks); free(scounts); free(sdispls); 
82     free(rcounts); free(rdispls); 
83 
84     return sorted_elmnts; 
85   } 
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6.7 Groups and Communicators

In many parallel algorithms, communication operations need to be restricted to certain subsets
of processes. MPI provides several mechanisms for partitioning the group of processes that
belong to a communicator into subgroups each corresponding to a different communicator. A
general method for partitioning a graph of processes is to use MPI_Comm_split that is defined

as follows:

int MPI_Comm_split(MPI_Comm comm, int color, int key, 
        MPI_Comm *newcomm) 

This function is a collective operation, and thus needs to be called by all the processes in the
communicator comm . The function takes color and key as input parameters in addition to the
communicator, and partitions the group of processes in the communicator comm into disjoint

subgroups. Each subgroup contains all processes that have supplied the same value for the
color parameter. Within each subgroup, the processes are ranked in the order defined by the
value of the key parameter, with ties broken according to their rank in the old communicator
(i.e., comm ). A new communicator for each subgroup is returned in the newcomm parameter.
Figure 6.7 shows an example of splitting a communicator using the MPI_Comm_split function. If
each process called MPI_Comm_split using the values of parameters color and key as shown in

Figure 6.7 , then three communicators will be created, containing processes {0, 1, 2}, {3, 4, 5,
6}, and {7}, respectively.

Figure 6.7. Using MPI_Comm_split to split a group of processes in a
communicator into subgroups.

Splitting Cartesian Topologies In many parallel algorithms, processes are arranged in a
virtual grid, and in different steps of the algorithm, communication needs to be restricted to a
different subset of the grid. MPI provides a convenient way to partition a Cartesian topology to
form lower-dimensional grids.

MPI provides the MPI_Cart_sub function that allows us to partition a Cartesian topology into

sub-topologies that form lower-dimensional grids. For example, we can partition a two-
dimensional topology into groups, each consisting of the processes along the row or column of
the topology. The calling sequence of MPI_Cart_sub is the following:

int MPI_Cart_sub(MPI_Comm comm_cart, int *keep_dims, 
        MPI_Comm *comm_subcart) 



The array keep_dims is used to specify how the Cartesian topology is partitioned. In particular,
if keep_dims[i] is true (non-zero value in C) then the i th dimension is retained in the new

sub-topology. For example, consider a three-dimensional topology of size 2 x 4 x 7. If
keep_dims is {true, false, true}, then the original topology is split into four two-dimensional
sub-topologies of size 2 x 7, as illustrated in Figure 6.8(a) . If keep_dims is {false, false, true},

then the original topology is split into eight one-dimensional topologies of size seven, illustrated
in Figure 6.8(b) . Note that the number of sub-topologies created is equal to the product of the
number of processes along the dimensions that are not being retained. The original topology is
specified by the communicator comm_cart , and the returned communicator comm_subcart

stores information about the created sub-topology. Only a single communicator is returned to
each process, and for processes that do not belong to the same sub-topology, the group
specified by the returned communicator is different.

Figure 6.8. Splitting a Cartesian topology of size 2 x 4 x 7 into (a) four
subgroups of size 2 x 1 x 7, and (b) eight subgroups of size 1 x 1 x 7.

The processes belonging to a given sub-topology can be determined as follows. Consider a
three-dimensional topology of size d 1 x d 2 x d 3 , and assume that keep_dims is set to {true,

false, true}. The group of processes that belong to the same sub-topology as the process with
coordinates (x , y , z ) is given by (*, y , *), where a '*' in a coordinate denotes all the possible
values for this coordinate. Note also that since the second coordinate can take d 2 values, a total
of d 2 sub-topologies are created.

Also, the coordinate of a process in a sub-topology created by MPI_Cart_sub can be obtained

from its coordinate in the original topology by disregarding the coordinates that correspond to
the dimensions that were not retained. For example, the coordinate of a process in the column-
based sub-topology is equal to its row-coordinate in the two-dimensional topology. For
instance, the process with coordinates (2, 3) has a coordinate of (2) in the sub-topology that
corresponds to the third column of the grid.



6.7.1 Example: Two-Dimensional Matrix-Vector Multiplication

In Section 6.6.8 , we presented two programs for performing the matrix-vector multiplication x
= Ab using a row- and column-wise distribution of the matrix. As discussed in Section 8.1.2 , an
alternative way of distributing matrix A is to use a two-dimensional distribution, giving rise to
the two-dimensional parallel formulations of the matrix-vector multiplication algorithm.

Program 6.8 shows how these topologies and their partitioning are used to implement the two-
dimensional matrix-vector multiplication. The dimension of the matrix is supplied in the
parameter n , the parameters a and b point to the locally stored portions of matrix A and vector
b , respectively, and the parameter x points to the local portion of the output matrix-vector
product. Note that only the processes along the first column of the process grid will store b
initially, and that upon return, the same set of processes will store the result x . For simplicity,

the program assumes that the number of processes p is a perfect square and that n is a

multiple of .

Program 6.8 Two-Dimensional Matrix-Vector Multiplication

[View full width]

 1   MatrixVectorMultiply_2D(int n, double *a, double *b, double *x, 
 2                           MPI_Comm comm) 
 3   { 

 4     int ROW=0, COL=1; /* Improve readability */ 
 5     int i, j, nlocal; 

 6     double *px; /* Will store partial dot products */ 
 7     int npes, dims[2], periods[2], keep_dims[2]; 
 8     int myrank, my2drank, mycoords[2]; 
 9     int other_rank, coords[2]; 
10     MPI_Status status; 
11     MPI_Comm comm_2d, comm_row, comm_col; 
12 

13     /* Get information about the communicator */ 
14     MPI_Comm_size(comm, &npes); 
15     MPI_Comm_rank(comm, &myrank); 
16 

17     /* Compute the size of the square grid */ 
18     dims[ROW] = dims[COL] = sqrt(npes); 
19 
20     nlocal = n/dims[ROW]; 
21 

22     /* Allocate memory for the array that will hold the partial dot-products */ 
23     px = malloc(nlocal*sizeof(double)); 
24 

25     /* Set up the Cartesian topology and get the rank & coordinates of the process in 

this topology */ 

26     periods[ROW] = periods[COL] = 1; /* Set the periods for wrap-around connections */ 
27 
28     MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, 1, &comm_2d); 
29 

30     MPI_Comm_rank(comm_2d, &my2drank); /* Get my rank in the new topology */ 

31     MPI_Cart_coords(comm_2d, my2drank, 2, mycoords); /* Get my coordinates */ 
32 

33     /* Create the row-based sub-topology */ 



34     keep_dims[ROW] = 0; 
35     keep_dims[COL] = 1; 
36     MPI_Cart_sub(comm_2d, keep_dims, &comm_row); 
37 

38     /* Create the column-based sub-topology */ 
39     keep_dims[ROW] = 1; 
40     keep_dims[COL] = 0; 
41     MPI_Cart_sub(comm_2d, keep_dims, &comm_col); 
42 

43     /* Redistribute the b vector. */ 

44     /* Step 1. The processors along the 0th column send their data to the diagonal 
processors */ 

45     if (mycoords[COL] == 0 && mycoords[ROW] != 0) { /* I'm in the first column */ 
46       coords[ROW] = mycoords[ROW]; 
47       coords[COL] = mycoords[ROW]; 
48       MPI_Cart_rank(comm_2d, coords, &other_rank); 
49       MPI_Send(b, nlocal, MPI_DOUBLE, other_rank, 1, comm_2d); 
50     } 
51     if (mycoords[ROW] == mycoords[COL] && mycoords[ROW] != 0) { 
52       coords[ROW] = mycoords[ROW]; 
53       coords[COL] = 0; 
54       MPI_Cart_rank(comm_2d, coords, &other_rank); 
55       MPI_Recv(b, nlocal, MPI_DOUBLE, other_rank, 1, comm_2d, 
56           &status); 
57     } 
58 

59     /* Step 2. The diagonal processors perform a column-wise broadcast */ 
60     coords[0] = mycoords[COL]; 
61     MPI_Cart_rank(comm_col, coords, &other_rank); 
62     MPI_Bcast(b, nlocal, MPI_DOUBLE, other_rank, comm_col); 
63 

64     /* Get into the main computational loop */ 
65     for (i=0; i<nlocal; i++) { 
66       px[i] = 0.0; 
67       for (j=0; j<nlocal; j++) 
68         px[i] += a[i*nlocal+j]*b[j]; 
69     } 
70 

71     /* Perform the sum-reduction along the rows to add up the partial dot-products */ 
72     coords[0] = 0; 
73     MPI_Cart_rank(comm_row, coords, &other_rank); 
74     MPI_Reduce(px, x, nlocal, MPI_DOUBLE, MPI_SUM, other_rank, 
75         comm_row); 
76 

77     MPI_Comm_free(&comm_2d); /* Free up communicator */ 

78     MPI_Comm_free(&comm_row); /* Free up communicator */ 

79     MPI_Comm_free(&comm_col); /* Free up communicator */ 
80 
81     free(px); 
82   } 
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6.8 Bibliographic Remarks

The best source for information about MPI is the actual reference of the library itself [Mes94]. At
the time of writing of this book, there have been two major releases of the MPI standard. The
first release, version 1.0, was released in 1994 and its most recent revision, version 1.2, has
been implemented by the majority of hardware vendors. The second release of the MPI
standard, version 2.0 [Mes97], contains numerous significant enhancements over version 1.x,
such as one-sided communication, dynamic process creation, and extended collective
operations. However, despite the fact that the standard was voted in 1997, there are no widely
available MPI-2 implementations that support the entire set of features specified in that
standard. In addition to the above reference manuals, a number of books have been written
that focus on parallel programming using MPI [Pac98, GSNL98, GLS99].

In addition to MPI implementations provided by various hardware vendors, there are a number
of publicly available MPI implementations that were developed by various government research
laboratories and universities. Among them, the MPICH [GLDS96, GL96b] (available at
http://www-unix.mcs.anl.gov/mpi/mpich) distributed by Argonne National Laboratories and the
LAM-MPI (available at http://www.lam-mpi.org) distributed by Indiana University are widely
used and are portable to a number of different architectures. In fact, these implementations of
MPI have been used as the starting point for a number of specialized MPI implementations that
are suitable for off-the-shelf high-speed interconnection networks such as those based on
gigabit Ethernet and Myrinet networks.
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Problems

6.1 Describe a message-transfer protocol for buffered sends and receives in which the
buffering is performed only by the sending process. What kind of additional hardware
support is needed to make these types of protocols practical?

6.2 One of the advantages of non-blocking communication operations is that they allow
the transmission of the data to be done concurrently with computations. Discuss the type
of restructuring that needs to be performed on a program to allow for the maximal overlap
of computation with communication. Is the sending process in a better position to benefit
from this overlap than the receiving process?

6.3 As discussed in Section 6.3.4 the MPI standard allows for two different
implementations of the MPI_Send operation – one using buffered-sends and the other

using blocked-sends. Discuss some of the potential reasons why MPI allows these two
different implementations. In particular, consider the cases of different message-sizes
and/or different architectural characteristics.

6.4 Consider the various mappings of 16 processors on a 4 x 4 two-dimensional grid

shown in Figure 6.5. Show how  processors will be mapped using each one
of these four schemes.

6.5 Consider Cannon's matrix-matrix multiplication algorithm. Our discussion of Cannon's
algorithm has been limited to cases in which A and B are square matrices, mapped onto a
square grid of processes. However, Cannon's algorithm can be extended for cases in which
A, B, and the process grid are not square. In particular, let matrix A be of size n x k and
matrix B be of size k x m. The matrix C obtained by multiplying A and B is of size n x m.
Also, let q x r be the number of processes in the grid arranged in q rows and r columns.
Develop an MPI program for multiplying two such matrices on a q x r process grid using
Cannon's algorithm.

6.6 Show how the row-wise matrix-vector multiplication program (Program 6.4) needs to
be changed so that it will work correctly in cases in which the dimension of the matrix does
not have to be a multiple of the number of processes.

6.7 Consider the column-wise implementation of matrix-vector product (Program 6.5). An
alternate implementation will be to use MPI_Allreduce to perform the required reduction

operation and then have each process copy the locally stored elements of vector x from the
vector fx. What will be the cost of this implementation? Another implementation can be to

perform p single-node reduction operations using a different process as the root. What will
be the cost of this implementation?

6.8 Consider Dijkstra's single-source shortest-path algorithm described in Section 6.6.9.
Describe why a column-wise distribution is preferable to a row-wise distribution of the
weighted adjacency matrix.

6.9 Show how the two-dimensional matrix-vector multiplication program (Program 6.8)
needs to be changed so that it will work correctly for a matrix of size n x m on a q x r
process grid.

[ Team LiB ]  




