

Monographs in Computer Science

Editors

David Gries
Fred B. Schneider

Springer Science+ Business Media, LLC

Monographs in Computer Science

Abadi and Cardelli, A Theory of Objects

Benosman and Kang [editors], Panoramic Vision: Sensors, Theory, and Applications

Broy and St",len, Specification and Development of Interactive Systems: FOCUS on
Streams, Interfaces, and Refinement

Brzozowski and Seger, Asynchronous Circuits

Cantone, Omodeo, and Policriti, Set Theory for Computing: From Decision
Procedures to Declarative Programming with Sets

Castillo, Gutiemez, and Hadi, Expert Systems and Probabilistic Network Models

Downey and Fellows, Parameterized Complexity

Feijen and van Gasteren, On a Method of Multiprogramming

Leiss, Language Equations

Mclver and Morgan [editors], Programming Methodology

Misra, A Discipline of Multiprogramming: Programming Theory for Distributed
Applications

Nielson [editor], ML with Concurrency

Paton [editor], Active Rules in Database Systems

Selig, Geometrical Methods in Robotics

Annabelle Mclver
Carroll Morgan

Editors

Programming
Methodology

With 68 Figures

Springer

Annabelle Mclver
Department of Computing
Macquarie University
Sydney 2109, Australia
anabel@ics.mq.edu.au

Series Editors:
David Gries
Department of Computer Science
The University of Georgia
415 Boyd Graduate Studies

Research Center
Athens, GA 30602-7404, USA

Carroll Morgan
Department of Computer Science

and Engineering
The University of New South Wales
Sydney 2052, Australia
carrollm@cse.unsw.edu.au

Fred B. Schneider
Department of Computer Science
Cornell University
Upson Hall
Ithaca, NY 14853-7501, USA

Library 01 Congress Cataloging-in-Publication Data
Mclver, Annabelle 1964-

Programming methodology/Annabelie Mclver, Carroll Morgan.
p. cm.-(Monographs in computer science)

Includes bibliographical relerences and index.

1. Computer programming. I. Morgan, Carroll, 1952-. 11. Title. 111. Series.
QA76.6 .M32352002
005.1-dc21 2002017377

ISBN 978-1-4419-2964-8 ISBN 978-0-387-21798-7 (eBook)
DOI 10.1007/978-0-387-21798-7

© 2003 Springer Science+Business Media New York
Originally published by Springer-Verlag New York. Inc in 2003
Softcover reprint of the hardcover 1st edition 2003

All rights reserved. This work may not be translated or copied in whole or in part without
the written permission ofthe publisher (Springer Science+Business Media, LLC), except for
brief excerpts in connection with reviews or scholarly analysis. Use in connection with
any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter
developed is forbidden.
The use in this publication oftrade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
wh ether or not they are subject to proprietary rights.

www.springer-ny.com

Preface

The second half of the twentieth century saw an astonishing increase in computing
power; today computers are unbelievably faster than they used to be, they have
more memory, they can communicate routinely with remote machines all over
the world - and they can fit on a desktop. But, despite this remarkable progress,
the voracity of modem applications and user expectations still pushes technology
right to the limit. As hardware engineers build ever-more-powerful machines, so
too must software become more sophisticated to keep up.

Medium- to large-scale programming projects need teams of people to pull
everything together in an acceptable timescale. The question of how pro gram
mers understand their own tasks, and how they fit together with those of their
colleagues to achieve the overall goal, is a major concern. Without that under
standing it would be practically impossible to realise the commercial potential of
our present-day computing hardware.

That programming has been able to keep pace with the formidable advances in
hardware is due to the similarly formidable advances in the principles for design,
construction and organisation of programs. The efficacy of these methods and
principles speaks for itself - computer technology is all-pervasive - but even
more telling is that they are beginning to feed back and inftuence hardware design
as weIl. The study of such methods is called programming methodology, whose
topics range over system- and domain-modelling, concurrency, object orientation,
program specification and validation.

That is the theme of this collection.

Programming Methodology

Most systems today aim to be secure, robust, easy-to-use and timely. To achieve
these aims the programmer needs the right tools, which in this context are
"intellectually-based", and comprise techniques to help organise complex prob
lems and express them in a way that can be both understood by developers and
interpreted by machines.

The desire to reduce complexity (or at least to hide it where possible) has been
the driving force behind the invention of design methods and principles, many
of which are now built in to popular programming languages and (automatic)
program-development tools. Typed languages for instance help with error de-

vi Preface

tection, and the object-oriented programming method and data abstraction (both
present for example in Java) support program modification, programming at the
interface-level and readability. Meanwhile concurrency has flourished with the
introduction of concurrent languages together with formal tools, including the
model-checkers and proof assistants which are used in validation.

Many of these tools have at their heart impressive theoretical credentials - "as
sertions" and "program invariants" rely on a theory of programming logics; and
specification and refinement techniques have pro gram semantics at their basis.
The essays in this collection concentrate on new and emerging techniques for con
structing modem applications; they deal with the problems that software designers
face and propose practical solutions together with their theoretical foundations.

The idea of assembling papers on this theme to form a book arose in the tech
nical meetings of the members of the Working Group 2.3 of the International
Federation for Information Processing (IFIP).

Working Group 2.3

The working groups of IFIP meet regularly to discuss new ideas - their own,
and others' - and to evaluate and promote trends in many aspects of computing
systems. Their official output varies widely between individual groups, and de
pends largely on the traditions and style of the current membership, though they
frequently promote special courses and host conferences.

The term "programming methodology" was coined by one of the members of
WG2.3, and over the group's nearly thirty years of existence, its members have
contributed to many of the topics mentioned above; and indeed many flourishing
areas of research in programming methodology today are based on ideas which
were once discussed and developed in WG2.3 meetings.

This Collection

The present volume represents the second official publication by the group. Our
aim was to gather material which would attract both students and professionals
working either in an academic or industrial environment. Indeed we hope that this
collection will form a reference and guide to the front line of research activity in
programming methodology.

The range of subjects reflects the interests of the current membership and ad
dresses in particular the problems associated with contemporary demands for
highly complex applications that actually work. Many of the essays contain
new material, highlighting specific theoretical advances, whilst others aim to re
view or evaluate a particular area, or to outline suggestive problems for further
investigation.

Preface vii

Structure

The book comprises three parts, each one devoted to a major theme in program
ming methodology. The parts are further divided into subsections where essays
focussing on a particular topic lying within the scope of its overall section are
gathered together. The short introductions at the beginning of each subsection
serve to set the scene for the detailed articles to follow.

Systems may be complex because they are distributed over a network, or be
cause they are time-critical or concurrent - the first part deals with the business of
describing, modelling and analysing such systems. The second part concentrates
on specific programming techniques, the "programmer's toolkit", whilst the final
part elaborates on some topical applications including security and telephony.

Acknowledgments

It goes without saying that this book would have been impossible to put to
gether without the creative work of the authors of the articles. We thank especially
Natarajan Shankar (chairman ofWG2.3) for the initial motivation for this project
and David Gries for help in its realisation.

Annabelle McI ver
Carroll Morgan

Sydney, Australia, 2002

IFIP WG2.3 dedicates this book to the fond memory of two of its founding
members:

Ole-Johan Dahl (1931-2002)
and

Edsger WYbe Dijkstra (1930-2002)

Contents

Preface v

Contributors xv

Part I Models and correctness 1

A Concurrency and interaction 3

1 Wanted: a compositional approach to concurrency 5
C.B. Jones
1.1 Compositionality.............. 5
1.2 The essence of concurrency is interference 7
1.3 Reasoning about interference 8
1.4 Some problems with assumptionlcommitment reasoning . 10
1.5 The role of ghost variables. 11
l.6 Granu1arity concems. 12
l.7 Atomicity as an abstraction, and its refinement 12
l.8 Conc1usion. 13
References. 13

2 Enforcing behavior with contracts 17
Ra1ph-Johan Back and Joakim von Wright
2.1 Introduction 17
2.2 Contracts 19
2.3 Achieving goals with contracts
2.4 Enforcing behaviora1 properties
2.5 Ana1yzing behavior of action systems .
2.6 Verifying enforcement
2.7 Conc1usions and re1ated work
References.

27
33
39
43
50
51

x Contents

B Logical approaches to asynchrony 53

3 Asynchronous progress 57
EmieCohen
3.1 Introduction . 57
3.2 Programs . . . 59
3.3 Achievement. 61
3.4 Decoupling.. 63
3.5 Example - Loosely-coupled programs . 64
3.6 Asynchronous safety . 65
3.7 Caveats 66
3.8 Conc1usions.... 67
3.9 Acknowledgements 68
References. 68

4 A reduction theorem for concurrent object-oriented programs 69
Jayadev Misra
4.1 Introduction 69
4.2 The Seuss programming notation 71
4.3 A model of Seuss programs 78
4.4 Restrictions on pro grams ... 80
4.5 Compatibility......... 83
4.6 Proof of the reduction theorem 87
4.7 Conc1uding remarks 91
References. 91

C Systems and real time 93

5 Abstractions from time 95
Manfred Broy
5.1 Introduction 95
5.2 Streams............... 96
5.3 Components as functions on streams 99
5.4 Time abstraction 100
5.5 Conc1usions 104
References. 106

6 A predicative semantics for real-time refinement 109
lan Hayes
6.1 Background....... 109
6.2 Language and semantics . 111
6.3 An example 124
6.4 Repetitions 126
6.5 Timing-constraint analysis. 129

Contents Xl

6.6 Conclusions l3l
References. l32

D Specifying complex behaviour 135

7 Aspects of system description 137
Michael Jackson
7.1 Introduction l37
7.2 Symbol manipulation . l38
7.3 The Machine and the World 140
7.4 Describing the World ... 144
7.5 Descriptions and models. . 147
7.6 Problem decomposition and description structures 153
7.7 The scope of software development . 156
7.8 Acknowledgements 158
References. 159

8 Modelling architectures for dynamic systems 161
Peter Henderson
8.1 Introduction........ 161
8.2 Models of dynamic systems 163
8.3 Architectures for reuse. 168
8.4 Conclusions 172
References. 173

9 "What is a method?" - an essay on some aspects of domain
engineering
Dines Bj0mer
9.1 Introduction
9.2 Method and Methodology
9.3 Domain Perspectives and Facets .
9.4 Conclusion.
References.

Part 11 Programming techniques

175

175
178
181
199
201

205

E Object orientation 207

10 Object-oriented programming and software development - a
critical assessment 211
Manfred Broy
10.1 Introduction .. 211

xii Contents

10.2 Object orientation - its claims and its limitations
10.3 Object-oriented programming - a critique
10.4 Object-oriented analysis and design - a critique .
10.5 Concluding remarks
References .

11 A trace model for pointers and objects
C.A.R. Hoare and He Jifeng
11.1 Introduction: the graph model
11.2 The trace model
11.3 Applications
11.4 Conclusion.
References.

12 Object models as heap invariants
Daniei Jackson
12.1 Snapshots and object models
12.2 Object-model examples
12.3 A relationallogic .
12.4 Diagrams to logic .
12.5 Textual annotations
12.6 Discussion
References

13 Abstraction dependencies
K. Rustan M. Leino and Greg Nelson
13.1 Introduction
13.2 On the need for data abstraction .
13.3 Validity as an abstract variable
13.4 Definition of notation
13.5 Example: Readers
13.6 Related work .
13.7 Conclusions
References. .

F Type theory

14 Type systems
Benjamin C. Pierce
14.1 Type systems in computer science .
14.2 What are type systems.good for?
14.3 History .
References.

212
214
219
220
220

223

223
229
236
242
243

247

249
250
253
255
258
260
266

269

269
270
272
273
278
285
286
287

291

293

293
295
300
301

Contents xiii

15 What do types mean? - From intrinsie to extrinsic semantics 309
John C. Reynolds
15.1 Syntax and typing mIes 310
15.2 An intrinsic semantics 312
15.3 An untyped semantics 314
15.4 Logical relations. . . 315
15.5 Bracketing...... 321
15.6 An extrinsic PER semantics 323
15.7 Further work and future directions 326
15.8 Acknowledgements 326
References. 326

Part III Applications and automated theories

G Putting theories into practice by automation

16 Automated verification using deduction, exploration,
and abstraction
Natarajan Shankar
16.1 Models of computation
16.2 Logics of program behavior
16.3 Verification techniques ...
16.4 Abstractions ofprograms and properties
16.5 Verification methodology
16.6 Conclusions
References.

17 An experiment in feature engineering
PamelaZave
17.1 Feature-oriented specification
17.2 The challenge of feature engineering . . .
17.3 A feature-oriented specification technique
17.4 A modest method for feature engineering .
17.5 An application of the method
17.6 Evaluation of the method
17.7 Acknowledgments.
References.

329

331

333

335
337
339
341
347
348
348

353

353
354
356
359
370
375
376
376

XIV Contents

H Programming circuits

18 High-level circuit design
Eric c.R. Hehner, Theodore S. Norvell, and Richard Paige
18.1 Introduction
18.2 Diagrams .
18.3 Time
18.4 Flip-flops ..
18.5 Edge-triggering
18.6 Memory
18.7 Merge
18.8 Imperative circuits .
18.9 Functional circuits
18.10 Hybrid circuits .
18.11 Performance .. .
18.12 Correctness .. .
18.13 Synchronous and asynchronous circuits .
18.14 Conc1usions

I Security and keeping secrets

379

381

381
383
384
385
387
389
390
392
401
405
406
407
410
410

413

19 Power analysis: attacks and countermeasures 415
Suresh Chari, Charanjit S. Juda, Josyula R. Rao, and Pankaj Rohatgi
19.1 Introduction 415
19.2 Power analysis of a Twofish implementation 419
19.3 Power model and attacks 425
19.4 Countermeasures to power analysis 428
19.5 Conc1usions 436
19.6 Acknowledgments. 436
References. 436

20 A probabilistic approach to information hiding
Annabelle McIver and Carroll Morgan
20.1 Introduction

441

441
20.2 Background: multi-level security and information flow . 442
20.3 Classical information theory, and program refinement 443
20.4 Information flow in imperative programs 448
20.5 Example: The secure file store. 454
20.6 The Refinement Paradox. 457
References . 460

Index 461

Contributors

Members of the WG2.3 working group:

Professor Dr. R.-l. Back
Dr. R.M. Balzer
Dines Bj!llmer
Professor Dr. M. Broy
Dr. Emie Cohen
Dr. P. Cousot
Professor Dr. E.W. Dijkstra
Professor D. Gries
Professor 1.1. Hayes
Professor E.c.R. Hehner
Professor P. Henderson
Professor c.A.R. Hoare
Dr. 1.1. Homing
Professor Daniel N. lackson
Mr. M.A. lackson
Professor C.B. Iones
Dr. B. W. Lampson

Members who contributed are:

Dines Bj!llmer
Department of Information

Technology
Technical University of Denmark
DTU-Building 344
DK-2800 Lingby
Denmark

Emie Cohen
emie.cohen@home.com

Dr. K. Rustan M. Leino
Dr. M.D. McIlroy
Dr. Annabelle McIver
Dr. W.M. McKeeman
Dr. K. McMillan
Professor 1. Misra
Dr. Carroll Morgan (vi ce-chairman)
Dr. Greg Nelson
Professor Benjamin Pierce
Dr. 1.R. Rao
Professor J.c. Reynolds
Dr. D.T. Ross
Professor EB. Schneider
Dr. N. Shankar (chairman)
Professor M. Sintzoff
Dr. loakim von Wright
Dr. Pamela Zave

Ralph Back
Abo Akademi University
Department of Computer Science
Lemminkainenkatu 14
SF-20520 Turku
Finland

Manfred Broy
Institut für Informatik
Technische Universität München
D-80290 München
Germany

xvi Contributors

lan Hayes
School of Information Technology and

Electrical Engineering
The University of Queensland
Queensland, 4072
Australia

Eric C.R. Hehner
Pratt Building, Room PT398
U niversity of Toronto
6 King's College Road
Toronto, Ontario M5S 3H5
Canada

Peter Henderson
Department of Electronics and

Computer Science
University of Southampton
Southampton, S017 IBJ
United Kingdom

Tony Hoare
Microsoft Research
Cambridge, CB3 OFB
United Kingdom

Daniel Jackson
Lab. for Computer Science
200 Technology Square
Cambridge, Massachusetts 02139
USA

Michael Jackson
jacksonma@acm.org

Benjamin Pierce
University of Pennsylvania
Department of Computer and

Information Science
200 South 33rd Street
Philadelphia, Pennsy lvania
19104-6389
USA

Rustan Leino
Compaq SRC
130 Lytton Avenue
Palo Alto, Califomia 94301
USA

Annabelle McIver
The Department of Computing
Macquarie University
Sydney, 2109
Australia

Jayadev Misra
Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712-1188
USA

Carroll Morgan
Department of Computer Science and

Engineering
The University of New South Wales
Sydney, 2052
Australia

Greg Nelson
Compaq SRC
130 Lytton Avenue
Palo Alto, Califomia 94301
USA

C.B. Jones
Department of Computing Science
University of Newcastle
Newcastle-upon-Tyne, NEI 7RU
United Kingdom

John C. Reynolds
Computer Science Department
School of Computer Science
Camegie Mellon University
Pittsburgh, Pennsylvania 15123-3890
USA

Josyula Rao
IBM Research
TJ. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598
USA

Natarajan Shankar
SRI International
MS EL256
333 Ravenswood Avenue
Menlo Park, California 94025-3493
USA

Contributors XVll

Joakim von Wright
Abo Akademi University
Department of Computer Science
Lemminkainenkatu 14
SF-20520 Turku
Finland

PamelaZave
180 Park Avenue
P.O. Box 971
Florham Park, New Jersey 07932-2971
USA

The following people also contributed:

Suresh Chari
IBM Research
TJ. Watson Research Center
P.O. Box 714
Yorktown Heights, New York 10598
USA

Charanjit S. Jutla
IBM Research
TJ. Watson Research Center
P.O. Box 714
Yorktown Heights, New York 10598
USA

Pankaj Rohatji
IBM Research
T. J. Watson Research Center
P.O. Box 714
Yorktown Heights, New York 10598
USA

He Jifeng
International Institute of

Software Technology
United Nations University
P.O. Box 3058
Macau

Theodore Norvell
Electrical and Computer Engineering
Faculty of Engineering
Memorial University of Newfound1and
St. John's, NF AlB 3X5
Canada

Richard F. Paige
Department of Computer Science
York University
4700 Keele Street
Toronto, Ontario M5J IP3
Canada

Part I

Models and correctness

Section A

Concurrency and interaction

1 Wanted: a compositional approach to concurrency
Cliff Jones

5

The practical application of a formal method to the correct design of industrial
strength programs is impeded if the method does not scale. But scalability
(equivalently efficiency for large problems) can be tricky. In particular a problem
must be reduced to smaller subproblems, analysed in some way, and the results
recomposed to produce a solution to the original problem. The litmus test for scal
ability in such a procedure is that the analysis of the subproblems must be both
cost-effective and composable - have one without the other and the enterprise
flounders. Unfortunately having both is not as easy as it might seem, because a
cost-cutting analysis implies 'measuring' only the absolutely essential details, and
has a tendency to encroach on composability. Methods that do compose are called
compositional. .

A simple chernistry example illustates the point. An analysis of chemicals
might be based on colour which, for the sake of argument, is a more obvious can
didate for observation than weight. In reactions however the colour of the product
cannot be deduced from the colours of the reagents, so a weight-based analysis is
compositional but a colour-based analysis is not.

This paper explores this crucial idea of compositionality, focussing on its
application to concurrent programs, which present special challenges to the
designer.

2 Enforcing behavior with contracts
Ralph-Johan Back and Joakim von Wright

17

Interactive systems are a generalisation of the traditional notion of concurrency
in that they allow different kinds of scheduling - typically demonic and angelic
- during computation. The important mathematical idea underlying both con
currency and interaction is that of multi-user games, where subsets of users can
form coalitions to comply with some particular contract. The analysis of temporal
properties for these systems is relatively tricky, and the aim of research on this

4 Seetion A. Concurrency and interaction

topic is to simplify analysis, either by discovering straightforward proof mIes or
by simplifying the systems themselves.

This paper can be seen as contributing to both those areas. Using an operational
description of the kinds of contracts and interactions involved in game playing,
this work demonstrates how to develop simple verification mIes in the well-known
action-system framework.

Action systems enjoy impressive credentials as a formal method because of
their descriptive clarity and expressivity for concurrent programs. Indeed they
are a natural choice for this application, for their predicate-transformer seman
tics extends easily to cope with both angelic and demonic scheduling. Moreover
other typical features of contract-games, such as various kinds of contract break
ing, are modelled by termination, abortion and miracles in action systems. Other
specialised treatments of games are unable to deal with these concepts.

1

Wanted: a compositional approach to
concurrency

C. B. Jones

Abstract
A key property for a development method is compositionality, because

it ensures that a method can scale up to cope with large applications.
Unfortunately, the inherent interference makes it difficult to devise devel
opment methods for concurrent programs (or systems). There are a number
of proposals such as rely/guarantee conditions but the overall search for a sat
isfactory compositional approach to concurrency is an open problem. This
paper identifies some issues including granularity and the problems asso
ciated with ghost variables; it also discusses using atomicity as a design
abstraction.

1.1 Compositiona1ity

Formal specification Ianguages and associated rules for proving that designs
satisfy specifications are often calledformal methods. As weIl as providing com
pletely formal criteria, it is argued in [JonOO] that formal methods offer thinking
tools -such as invariants- which become an integral part of professional prac
tice. The main interest in this paper is on the contribution that formal methods
can make to the design process for concurrent systems. Just as with Hoare's ax
ioms for sequential programs, the sought after gains should come both from (the
reference point of) formal rules and from the intuitions they offer to less formal
developments.

The development of any large system must be decomposed into manageable
steps. This is true both for the construction phase and for subsequent attempts to
comprehend a design. For software, understanding after construction is important
because of the inevitable maintenance and modification work. But, for the current
purposes, it is sufficient to concentrate the argument on the design process.

A. McIver et al. (eds.), Programming Methodology
© Springer Science+Business Media New York 2003

6 Iones

It is easy to see that it is the design process of large systems which requires
support. Regardless of the extent to which techniques for error detection of fin
ished code can be made automatic, there is still the inherent cost of reworking
the design when errors are detected and litde greater certainty of correctness after
modification. The only way to achieve high productivity and correctness is to aim
to make designs correct by construction.

What is required therefore is to be able to make and justify one design deci
sion before moving on to further steps of design. To take the design of sequential
programs as a reference point, specification by pre- and post-conditions offers a
natural way of recording what is required of any level of component. So, in fac
ing the task of developing some C specified by its pre- and post-conditions, one
might decide that aseries of sub-components SCi are required and record expecta
tions about them by writing their pre- and post-conditions. The design step must
also provide a proposed way of combining the eventual SCi and this should be one
of the constructs of the (sequential) programming language. Each such construct
should have an associated proof rule like the Hoare axiom for while which can be
used to show that any implementations satisfying the specifications of the SCi will
combine with the stated construct into an implementation satisfying the specifica
tion of C. This idealised top-down picture requires some qualification below but
the essential point remains: pre- and post-conditions provide an adequate descrip
tion of the functionality of a system to facilitate the separation of a multi-level
design into separate steps. A method which supports such development is classed
as compositional; one that requires details of the implementations of the SCi to
justify the decomposition is non-compositional.

The above ideal is rarely achieved. The first difficulty is that there is no guaran
tee against making bad design decisions which result in the need to backtrack in
the design process. What a compositional method offers is a way of justifying a
design step - not an automatic way of choosing good design decisions. Secondly,
there was above a careful restriction to functional properties and performance
considerations, in particular, are commonly excluded. There are also a number of
technical points: the case for separating pre- from post-conditions and the argu
ments for employing post -conditions of two states (plus the consequent search for
apposite proof rules) are explored in [Jon99]. It will also come as no surprise to
anyone who has read this author's books on VDM that the method of data reifi
cation is considered an essential tool for pro gram design; fortunately there is also
a transitivity notion for reification which again facilitates compositional design
(see [dRE99] for an excellent survey of data refinement research).

Nothing which has been written above should be seen as assuming that all
design has to be undertaken in a top-down order: separate justification of design
steps is necessary in whatever order they are made; a top-down structure of the
final documentation might well enhance comprehensibility; and arguments based
on specifications rather than on the details of the code have much to commend
them however these arguments are discovered.

1. Wanted: a compositional approach to concurrency 7

The key argument of this seetion is that compositionality is a desirable property
of a development method if it is to scale up to large tasks. Subsequent seetions
explore the difficulties in achieving this property in the presence of concurrency.

1.2 The essence of concurrency is interference

The easiest way to illustrate interference is with parallel processes which can read
and write variables in the same state space. Simple examples can be constructed
with parallel execution of assignment statements; but to avoid an obvious riposte
it is necessary to resolve an issue about granularity. Some development methods
assume that assignment statements are executed atomically in the sense that no
parallel process can interfere with the state from the beginning of evaluation of the
right hand side of the assignment until the variable on the left hand side has been
updated. The rule is reciprocal in the sense that the assignment in question must
not interfere with the atornic execution of one in any other process. Essentially,
assignments in all processes are non-deterrninistically merged in all processes but
never allowed to overlap. A few moments' thought makes it clear that such a
notion of granularity would be extremely expensive to implement because of the
setting and testing of something equivalent to semaphores. There is a suggestion
to remove the need for semaphores: sometimes referred to as "Reynold's rule",
the idea is to require no more than one reference (on the left or right hand sides)
in any assignment to potentially shared variables. Section 1.6 argues that not even
variable access or change are necessarily atomic; but even without opening this
facet to investigation, one can observe that Reynold's rule is also arbitrary and
prohibits many completely safe programs.

Thus, for the purposes of this section, assignment statements are not assumed
to be executed in an atomic step. If then a variable x has the value 0 before two
assignment statements

x+- x+ lllx+- x+ 2

are executed in parallel, what can be said of the final value of x? In the simplest
case, where one parallel assignment happens to complete before the other begins,
the result is x = 3; but if both parallel assignments have their right hand sides
evaluated in the same state (x = 0) then the resulting value of x could be 1 or 2
depending on the order of the state changes. 1

Some computer scientists recoiled at the difficulty of such shared state concur
rency and their idea of stateless communicating processes might appear to finesse
the problem illustrated above. Unfortunately, escaping the general notion of inter
ference is not so easy. In fact, since processes can be used to model variables, it is
obvious that interference is still an issue. The shared variable problem above can
be precisely mirrored in, for example, the 1f-calculus [MPW92] as follows

1 Atomicity of update of scalar values is assumed - for now!

8 Jones

(xO I !X(V).(rxv.Xv+wx(n).xn)) I rx(v).wxv+l I f x(V).wxv+2

One might argue that assertions over communication histories are easier to
write and reason about than those over state evolutions but the issue of inter
ference has clearly not been avoided. Furthermore, interference affects liveness
arguments as weIl as safety reasoning.

1.3 Reasoning about interference

Before coming to explicit reasoning about interference, it is instructive to review
some ofthe early attempts to prove that shared-variable concurrent programs sat
isfy specifications. One way of proving that two concurrent programs are correct
with respect to an overall specification is to consider their respective flow dia
grams and to associate an assertion with every pair of arcs (i.e. quiescent points).
So with SCI having n steps and SC2 having m, it is necessary to consider n x m steps
of proof. This is clearly wasteful and does not scale at all to cases where there
are more than two processes. There is also here an assumption about granularity
which is dangerous: are the steps in the flow diagram to be whole assignments?
For the current purposes, however, the more fundamental objection is that the ap
proach is non-compositional: proofs about the two processes can only be initiated
once their final code is present; nothing can be proved at the point in time where
the developer chooses to split the overall task into two parallel processes; there is
no separate and complete statement of what is required of each of the SCi.

Susan Owicki's thesis [Owi75] proposes a method which offers some progress.
Normally referred to as the Owicki-Gries method because of the paper she
wrote [OG76] with her supervisor David Gries, the idea is to write normal pre/post
condition specifications of each ofthe SCi and develop their implementations sepa
rately with normal sequential proof rules. Essentially, this first step can be thought
of as considering the implementation as though it is a non-deterministic choice
between one of two sequential implementations: SCI; SC2 or SC2; SCI. Having
completed the top level decomposition, developments of the separate SCi can be
undertaken to obtain code which satisfies their specifications. So far, so good -
but then the Owicki-Gries method requires that each program step in SCi must
be shown not to interfere with any proof step in SCj. With careful design, many
of these checks will be trivial so the worrying product of n x m checks is not
as daunting. It is however again clear that this method is non-compositional in
that a problem located in the final proof of "interference freedom" could force a
development of SCi to be discarded because of adecision in the design of SCj. In
other words, the specification of SCi was incomplete in that a development which
satisfied its pre- and post-condition has to be reworked at the end because it fails
some criteria not present in its specification.

Several authors took up the challenge of recording assumptions and commit
ments which include a characterisation of interference. In [FP78], an interference
constraint has to be found which is common to all processes. In [Jon81], pre/post

I. Wanted: a compositional approach to concurrency 9

conditions specifications for such processes are extended with rely and guaran
tee conditions. The subsequent description here is in terms of the rely/guarantee
proposal.

The basic idea is very simple. lust as a pre-condition records assumptions the
developer can make about the initial state when designing an implementation, a
rely condition records assumptions that can be made about interference from other
processes: few programs can work in an arbitrary initial condition; only vacuous
specifications can be met in the presence of arbitrary interference. Thus pre- and
rely conditions record assumptions that the developer can make.

lust as post-conditions document commitments which must be (shown to be)
fulfilled by the implementation, the interference which can be generated by the
implementation is captured by writing a guarantee condition.

A specification of a component ethen is written {p, r} C {g, q} for a pre
condition p, a rely condition r, a guarantee condition g, and a post-condition q.
It has always been the case in VDM that post-conditions were predicates of the
initial and final states 2:

Since they record (potential) state changes, it is natural that rely and guarantee
conditions are both relations:

Pre-conditions indicate whether an initial state is acceptable and are thus
predicates of a single state:

The compositional proof rule for decomposing a component into two parallel
components is presented in Fig. 1.1. It is more complicated than mIes for se
quential constructs but is not difficult to understand. If SIll S2 has to tolerate
interference r, the component SI can only assurne the bound on interference to be
r V g2 because steps of S2 also interfere with SI. The guarantee condition g of the
parallel construct cannot be stronger than the disjunction of the guarantee condi
tions of the components. Finally, the post-condition of the overall construct can
be derived from the conjunction ofthe individual post-conditions, conjoined with
the transitive c10sure of the rely and guarantee conditions, and further conjoined

with any information that can be brought forward from the pre-condition p .
There are more degrees of freedom in the presentation of such a complex rule

than those for sequential constructs, and papers listed below experiment with var
ious presentations. It was however recognised early that there were useful generic
thinking tools for reasoning about concurrent systems. "Dynamic invariants" are

2See [Jon99) for discussion.

10 Jones

{p, r V g2} SI {gb qt}
{p,rV gl} S2 {g2,q2}
gl V g2 => g
P /\ql /\ q2 /\ (r V gl V g2)* => q

{p,r} (SIIIS2) {g,q}

Figure 1.1. A proof rule for rely/guarantee conditions

the best example of a concept wbich is useful in formal and informal develop
ments alike. A dynamic invariant is a relation which holds between the initial
state and any which can arise. It is thus reflexive and composes with the guaran
tee conditions of all processes. It is accepted by many who have adopted methods
like VDM that standard data type invariants are a valuable design aid and their
discussion even in informal reviews often uncovers design errors. There is some
initial evidence that similar design pay off comes from dynamic invariants. In
fact, they have even been seen as beneficial in the design of sequential systems
(e.g. [FJ98]).

There have been many excellent contributions to the rely/guarantee idea in the
twenty years since it was first published ([Jon83] is a more accessible source
than [Jon8t]). Ketil St!lllen tackled the problem of progress arguments in bis the
sis [St!ll90]. Xu Quiwen [Xu92] in bis Oxford thesis covers some of the same
ground but also looks at the use of equivalence proofs. Pierre Collette's thesis
was done under the supervision of Michel Sintzoff: [CoI94] makes the crucial
link to Misra and Chandy's Unity language (see [CM88]). Colin Stirling tackles
the issue of Cook completeness in [Sti88], and in [Sti86] shows that the same
broad form of thinking can be applied to process algebras. Recent contributions
inc1ude [DinOO]3 and [BB99].

Retuming to the fact that there have been other assumption-commitment
approaches wbich record interference in ways different from the specific rely
guarantee conditions used here, the reader is referred to the forthcoming book
from de Roever and colleagues for a review of many approaches. As far as this
author is aware, none of the recorded approaches avoids the difficulties discussed
in the following sections.

1.4 Some problems with assumptionlcommitment
reasomng

In spite of the progress with rely-guarantee specifications and development, much
remains to be done. It should not be surprising that reasoning about intimate in-

3Note [Sti88, DinOO] employ unary predicates and experience the problems that are familiar from
unary post-conditions when wanting to state requirements such as variables not changing.

1. Wanted: a compositional approach to concurrency 11

terference between two processes can be tricky. An illustration of the delicacy
of placing clauses in assumptions and commitments is given in [CJOO]. Perhaps
much of what is required here is experience and the classification of types of
interference.

One obvious conclusion is to limit interference in a way that makes it possible
to undertake much program development with sequential rules. This echoes the
message that Dijkstra et al. were giving over the whole early period of writing
concurrent programs. One avenue of research in this direction has been to deploy
object-based techniques to provide a way of controlling interference; this work is
outlined -and additional references are given- in [Jon96].

Tuming to the rules for the parallel constructs, that given in Figure 1.1 is
only one with which various authors who are cited above have experimented.
There more degrees of freedom than with rules for sequential constructs.4 Again,
experiments should indicate the most usable rules.

There are some general developments to be looked at in combination with any
form of assumption-commitment approach. One is the need to look at their use in
real-time programs. Intuitively, the same idea should work, but determining the
most convenient logic in which to record assumptions and commitrnents might
take considerable experimentation. Another extension which would require care
ful integration is that to handle probabilistic issues. This is of particular interest to
the current author because -as described in [JonOO]- of the desire to cover "faults
as interference".

1.5 The role of ghost variables

A specific problem which arises in several approaches to proofs about concur
rency is finding some way of referring to points in a computation. A frustratingly
simple example is the parallel execution of two assignment statements which are,
for this section, assumed to be atomic.

The subtlety here is that because both increments are by the same amount one can
not use the value to determine which arm has been executed. A common solution
to such issues is to introduce some form of "ghost variable" which can be modi
fied so as to track execution. There are a number of unresolved questions around
ghost variables including exactly when they are required; what is the increase in
expressivity and their relationship to compositionality.

For the specific example above, this author has suggested that it might be better
to avoid state predicates altogether and recognise that the important fact is that
the assignments commute. Of course, if one branch incremented x and the other

4There is of course some ftexibility with sequential constructs such as whether to fold the
consequence rule into those for each programming construct.

12 Jones

multiplied it by some value, then they would not commute; but it would also
be difficult to envisage what useful purpose such a program would have. So the
proposal is that reasoning about concurrency should not rely solelyon assertions
about states; other -perhaps more algebraic techniques- can also be used to reason
about the joint effect of actions in parallel processes.

1.6 Granularity concems

Issues relating to granularity have figured in the discussion above and they would
appear to pose serious difficulties for many methods. The problems with assuming
that assignment statements can be executed atomically are reviewed in Section 1.2
but the general issue is much more difficult. For example, it is not necessarily
true that variables can be read and changed without interference. This should be
obvious in the case of say arrays but it is also unlikely that hardware will guarantee
that long strings are accessed in an uninterrupted way. There is even the danger
that scalar arithmetic value access can be interrupted.

Having ramified the problem, what can be done about it? Any approach which
requires recognising the complete proof of one process to see whether another
process can interfere with proof steps appears to be committed to low level details
of the implementation language. To some extent, a rely-guarantee approach puts
the decision about granularity in the hands of the designer. In particular, assertions
carried down as relations between states can be reified later in design. This works
well in the object-based approach described in [Jon96]. But granularity is a topic
which deserves more research rather than the regreUable tendency to ignore the
issue.

1.7 Atomicity as an abstraction, and its refinement

As well as rely and guarantee conditions, the object-based design approach put
forward in [Jon96] employs equivalence transformations. The idea is that a rel
atively simple process could be used to develop a sequential pro gram which
can be transformed into an equivalent concurrent pro gram. The task of pro
vi ding a semantic underpinning in terms of which the claimed equivalences
could be proved to preserve observational equivalence proved difficult (see for
example [PW98, San99]).

The key to the equivalences is to observe that under strict conditions, islands
of computation exist and interference never crosses the perimeter of the island.
One of the reasons that these equivalences are interesting is that their essence -
which is the decomposition of things which it is easy to see pos ses some property
when executed atomically- occurs in several other areas. In particular, "atomic
ity" is a useful design abstraction in discussing database transactions and cache
coherence: showing how these "atoms" can overlap is an essential part of justi-

1. Wanted: a compositional approach to concurrency 13

fying a useful implementation. There are other approaches to this problem such
as [JPZ9l, CohOO]; but the ubiquity of atomicity refinement as a way of reasoning
about some concurrency problems suggests that there is a rich idea lurking here.

1.8 Conc1usion

The general idea behind assumptionlcommitment specifications and proof rules
would appear to be a useful way of designing concurrent systems. Much detailed
research and experimentation on practical problems is still required to come up
with some sort of agreed approach. Even as a proponent of one of the assump
tion (rely) commitment (guarantee) approaches, the current author recognises that
there are also quite general problems to be faced before a satisfactory composi
tional approach to the development of concurrent pro grams can be claimed. One
area of extension is to look for more expressiveness whether to merge with real
time logics or to cope with probabilities. Another issue is that of arguments which
do not appear to be dealt with weH by assertions about states. In all of this search
for formal ruIes, one should continue to strive for things which can be adopted
also informally as thinking tools by engineers.

Acknowledgements

I gratefuHy acknowledge the financial support of the UK EPSRC for the Interdis
ciplinary Research CoHaboration "Dependability of Computer-Based Systems".
Most of my research is influenced by, and has been discussed with, members of
IFIP's Working Group 2.3.

References

[BB99] Martin Buechi and Ralph Back. Compositional symmetrie sharing in B. In
FM'99 - Formal Methods, volume 1708 of Lecture Notes in Computer Science,
pages 431-451. Springer-Verlag, 1999.

[BG91] J. C. M. Baeten and J. F. Groote, editors. CONCUR'91 - Proceedings of the
2nd International Conference on Concurrency Theory, volume 527 of Lecture
Notes in Computer Science. Springer-Verlag, 1991.

[CJOO] Pierre Collette and Cliff B. Jones. Enhancing the tractability of rely/guarantee
specifications in the development of interfering operations. In Gordon Plotkin,
Colin Stirling, and Mads Tofte, editors, Proof, Language and Interaction,
chapter 10, pages 275-305. MIT Press, 2000.

[CM88] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison
Wesley, 1988.

14 Jones

[CohOO] Emie Cohen. Separation and reduction. In Mathematics of Program Construc
tion, 5th International Conference, Portugal, July 2000. Science of Computer
Programming, pages 45-59. Springer-Verlag, 2000.

[Co194] Pierre Collette. Design of Compositional Proof Systems Based on Assumption
Commitment Specijications - Application to UNITY. PhD Thesis, Louvain-la
Neuve, June 1994.

[DinOO] Jürgen Dinget. Systematic Parallel Programming. PhD Thesis, Camegie
Mellon University, 2000. CMU-CS-99-172.

[dRE99] W. P. de Roever and K. Engelhardt. Data Refinement: Model-Oriented Proof
Methods and Their Comparison. Cambridge University Press, 1999.

[FJ98] John Fitzgerald and Cliff Jones. A tracking system. In J. C. Bicarregui, editor,
Proofin VDM: Case Studies, FACIT, pages 1-30. Springer-Verlag, 1998.

[FP78] N. Francez and A. Pnueli. A proof method for cyclic programs. Acta
Informatica, 9:133-157, 1978.

[Jon81] C. B. Jones. Development Methods for Computer Programs including a No
tion of Interference. PhD Thesis, Oxford University, June 1981. Printed as:
Programming Research Group, Technical Monograph 25.

[Jon83] C. B. Jones. Specification and design of (parallel) programs. In Proceedings of
IFIP '83, pages 321-332. North-Holland, 1983.

[Jon96] C. B. Jones. Accommodating interference in the formal design of concur
rent object-based programs. Formal Methods in System Design, 8(2):105-122,
March 1996.

[Jon99] C. B. Jones. Scientific decisions which characterize VDM. In FM'99 - Formal
Methods, volume 1708 of Lecture Notes in Computer Science, pages 28-47.
Springer-Verlag, 1999.

[JonOO] C. B. Jones. Thinking tools for the future of computing science. In Informat
ics - 10 Years Back, 10 Years Forward, volume 2000 of Lecture Notes in
ComputerScience, pages 112-130. Springer-Verlag, 2000.

[JPZ91] W. Janssen, M. Poel, and J. Zwiers. Action systems and action refinement in
the development of parallel systems. In [BG91], pages 298-316, 1991.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes.
Information and Computation, 100:1-77, 1992.

[OG76] S. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs
I. Acta Informatica, 6:319-340,1976.

[Owi75] S. Owicki. Axiomatic Proof Techniques for Parallel Programs. PhD Thesis,
Department of Computer Science, Comell University, 1975. 75-251.

[PW98] Anna Philippou and David Walker. On transformations of concurrent-object
programs. Theoretical Computer Science, 195:259-289, 1998.

[San99] Davide Sangiorgi. Typed 7r-calculus at work: a correctness proof of Jones's
parallelisation transformation on concurrent objects. Theory and Practice of
Object Systems, 5(1):25-34, 1999.

[Sti86] C. Stirling. A compositional reformulation of Owicki-Gries' partial correctness
logic for a concurrent while language. In ICALP '86. Springer-Verlag, 1986.
LNCS 226.

[Sti88]

[St090]

[Xu92]

1. Wanted: a compositional approach to concurrency 15

c. Stirling. A generalisation of Owicki-Gries's Hoare logic far a concurrent
while language. TCS, 58:347-359, 1988.

K. St0len. Development of Parallel Programs on Shared Data-Structures. PhD
Thesis, Manchester University, 1990. available as UMCS-91-1-1.

Qiwen Xu. A Theory of State-based Parallel Programming. PhD Thesis,
Oxford University, 1992.

2

Enforcing behavior with contracts

Ralph-Johan Back and Joakim von Wright

Abstract

Contracts have been introduced earlier as a way of modeling a collection
of agents that work within the limits set by the contract. We have analyzed
the question of when an agent or a coalition of agents can reach astated
goal, despite potentially hostile behavior by the other agents. In this paper,
we extend the model so that we can also study whether a coalition of agents
can enforce a certain temporal behavior when executing a contract. We show
how to reduce this question to the question of whether a given goal can be
achieved. We introduce a generalization of the action system notation that
allows both angelic and demonie scheduling of actions. This allows us to
model concurrent systems and interactive systems in the same framework,
and show that one can be seen as the dual of the other. We analyze enforce
ment of temporal behavior in the case of action systems, and show that these
provide for simpler proof obligations than what we get in the general case.
Finally, we give three illustrative examples of how to model and analyze
interactive and concurrent systems with this approach.

2.1 Introduction

A computation can generally be seen as involving a number of agents (programs,
modules, systems, users, etc.) who carry out actions according to a document
(specification, pro gram) that has been laid out in advance. When reasoning about
a computation, we can view this document as a contract between the agents. We
have earlier described a general notation for contracts, and have given these a for
mal meaning using an operational semantics [6]. Given a contract, we can analyze
what goals a specific agent or coalition of agents can achieve with the contract.
This will essentially amount to checking whether an agent or a coalition of agents
have a winning strategy to reach the given goal.

In this paper, we consider the question of whether an agent or a coalition of
agents can enforce a certain temporal behavior on the execution of the contract.

A. McIver et al. (eds.), Programming Methodology
© Springer Science+Business Media New York 2003

18 Back and von Wright

This means that there is a way for these agents to co-ordinate their decisions,
so that the temporal property will hold for the whole execution of the contract.
We show how to model temporal properties with an operational semantics for
contracts, and then study how to prove that a certain temporal property can be
enforced. We show that enforcement of a temporal property can be reduced to
the question of achieving a goal, which in turn can be established with standard
techniques that we have developed in earlier work.

We then introduce a generalization of the action system notation which unifies
the notion of a concurrent and an interactive system. Both kinds of systems are
essentially initialized loops, but the difference comes from whether the scheduling
of the loop is demonie (in concurrent systems) or angelic (in interactive systems).
We show how to analyze temporal properties of the special kinds of contract that
action systems provide. It turns out that we get considerable simplification in the
proof obligations by using action systems rather than general contracts.

Finally, we illustrate the approach by considering three examples. The first ex
ample is the game of Nim, which illustrates the interaction of two agents in a
game-playing situation. The second example is the familiar puzzle of the wolf, the
goat and the cabbages, which have to be transported across a river. The last exam
pIe illustrates how to apply the approach described here to a resource allocation
situation, here exemplified by an imaginary Chinese Dirn Sun restaurant.

Our notion of contracts is based on the refinement ca1culus [3,6, 18]. We have
earlier extended the original notion of contracts to consider coalitions of agents
[8]. Here we combine contracts and the idea of considering a system as agame be
tween two players [1,20,5,21] with the idea oftemporal properties in a predicate
trans former setting [14, 19].

The paper first introduces the notion of contracts, both informally and with a
precise operational semanties, in Seetion 2. Action systems are described as a spe
cial kind of contract, and we give three examples of action systems, which we
will analyze in more detaillater on. Seetion 3 shows how to analyze what kind of
goals can be achieved with contracts, introducing a weakest precondition seman
tics for contracts for this purpose. In Seetion 4 we develop the main theme of this
paper: how to show that temporal properties can be enforced during execution of
a contract. Seetion 5 looks at enforcement in the special case when the contracts
are action systems, showing that we can get simplified proof conditions in this
case. Section 6 looks at the practice of verifying enforcement properties, and il
lustrates the basic proof methods by showing specific enforcement properties for
the example action systems introduced earlier. We conclude with some general
remarks in Seetion 7.

We use simply typed higher-order logic as the logical framework in the paper.
The type of functions from a type ~ to a type r is denoted by ~ ---7 r. Func
tions can be described using)..-abstraction and we writef. x for the application of
functionf to argumentx.

2. Enforcing behavior with contracts 19

2.2 Contracts

In this seetion we give an overview of contracts and their operational semanties,
following [7] (with some notational changes) and introduce action systems as a
special kind of contract.

2.2.1 States and state changes

We assurne that the world that contracts talk about is described as astate (J. The
state space ~ is the set (type) of all possible states. An agent changes the state
by applying a function / to the present state, yielding a new state /. (J. We think
of the state as having a number of attributes Xl, ... ,xn , each of which can be
observed and changed independently of the others. Such attributes are usually
called program variables. An attribute X of type r is really a pair of two functions,
the value /unction valx : ~ ---> rand the update /unction setx : r ---> ~ ---> ~.

The function valx returns the value of the attribute X in a given state, while the
function setx returns a new state where x has a specific value, with the values of
all other attributes left unchanged. Given astate (J, valx . (J is thus the value of x in
this state, while (J' = set x' '/. (J is the new state that we get by setting the value of
x to '/.

An expression like x + y is a function on states, described by (x + y). (J =

valx . (J + valy . (J. We use expressions to observe properties of the state. They are
also used in assignments like x := x+y. This assignment denotes a state-changing
function that updates the value of x to the value of the expression x + y. Thus

(x := x + y). (J = setx . (valx. (J + valy . (J). (J

A function/ : ~ ---> ~ that maps states to states is called astate trans/ormer.
We also make use of predicates and relations over states. Astate predicate is a
boolean function p : ~ ---> 8001 on the state (in set notation we write (J E P
for p. (J). Predicates are ordered by inclusion, which is the pointwise extension of
implication on the booleans.

A boolean expression is an expression that ranges over truth values. It gives
us a convenient way of describing predicates. For instance, x :s; y is a boolean
expression that has value valx. (J :s; valy . (J in a given state (J.

Astate relation R : ~ ---> ~ ---> 8001 relates astate (J to astate (J' when
ever R. (J. (J' holds. Relations are ordered by pointwise extension from predicates.
Thus, R C;;; R' holds iff R. (J C;;; R' . (J for all states (J.

We permit a generalized assignment notation for relations. For example,

(x := x' I x' > x + y)

relates state (J to state (J' if the value of x in (J' is greater than the sum of the values
of x and y in (J and all other attributes are unchanged. More precisely, we have
that

(x := x' I x' > x + y). (J. (J' ==

20 Back and von Wright

(::lx'· a' = setx.x'. a 1\ x' > valx . a + valy. a)

This notation generalizes the ordinary assignment; we have that a' = (x := e). a
iff (x := x' I x' = e). a. a'.

2.2.2 Contracts

Consider a collection of agents, each with the capability to change the state
by choosing between different actions. The behavior of agents is regulated by
contracts.

Assurne that there is a fixed collection n of agents, which are considered to be
atomic (we assurne that we can test for equality between agents). We let A range
over sets of agents and a, b, cover individual agents.

We describe contracts using a notation for contract statements. The syntax for
these is as follows:

S ::= if) I if p then SI else S2 fi I SI; S2 I (R)a I SI [la S2 I (reca x· S) I X

Here astands for an agent while J stands for astate transformer, p for astate
predicate, and R for astate relation, all expressed using higher-order logic. X is a
variable that ranges over (the meaning of) contracts.

Intuitively, a contract statement is carried out ("executed") as follows. Thefonc
tional update if) changes the state according to the state transformer J, i.e., if the
initial state is ao then the final state isJ. ao. An assignment statement is a special
kind of update where the state transformer is expressed as an assignment. For ex
ample, the assignment statement (x : = x + y) (or just x : = x + y - for simplicity,
we may drop the angle brackets from assignment statements) requires the agent
to set the value of attribute x to the sum of the values of attributes x and y. We use
the name skip for the identity update (id), where id. a = a for all states a.

In the conditional composition if p then SI else S2 fi, SI is carried out if p holds
in the initial state, and S2 otherwise.

Relational update and choice introduce nondeterminism into the language of
contracts. Both are indexed by an agent which is responsible for deciding how the
nondeterminism is resolved.

The relational update (R) a requires the agent a to choose a final state a' so
that R. a. a' is satisfied, where a is the initial state. In practice, the relation is
expressed as a relational assignment. For example, (x := x' I x' < x)a expresses
that the agent a is required to decrease the value of the program variable x without
changing the values of the other program variables. If it is impossible for the agent
to satisfy this, then the agent has breached the contract. In this example, agent a
must breach the contract if x ranges over the natural numbers and its initial value
is O.

An important special case of relational update occurs when the relation R is of
the form (.\ a a'· a' = a 1\ p. a) for some state predicate p. In this case, (R)a
is called an assertion and we write it simply as (P)a. For example, (x + y = O)a
expresses that the sum of (the values of) x and y in the state must be zero. If the

2. Enforcing behavior with contracts 21

assertion holds at the indicated place when the agent a carries out the contract,
then the state is unchanged, and the rest of the contract is carried out. If, on the
other hand, the assertion does not hold, then the agent has breached the contract.
The assertion (true) a is always satisfied, so adding this assertion anywhere in
a contract has no effect. Dually, (false)a is an impossible assertion; it is never
satisfied and always results in the agent breaching the contract.

A choice SI [la S2 allows agent a to choose which is to be carried out, SI or S2.
To simplify notation, we assume that sequential composition binds stronger than
choice in contracts.

In the sequential composition SI ;S2, contract SI is first carried out, followed by
S2, provided that there is no breach of contract when executing SI. We also permit
recursive contract statements. A recursive contract is essentially an equation of
the form

X=a S

where S may contain occurrences of the contract variable X. With this definition,
the contract X is intuitively interpreted as the contract statement S, but with each
occurrence of statement variable X in S treated as a recursive invocation of the
whole contract S. For simplicity, we use the syntax (reca X· S) for the contract X
defined by the equation X = S.

The index a for the recursion construct indicates that agent a is responsible for
termination of the recursion. If the recursion does not terminate, then a will be
considered as having breached the contract. In general, agents have two roles in
contracts: (i) they choose between different alternatives that are offered to them,
and (ii) they take the blame when things go wrong. These two roles are interlinked,
in the sense that things go wrong when an agent has to make a choice, and there
is no acceptable choice available.

An important special case of recursion is the while-loop which is defined in the
usual way:

whilea p do S od ~ (reca X· if p then S ; X else skip fi)

Note the occurrence of agent a in the loop syntax; this agent is responsible for
termination (so nontermination of the loop is not necessarily a bad thing).

2.23 Operational semantics

We give a formal meaning to contract statements in the form of a structured oper
ational semantics. This semantics describes step-by-step how a contract is carried
out, starting from a given initial state.

The rules of the operationalsemantics are given in terms of a transition relation
between configurations. A configuration is a pair (S, ()), where

• S is either an ordinary contract statement or the empty statement symbol A,
and

22 Back and von Wright

• a is either an ordinary state, or the symbol 1-a (indicating that agent a has
breached the contract).

The transition relation (which shows what moves are permitted) is induc
tively defined by a collection ofaxioms and inference rules. It is the smallest
relation which satisfies the following (where we assume that astands for a proper
state while "(stands for either astate or the symbol1-x for some agent x):

• Functional update

(if),a) (A,j.a) (if),1-a) (A,1-a)

• Conditional composition

p.a
(if p then SI else S2 fi, a) (SI, a)

• Sequential composition

(Sl,"() (S~,"('), S~ =f A
(SI; S2, "() (S~ ; S2, "(')

• Relational update

R.a.a'
((R)a, a) (A, a')

• Choice

• Recursion

R.a=0

-p.a
(if p then SI else S2 fi, a) (S2, a)

A scenario for the contract S in initial state a is a sequence of configurations

Co Cl C2 ···

where

1. Co = (S, a),

2. each transition Ci Ci+1 is permitted by the axiomatization above, and

3. if the sequence is finite with last configuration Cn , then Cn = (A, "(), for
some"(.

2. Enforcing behavior with contracts 23

Intuitively, a scenario shows us, step by step, what choices the different agents
have made and how the state is changed when the contract is being carried out.
A finite scenario cannot be extended, since no transitions are possible from an
empty configuration.

2.2.4 Examples oi contracts

Programs can be seen as special cases of contracts, where two agents are involved,
the user and the computer. In simple batch-oriented programs, choices are only
made by the computer, which resolves any internal choices (nondeterminism) in
a manner that is unknown to the user. Our notation for contracts already includes
assignment statements and sequential composition. The abort statement of Dijk
stra's guarded commands language [11] can be expressed as abort = {talse }user.

If executed, it signifies that there has been a breach of contract by the user. This
will release the computer from any obligations to carry out the rest of the con
tract, i.e., the computer is free to do whatever it wants. The abort statement thus
signifies misuse of the computer by the user.

A batch-oriented program does not allow for any user interaction during exe
cution. Once started, execution proceeds to the end if possible, or it fails because
the contract is breached (allowing the computer system to do anything, including
going into an infinite loop).

An interactive program allows the user to make choices during the execution.
The user chooses between alternatives in order to steer the computation in a de
sired direction. The computer system can also make choices during execution,
based on some internal decision mechanism that is unknown the user, so that she
cannot predict the outcome.

As an example, consider the contract

S = Sl ; S2, where

Sl = (x := x + 1 [la x := x + 2)

S2 = (x := x-I []b x := x - 2)

Computing the operational semantics for S results in the tree shown in Fig. 2.1.
After initialization, the user a chooses to increase the value of x by either one or
two. After this, the computer b decides to decrease x by either one or two. The
choice of the user depends on what she wants to achieve. If, e.g., she is determined
that x should not become negative, she should choose the second alternative. If,
again, she is determined that x should not become positive, she should choose
the first alternative. We can imagine this user interaction as a menu choice that is
presented to the user after the initialization, where the user is requested to choose
one of the two alternatives.

We could also consider b to be the user and a to be the computer. In this case,
the system starts by either setting x to one or to two. The user can then inspect the
new value of x and choose to reduce it by either 1 or 0, depending on what she
tries to achieve.

24 Back and von Wright

x=o
a

x:=x+1

/\/\
j .~ j j ,,~, j ".-' x:=x-1

D D D D
x=o x=-1 x=l x=o

Figure 2.1. Executing contract S

A more general way for the user to influence the computation is to give input to
the program during its execution. This can be achieved by a relational assignment.
The foHowing contract describes a typical interaction:

(x, e := x', e' I x' ;::: 0 A e > O)a ;
(x := x' I -e < X'2 - x< e)b

The user a gives as input a value x whose square root is to be computed, as weH
as the precision e with which the computer is to compute this square root. The
computer b then computes an approximation to the square root with precision e.
The computer may choose any new value for x that satisfies the required precision.

This simple contract thus specijies the interaction between the user and the
computer. The first statement specifies the user's responsibility (to give an input
value that satisfies the given conditions) and the second statement specifies the
computer's responsibility (to compute a new value for x that satisfies the given
condition).

The use of contracts aHows user and computer choices to be intermixed in
any way. In particular, the user choices can depend on previous choices by the
computer and vice versa, and the choices can be made repeatedly within a loop,
as we will show later.

Of course, there is nothing in this formalism that requires one of the agents to
be a computer and the other to be auser. Both agents could be humans, and both
agents could be computers. There mayaiso be any number of agents involved in
a contract, and it is also possible to have contracts with no agents.

2.2.5 Action systems

An action system is a contract of the form

A = (recc X· S ; X [la (g)a)

2. Enforcing behavior with contracts 25

The contract S inside A is iterated as long as agent a wants. Termination is normal
if the exit condition g holds when adeeides to stop the iteration, otherwise a will
fail, i.e. breach the contract (however, we ass urne that an agent a will never make
choices that lead to a breaching a contract, if she can avoid it; for a justification
of this assumption we refer to [8]). Agent c gets the blame if the execution does
not terminate.

In general, we also allow an action system to have an initialization (begin) state
ment Band ajinalization (end) statement E, in addition to the action statement
S. The initialization statement would typically introduce some local variables for
the action system, and initialize these. The finalization statement would usually
remove these local variables. The action statement S can in turn be a choice
statement,

We refer to each Si here as an action of the system. As a notational convenience,
we write

for

Thus, an action system is in general of the form

2.2.6 Examples of action systems

We present here three examples of action systems. The first example, Nim, illus
trates agame, where the question to be decided is whether and when a player has
a winning strategy. The second example is a c1assical puzzle, the Wolf, Goat and
Cabbages, and illustrates a purely interactive system. The last example illustrates
an imaginary Chinese Dirn Sun restaurant.

The game 0/ Nim

In the game of Nim, two players take turns removing sticks from a pile. A player
can remove one or two sticks at a time, and the player who removes the last stick
loses the game.

We model the players as two agents a and b. Agent c is the scheduler, who de
eides which player makes the first move and agent z is responsible for termination.
The game is then described by the following contract:

Nim = (f:= T [Je! := F) ; Play

Play =z / /\x > 0 --> (x:= x' I x' < x::; x' + 2;a;J:= --1; Play

[Je --1/\ X > 0 --> (x := x' I x' < x ::; x' + 2h ;J := --1 ; Play

[Je X = 0 --> skip

26 Back and von Wright

Note that this only describes the moves and the scheduling. Notions like winning
and losing are modeled using properties to be established and are part of the anal
ysis of the system. Also note that the initial number of sticks is left unspecified (x
is not initialized).

The wolf, the goat and the cabbages

The classical puzzle of the wolf, the goat and the cabbages goes as follows: A man
comes to a river with a wolf, a goat and a sack of cabbages. He wants to get to the
other side, using a boat that can only fit one of the three items (in addition to the
man hirnself). He cannot leave the wolf and the goat on the same side (because the
wolf eats the goat) and similarly, he cannot leave the goat and the cabbages on the
same side. The question is: can the man get the wolf, the goat, and the cabbages
safely to the other side?

We model the situation with one boolean variable for each participant, indicat
ing whether they are on the right side of the river or not: m for the man, w for
the wolf, g for the goat, and c for the cabbages. The boat does not need aseparate
variable, because it is always on the same side as the man. There is only one agent
involved (the scheduler a, who is in practice the man). The contract that describes
the situation is the following:

CrossRiver = m, w, g, c := F, F, F, F; Transport

Transport =a m = w ---t m, W := -,m, -'w ; Transport

Da m = g ---t m, g := -,m, -'g ; Transport

[Ja m = c ---t m, C := -,m, -'c ; Transport

[Ja m := -,m ; Transport

[Ja skip

The initialization says that all four are on the wrong side, and each action cor
res ponds to the man moving from one side of the river to the other, either alone
or together with an item that was on the same side.

Let us have a quick look at what the man is trying to achieve. He wants to reach
a situation where all four items are on the right side of the river, i.e., we want
m 1\ W 1\ g 1\ C to be true at some point in the execution. Furthermore, if the wolf
and the goat are on the same side of the river, then the man must also be on that
side. Thus, he wants the property

(W = g =} m = w) 1\ (g = C =} m = g)

to be true at every intermediate point of the execution.
Note that termination is nondeterministic; the man can decide to stop at any

time. The fact that we want to achieve a situation where m 1\ W 1\ g 1\ c holds will
be part of an analysis of the system, rather than the description.

2. Enforcing behavior with contracts 27

The Dim Sun restaurant

In a Dirn Sun restaurant, a waiter continuously offers customers items from a tray.
We assurne that there are three customers a, b, and c, and that xo, Xl and X2 is the
number of items that they have taken, respectively (initially set to 0). The waiter
d decides in what order to offer customers items, but he may not offer items to
the same customer twice in a row (we let! indicate who got the last offer). The
remaining number of items is r. The manager e can decide to dose the restaurant
at any time (he must dose it when there are no items left). This gives us the
following system:

Dim Sun = XO,XI,X2J:= 0,0,0,3 i Serve

Serve =z (r > O)e i

lf -=J O)d i ((xo, r := Xo + 1, r - 1) []askip) i lf := 0) i Serve

[]d lf-=J l)d i ((xI,r :=XI + l,r-l)[]bskip) i lf:= 1) i Serve

[]d lf -=J 2)d i ((X2' r := X2 + 1, r - 1) []cskip) i lf := 2) i Serve)

[Je skip

2.3 Achieving goals with contracts

The operational semantics describes all possible ways of carrying out a contract.
By looking at the state component of final configurations we can see what out
comes (final states) are possible, if all agents cooperate. However, in reality the
different agents are unlikely to have the same goals, and the way one agent makes
its choices need not be suitable for another agent. From the point of view of a spe
cific agent or a group of agents, it is therefore interesting to know what outcomes
are possible regardless of how the other agents resolve their choices.

Consider the situation where the initial state a is given and a group of agents
A agree that their common goal is to use contract S to reach a final state in some
set q of desired final states. It is also acceptable that the coalition is released from
the contract, because some other agent breaches the contract. This means that the
agents should strive to make their choices in such a way that the scenario starting
from (S, a) ends in a configuration (A, ,) where, is either an element in q, or
l.b for some b t/. A (the latter indicating that some other agent has breached the
contract). A third possibility is to prevent the execution from terminating, if an
agent that does not belong to A is responsible for termination.

For the purpose of analysis we can think of the agents in A as being one single
agent and dually, the remaining agents as also being one single agent that tries to
prevent the former from reaching its goal. In [7, 8] we show how an execution of
the contract can then be viewed as a two-person game and how this intuition can
be formalized by interpreting contracts with two agents as predicate transformers.
This section gives an overview of how this is done.

28 Back and von Wright

2.3.1 Weakest preconditions

A predicate transformer is a function that maps predicates to predicates. We
order predicate trans formers by pointwise extension of the ordering on predi
cates, so F !;;;; F' for predicate trans formers holds if and only if F. q ~ F'. q
for all predicates q. The predicate trans formers form a complete lattice with this
ordering.

Assume that S is a contract statement and A a coalition, i.e., a set of agents.
We want the predicate transformer wp. S. A to map posteondition q to the set of
all initial states (J from which the agents in A have a winning strategy to reach
the goal q if they co-operate. Thus, wp. S. A. q is the weakest precondition that
guarantees that the agents in A can cooperate to achieve posteondition q.

The intuitive description of contract statements can be used to justify the
following definition of the weakest precondition semanties:

wp.if).A.q= (>,(Joq·lf·(J))

wp. (if p then SI else S2 fi).A. q = (p n wp. SI.A. q) U (---p n wp. S2.A. q)

wp. (SI; S2).A. q = wp. SI.A. (wp. S2.A. q)

{ ()..,(Jo '3(J'oR.(J.(J' 1\ q. (J') ifa EA
wp. (R)a. A . q = ().., (J ° \:/(J' ° R. (J. (J' =} q. (J') if arf- A

wp. (SI [Ja S2).A. q = {wP. SSI. A
A· q U wp. SS2. A

A· q ~ffa ~ AA
Wp. 1 .. qnWp. 2· .q 1 a 'F-

These definitions are consistent with Dijkstra's original semantics for the lan
guage of guarded commands [11] and with later extensions to it, corresponding
to nondeterministic assignments, choices, and miracles [3,4, 17].

The semantics of a recursive contract is given in a standard way, using fixpoints.
Assume that a recursive contract statement (reca X 0 S) and a coalition A are given.
Since S is bui1t using the syntax of contract statements, we can define a function
that maps any predicate transformer X to the result of replacing every construct
except X in S by its weakest precondition predicate transformer semantics (for
the coalition A). Let us call this function fS,A. Then fS,A can be shown to be a
monotonie function on the complete lattice of predicate transformers, and by the
well-known Knaster-Tarski fixpoint theorem it has a complete lattice of fixpoints.
We then define

{
J-l.fSA ifa EA

wp.(recaXoS).A= E"f dA
LI'JS,A 1 a 'F-

We take the least fixed point J-l when non-termination is considered bad (from the
point of view of the coalition A), as is the case when agent a E A is responsible
for termination. Dually, we take the greatest fixpoint LI when termination is con
sidered good, i.e., when an agent not in A is responsible for termination. A more
careful and detailed treatment of recursion is found in [6].

The fixpoint definition of the semantics of recursion makes use of the fact
that for all coalitions A and all contracts S the predicate transformer wp. S. A is

2. Enforcing behavior with contracts 29

monotonie, i.e.,

p ~ q =} wp. S. A. q ~ wp. S. A. q

holds for all predicates p and q. This is in fact the only one of Dijkstra's original
fOUf "healthiness" properties [11] that are satisfied by all contracts.

As the predicate transfonners fonn a complete lattice, we can define standard
lattice operations on them:

abort = (>.. q 0 false)

magie = (>..qo true)

(FI UF2).q=FI .q nF2.q

(FI n F2)' q = FI · q U F2. q

Here abort is the bottom of the lattice, and magie is the top of the lattice,
while the two binary operations are lattice meet and lattice join for predicate
transfonners.

In addition to these operations, we define standard composition operators for
predicate transfonners:

(FI ; F2). q = FI · (F2. q)

if p then FI else F2 fi. q = (p n FI . q) U (---p n F2. q)

Finally, let us define the following constant predicate transfonners:

if)· q. a =- q. if· a)

{R}. q. a =- R. a n q =F 0

[R].q.a =-R.a ~ q

With these definitions, we can give simpler definitions of the predicate transfonn
ers for contracts, that more dearly show the homomorphic connection between
the operations on contracts and the operations on predicate transfonners:

wp. if)·A = if)
wp. (if p then SI else S2 fi).A = if p then wp. SI else wp. S2 fi

wp. (SI; S2).A = wp. SI.A ; wp. S2.A

_ {{R} if a E A
wp. (R)a. A - [R] if a rj. A

wp. (SI [Ja S2).A = {wP. SI·A U Wp. S2· A ~f a E A
Wp. SI.A n Wp. S2.A lf a rj. A

{ (/LXOWP.S.A) ifaEA
Wp. (reCa X 0 S).A = (11 X 0 Wp. S.A) if a rj. A

In the last definition, we assume that wp. X. A = X, so that the fixpoint is taken
over a predicate transfonner.

We finally make a slight extension to the contract fonnalism that allows us
to also have implicit agents. We postulate that the set n of agents always con-

30 Back and von Wright

tains two distinguished agents, angel and demon. Any coalition of agents A from
n must be such that angel E A and demon ~ A. With this definition, we can
introduce the following abbreviations for contracts:

{R} = (R)angel

[R] = (R)demon

U = [langet

n = [ldemon

J.L = reCangel

v = reCdemon

This convention means that we can use predicate transformer notation directly
in contracts. We will find this convention quite useful below, when we analyze the
temporal properties of contracts.

2.3.2 Correctness and winning strategies

We say that agents A can use contract S in initial state (J to establish postcondition
q (written (J ~ S I}A q) if there is a winning strategy for the agents in A which
guarantees that initial configuration (S, (J) will lead to one of the following two
alternatives:

(a) termination in such a way that the final configuration is some (A, 'Y) where
'Y is either a final state in q or .lb for some b ~ A :

(S, (J) -+ ... -+ (A, 'Y) where'Y E q U {.lb I b ~ A}

(b) an infinite execution caused by a recursion for which some agent b ~ A is
responsible.

Thus (J ~ S I} A q means that, no matter what the other agents do, the agents in A
can (by making suitable choices) achieve postcondition q, or make sure that some
agent outside A either breaches the contract or causes nontermination. I

This is easily generalized to a general notion of correctness; we define cor
rectness oJ contract S Jor agents A, precondition p and postcondition q as
follows:

The winning strategy theorem of [6] can now easily be generalized to take into
account collections of agents, to give the following:

1 If nested or mutual recursion is involved, then it may not be clear who is to blame for infinite
executions. This problem is similar to the problem of how to decide who wins an infinite game. We
will simply avoid nested or mutual recursion here (altematively, we could consider Theorem 2.3.1
below to define how such situations should be interpreted).

2. Enforcing behavior with contracts 31

Theorem 2.3.1 Assume that contract statement S, coalition A, precondition p and
posteondition q are given. Then p {I S I} A q if and only if p s;:; wp. S. A. q.

Let us as an exarnple show how to detennine when agent a has a winning
strategy for reaching the goal x 2': 0 in our example contract above. Let us as
before define

S = Sl; S2

Sl = x := x + 1 [Ja X := x + 2

S2 = X := x-I []b X := X - 2

Let A = {a}. By the mIes for cakulating weakest preconditions, we have that

wp.S.A. (x 2': 0) = wp.Sl.A. (Wp.S2.A. (x 2': 0))
wp. S2.A. (x 2': 0) = (x := x-I). (x 2': 0) n (x := x - 2). (x 2': 0)

= (x - 1 2': 0) n (x - 2 2': 0)

= (x 2': 1) n (x 2': 2)

=x2':l/\x2':2
=x2':2

wp. Sl.A. (x 2': 2) == (x:= x + 1). (x 2': 2) U (x := x + 2). (x 2': 2)

= (x + 1 2': 2) U (x + 2 2': 2)

= (x 2': 1) U (x 2': 0)

=x2':lVx2':O

=x2':O

Thus, we have shown that

wp. S.A. (x 2': 0) = x 2': 0

In other words, the agent a can achieve the postcondition x 2': 0 whenever the
initial state satisfies x 2': O. Thus we have shown the correctness property

From the wp-semantics and Theorem 2.3.1 it is straightforward to derive mIes
for proving correctness assertions, in the style of Hoare logic:

• Functional update

• Conditional composition

(V (J E p. q. (f. (J))
p ~ if) I}A q

p n b ~ Sl ~A q P n -,b ~ S2 ~A q
P ~ if b then Sl else S2 fi I}A q

32 Back and von Wright

• Sequential update

p ~ Sl I}A r r {I S2 ~A q
p {I Sl ; S2 I}A q

• Relational update

(Va E p' :3 a' • R. a. a' 1\ q. a') A (Va E p' Va' • R. a. a' =} q. a') A
p {I (R)a I}A q a E p ~ (R)a I}A q a tf-

• Choice

• Loop

p n b n t = w {I S I}A p n t < w A
p{1 whileabdoSod I}Apn-,b aE

pnb{1 S I}AP A
p {I while ab da S od I}A p n -,b a tf-

• Consequence

p' ~ S ~A q'

In the rules for the while-Ioop, t (the termination argument for the loop) is
assumed to range over some well-founded set W, and w is a fresh variable also
ranging over W.

These are c10se to the traditional Hoare Logic rules for total correctness. We
inc1ude a rule for the while-Ioop rather than for recursion, for simplicity. The ex
istential quantifier in the first rule for relational update and the existence of two
alternative rules for choice (when a E A) indicate that we can show the existence
of a general winning strategy by providing a witness during the correctness proof.
In fact, the proof encodes a winning strategy, in the sense that if we provide an
existential witness (for a relational update) then we describe how the agent in
question should make its choice in order to contribute to establishing the post
condition. Similarly, the selection of the appropriate rule for a choice encodes a
description of how an agent should make the choice during an execution.

2.3.3 Refinement 0/ contracts

The predicate transformer semantics is based on total correctness. Traditionally, a
notion of refinement is derived from a corresponding notion of correctness, so that
a refinement S ~ S' holds iff S' satisfies all correctness properties that S satisfies.

2. Enforcing behavior with contracts 33

Sinee we define eorreetness for a eolleetion of agents (whose ability to guar
antee a eertain outeome we are investigating), refinement will also be relativised
similarly. We say that contract S is refined by contract S' Jor coalition A (written
S ~A S'), if S' preserves all eorreetness properties of S, for A. By Theorem 2.3.1,
we have

S ~A S' == ('t:/qowp.S.A.q <:;;; wp.S'.A.q)

The traditional notion of refinement [3] is here reeovered in the ease when the
eoalition A is empty; i.e., if all the nondeterminism involved is demonie. Fur
thermore, the generalization of refinement to inc1ude both angelie and demonie
nondeterrninism [4, 6] is reeovered by identifying the agents in A with as the
angel and the agents outside A as the demon.

Given a eontraet, we ean use the predieate transformer formulation of refine
ment to derive mIes that allow us to improve a contraet from the point of view
of a speeifie eoalition A, in the sense that any goals aehievable with the original
eontraet are still aehievable with the new eontraet. These refinement mIes ean be
used for stepwise refinement of eontraets, where we start from an initial high level
speeifieation with the aim of deriving a more effieient (and usually lower level)
implementation of the speeifieation. In this paper we do not eonsider refinement,
as the foeus is on establishing temporal properties. The refinement relation ~A is
investigated in more detail in [8].

2.4 Enforcing behavioral properties

The previous seetion has eoneentrated on what goals an agent ean aehieve while
following a contraet. Here we will instead look at what kind of behavior an agent
ean enforee by following a contraet.

2.4.1 Analyzing behavior

Consider again the example eontraet of the previous seetion, but now assuming
that we have just an angel and adernon involved in the contraet:

S = (x := x + 1 n x := x + 2) ;

(x := x-I U x := x - 2)

A behavior property would, e.g., be that the angel ean foree the eondition 0 <
x ::; 2 to hold in eaeh state when exeeuting the eontraet, if x = 0 initially. Using
temporallogie notation, we ean express this as

x = 0 {! S !} 0(0 ::; x::; 2)

Here 0(0 ::; x ::; 2) says that 0 ::; x ::; 2 is always tme. Note that this property
need not hold for every possible exeeution, it is suffieient that there is a way for
the angel to enJorce the property by making suitable ehoiees during the exeeution.

34 Back and von Wright

x=o

x=o x=o

x:=x+1

~,/,::? ~?~
x:=x-1 t x:=x-2 ~ r :~'X-1 '~ x:=x-2

D D D D
x=o x=-1 x=1 x=o

Figure 2.2. Behavior of contract

Using the operational semantics of S, we can determine all the possible execu
tion sequences of this contract. Fig. 2.2 shows these, also indicating the value of
x at each intermediate state (a is the demon, b is the angel). From this we see that
the angel can indeed enforce the condition 0 :::; x :::; 2, irrespectively of which
alternative the demon chooses. If the demon chooses the left branch, then the an
gel should also choose the left branch, and if the demon chooses the right branch,
then it does not matter which branch the angel chooses. The condition 1 :::; x :::; 2
is, on the other hand, an example of a property that cannot be enforced by the
angel.

In a similar way, we can show that the angel can also enforce that the condition
x = 1 is eventually true when the initial state satisfies x = O. This is expressed
using temporallogic notation as

x=O{1 S I}O(x=l)

From Fig. 2.2 we see that this condition is true after two steps if the demon
chooses the left alternative. If the demon chooses the right alternative, then the
angel can enforce the condition upon termination by choosing the left alternative.

2.4_2 Constructing an interpreter

Let us consider more carefully how to check whether a temporal property can
be enforced when carrying out a contract. Consider a contract statement S that
operates on astate space ~, and includes agents n. Let us check whether the
temporal property Dp can be enforced by a coalition of agents A ~ n.

For any predicate p ~ ~, we define the the contract Always. p, called a tester
for Dp, by

Always.p = (v X· {p}; [s =I=- Al; step; X)

step = (s,o' := Si, 0" I (s, 0') --+ (Si, 0"))ch. s

2. Enforcing behavior with contracts 35

1..
-,p

p

T • s=A

"Al v

"" 1
T

p

Figure 2.3. (a) A property holds always. (b) A property holds eventually

This contract operates on states T with two components sand er. We define p. T =
p. (er. T). The function eh. s gives the agent that makes the choice in the statement
s, if there is one, otherwise there is no agent index. In other words, the tester is
an interpreter for contraet statements, whieh exeeutes them with the purpose of
determining whether a speeifie temporal property is valid.

We illustrate the behavior of the tester with the diagram in Fig. 2.3. The di
agram shows the angelie ehoices as hollow eircles, and the demonie ehoiees as
filled circles. A grey circle indicates that we do not know whether the choice is
angelic or demonie. The X labels the node at which the iteration starts. The arrow
labeled v indieates that we have v-iteration, i.e., the arrow can be traversed any
number of times, without a breaeh of contract. An arrow labeled J-l indicates J-l
iteration, where the arrow can be traversed only a finite number of times during
each iteration.

We now have the following general result, which we give without proof.
(In a separate paper [9] we give formal definitions of behaviours and temporal
properties, together with proofs of verification and refinement rules).

36 Back and von Wright

Lemma 2.4.1 Let S, p, and C be as above. Let A be a coalition of agents in Sl.
Then

(Ja {I S I}A Dp == wp. (Always.p).A. false. T

where (J. T = (Ja and s. T = S

This same result is expressed somewhat more c1early as a correctness property:

(Ja {I S I}A Dp == T {I Always.p I}A false

Lemma 2.4.1 shows that we can reduce the question of whether a temporal
property can be enforced for a contract to the question of whether a certain goal
can be achieved. In this case, the goal false cannot really be established, so suc
cess can only be achieved by miraculous termination, or by nontermination caused
by an agent that does not belong to A.

The tester contract does not, in fact, constitute a fundamental extension to the
notion of contracts; it can be modeled with existing contract constructs (although
it requires an infinite choice construct, if the number of agents is infinite).

In a similar way, we can define a tester Eventually. p for the property Op, by

Eventually.p = (f.L X- [op] ; {s =I- A} ; step ; X)

This tester is described in Fig. 2.3. We have the following result for this tester:

Lemma 2.4.2

(Ja {I S I}A Op == T {I Eventually.p I}A false

where (J. T = (Ja and s. T = S.

Again, this shows how the question whether a temporal property can be enforced
is reduced to a question about whether a goal can be achieved. In this case, the
eventually-property does not hold if execution continues forever without ever
encountering astate where p holds.

2.4.3 Other temporal properties

A more complicated behavior is illustrated by the until operator. We say that a
property p holds until property q, denoted p U q, if q will hold eventually, and
until then p holds. We have that

(Ja ~ S I}APU q == T {I Until.p.q) I}A false

where (J. T = (Ja and s. T = Sand the tester for until is defined by

Until.p.q = (f.LX- [.q]; {p}; {s =I- A}; step ;X)

This tester is illustrated by the diagram in Fig. 2.4.
The weak until, denoted p W q, can be defined in a similar matter. It differs from

the previous operator in that it is also satisfied if q is never satisfied, provided p is
always satisfied. We have that

(Ja {I S I} pWq == T {I Wuntil.p. q I}A false

2. Enforcing behavior with contracts 37

T
q x

~q

...L ~P

Figure 2.4. A property p holds until q

where 0-. T = 0-0 and s. T = Sand

Wuntil. p. q = (vX· [---,q] ; {p} ; {s -I- A} ; step ; X)

The always and eventually operators arise as special cases of the until operators:
Dp = P W false and 0p = true U p.

Another interesting property is p leads to q, denoted p ~ q. We have that the
tester for leads-to is

Leadsto.p.q = [p]; (/-LX· [---,q]; {s -I- A}; step ;X)

and it holds if and only if

0-0 {I S I} A p ~ q == T {I Leadsto. p. q I} A false

where 0-. T = 0-0 and s. T = S. The behavior of this tester is illustrated by the
diagram in Fig. 2.5.

An even more useful property is to say that property p always leads to property
q, denoted by D(p ~ q). This requires that we use two loops, a v- loop and a
/-L-loop. We have that

0-0 {I S I}A D(p~ q) == T {I Aleadsto.p.q I}A false

where 0-. T = 0-0 and s. T = Sand

Aleadsto.p.q = (vY· ['P]; [s -I- A]; step; Y

n [p]; (/-LX· [---,q]; {s -I- A}; step ;xn [q]); [s -I- A]; step; Y)

This is illustrated in Fig. 2.6.
The above mentioned behavioral properties all have one thing in common, they

are insensitive to finite stuttering. This means that if a step of the computation does
not change the state, then the effect is the same as if that step had been omitted.

38 Back and von Wright

~P T..----.
p

q X

Figure 2.5. A property p leads to q

v

T

~ s=A
step 6, ... S_*_A----' t--_~_p_ _-

y
p

q
x

Figure 2.6. A property p always leads to q

In the diagram, this means that a stuttering step will lead back to the same state
in the diagram. Being insensitive to stuttering means that the number of steps
that are taken is not important for the behavioral property, only the sequence of
properties that arise during the execution. Note that a computation should not be
insensitive to infinite stuttering, as this is amounts to a form of nontermination
(internal divergence).

2. Enforcing behavior with contracts 39

2.5 Analyzing behavior of action systems

Let us now look at how to enforce temporal properties for action systems. As
action systems are just contracts, we can use the techniques developed above for
this. However, we will show that the simple format for action systems allows us
to simplify the characterizations and proof obligations considerably.

2.5.1 Classification of action systems

In Section 2.2.5 we noted that an action system in general is of the form

Given a coalition A that is trying to achieve some goal, there are eight different
possibilities to consider: whether a, b E A, or a E A, b ~ A, or a ~ A, b E A,
or a ~ A, b ~ A, and, in each case, whether c E A or c ~ A. We will briefly
characterize the intuition behind each of these cases, assuming that agent a is the
user (the environment) and that agent b is the computer (the system). In each case,
c E A means that the computation must terminate eventually if the goal is to be
achieved, while c ~ A means that the goal can be achieved even if the iteration
goes on forever.

• Angelic iteration (a, b E A): At each step, the user decides whether to quit
(which is possible if g holds) or whether to continue one more iteration. In
the latter case, the user decides which alternative Si to choose for the next
iteration. Angelic iteration models an event loop, where the user can choose
what action or event to execute next, and also may choose to exit the loop
whenever this is allowed by the exit constraint.

• Angelic iteration with demonie exit (a ~ A, b E A): This case is similar to
the previous one, except that the choice whether to terminate or not is made
by the computer and not by the user. In other words, it is like an event loop,
where termination may happen at any time when termination is enabled,
the choice of when to terminate being outside the control of the user.

• Demonie iteration (a ~ A, b ~ A): The computer decides whether to stop
or to continue the iteration, and in the latter case, which of the alternative
actions to continue with, in a way that cannot be controlled by the user. This
form of iteration models a concurrent system, where the nondeterminism in
the choice of the next iteration action expresses the arbitrary interleaving of
enabled actions.

• Demonie iteration with angelic exit (a E A, b ~ A): Here we have a similar
situation as the previous, a concurrent system, where, however, termination
is decided by the user. At each step, the user can decide whether to terminate
or continue (provided the exit condition is satisfied), but the user cannot
influence the choice of the next action, if she decides to continue.

40 Back and von Wright

We get more traditional systems as special cases of these very general forms of
iteration. Dijkstra's guarded iteration statement is a special kind of demonic itera
tion, where some action is enabled if and only if the exit condition does not hold.
A traditional temporal logic model is essentially a demonic iteration where the
exit condition is always false, i.e., the system never terminates, and no abortions
are permitted.

Our formalization introduces three main extensions to the traditional temporal
logic model: the possibility that an execution may terminate, the possibility of
angelic choice during the execution, and the possibility of a failed or miraculously
successful execution.

Action systems can be used to model both interactive systems, where the choice
of actions is under the control of the user, and concurrent systems, where the
choice of actions is outside the control of the user. In fact, the action contract
formalism is much more expressive than either one of these two formalisms,
because the actions themselves mayaiso be either angelic or demonic. In a con
current as weH as in an interactive system, we may have angelic choices made
inside an action. This roughly corresponds to an input statement in the action. We
can also have demonic choice inside an action, which roughly corresponds to a
specification statement, where only partial information about the result is known.

2.5.2 Analyzing behavior

In the action system A = (recc X· S[]a(g)a) we assume that the execution of S
is atornic, in the sense that the State can not be observed inside the execution of
S. Hence, to determine whether a property like Dp or Op holds, we only observe
the state at the beginning, immediately before each iteration, and at the end. This
means that astate may violate the property p inside the execution of S, without
violating the property Dp and it may satisfy the property p inside the execution of
S, without satisfying the property Op. The justification for this is that we consider
S as a specification of what kind of state change is taking place, rather than an
actual implementation. If the internal working of S needs to be taken into account,
then each internal step has to be modeled as a separate action.

Let us now consider how to determine whether an agent can enforce a temporal
property like Dp during the execution of an action system. Action systems intro
duce a notion of atomicity that we have not modeled before, so we need to extend
our operational semantics first.

We augment the syntax and operational semantics of contracts with a feature
to indicates that a sequence of execution steps are internal, thus resulting in un
observable internal states. To do this, we introduce two additional statements into
contracts: hide and unhide. We update the operational semantics for contracts
by assurning that the state component is of the form (a, 0), where 0 is a boolean
value, indicating whether the state is observable or not. This component is not
changed by the previously introduced contract constructs. Thus, we have, e.g.,

2. Enforcing behavior with contracts 41

...l.. ... -"'_P_--v_

T ... 4t-----()

v

o=F

Figure 2.7. Modified tester for Dp

that

p.a
(if p then SI else S2 fi, (a, 0)) ----> (SI, (a, 0))

and similarly for the other contract constructs. For the hiding and unhiding
operations, we introduce two new axioms:

(hide, (a,o)) ----> (A, (a, F)) (unhide, (a,o)) ----> (A, (a, T))

The hide and unhide operations will thus just toggle the flag 0, indicating whether
the state is considered observable or not (we assume that there are no nested hid
ings). A contract statement whose internal computation is hidden is denoted (S),
defined by

(S) = hide ; S ; unhide

We assume as a syntactic restriction that there are no unmatched hide or un
hide operations in a contract. We also do not allow nested hiding and unhiding in
actions.

We also need to modify the tester, to take the hidden states into account. The
modified tester for the property Dp is as follows:

Always.p = (vX· {P}; [s # Al; (/-l y. step; if 0 then X else Y fi))

The behavior of this interpreter is shown in Fig. 2.7. We have to take a position
here on whether nonterminating unobservable computations (internal divergence)
are good or bad. We choose here to consider them bad, although it might also
be possible to argue for the opposite interpretation. Thus, internal divergence is
equivalent to abortion (i.e., the designated angel breaching the contract), hence
the /-llabel on the arrow in the inner loop.

42 Back and von Wright

.1- • ~p

1: T
s=A (• I

t:
.1- •

~p (

I 0

T • s=A t. lp

I

...,p t. step !~ .1- .. I O·

T • s=A (lp
.1- •

....,p t. tep
I I

lwA T.
p

-.g s=A L
.1- • I

19 ""A

.1- •
~p

7
I

i~
step

s=A 0 T •
~

"
step

Figure 2.8. Action system tester for Dp

Let us next show how we can compute the precondition for agents A to enforce
the property Op in the action system

in the case when a E A. We have that

0" {I A I}A Op == (vX· {p} ; [--,g] ; wp. S.A ; X). false. 0"

We can show that this is indeed the case, by considering how the coalition A
would execute the contract Always.p from initial state (A, (0", T)). This is done
by unfolding the iteration appropriately, as shown in Fig. 2.8. We have crossed
out aH those branches in the figure that cannot be taken, because the condition
is known to be false. By eliminating these branches, as weH as branches that the
coalition would avoid because they would lead to certain failure, we derive the
simpler diagram shown in Fig. 2.9. This proves that our characterization of the
always tester for the action system A given above is correcl.

2. Enforcing behavior with contracts 43

.L 4 ...,p

Figure 2.9. Simple action system tester for op

The above gave the basic result that we need in order to reason about the tem
poral behavior of action systems. The main advantage here is that we can argue
directly about the weakest preconditions of the actions, without having to go the
indirect route of an interpreter for the system.

2.6 Verifying enforcement

We have shown above how to characterize enforcement of temporal properties for
action systems using weakest preconditions. In this section, we will look in more
detail at how one should prove enforcement in practice.

2.6.1 Predicate-level conditions for correctness
When reasoning about systems in practice, we want to talk about enforcement
(correctness) with respect to a precondition rather than a specific initial state. The
obvious generalization is

and similarly for other temporal properties. Furthermore, it is more practical to
reason about fixpoints on the predicate level rather than on the predicate trans
former level. A straightforward argument shows that from the rule shown in
Section 2.5.2 we get the following rule:

p ~ A I}A Dq == P ~ (lIX O q n (g U wp. S.A.x))

for the case when a E A. In a similar way, we can derive predicate-level character
izations of correctness for the different temporal properties and for the different
cases of which agents belong to the coalition that we are interested in. The fol
lowing lemmas collect those cases that we will use in the examples in Section
2.6.4.

44 Back and von Wright

Lemma 2.6.1 Assume that action system A = (reccX e (S) ; X[]a(g)a) and
coalition Aare given. Then

{! A!} D = {PC;;;; (vxeqn(gUwp.S.A.x)) ifaEA
p A q- pC;;;;(vxeqnwp.S.A.x) ifa\t'A

{! A!} <) = {p C;;;; (JLXeqUwp.S.A.x) ifa EA
p A q- pC;;;; (JLXequ(.gnwp.S.A.x)) ifa\t'A

{! A!} U = {PC;;;; (JLxerU(qnwp.S.A.x)) ifaEA
p Aq r_ pC;;;; (JLxerU(.gnqnwp.S.A.x)) ifa\t'A

In Section 2.3 we considered achieving goals (postconditions) with contracts.
Since our generalized notion of temporal properties also includes finite scenarios
(aborting, termination or rniraculous), we can consider achieving a postcondition
q as enforcing a special temporal property 6.q (jinally q).

We can also give the characterization for a finally-property in the same way as
for other temporal properties. For simplicity we assume that c \t' A. We have that

Lemma 2.6.2 Assume that action system A = (reccX e (S) ; X[]a(g)a) and
coalition Aare given. If c E A, then

{! A ~ 6. ={pC;;;;(JLxe(gnq)Uwp.S.A.X) ifaEA
p A q- pC;;;; (JLXe(wp.S.A.falsenq)u(.gnwp.S.A.x)) ifaliA

On the other hand, if c Ii A, then

{! A!} 6. ={pC;;;;(vxe(gnq)Uwp.S.A.X) ifaEA
p A q- pC;;;; (vxe(wp.S.A.falsenq)u(.gnwp.S.A.x)) ifaliA

Here the intuition is that if a E A, then the termination is (angelically) chosen
whenever g and q both hold. If a \t' A, then continuation is (demonically) chosen
whenever q holds, if possible (i.e., if .wp. S. A. false holds).

Note that this is the first temporal property where the agent c comes into play.
In our generalizations of classical temporal operators, the notion of who is re
sponsible for infinite executions does not matter. However, it does matter (as was
the original intention) when considering establishing a postcondition.

The conditions for the case a Ii A in Lemma 2.6.2 contain the odd-looking
predicate wp. S.A. false, but in the case when termination is deterministic we get
a simplification,because then wp. S.A. false = g).

2.6.2 Invariant-based methods

Lemma 2.6.1 shows how proving enforcement of temporal properties is reduced
to proving properties of the form p C;;;; e where e is a JL- or v-expression. From
fixpoint theory we know that such properties can be proved using an invariant (v)
or an invariant and a termination function (JL):

Lemma 2.6.3 Assume that action system A = (reccX e (S) ; X[]a(g)a is given,
together with a coalition A. Then

2. Enforcing behavior with contracts 45

(a) Afways-properties can be proved using invariants, as folIows:

~p_~ __ I ___ ,~g~n~/~{I~S-=I}A_I ____ I_~_q~aEA
p {I A I}A Dq

(b) Eventually-properties can be proved using invariants and termination
arguments, as folIows: .

p ~ q u (,g nI)
,q n ,g n I n t = w {I S I} A q U (,g n I n t < w) a Ii A

P {I A I}A <)q

where the state function t ranges over some well-founded set.

(c) Until-properties can be proved asfollows:

~p~~~r_U_I ____ ,_r_n_l_n_t_=n-w.{~I,S_I=}A~r_U~(/_n __ t_<_w~)----/~~~q~aEA
p {I A I}A q Ur

p ~ rU (,g nI)
,g n ,r n I n t = w {I S I} A r U (,g n I n t < w) r7 A

le av:--q

where the state function t again ranges over some well-founded set.

Enforcing finally-properties is essentially proving correctness for loops, with
different combinations of angelic and demonie nondeterminism:

Lemma 2.6.4 Finally-properties can be proved as folIows, in the case when c E

A:

p~1 ,wp. S.A. false n I n t = w {I S I}A In t < w
p {I A I}A 6q

where the state function t again ranges over some well-founded set. In the case
when c Ii A the rufes are similar, but without terminationfunction t.

46 Back and von Wright

2.6.3 Demonstrative methods

In some cases, temporal properties can be proved by demonstrating a specific
sequence of correctness steps. This idea will be used in examples in Sec
tion 2.6.4. We now show how such methods can be derived from the general
characterizations of temporal properties.

An eventually-property Oq can be proved by showing that a specific number of
steps will lead to the condition q holding:

Lemma 2.6.5 Assume that action system A is given as before. Then

where sn means n-fold sequential composition S ; S ; ... ; S (and SO = skip).

Proof. We prove that this rule is valid, for the case a E A. Assume p ~ sn I} A q.
We first note that it is straightforward to show (by induction on n) that Tn . q c;:;
(f..L x 0 q U T. x), for arbitrary predicate transforrner T and predicate q. Thus, we
have

p {I A I}A \>q

== {original rule for correctness}

p c;:; (f..LxoqUwp.S.A.x)

~ {comment above}

p c;:; (wp. S.At· q

== {homomorphism (Section 2.3.1)}

P c;:; (wp. sn.A). q

== {definition of correctness }

p {I Sn I}A q

Until-properties can be proved by exhibiting a suitable correctness sequence.

Lemma 2.6.6 Assume that action system A is given as before. Then

qi c;:; q (i = O .. n - 1) qi {I S ~A qi+l (i = O .. n - 1) A
~--~--------~~~~-7~~~--------~aE

p{1 A I}AqUr

and

qi c;:; q (i = O .. n - 1) qdl {-,g}; S I}A qi+l (i = O .. n - 1) a \t' A
p{IAI}AqUr

where p = qo and qn = r.

D

Proof. We prove that this rule is valid, for the case a E A. Assume qi c;:; q and
qi {I S I}A qi+l for i = O .. n -1. We show that qi c;:; (f..LX 0 rU (qnwp. S. A. x))) for

2. Enforcing behavior with contracts 47

i = O .. n, by induction down from n. As a base case we have (where T = wp. S.A)

qn
t;;; {assumptions}

qnT.r
t;;; {monotonicity }

r U (q n T. (/1 x • r U (q n T. x)))

= {fold fixpoint }

(/1 x • r U (q n T. x)))

and the step case is (for 0 < i :S n)

qi-l
t;;; {assumptions}

qnT·qi
t;;; {monotonicity, induction assumption }

rU(qnT.(/1 xorU (qnT.x)))
= {fold fixpoint }

(/1 x • r U (q n T. x))

which by induction gives us qo t;;; (/1 x· rU (qn T. x)) from which p {I A I} A q U r
follows by Lemma 2.6.1, since p = qo. D

2.6.4 Enforcement in example systems

Let us now apply these techniques to analyzing enforcement of temporal
properties in the three example action systems that we described earlier.

The game 01 Nim

The game of Nim is described as the following action system:

Nim = if:= T [Je! := F) ; Play

Play =z 1/\ x > 0 --+ (x := x' I x' < x :S x' + 2)a ;f := -1 ; Play

[]c -1/\ x> 0 --+ (x:= x' I x' < x:S x' + 2)b ;f:= -1; Play

[]c x = 0 --+ skip

Before considering questions about winning or losing, we consider the general
question "Will the game always terminate"? In order to ans wer this question in the
most general way, we take the point of view of an empty coalition (so all agents
are demonic, i.e., trying to prevent termination). The property that we want to
enforce is L".true. We use Lemma 2.6.3 (d), according to which answering this
question is equivalent to proving termination of the traditionalloop program

while x > 0 do if 1 then [x := x' I x' < x :S x' + 2] ; if := -1)

48 Back and von Wright

else [x:= x' I x' < x :::; x' + 2j ; if := ---1)
fi

od

This is straightforward, with invariant true and termination argument x. Since
termination is guaranteed regardless of whether the agent z (who is responsible
for termination) is part of the coalition we consider or not, we can considered z to
be a dummy and leave it out of the discussion when analyzing other properties.

The most obvious question that we can ask about this system is "Under what
initial conditions can agent a (or b) win the game"? The desired postcondition
from the point of view of agent a is f /\ x = 0, while from the point of view of
agent b it is ---1/\ x = o.

We first show that in Play, agent a can win under the precondition

p = (j /\ x mod 3 i- 1) V (---1/\ x mod 3 = 1)

regardless ofhow the scheduler works. We use Lemma 2.6.3 (d) again, with coali
tion A = {a} and with invariant (j /\ x mod 3 i- 1) V (---1/\ x mod 3 = 1), i.e.,
the same as the precondition. The idea is that a can always make the state change
from a situation where x mod 3 i- 1 to a situation where x mod 3 = 1 while b
must then re-establish x mod 3 i- 1. The result is the same in the case A = {a, c},
since the scheduler is essentially deterministic inside Play.

Now it is easy to show that the initialization always establishes the precondition
p ifthe scheduler is angelic (c E A) but never if the scheduler is demonie (c tf. A).
The conclusion of this is that in the original game, we can always win if we are
allowed to decide who should start (after we know how many sticks are in the
pile).

Wolf, goat and cabbage

The action system that describes the wolf, goat and cabbage problem is as follows:

CrossRiver = m, w, g, C := F, F, F, F ; Transport

Transport =a m = W ---> m, W := -,m, -'w ; Transport

[ja m = g ---> m, g := -,m, -,g ; Transport

[ja m = C ---> m, C := -,m, -,c ; Transport

[Ja m := -,m ; Transport

[ja skip

We want to prove that the agent (the man) can enforce the following temporal
property using the contract:

(w = g =* m = w) /\ (g = C =* m = g) U m /\ w /\ g /\ c

The simplest way to show this is to verify the following sequence of correctness
steps:

true

2. Enforcing behavior with contracts 49

~ m,w,g,c:= F,F,F,F I}
-,m 1\ -,w 1\ -,g 1\ -,c

{I S ~
m 1\ -,w 1\ g 1\ -,c

~ S ~
-,m 1\ -,w 1\ g 1\ -,c

~ S I}
ml\wl\gl\-,c

~ S ~
-,m 1\ w 1\ -'g 1\ -,c

{I S ~
m 1\ w 1\ -'g 1\ c

{I S ~
-,m 1\ w 1\ -'g 1\ c

~ S I}
ml\wl\gl\c

where S stands for the action of the system, i.e.,

{m = w} ; m, w := -,m, -,w

U {m = g} ; m, g := -'m, -'g

U {m = c} ; m, C := -'m, -,c

Um:=-,m

By Lemma 2.6.5 this is sufficient, since each of the intermediate conditions
implies (w = g =? m = w) 1\ (g = C =? m = g).

The Dim Sun restaurant

The Dirn Sun restaurant was described as follows:

Dim Sun = XO,XI,X2,!:= 0,0,0,3; Serve

Serve =z (r > O)e; (lf -I=- O)d ; ((xo, r := Xo + 1, r - 1) []askip) ; lf := 0) ; Serve

[Je skip

[]d lf -I=- l)d ; ((Xl, r := Xl + 1, r - 1) []bskip) ; lf := 1) ; Serve

[]d lf -I=- 2)d; ((x2,r:= X2 + 1, r-1)[]cskip); lf:= 2); Serve)

With this setup we can prove that with the help of the servant, a customer can get
at least half of the items that have been taken:

Xo = 0 1\ Xl = 0 I\X2 = 01\/ = 3 ~ A I}{a,d} D(xo 2: Xl +X2)

The proofuses Lemma 2.6.3 with invariant lf = Ol\xo > Xl +X2) V (J -I=- Ol\xo 2:
Xl +X2).

50 Back and von Wright

Similarly, we can prove that two cooperating customers can get almost half of
the items, provided that the manager helps by not closing too early:

Xo = 0 AXl = 0 AX2 = 0 Af = 3 {I A I}{a,b,e} Lc.(r = 0 Axo +Xl :::: X2 -1)

In this case, the invariant is Xo + Xl :::: X2 - 1 and the termination argument is,
e.g., 3r + 3 - f.

2.7 Conclusions and related work

The main purpose of this paper has been to show how to model enforcement of
temporal properties during execution of contracts. Our results generalize the re
sults that we have presented earlier, in particular in [6], where only achievement
of specific goals with a contract was considered. At the same time, the results
provide a generalization of the standard temporallogic analysis framework, where
only one kind of nondeterminism is allowed (demonic). Another contribution here
is the generalization of action systems. The traditional notion of action systems
only allows demonic choice, and is mainly used to model concurrent systems. In
[6] and [10], we generalized this to action systems with angelic choice, to model
interactive systems. Here we carry this one step further, and give a general con
tract model for action systems that allows any number of agents to participate in
the execution of the action system, getting concurrent and interactive systems as
special cases. A noteworthy feature of this generalization is that now also termi
nation in action systems is nondeterministic. Action systems turn out to be quite
good for describing systems, as they allow simplified characterizations and proof
obligations for enforcement of temporal properties. At the same time, action sys
tems introduce a notion of atomicity that is not directly modeled in contracts. The
examples have been chosen to illustrate the new kinds of applications that now
can be handled in our approach. More traditional examples of concurrent and
interactive systems have been described elsewhere.

Temporal properties have been defined and used before in a predicate trans
former framework with only demonic nondeterminism in order to generalize
traditional reasoning systems for sequential and parallel programs [19, 13, 15].
In our more general predicate transformer framework (with angelic nondeter
minism) verification of temporal properties of contracts is reduced to traditional
correctness properties of special fixpoint contracts. These fixpoint contracts are
built much in the same way as corresponding specifications of temporal proper
ties using JL /v-ca1culus, as is common, e.g., in connection with model checking
[12]. However, in our framework these correctness properties can be verified using
traditional invariant methods, with rules similar to those in traditional temporal
reasoning systems [16]. Our generalization to include agents, coalitions, and an
gelic nondeterminism is similar to independent recent work by Alur, Henzinger,
and Kupferman [2] on alternating-time temporallogic. They have a more elab
orate model of games and interaction, but their view of computations is more
traditional, without abortion, termination, or miracles.

2. Enforcing behavior with contracts 51

References

[I] M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable specifications of
reactive systems. In G. A. et al., editor, Proc. 16th 1CALP, pages 1-17, Stresa, Italy,
1989. Springer-Verlag.

[2] R. Alur, T. Henzinger, and O. Kupferman. Alternating-time temporallogic. In Proc.
38th Symposium on Foundations of Computer Science (FOCS), pages 100-109.
IEEE, 1997.

[3] R .1. R. Back. Correctness Preserving Program Refinements: Proof Theory and
Applications, volume 131 of Mathematical Centre Tracts. Mathematical Centre,
Amsterdam, 1980.

[4] R. J. R. Back and J. von Wright. Duality in specification languages: a lattice
theoretical approach. Acta 1nformatica, 27:583-625, 1990.

[5] R. J. R. Back and J. von Wright. Games and winning strategies. Information
Processing Letters, 53(3):165-172, February 1995.

[6] R. J. R. Back and J. von Wright. Refinement Calculus: A Systematic 1ntroduction.
Springer-Verlag, 1998.

[7] R. J. R. Back and J. von Wright. Contracts, games and refinement. Information and
Computation, 156:25-45,2000.

[8] R: J. R. Back and J. von Wright. Contracts as mathematical entities in programming
logic. In Proc. Workshop on Abstraction and Refinement, Osaka, September 1999.
Also available as TUCS Tech. Rpt. 372.

[9] R. J. R. Back and J. von Wright. Verification and refinement of action contracts.
Tech. Rpt. 374, Turku Centre for Computer Science, November 2000.

[10] R. J. R. Back, A. Mikhajlova, and J. von Wright. Reasoning about interactive sys
tems. In J. M. Wing, J. Woodcock, and J. Davies, editors, Proceedings ofthe World
Congress on Formal Methods (FM'99), volume 1709 of LNCS, pages 1460-1476.
Springer-Verlag, September 1999.

[11] E. Dijkstra. A Discipline 0/ Programming. Prentice-Hall International, 1976.

[12] E. Emerson. Automated temporal reasoning about reactive systems. In F. Moller and
G. Bortwistle, editors, Logics for Concurrency: Structure versus Automata, vo1ume
1043 of Lecture Notes in Computer Science. Springer-Verlag, 1996.

[13] W. Hesselink. Programs, Recursion and Unbounded Choice. Cambridge University
Press, 1992.

[l4] E. Knapp. A predicate transformer for progress. Information Processing Letters,
33:323-330, 1989.

[15] J. Lukkien. Operational semantics and generalised weakest preconditions. Science of
Computer Programming, 22: 137-155, 1994.

[16] Z. Manna and A. Pnueli. Completing the temporal picture. Theoretical Computer
Science, 83:97-130, 1991.

[17] C. Morgan. Data refinement by miracles. Information Processing Letters, 26:243-
246, January 1988.

[18] C. Morgan. Programmingfrom Specijications. Prentice-Hall, 1990.

[l9] J. Morris. Temporal predicate transformers and fair termination. Acta Informatica,
27:287-313,1990.

52 Back and von Wright

[20] Y. Moschovakis. A model of concurrency with fair merge and full recursion.
Information and Computation, pages 114-171, 1991.

[21] W. Thomas. On the synthesis of strategies in infinite games. In 12th Annual Sympo
sium on Theoretical Aspects of Computer Science (STACS), volume 900 of Lecture
Notes in Computer Science, pages 1-13, 1995.

3

Asynchronous progress

Ernie Cohen

Abstract

We propose weakening the definition of progress to a branching-time op
erator, making it more amenable to compositional proof and simplifying the
predicates needed to reason about highly asynchronous programs. The new
progress operator ("achieves") coincides with the "leads-to" operator on all
"observable" progress properties (those where the target predicate is stable)
and satisfies the same composition properties as leads-to, including the PSP
theorem. The advantage of achievement lies in its compositionality: a pro
gram inherits all achievement properties of its "decoupled components". (For
example, a dataflow network inherits achievement properties from each of its
processes.) The compositionality of achievement captures, in a UNITY-like
logic, the well-known operational trick of reasoning about an asynchronous
program by considering only certain well-behaved executions.

3.1 Introduction

It is weH known that progress properties (such as leads-to [1]) are not preserved
under parallel composition. That is, it is not generaHy possible to obtain a useful
progress property of a system from a progress property of one of its components.
Instead, it is usually necessary to work globally with atornic progress steps (ob
tained by combining localliveness properties with global safety properties). This
often results in unreasonably complicated proofs.

For example, consider the following trivial producer-consumer system. The
producer repeatedly chooses a function, applies it to bis local value, and sends
the function along a FIFO channel to the consumer; the consumer, on receiving a
function, applies it to his local variable. Initially, the two variables are equal and
the channel is empty; we call such astate clean. We would like to prove that, if
the producer eventually stops, the system terminates in a clean state.

Assertional proofs of this program are rather painful; they generally require ei
ther the introduction of an auxiliary inductive definition that captures the behavior

A. McIver et al. (eds.), Programming Methodology
© Springer Science+Business Media New York 2003

58 Cohen

of one of the processes (e.g., in order to formulate an invariant like "the system
is in astate reachable by running the producer from a clean state") or introduc
ing history variables on the channel (which amounts to reasoning about a static
execution object instead of a dynamic program). In either case, the programming
logic fails to provide substantial reasoning leverage.

A more attractive, though informal, operational argument might go as folIows:
starting from a clean state, the producer is guaranteed to execute first. At this
point, the producer cannot interfere with the consumer's first step, so we can pre
tend that the consumer executes next, bringing the system back to a clean state.
This is repeated for every message sent by the producer, so when the system halts,
the state is again clean.

A number of theorems try to systematize this sort of reasoning, typically us
ing commutativity to turn arbitrary executions into well-behaved ones. However,
theorems that yield linear-time properties have to talk about states actually aris
ing in a computation, making them difficult to compose. For example, applying
such a theorem to the producer-consumer example would yield only properties
of the initial and final states (since they are the only ones guaranteed to be
clean); we would prefer a pro gram property capturing the effect of production
and subsequent consumption of a single message.

We propose a new progress operator ~ ("achieves"), that supports this kind of
reasoning within the UNITY programming logic. Achievement has a number of
attractive features:

• It supports the key reasoning rules of the UNITY leads-to operator; in
particular, it is transitive, disjunctive, and satisfies the PSP theorem.

• It coincides with leads-to on those properties that are "observable" (i.e.,
those whose target predicates are stable). Thus, it is as expressive as leads-to
for all practical purposes.

• Unlike leads-to, it supports a form of compositional reasoning: a program
inherits achievement properties from each of its "decoupled components"
(e.g., the processes of a dataflow network). Decoupling can itself be
established compositionally, usually through simple structural analysis.

• Most techniques for reasoning about concurrency control (such as reduction[1 0,
4] or serializability [6]) are based on pretending that certain operations exe
cute "atomically". Decoupled components, on the other hand, effectively
execute "immediately". This makes them easier to compose and allows
them to serve as asynchronous maintainers as invariants (section 3.6).

• Achievement and decoupling are defined semantically (i.e., in terms of the
properties of a pro gram, not its transitions). They are thus independent of
program presentation, unlike related theories like communication-closed
layers or stubborn sets [15], which are defined at the level of transitions.

3. Asynchronous progress 59

• Unlike techniques for compositional temporallogic reasoning, our theory
allows multiple processes to write to the same variable. This allows us to
reason about FIFO channels without having to resort to history variables .

• Unlike interleaving set temporallogic [9], which requires reasoning about
entire executions, achievement obtains the same effect using simpler
UNITY-like program reasoning.

In this paper, we show the key concepts and theorems, and some simple ex
amples. Proofs of all results can be found in [2], which also contains a number
of examples, including the sliding window protocol and the tree protocol for
database concurrency control.

3.2 Programs

Our programs are countable, unconditionally fair, nondeterrninistic transition
systems. As a starting point, we describe them using operators from UNITY [1].

Let S be a fixed set of states. As usual, we describe subsets of S using state
predicates (notation: p, q, r, s), and identify elements of S with their characteristic
predicates. An action (notation: f, g) is a binary relation on S; we identify ac
tions with (universally disjunctive) predicate transforrners giving their strongest
postconditions. We will make use of the following actions (given in order of
decreasing binding power):

l.p = p

O.p = false
(j; g).p = g.(jp)

(I\q).p = P 1\ q
(j V g).p = fp V gp

(j =} g)p = fp =} g.p

(::lx)p = (::lx: p)

x:= e = (::lx'); (I\(x' = e)); (::lx); (I\(x = x')); (::lx')
where x' is a fresh variable

(j if p) = ((I\p);f V (1\ ,p))

The everywhere operator of [5] is extended to predicate transforrners by

[h] == [(\I p : h.p)]

A program (notation: A, B, ...) is a countable set of actions. A pro gram is
executed by repeatedly stuttering or executing one of its actions, subject to the
restriction that each action is chosen infinitely often; formally, an execution e is

60 Cohen

an infinite sequence of states ei such that

(Vi 2: 0: (::la E AI{l} : [ei+1 '* a.ei]))
1\ (V i 2: 0, a E A : (::lj 2: i: [eH1 '* a.ej]))

Under this semantics, union of programs corresponds to fair parallel composition,
so we use the symbol I as a synonym for set union when composing programs.

The motivating problem of this paper is the desire to prove properties of the
form (p f---> q in A) ("p leads-to q in A"), which says that every execution of A
that starts with a p-state contains a q-state:

(p f---> q in A) == (Ve : e an execution of A : [eo '* p] '* (::l i : [ei '* q]))

The standard way to prove f---> properties is with the operators U and E, defined by

(p U q in A) == (Va E A : (I\(p 1\ ,q)); a; (1\(,p 1\ ,q)) = 0)

(p E q in A) == (p U q in A) 1\ (::l a E A : (1\ (p 1\ ,q)); a; (1\ ,q) = 0)

(p U q in A) ("p unless q in A") means that no A transition falsifies p without
truthifying q (unless q is true already); this also means that in any execution of A,
p, once true, remains true up to the first moment (if any) when q holds. (p E q inA)
("p ensures q in A") means that, in addition, some transition of A is guaranteed
to yield a q state when executed from a p 1\ ,q state. U properties are are used to
specify safety, while E properties specify "atomic" progress.

Given U and E, we have the following (complete set of) rules for deriving f--->

properties:

(p E q) '* (p f---> q)

(p f---> q) 1\ (q f---> r) '* (p f---> r)
(Vi :Pi f---> qi) '* (::li :Pi) f---> (::li: qi)

(p f---> q) 1\ (r U s) '* ((p 1\ r) f---> (q 1\ r) V s)

the last rule known in UNITY lingo as "progress-safety-progress" (PSP).

(3.1)

The main reason for introducing E (instead of just working with f---> and U) is
that, unlike f--->, E properties can be composed, using the union rule:

(p E q in A) 1\ (p U q in B) '* (p E q in AlB)

The main purpose of this paper is to define areplacement for f---> that has a similar
union rule (under suitable semantic constraints on A and B), while preserving the
composition rules of (3.1).

It is not hard to see that, for the purpose of showing progress properties of
programs under union, the U and E properties of a program are a fully abstract
semantics. Therefore, we define rv (congruence) and <1 (containment) ofprograms
in the obvious way (op : ranges over {U, E}):

A rv B == (V p, q, op : (p op q in A) <=} (p op q in B))

A<1B == (AlB rv B)

3. Asynchronous progress 61

An example of the advantage of using semantic notions (as opposed to equality
and subset) can be seen when we extend guarding to programs

(A ifp) == {(a ifp) S.t. a E A}

; we then have (A if p) <l A.
We will make frequent use ofthe following two properties derived from U:

(p stable in A) == (p U false in A)

(A).p == (V q : [p =? q]/\ (q stable inA) : q)

(p stable in A) holds if no transition of A can falsify p. (A).p is the strongest
predicate that both contains p and is stable in A; i.e. it describes the set of all
states reachable from p-states via a (possibly empty) sequence of A transitions.

3.2.1 Continuity

Some of our results make use of the following semantic property of finite
programs. Let eh range over totally ordered sets of predicates, and define

(A cont) == (V eh : (V pECh : (p E q in A)) =? ((3 pECh: p) E q in A))

Intuitively, (A cont) means that whenever A guarantees atomic progress to (i.e.,
ensurity of) a goal from each of a weakening sequence of starting points, it can
achieve atomic progress from their disjunction.

Although not all programs are continuous, most programs of interest can be
shown to be continuous using the following theorems:

({t} cont) (3.2)

(A cont) /\ (B cont) =? (AlB cont) (3.3)

(Vi,j: (Ai cont) /\ [Pi /\Pj => i =j]) => ((li: (Ai ifpi)) cont) (3.4)

These rules say that any singleton program is continuous, and that continuity is
preserved by finite union or arbitrary disjoint union.

3.3 Achievement

We would like to define areplacement for f---+, "" ("achieves"), such that an
achievement property of the consumer is an achievement property of the whole
producer-consumer system. The reason that this doesn't work with f---+ is that the
producer might send another message before the consumer gets a chance to ex
ecute. For example, the consumer might be guaranteed to eventually make the
channel empty when running in isolation, but not when run in parallel with the
producer.

An obvious way to overcome this problem is to define (p "" q in A) so that
it holds if, from a p state, A is guaranteed to reach some state reachable from a q

62 Cohen

state (i.e., an (A).q state). To make sure that"'"" is transitive, we similarly weaken
the antecedent p, yielding the proposed definition

?(p "'"" qinA)=::((A).p I-t (A).qinA)

However, this definition is too lenient - because it allows progress "backward in
time", it is incompatible with the PSP theorem. For example, if A is the program
{x:= true}, wewouldhave (x","" ...,xinA) and (xUfalseinA); the PSP theorem
then yields (x "'"" false inA) , which is not what we want.

The remedy is to build into the definition of"'"" a quantification over all possible
U properties with which it might be combined (using PSP). This leads to the
definition

(p "'"" qinA) =::
('<I r, s : (r U s in A) ~ ((A). (s V (r 1\ p)) I-t (A) . (s V (r 1\ q)) in A))

(the antecedent has again been weakened to recover transitivity.) To a good
approximation, (p "'"" q in A) means that, for any p-state sO,

(A).sO I-t (A).(q 1\ (A).sO)

that is, from any state reachable from sO (via A), A is guaranteed to reach astate
that is reachable from sO via a path that contains a q-state.

The definition of"'"" is obviously much too complex to use directly. Thankfully,
we don't need to, because we can reason about "'"" pretty much as we reason about
I-t. In particular, it satisfies the analogues of (3.1):

(p I-t q) =? (p "'"" q)

(p "'"" q) 1\ (q"'"" r) =? (p "'"" r)
('<I i : Pi "'"" qi) =? ((:3 i : Pi) "'"" (:3 i : qi))

(p "'"" q) 1\ (rUs) =? ((p 1\ r) "'"" (q 1\ r) V s))

We also need a way to get from "'"" back to I-t:

(p "'"" q) 1\ (q stable) ~ (p I-t q)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

That is, any achievement property whose target is stable is also a leads-to prop
erty. We argue that these are the only leads-to properties that really matter, since
progress to a predicate that is not stable might never be witnessed by an asyn
chronous ob server. If one accepts this argument, then "'"" would appear to be at
least as good as I-t.

The main advantage of achievement is the following powerful composition
property: define (A dec B) ("A is decoupled from B") and (A ::::l B) ("A is a
decoupled component of B") as follows (where op ranges over the operators
E,U):

(AdecB) =:: ('<Ip,q,op: (popqinA) ~ ((B).pop (B).qinA))
(A ::::l B) =:: (A <I B) 1\ (A dec B) ;

3. Asynchronous progress 63

then we have

(p 'V> qinA) A (A ~B) =} (p 'V> qinB) (3.10)

In other words, if A is a decoupled component of B, then every achievement
property of A is also an achievement property of B. Put differently, working
with achievement, we can choose which decoupled component is the next one
to execute. Clearly, this does not hold for leads-to.

3.4 Decoupling

Like 'V>, the definition of dec is too complicated to use directly. Fortunately,
decoupling can be established using the following (incomplete) set of rules:

(AIBdecA) (3.11)

(Vi: (Ai decB)) =} ((li: Ai) decB) (3.12)

(Vi: (A decBi)) A (A cont) =} (A dec (Ii: Bi)) (3.13)

(A dec B) A (p, """P stahle in B) =} ((A if p) dec B) (3.14)

(Vi: (Adec(Bifpi)))A[(::li:Pi)]=}(AdecB) (3.15)

(.....,p stahle in B) =} ((A if p) dec (B if.....,p)) (3.16)

It turns out to be useful to consider explicitly the property (A dec AlB), which
we abbreviate (A wdec B) ("A is weakly decoupled from B"). (Note that A <1 BA
(A wdec B) =} (A ~ B).) As a rule of thumb, two programs whose interactions
are ffee of face conditions are weakly decoupled from each other, while (A dec B)
means that, in addition, B cannot send information directly to A. Some useful rules
for establishing weak decoupling are the following:

(A dec B) =} (A wdec B) (3.17)

(V i,j : (Ai wdec B) A (Ai wdec Aj)) =} ((li: Ai) wdec B) (3.18)

(Vi: (A wdecBi)) A (A cont) =} (A wdec (Ii: Bi)) (3.19)

(A wdec B) A (p stahle in B) =} ((A if p) wdec B) (3.20)

(Vi: (A wdec (Bifpi))) A [(::li :Pi)] =} (A wdecB) (3.21)

((A ifp) wdec (B if.....,p)) (3.22)

As these rules show, decoupling has a better left-union rule ((3.12) vS. (3.18)),
which is why we work with decoupling whenever possible. For example, in a
producer-consumer system, producers are decoupled from consumers, while con
sumers are only weakly decoupled from producers. This means that we can allow
race conditions in the producer, while keeping it a decoupled component of the
system, but not in the consumer (except under unusual circumstances).

64 Cohen

For singleton programs, decoupling can be established with the following
theorems:

(3p, q : [p V q]/\ [p; g;f '* f; g]/\ [q; g '* 1]) '* ({f} dec {g}) (3.23)

(3p, q, r : [p V q V r]/\ [r '* f]/\ [p; g;f '* f; g]/\ [q; g '* 1]) (3.24)

'* ({f} wdec {g})

The hypothesis of (3.23) says that g right-commutes withf from every state from
which g can possibly change the state; the hypothesis of (3.24) says that g right
commutes with f from every state from which g can possibly change the state
andf necessarily changes the state. For example, iff and g interact only through
a FIFO channel on which f sends and g receives (both asynchronously), then
({f} dec {g}) and ({g} wdec {f}). Related forms of commutativity are studied
in [14].

3.5 Example - Loosely-coupled programs

A loosely-eoupled pro gram [11] is one in which (1) every transition is total and
deterministic, and (2) from any state from which two transitions can change the
state, the transitions commute. (Dataflow networks [8] are the most familiar ex
ample.) In such a program, every transition is weakly decoupled from every other
(by (3.24)); since singletons are continuous (by (3.2)), each transition is weakly
decoupled from the rest of the system (by (3.19)). Grouping transitions arbitrarily
into processes, each process is a decoupled component (by (3.18)). Thus, in rea
soning about a system, we can choose, at each state, any enabled process to be the
next one to execute. Proofs based on this are usually simpler than using the fixed
point characterization of [8], since we can often reason about simple (first-order)
predicates, instead of having to deal with message sequences.

As a concrete example of this kind of reasoning, consider the following loosely
coupled version of the producer-consumer system described in the introduction.
Let eh be a FIFO channel, n a natural counter, let eh!m (resp. eh?m) be the actions
that send (resp. receive) the message m along the channel eh, and define

P = {(n:= n -1; (3f: x :=f.x; eh!f) ifn > On

c = {((3f : eh?f; y := f·y) if eh =1-<> n
clean == x = Y /\ eh =<>

mid == (3f : x = f·y /\ eh = lf))

3. Asynchronous progress 65

We can prove (clean f---* clean 1\ n = 0 in PI C) as follows:

1) clean 1\ n = N > 0 f---* mid 1\ n < N in P defP
1, (3.5)
(3.24)

2) clean 1\ n = N > 0'""* mid 1\ n < N in P
3) (P::::! PIC)
4) clean 1\ n = N > 0 '""* mid 1\ n < N in PIC 2,3, (3.10)
)

5) mid 1\ n < N
6) mid 1\ n < N
7) (C::::! PIC)
8) mid 1\ n < N
)

f---* clean 1\ n < N in C def C
'""* clean 1\ n < N in C 5, (3.5)

(3.24)
'""* clean 1\ n < N in PIC 6, 7, (3.10)

9) clean 1\ n = N > 0'""* clean 1\ n < N in PIC 4, 8, (3.6)
10) clean 1\ n = N '""* clean 1\ n = 0 in PIC 9, (3.6), induction
11) clean '""* clean 1\ n = 0 in PIC 10, (3.7)
12) ((clean 1\ n = 0) stable in PIC) def P, C
13) clean f---* clean 1\ n = 0 in PIC 11, 12, (3.9)

3.6 Asynchronous safety

Invariants (or, more generally, stable predicates) playa key role in program de
velopment. However, asynchrony can make invariants unreasonably complicated.
Instead of working with real invariants, we can work with predicates that are
reestablished by decoupled components. Because decoupled components can be
assumed to execute immediately, these predicates are almost as good as real in
variants. The component that reestablishes the invariant is called a "sweeper",
because it cleans up after other components.

Sweepers are defined as follows:

(A sw B to p) == (A ::::! B) 1\ ((B).p '""* P in A)

Note that sweeping generalizes stability, that is,

(p stable in A) {:} (1 sw A to p)

A key property of stability is that a predicate is stable in a union of components
if it is stable in each component. Sweeping enjoys similar compositionality:

(A cont) 1\ (\I i : (A sw Bi to p) ::::} ((li: A) sw (li: Bi) to p) (3.25)

The other key property of stability is that it can be combined with progress (or
achievement) using a special case of the PSP rule. The corresponding property for
sweepers is

(A sw B to p) 1\ (q '""* r in B) ::::} (p 1\ q '""* P 1\ (A).rin B) (3.26)

In most situations, workers can run far ahead of sweepers, and we don't want
to have to prove ((B).p '""* p in A) directly, because (B).p may be complicated;

66 Cohen

we would rather sweep up after a single transition of B. In general, if (A wdec B)
is established using the the mIes of section 3.4, then

(p U q in B) 1\ (A :::l B) 1\ (q 'V7 P in A) =} (A sw B to p)

3.6.1 Example

We modify the producer-consumer example slightly so that termination is caused
by aseparate component (instead of using a counter in the producer):

PO = {((::lj: x :=j.x; eh!J) if-,stop)}

PI = {stop := true}

P = POIPI

C = {((::lj : eh?j; y := j.y) if eh yf<>)}

clean == (x = Y 1\ eh =<»
mid == (::lj: x =j.y 1\ eh = if))

The proof from section 3.5 does not work here, because there is no state variable
n to record progress. However, we can instead use a sweeper proof:

1) (CwdecPO,Pl)
2) clean U mid
3) mid f-+ clean
4) mid 'V7 clean
5) C sw PO to clean

)
6) clean U jalse
7) jalse 'V7 clean
8) C sw PI to clean
)

(3.24)
in PO def PO
in C
in C

defC
(3.5)
1,2,4

in PI def PI
in C (3.5)

1,6,7

9) C sw P to clean 5,8, (3.25)
10) true f-+ stop in PIC def PO
11) true 'V7 stop in PIC 10, (3.5)
12) clean 'V7 clean 1\ (C).stop in PIC 9, 11, (3.26)
13) (stop stable in C) def C
14) clean 'V7 clean 1\ stop in PIC 12, 13
15) (clean 1\ stop stable in PIC) def P, C
16) clean f-+ clean 1\ stop in PI C 14, 15, (3.9)

3.7 Caveats

While achievement has few disadvantages with respect to leads-to in the context
of UNITY-like program development, it does have one disadvantage worth men
tioning: unlike linear-time properties, achievement is not preserved by program

3. Asynchronous progress 67

refinement1, so to use a refinement step, it is first necessary to convert achieve
ment properties back to leads-to. This is hardly surprising; related properties like
serializability suffer from the same problem.

A minor annoyance in the theory is the continuity requirement. The definition
of (A dec B) is of the form "if A has this property, it also has that property";
when the property is an E property, there is no way in the logic to make sure that
the "that" property is being guaranteed by the same transition that guarantees the
"this" property (even though it is in most practical cases). This is a minor price to
pay for a theory that works entirely at the level of properties, instead of transitions.

A more serious limitation of the theory is shown in the following example.
Suppose we have two producer-consumer systems, A producing for B, and C pro
ducing for D. Suppose also that these systems multiplex their communications on
a shared channel. Sweeper compositionality lets us prove

(B sw AlB to p) 1\ (D sw ClD to p) =} (BID sw AIBICID to p)

(assuming we've correctly labelled multiplexed messages so that B and D don't
try to receive the same messages) so things are fine from the sweeper standpoint.
However, we would like to prove something stronger, namely (AIBID dec ClD),
which would, in effect, allow us to pretend that the communication is not multi
plexed; we do not know how to strengthen the theory to make this possible. (This
problem arose in trying (with Rajeev Joshi) to use sweepers to prove the corre
spondence ofloose and tight executions in Seuss[l2]; Joshi eventually resorted to
reasoning about actions instead of properties [7].)

Finally, beacuase it is fundamentally about progress, the theory is highly asym
metrie with respect to time. Decoupled components work as weak "left-movers";
we can always pretend they happen earlier. They can be composed precisely be
cause all of them are moving in the same direction. Reduction theorems such as
[4], on the other hand, allow both left - and right -movers, so message transmissions
can be moved later (instead of just moving receptions earlier).

3.8 Conc1usions

We have argued that achievement has some desirable properties that make it
technically superior to leads-to, particularly when reasoning about asynchronous
programs. More generally, we have shown that it is possible to weaken linear
time operators to branching-time operators so as to make them more robust to
asynchrony, without changing the essential structure of the logic.

lForexample, (true "" xin O}(x :=jalse), (x:= any), but,(true "" xin {)}(x :=jalse).

68 Cohen

3.9 Acknowledgements

This work was originally inspired by Jay Misra's paper [11]; it has benefitted from
insightful discussions with Jay Misra, J. R. Rao, and Rajeev Joshi, and from the
insightful comments of the anonymous referee.

References

[1] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wes1ey,
Reading, MA, 1988

[2] E. Cohen. Modular Progress Proofs of Asynchronous Programs. PhD. Thesis, Univer
sity ofTexas at Austin, 1993. Availab1e from
ftp:/Iftp.research.telcordia.comlpub/ernie/research/diss.ps.gz .

[3] Ernie Cohen. Separation and reduction. In Mathematics of Program Construction, 5th
International Conference, Portugal, July 2000. Science of Computer Programming,
pages 45-59. Springer-Verlag, 2000.

[4] E. Cohen, L. Lamport. Reduction in TLA. In CONCUR98 Springer-Verlag, 1998.

[5] E. Dijkstra and C. Scholten. Predicate transfonners and Program Semantics. Springer
Verlag.

[6] K. P. Eswaran, 1. N. Gray, R. A. Lorie, I. L. Traiger. The notions of consistency and
predicate locks in a database system. CACM, 19(11):624-633, 1976.

[7] R. Joshi. Imrnediacy: a technique for reasoning about asynchrony. PhD. Thesis,
University of Texas at Austin, 1999.

[8] G. Kahn. The semantics of a simple language for parallel programming. In Proceed
ings ofIFlPCongress '74 North-Holland, 1974.

[9] S. Katz, D. Pe1ed. Veritication ofDistributed Programs using Representative Interleav
ing Sequences. Distributed Computing, 6:107-120, Springer-Verlag, 1992.

[10] R. J. Lipton. Reduction: A Method of Proving Properties of Parallel Programs.
CACM 18(12):717-721, 1975.

[11] J. Misra. Loosely Coupled Programs. In Parallel Architectures and Languages
Europe, pages 1-26, June 1991.

[12] J. Misra. A discipline of multiprogramming - programming theory for distributed
applications. Springer-Verlag, 2001.

[13] J. Pachl. A simple proof of a completeness result for leads-to in the UNITY logic.
IPL, January 1992.

[14] 1. R. Rao. Extensions of the UNITY Methodology, Compositionality, Fairness and
Probability in Parallelism. Springer LNCS #908, 1995.

[15] A. Valmari. Stubborn Sets for Reduced State Space Generation. 10th International
Confeence on Application and Theory ofpetri Nets, Bonn (2) pp 1-22,1989.

4

A reduction theorem for concurrent
object-oriented programs

Jayadev Misra1

Abstract
A typical execution of a concurrent pro gram is an interleaving of the

threads of its components. It is weH known that the net effect of a concurrent
execution may be quite different from the serial executions of its compo
nents. In this paper we introduce a programming notation for concurrent
object-oriented programs, called Seuss, and show that concurrent executions
of its programs are, under certain conditions, equivalent to serial executions.
This allows us to reason about a Seuss program as if its components will
be executed seriaHy whereas an implementation may execute its components
concurrendy, for performance reasons.

4.1 Introduction

A typical execution of a concurrent program is an interleaving of the threads of
its component programs. For instance, consider a concurrent program that has a
and ß as component programs, where the structures of a, ß are as follows:

a:: al; a2; a3, and
ß:: ßl; ß2; ß3.

The concurrent execution al ßl a2 ß2 a3 ß3 interleaves the two sequential exe
cutions. It is well known that the net effect of a concurrent execution may be quite
different from the serial executions of the components. In this example, suppose
al, ßl are "read the value of variable x", a2, ß2 are "increment the value read"
and a3, ß3 are "store the incremented value in x". Then, the given interleaved ex
ecution increases the value of x by 1 whereas an execution in which the threads
are not interleaved increases x by 2.

lThis material is based in part upon work supported by the National Science Foundation Award
CCR-9803842.

A. McIver et al. (eds.), Programming Methodology
© Springer Science+Business Media New York 2003

70 Misra

The method of reduction was proposed by Lipton[3] to simplify reasoning
about concurrent executions. Lipton develops certain conditions under which the
steps of a component program may be considered indivisible (i.e., occurring se
quentially) in a concurrent execution. A step f in a component is a Tight moveT
if for any step h of another component whenever fh is defined then so is hf and
they yield the same result (i.e., their executions result in the same final state).
Similarly, g is a left moveT if for any h of another component hg is defined im
plies gh is defined, and hg = gh. Lipton shows that a sequence of steps of a
component, TO Tl ... Tn C 10 11 ... Im, may be considered indivisible for proof of
termination of a concurrent program if each Ti is a right mover, Ij a left mover
and c is unconstrained. This result has been extended to proofs of more general
properties by Lamport and Schneider [2], Misra [4], and, more recently, by Cohen
and Lamport [1].

In section 4.2, we introduce a programming notation for concurrent object
oriented programming, called Seuss. Briefly, a seuss program consists of boxes;
a box is similar to an object instance. A box has local variables whose values
define the state of the box. A box has actions and methods, both of which will
be referred to as procedures. Actions are executed autonomously; a method is
executed by being called by an action or a method of another box. In section 4.2.2,
we introduce two different execution styles for programs, tight and loose. In a
tight execution an action is completed before another action is started. In a loose
execution the actions may be executed concurrently provided they satisfy certain
compatibility requirements. A tight execution, being a single thread of control,
may be understood more easily than a loose execution. Loose execution, on the
other hand, is the norm where the computing platform consists of a large number
of processors.

In this paper we develop a reduction theorem that establishes that for every
loose execution there is a corresponding tight execution: if a loose execution of
some finite set of actions starting in state s terminates in state t then there is a
tight execution of those actions that can also end in state t starting in state s. This
result is demonstrated by prescribing how to transform a loose execution into a
tight execution in the above sense. This correspondence allows a programmer to
understand a program in terms of its tight executions - a single thread of control
- whereas an implementation may exploit the available concurrency through a
loose execution.

The proof of the reduction theorem is considerably more difficult in our case
because (1) procedure calls introduce interleavings of "execution trees" rather
than execution sequences, and (2) executions of any pair of actions may be inter
leaved provided the actions are compatible. The notion of compatibility is central
to our theory. Roughly, two procedures are compatible if their interleaved execu
tion may be simulated by executing them one after the other in some order. We
give an exact definition and show how compatibility of procedures may be proven.

Compatibility information can not be deduced automatically. Yet it is unreal
istic to expect the user to provide this information for all pairs of procedures;
in most cases, different boxes will be coded by different users, and no user may

4. Areduction theorem for concurrent object-oriented programs 71

even know which other procedures will be executing. Therefore, we have devel
oped a theory whereby compatibility of procedures belonging to different boxes
may be deduced automatically from the compatibility information about proce
dures belonging to the same box. Users simply specify which procedures in a
box are compatible and an algorithm then determines which pairs of actions are
compatible, and may be executed concurrently.

Plan of the paper

In the next section, abrief introduction to Seuss is given; the reader may consult
[5] for a detailed treatment. An abstract model of Seuss is given in section 4.3.
In section 4.2.1 we state certain restrictions on programs which we elaborate in
section 4.4. The definition of compatibility appears in section 4.5. A statement of
the reduction theorem and its proof are given in section 4.6. Concluding remarks
appear in section 4.7.

4.2 The Seuss programming notation

The central construct in Seuss is box; it plays the role of an object. A program con
sists of a set of boxes. Typically, a user defines generic boxes, called cats (cat is
short for category), and creates several boxes from each cat through instantiation.
A cat is similar to a class; a box is similar to a class instance.

The state of a box is given by the values of its variables. The variables are local
to the box. Therefore, their values can be changed only by the steps taken within
the box. To enable other boxes to change the state of a box, each box includes
a set of procedures that may be called from outside. Procedure call is the only
mechanism for interaction among boxes.

A procedure is either an action or a method. A method is called by a procedure
of another box. An action is not called like a traditional procedure; it is executed
from time to time under the following fairness rule: each action is executed even
tually. Both actions and methods can change the state (values of the variables) of
their own box, and, possibly, of other boxes by calling their methods. A method
may have parameters; an action does not have any parameter.

A method may accept or reject a call made upon it. If the state of the box
does not permit a method to execute - for instance, a get method on a channel
can not execute if the channel is empty - then the call is rejected. Otherwise, the
call is accepted. Some methods accept every call; such methods are called total
methods. A method that may reject a call is called a partial method. Similarly,
we have total and partial actions.

4.2.1 Seuss syntax

In this section, we introduce a notation for writing programs. The notation is
intended for implementation on top of a variety of host languages. Therefore, no

72 Misra

commitment has been made to the syntax of any particular language (there are
different implementations with C++ and Java as host languages) and syntactic
aspects that are unrelated to the model are left unspecified in the notation.

Notational Conventions

The notation is described using BNF. All non-terminal identifiers are in Roman
and all terminal identifiers are in boldface type. The traditional meta symbols of
BNF - ::= { } [] () - are used, along with V to stand for alternation (the usual
symbol for alternation, "I", is a terminal symbol in our notation). The special
symbols used as terminals are 1 V; : :: in the syntax given below. A syntactic
unit enc10sed within "{" and "}" in a production may be instantiated zero or more
times, and a unit within "[" and "]" may be instantiated zero or one time. In
the right-hand side of a production, (p V q) denotes that a choice is to be made
between the syntactic units p and q in instantiating this production; we omit the
parentheses, "(" and ")", when no confusion can arise. Text enc10sed within " { "
and " } " in a pro gram is to be treated as a comment.

Program

program ::= program program-name { cat V box} end
cat ::= cat cat-name [parameters]: {variable} {procedure} end
box ::= box box-name [parameters]: cat-name

A program consists of a set of cats and boxes in any order. The dec1aration of
a cat or box inc1udes its name and, possibly, parameters. The names of programs,
cats and boxes are identifiers. The parameters of a cat or box could be ordinary
variables, cats or boxes. A cat consists of (zero or more) variable dec1arations
followed by procedure dec1arations. A box is an instance of a cat. Variables are
dec1ared and initialized in a cat as in traditional programming languages.

Example

We use a single running example to illustrate the syntax of Seuss. A ubiquitous
concept in multiprogramming is the Semaphore. The skeletal program given be
low inc1udes a definition of Semaphore as a cat and two instances of Semaphore,
sand t. Cat user describes a group of users that execute their critical seetions only
if they hold both semaphores, s, t; there are three instances of user.

4. Areduction theorem for concurrent object-oriented pro grams 73

program MutualExclusion
cat Semaphore

var n: nat init 1 {initially, the semaphore value is I}
{The procedures of Semaphore are to be inc1uded here}

end {Semaphore}

box s, t : Semaphore

cat user
var hs, ht: boolean init false
{hs is true when user holds s. Similarly, ht.}
{The procedures of user are to be inc1uded here}

end {user}

box u, v, w : user
end {MutuaIExclusion}

procedure

procedure ::= partial-procedure V total-procedure
partial-procedure ::= partial partial-method V partial-action
total-procedure ::= total total-method V total-action
partial-method ::= method head :: partial-body
partial-action ::= action [label] :: partial-body
total-method ::= method head :: total-body
total-action ::= action [label] :: total-body

A procedure is either partial or total; also, a procedure is either a method
or an action. Thus, there are four possible headings identifying each procedure.
Each method has a head and a body. The head is similar to the form used in
typical imperative languages; it has a procedure name followed by a list of formal
parameters and their types. The labels are optional for actions; they have no effect
on program execution.

Example (contd.)

We add the procedure names to the previous skeletal program.

program MutualExclusion
cat Semaphore

var n: nat init 1 {initially, the semaphore value is I}
partial method P:: { Body of P goes here}
total method V:: { Body of V goes here}

end {Semaphore}

74 Misra

box s, t : Semaphore

cat user
var hs, ht: boolean initfalse
partial action s.acquire:: {acquire sand set hs true.}
partial action t.acquire:: {acquire sand set hs true.}
partial action execute::

{Execute this body ifboth hs, ht are true. Then, set hs, htfalse.}
end {user}

box u, v, w : user
end {MutuaIExclusion}

procedure body

A procedure body has different forms for partial and total procedures. For this
manuscript, we take a total-body to be any sequential program. The partial-body
is defined by:

partial-body ::= alternative {(I alternative) V (Vaiternative)}
alternative ::= precondition [; preprocedure] ---t total-body
precondition ::= predicate
preprocedure :: = partial-method -call

The body of a partial procedure consists of one or more alternatives. Each
alternative has a precondition, an optional preprocedure and a total-body. A pre
condition is a predicate on the state of the box to which this procedure belongs
(i.e., it is constrained to name only the local variables of the box in which the
procedure appears). A preprocedure is a call upon a partial method (in some other
box).

Example (contd.)

Below, we include code for each procedure body. The partial actions s .acquire
and t.acquire in user include calls upon the partial methods s.P and t.P as prepro
cedures. The partial action execute in user calls the total methods s. V and t. V in
its body. The partial action P in Semaphore has no preprocedure.

program MutualExclusion
cat Semaphore

var n: nat init 1 {initially, the semaphore value is I}
partial method P:: n > 0 ---t n : = n - 1
total method V:: n := n + 1

end {Semaphore}

4. A reduction theorem for concurrent object-oriented programs 75

box s, t: Semaphore

cat user
var hs, ht: boolean init false
partial action s.acquire:: ,hs; s.P ----> hs := true
partial action t.acquire:: ,ht; t.P ----> ht := true
partial action execute::

hs 1\ ht ----> critical section; s. V; t. V; hs:= false; ht:= false
end {user}

box u, v, w : user
end {MutuaIExclusion}

The operational semantics of Seuss pro grams is described in section 4.2.2. The
program, given above, may become deadlocked, that is, it may not allow any
user to enter its critical section because one may have acquired s and another t.
This problem may be avoided by acquiring s, t in order (that is, by changing the
precondition of t.acquire to hs 1\ ,ht).

Multiple alternatives

Each alternative in a partial procedure is positive or negative: the first alternative
is always positive; an alternative preceded by I is positive and one preceded by
l/is negative. For each partial procedure at most one of its alternatives holds in
any state; that is, the preconditions in the alternatives of a partial procedure are
pairwise disjoint. The distinction between positive and negative alternatives is
explained under the operational semantics of Seuss in section 4.2.2.

Restrictions on pro grams

Procedure Call

A total-body can inc1ude a call only to a total method; a partial method cannot be
called by a total body. A partial method can only appear as a preprocedure in an
alternative of a partial procedure. The syntax specifies that an alternative can have
at most one preprocedure. In the example in page 74, partial action s.acquire calls
s.P as a preprocedure, and execute calls the total methods s. V, t. V in its total body
(i.e., in the code following ----».

Partial Order on Boxes

See section 4.4.1.

Termination Condition

Execution of each total body (the body part of any action, total or partial) must
terminate; this is a proof obligation that has to be discharged by the programmer.

76 Misra

The termination condition can be proven by induction on the "level" of a
procedure. First, show that any procedure that calls no other procedure termi
nates whenever it accepts a call. Next, show that execution of any procedure P
terminates assurning that executions of all procedures that p calls terminate.

4.2.2 Seuss semantics (operational)

At run time, a program consists of a set of boxes; their states are initialized at the
beginning of the run. There are two different execution styles for a program. In
a tight execution one action is executed at a time. There is no notion of concur
rent execution; each action completes before the next action is started. In a loose
execution actions may be executed concurrently.

The programmer understands a program by reasoning about its tight execu
tions only. We have developed a logic for this reasoning. An implementation may
choose a loose execution for a program in order to maximize resource utilization.
Loose execution is described in Sec. 4.6.1.

Tight execution

A tight execution consists of an infinite number of steps; in each step, an action of
a box is chosen and executed as described below (in seetion 4.2.2). The choice of
action to execute in a step is arbitrary except for the following fairness constraint:
each action of each box is chosen eventually.

Observe that methods are executed only when they are called from other
methods or actions, though actions execute autonomously (and eventually).

Procedure execution

A method is executed when it is called. To simplify description, we imagine that
an action is called by a scheduler. Then the distinction between a method and an
action vanishes; each procedure is executed when called.

A procedure accepts or rejects a call. A total procedure always accepts calls; its
body is executed whenever it is called. Termination condition (see seetion 4.2.1)
ensures that execution of each total procedure terminates. A partial procedure
may accept or reject a call. Consider a partial procedure g that consists of a single
(positive) alternative; then, g is ofthe following form:

partial method g(x,y):: Pi h(u, v) -t S

Execution of g can be described by the following rules.

if -p then reject
else {p holds} call h with parameters (u, v);

if h rejects then reject
else {h accepts}

4. A reduction theorem for concurrent object-oriented programs 77

execute S using parameters, if any, returned by h;
return parameters, if any, to the caller of g and accept

endif
endif

As stated earlier, the programmer must ensure that execution of each total
procedure terminates. It can be then be shown that the execution of any partial
procedure g terminates, by using induction on the partial order induced by ?g
(see section 4.2.1).

The caller is oblivious to rejection, because then its body is not executed and
its state remains unchanged. If all alternatives in a program are positive, then the
effect of execution of an action is either rejection - then the state does not change
for any box - or acceptance - some box state may change then. This is because,
if any procedure rejects during the execution of an action then the entire action
rejects. If any procedure accepts - the lowest procedure, that has no preprocedure,
accepts first, followed by acceptances by its callers in the reverse order of calls -
then the entire action accepts. This execution strategy meets the commit require
ment in databases where a transaction either executes to completion or does not
execute at all.

We have described the execution of a partial procedure that has a single
(positive) alternative. In case a procedure has several alternatives, positive and
negative, the following execution strategy is adopted. Recall that preconditions of
the alternatives are disjoint.

if preconditions of all alternatives are jalse then reject
else {precondition of exact1y one alternative,f, holds}

ifj is a positive alternative then execute as described previously
else {t is a negative alternative}

executef as a positive alternative except on completion off:
reject the call and do not return parameter values

endif
endif

The execution of a negative alternative always results in rejection. The caller is
still oblivious to rejection, because its body is not executed and its state remains
unchanged. However, a called method may change the state of its own box even
when it rejects a call, by executing a negative alternative.

For a partial action the effect of execution is identical for positive and nega
tive alternatives because the scheduler does not discriminate between acceptance
and rejection of an action. Therefore, partial actions, generally, have no negative
alternatives.

78 Misra

4.3 A model of Seuss pro grams

In this section, we formalize the notion of box, procedure and executions of pro
cedures (program execution is treated in section 4.6). The cats of Seuss are not
modeled because they have no relevance at run time. Also, we do not distinguish
between action and method because this distinction is unnecessary for the proof
of the theorem. Negative alternatives are not considered in the rest of this paper.

• A box is a pair (S, P) where
S is a set of states and
Pis a set of procedures.

Each procedure has a unique name and is designated either partial or total.

• Aprocedure is a tuple (T,N,E) where
T is a set of terminal symbols; each is a binary relation over the states of

its box.
N is a set of non-terminal symbols; each is the name of a procedure of

another box.
Eis a non-empty set of executions, where each execution is a finite string

over TUN.
An execution of a total procedure is a sequence where each element of
the sequence is either a terminal or a total procedure of another box. An
execution of a partial procedure is of the form: b h e, where b is a terminal,
h - which is optional - is a non-terminal that names a partial procedure of
another box, and e is a sequence in which each element is either a terminal
or a total procedure of another box.

• A program is a finite set of boxes. Program state is given by the box states.
(Therefore, each terminal symbol is a binary relation over the program
states.)

Convention and Notation:

(1) Terminal symbols of different procedures are distinct.
(2) Each execution of procedure p begins with a beginp symbol and ends with an
endp symbol. Both of these are terminal symbols of procedure p.
(3) For terminal s, s.box is the box of which s is a symbol. Similarly, p.box is
defined for a procedure p.

lustificationfor the Model

A terminal symbol of a procedure - an element of T - denotes a local step within
the procedure. The local step can affect only the state of the corresponding box,
and we allow a step to have non-deterministic outcome. Hence, each terminal is
modeled as a binary relation over box states.

In the formal model, procedures are parameter-less. Although this would be an
absurd assumption in practice, it simplifies mathematical modeling considerably.

4. Areduction theorem for concurrent object-oriented programs 79

We justify this assumption as follows. First, we can remove a value parameter
from a procedure by creating a set of procedures, one for each possible value
of the parameter, and the caller can decide which procedure to call based on the
parameter value. Thus, all value parameters may be removed at the expense of in
creasing the set of procedures. Next, consider a procedure with result parameters;
to be specific, let read(w) return a boolean value in w. The caller of read cannot
decide apriori what the returned value will be. However, we can remove parame
ter w, as follows. First, model read by two different procedures, readt and readJ,
which return the values true andJalse, respectively. Now, we have two different
execution fragments modeling the call upon read(w):

readt; w := true, and
readJ; w : = Jalse.

An execution that calls read(w) will be represented by two executions in our
model, one for each possible value retumed by read for w. Thus, we can remove
all parameters from procedures.

Next, we justify our model of procedure execution. An execution is a sequence
of steps taken by a procedure and the procedures it calls. To motivate further
discussion, consider a procedure P that calls read(w), described above, twice in
succession. The terminal symbols of P are 0:, ß where

0: denotes w := true, and ß denotes w := Jalse.
The non-terminals of P are readt and readJ, as described above.

An execution of P does the following steps twice: call read and then assign
the value returned in the parameter to w. If Pis executed alone then the possible
executions are

beginp readt 0: readt 0: endp, and
beginp readJ ß readJ ß endp.
These are the tight executions of P. If, however, other procedures execute con

currendy with P then the value of the boolean could change in between the two
read operations (by other concurrently executing procedures) and the loose exe
cutions of P are:

beginp readt 0: readt 0: endp,
beginp readJ ß readJ ß endp,
beginp readt 0: readJ ß endp, and
beginp readJ ß readt 0: endp.

In particular, the execution beginp readt 0: readJ ß endp denotes that the boolean
value is changed from true to Jalse by another procedure during the two calls to
read by P. Our goal is to model concurrent executions; therefore, we adrnit all
four executions, shown above, as possible executions of P.

We have not specified the initial states of the boxes, because we do not need
the initial states to prove the main theorem.

80 Misra

4.4 Restrietions on programs

We impose two restrictions on programs.

• (Partial Order on Boxes) For each procedure, there is a partial order over
the boxes of the program such that during execution of that procedure, one
procedure may call another only if the former belongs to a higher box than
the latter; see section 4.4.1. Different procedures may impose different par
tial orders on the boxes. A static partial order - i.e., one that is the same for
all procedures - is inadequate in practice.
A consequence of the requirement of partial order is that if some procedure
of a box is executing then no procedure of that box is called; therefore, at
most one procedure from any box is executing at any moment.

• (Box Condition) For any box, at most one of its procedures may execute at
any time; see section 4.4.3. This restriction disallows concurrency within a
box.

4.4.1 Partial order on boxes

Definition:

For procedures p, q, we write p caUs q to mean that p has q as a non-terminal. Let
caUs+ be the transitive closure of caUs, and caUs* the reflexive transitive closure
of caUs. Define a relation caUsp over procedures where

(x caUsp y) == (p caUs* x) 1\ (x caUs y).

In operational terms, x callsp y means procedure x may call procedure y in
some execution of procedure p. Each program is required to satisfy the following
condition.

Partial Order on Boxes:

For every procedure p, there is a partial order ?p over the boxes such that
x caUsp y :::} x.box >p y.box.

Note: b >p cis a shorthand for b ?p c 1\ b =I c. Relation ?p is reflexive and >p
is irreflexive.

Observation 1:

p calls* x :::} p.box ?p x.box, and
p caUs+ x :::} p.box >p x.box.

Proof: Define caUsi , for i ? 0, as follows.

p caUso p, and
p caUsi+1 q == (3 r :: p caUsi r 1\ r caUs q).

Using induction over i we can show that

4. Areduction theorem for concurrent object-oriented programs 81

P caltsi X =} p.box ?p x.box, for all i, i ? 0
p caltsi x =} p.box >p x.box, for all i, i > O.

The desired results follow by noting that

p calls* x == (3 i : i ? 0 : p callsi x), and
p caUs+ x == (3 i : i > 0 : p caUsi x). 0

Note that p calls+ q =} {by Observation I} (p.box >p q.box) =} p, q are in
different boxes. It follows that no call is ever made upon a box when one of its
procedures has started but not completed its execution.

Observation 2:

caUs+ is an acyclic (i.e., irreflexive, asymmetrie and transitive) relation over the
procedures.
Proof: From its definition calts+ is transitive. Also, p calls+ p =} {from Ob
servation I} p.box >p p.box, a contradiction. Therefore, calls+ is irreflexive.
Asymmetry of calls+ follows similarly.

Definition:

The height of a procedure is a natural number. The height is 0 if the procedure
has no non-terminal. Otherwise, p caUs q =} p.height > q.height. This defini
tion of height is well-grounded because calls+ induces an acyclic relation on the
procedures.

Definition:

An execution tree of procedure pis an ordered tree where (1) the root is labeled
p, (2) every non-leaf node is labeled with a non-terminal symbol, and (3) the
sequence of labels of the children of a non-leaf node q is an execution of q. A
Jull execution tree is an execution tree in which each leaf node is labeled with a
terminal symbol.

Any execution tree of procedure p is finite. This is because if procedure q is
an ancestor of procedure r in this tree then q callsp r; hence, q.box >p r.box.
Since the program has a finite number of boxes, each path in the tree is finite;
also, the degree of each node is finite because each execution is finite in length.
From Koenig's lemma, the tree is finite.

Definition:

The Jrontier of an execution tree is the ordered sequence of symbols in the leaf
nodes of the tree. An expanded execution of procedure p is the frontier of some
full execution tree of p. Hence, an expanded execution consists of terminals only.

4.4.2 Procedures as relations

With each terminal symbol we have associated a binary relation over pro gram
states. Next, we associate such a relation with each procedure and each execution

82 Misra

of a procedure; to simplify notation we use the same symbol for an execution (or
a procedure) and its associated relation. For execution e, (u, v) E e means that if
eis started in state u then it is possible for it to end in state v. For a procedure p,
(u, v) E p means that there is an execution e ofp such that (u, v) E e. Formally,

• The relation for a procedure is the union of relations of all its executions .

• The relation for an execution Xo, ... ,Xn is the relational product of the
sequence of relations corresponding to the x;'s.

Observe that a symbol Xi in an execution may be a terminal for which the re
lation has already been defined, or a non-terminal for which the relation has to
be computed using this definition. We show in the following lemma that the mIes
given above define unique relations for each execution and procedure; the key to
the proof is the acyclicity of calls+ .

Lemma 1:

There is a unique relation for each procedure and each execution.

Proof: We prove the result by induction on n, the height of a procedure.
For n = 0: The procedure has only terminals in all its executions. The rela

tion associated with any execution of the procedure is the relational product of
its terminals. The relation associated with the procedure is the union of all its
executions, and, hence, is uniquely determined.

For n > 0: Each execution of the procedure has terminals (for which the rela
tions are given) or non-terminals (whose heights are at most n, and, hence, they
have unique relations associated with them). Therefore, the relation for an execu
tion -which is the relational product of the sequence of relations of its terminals
and non-terminals- is uniquely determined. So, the relation for the procedure is
also uniquely determined. 0

Note that an execution may have the empty relation associated with it, denoting
that the steps of the execution will never appear contiguously in a program execu
tion. Such is the case with the execution read a read ß in the example of section
4.3, where two successive reads of the same variable yield different values. Such
an execution may appear as a non-contiguous subsequence in a program execution
where steps of another procedure's execution could alter the value ofthe variable
in between the two read operations.

Henceforth, each symbol - terminal or non-terminal - has an associated bi
nary relation over pro gram states. Concatenation of symbols corresponds to their
relational product. For strings X, y, we write X ~ Y to denote that the relation
corresponding to X is a sub set of the relation corresponding to y.

Observation 3:

For terminal symbols s, t of different boxes, st = ts (i.e., the relations st and ts are
identical).

4. Areduction theorem for concurrent object-oriented programs 83

4.4.3 Box condition

The execution strategy for a program ensures that at most one procedure from a
box executes at any time. This strategy can be encoded in our model by making it
impossible for procedure q to start if procedure p of the same box has started and
not yet completed. This is formalized below.

Definition:

Let a and T be sequences of symbols (terminals and non-terminals). Procedure p
is incomplete after a (before T in aT) if a contains fewer endp's than beginp's.

Box Condition

Let p, q be procedures of the same box, and p be incomplete after a. Then,
a beginq = E, where E denotes the empty relation.

The following lemma shows that under certain conditions a terminal symbol
can be transposed with a non-terminal symbol adjacent to it .

Lemma 2:

Let p, q be procedures, ta terminal of p, and a any sequence of symbols.
1. If p is incomplete after athen a q t c:;;; a t q.
2. If p is incomplete after a t then a t q c:;;; a q t.
Proof: We prove the first part. The other part is left to the reader.

a q t
{ q is the union of all its expanded executions, g}

(Ug(a g t))
{partition g into e,f; e has a terminal fromp.box, andf does not}

(Ue(a e t)) U (Uf(o- f t))
{ e is of the form a' beginr a", where:

a' has no terminal from p.box; r is some procedure from p.box}
(U(aa' beginr a" t)) U (Uf(a f t))

{aa' beginr = E, because from Box Condition:
pis incomplete after a, and hence, after aa', and r.box = p.box}
(Uf(a f t))

{f has no terminal from p.box, t is a terminal of p.box; Observation 3}
(Uf(a tf))

C {f is a subset of the (expanded) executions of q}
atq

4.5 Compatibility

A loose execution of a program allows only compatible actions to be executed
concurrently. We give adefinition of compatibility in this section. We expect the

84 Misra

user to specify the compatibility relation for procedures within each box; then the
compatibility relation among all procedures (in different boxes) can be computed
automatically in linear time from the definition given below.

Procedures p, q are compatible, denoted by p f"V q, if all of the following
conditions hold. Observe that f"V is a symmetric relation.

CO. p caUs p' =? p' f"V q, and q caUs q' =? P f"V q'.

Cl. If p, q are in the same box,
(p is total =? qp ~ pq), and
(q is total =? pq ~ qp).

C2. If p, q are in different boxes, the transitive closure of the relation C~p U ?q)
is a partial order over the boxes.

Condition CO requires that procedures that are called by compatible procedures
be compatible. Condition Cl says that for p, q in the same box, the effect of
executing a partial procedure and then a total procedure can be simulated by ex
ecuting them in the reverse order. Condition C2 says that compatible procedures
impose similar (i.e., non-conflicting) partial orders on boxes.

Notes:

(1) If partial procedures p, q of the same box call no other procedure then they are
compatible.
(2) Total procedures p, q of the same box are compatible only if pq = qp.
(3) The condition (CO) is well-grounded because if p caUs p' then the height of p
exceeds that of p' .
(4) In a Seuss program compatibility of procedures with parameters has to be es
tablished by checking the compatibility with all possible values of parameters;
see the example of channels in section 4.5.1

4.5.1 Examples of compatibility

Semaphore

Consider the Semaphore box of page 74. We show that V f"V V and P f"V V, i.e.,

W = W,and
PV ~ VP

The first identity is trivial. For the second identity, we compute the relations
corresponding to P and V, as follows:

P
{from the program text}

(n > 0) x (n := n - 1)
{ definitions of predicate and assignment}

4. Areduction theorem for concurrent object-oriented programs 85

{(x,x) I x> O} x {(x,x-1) I x> O}
{ simplifying}

{(x,x-1) I x> O}

Similarly, V = {(x, x + 1) I x 2:: O}. Taking relational product, PV = {(x,x) I
x> O}, and VP = {(x,x) I x 2:: O}. Therefore, PV ~ VP.

Channels

Consider the unbounded FIFO channel of sectionthat get rv put, i.e., for any x, y,

get(x) put(y) ~ put(y) get(x)

That is, any state reachable by executing get(x) put(y) is also reachable by
executing put(y) get(x) starting from the same initial state.

Let (u, v) E get(x) put(y). We show that (u, v) E put(y) get(x). Given
(u, v) E get(x) put(y), we condude from the definition of relational composi
tion, that there is astate w such that (u, w) E get(x) and (w, v) E put(y). Since
(u, w) E get(x), from the implementation of get, u represents astate where the
channel is non-empty; i.e., the channel state s is ofthe form a * S, for some item
a and a sequence of items S. Then we have

{s = a * S} put(y) {s = a * S * y} get(x) {x * s = a * S * y}
{s = a * S} get(x) {x * s = a * S} put(y) {x * s = a * S * y}

The final states, given by the values of x and s, are identical. This completes the
proof.

The preceding argument shows that two procedures from different boxes that
call put and get (i.e., asender and a receiver) may execute concurrently. Further,
since get rv get by definition, multiple receivers mayaiso execute concurrently.
However, it is not the case that put rv put for arbitrary x, y, that is,

put(x) put(y) t- put(y) put(x)

because a FIFO channel is a sequence, and appending a pair of items in different
orders results in different sequences. Therefore, multiple senders may not execute
concurrently.

Next, consider concurrent executions of multiple senders and receivers, as is
the case in a dient-server type interaction. As we have noted in the last paragraph,
multiple senders may not execute concurrently on a FIFO channel. Therefore, we
use an unordered channel, of section for communication in this case. We show
that put rv put and put rv get for unordered channel, i.e., for all x, y

put(x) put(y) = put(y) put(x) , and
get(x) put(y) ~ put(y) get(x)

The proof of the first identity is trivial because put is implemented as a bag union.
The proof of the second result is similar to that for the FIFO channel. We need
consider the initial states where the bag b is non-empty. In the following, x U b is
an abbreviation for {x} U b.

86 Misra

{b = B,B -I- empty} get(x) {x U b = B} put(y) {x E B, x U b = B U y}
{b = B,B -I- empty} put(y) {b = B U y} get(x) {x E (B U y), x U b = B U y}

The posteondition of (1) implies the posteondition of (2) because x E B =} x E
(BUy). Hence, any final state of get(x) put(y) is also a final state of put(y) get(x).

4.5.2 Semi-commutativity of compatible procedures

In Lemma 3, below, we prove a result for compatible procedures analogous to
condition Cl of page 84. This result applies to any pair of compatible procedures,
not necessarily those in the same box.

Lemma 3:

Let p f'V q where pis total (p, q need not belong to the same box). Then qp ~ pq.

Proof: We apply induction on n, the sum of the heights of p and q, to prove the re
sult. The result holds from the definition of f'V if p, q are in the same box. Assurne,
therefore, that p, q are in different boxes.

For n = 0: Both p, q are at height 0; hence, p, q have only terminals in all their
executions. Since, p, q are from different boxes, the result follows by repeated
application of Observation 3.

For n > 0: From (C2), the transitive closure of (~p U ~q) is a partial order
over the boxes; we abbreviate this relation by ~. We prove the result for the case
where --,(q.box > p.box). A similar argument applies for the remaining case,
--,(p.box > q.box). Consider an execution, e, of p. Let x be any symbol in that
execution. We show that qx ~ xq .

• xis a terminal: Consider any expanded execution of q. A terminal t in this
expanded execution is a symbol of procedure r where q calls* r.

x.box = t.box
=} {x, t are terminals of p, r, respectively}

x.box = t.box 1\ x.box = p.box 1\ t.box = r.box
=} {logic}

p.box = r.box
=} { q calls* r; Observation I}

p.box = r.box 1\ q.box ~q r.box
=} {logic}

q.box ~q p.box
=} {~is the transitive closure of (~p U ~q)}

q.box ~ p.box
=} {p, q are from different boxes}

q.box > p.box
=} {assumption: --,(q.box > p.box)}

false

4. Areduction theorem for concurrent object-oriented programs 87

Thus, x, t belong to different boxes, and from Observation 3, xt = tx. Ap
plying this argument for all terminals tin the expanded execution of q, we
have qx = xq .

• xis a non-terminal: From (CO), x "" q. The combined heights of x and q
is less than n. Also, x is total, since it is a non-terminal of p, and p is total.
From the induction hypothesis, qx ~ xq.

Next we show that for any execution e of p, qe ~ eq. Proof is by induction on
the length of e. If the length of eis 1 then the result follows from qx ~ xq. For e
of the form fx:

qfx
C {Induction: qf ~ fq; monotonicity of relational product}

fqx
C {qx ~ xq; monotonicity of relational product}

fxq

Next, we show qp ~ pq.

qp
{ definition of p }

q(UeEP e)
{ distributivity of relational product over union}

(UeEpqe)
C {qe ~ eq from the above proof}

(UeEP eq)

Lemma 4:

{ distributivity of reiational product over union}
(UeEpe)q

{ definition of p }
pq o

(P "" q /\p caUs* pi /\ q caUs* q') =} (P' "" q').

Proof: The result follows from

(P "" q /\ P caUs i pi /\ q caUsi q') =} (P' "" q')

which is proved by induction on i + j, i,j 2': o.

4.6 Proof of the reduction theorem

A finite [oase executian of a pro gram is a finite sequence of steps taken by some
of the procedures of the program. The executions of the procedures could be in
terleaved. A loose execution satisfies: (1) the steps taken by each procedure is an

88 Misra

expanded execution of that procedure, and (2) executions of two procedures are
interleaved only if they are both part of the execution of the same procedure, or if
they are compatible.

In this section, we formally define loose execution of a program and show a
scheme to convert a loose execution into a tight execution. Tbe reduction scheme
establishes the following theorem.

Reduction Theorem:

Let E be a finite loose execution of a prograrn. There exists a tight execution F of
the program such that E <:;; F.

4.6.1 Loose execution

A loose execution is given by: (1) a finite set of full execution trees (of some of
the procedures), and (2) a finite sequence of terminals called a run. the relation
corresponding to a loose execution is the relational product of the terminals in the
run. Each execution tree (henceforth called a tree) depicts the steps of one action
in this loose execution, and the run specifies the interleaving of the executed steps.
The trees and the run satisfy the conditions MO and MI, given below.

Condition MO states that each symbol of the run can be uniquely identified with
a leaf node of some tree, and conversely, and that the loose execution contains the
procedure executions (the frontiers of the corresponding trees) as subsequences.
Since each symbol of the run belongs to a tree we write X.root for the root of the
tree that symbol x belongs to.

Condition MI states that if two procedures are incomplete at any point in
the run then they either belong to the same tree (i.e., they are part of the same
execution) or they are compatible.

• (MO) There is a 1-1 correspondence between the symbols in the run and
the leaf nodes of the trees. The subsequence of the run corresponding to
symbols from a tree T is the frontier of T .

• (Mt) Suppose procedure pis incomplete before symbol S in the run. Then,
either p.root = S.root or p.root "-' S.root.

4.6.2 Reduction scheme

Suppose R is the run of some loose execution. We transform run Rand the execu
tion trees in stages; let R' denote the transformed run. The transformed run may
consist of terminals as well as non-terminals, and its execution trees need not be
full (i.e., leaf nodes may have non-terminal labels). We show how to trans form the
execution trees and the run so that the following invariants are maintained. Note
the similarity of NO, NI with MO, MI.

4. Areduction theorem for concurrent object-oriented programs 89

• (NO) There is a 1-1 correspondence between the symbols in the run and
the leaf nodes of the trees. The subsequence of the run corresponding to
symbols from a tree T is the frontier of T.

• (NI) Suppose procedure pis incomplete before symbol s in the run. Then,
either p.root = S.root or p.root '" S.root.

• (N2)R ~ R'.

The conditions (NO, NI, N2) are initially satisfied by the given run and the
execution trees: NO, NI follow respectively from MO, MI, and N2 holds because
R=R'.

The reduction process terminates when there are no end symbols in the run;
then all symbols are the roots of the trees. This run corresponds to a tight exe
cution, and according to N2, it establishes the reduction theorem. The resulting
tight execution can simulate the originalloose execution: if the original execution
starting in astate u can lead to a final state v then so does the final tight execution.

For a run that contains an end symbol, we apply either areplacement step
or a transposition step. Let the first end symbol appearing in the run belong to
procedure q.

Replacement Step:

If a contiguous subsequence of the run corresponds to the frontier of a subtree
rooted at q (then the subsequence is an execution of q) replace the subsequence
by the symbol q, and delete the subtree rooted at q (retaining q as a leaf node).

This step preserves NO. NI also holds because for any symbol x in the execution
that is replaced by q, p.root '" X.root prior to replacement, and X.root = q.root.
Hence, p.root '" q.root after the replacement. The relation for a procedure is
weaker than for any of its executions; therefore, the replacement step preserves
N2.

Transposition step:

If a run has an end symbol, and areplacement step is not applicable then execution
of some procedure q is non-contiguous. We then apply a transposition step to
transpose two adjacent symbols in the run (leaving the execution trees unchanged)
that makes the symbols of q more contiguous. Continued transpositions make it
possible to apply areplacement step eventually.

Suppose q is a partial procedure (similar arguments apply to partial procedures
that have no preprocedures and to total procedures). An execution of procedure q
is of the form (beginq b h ... X· .. endq) where h is the preprocedure of q and xis
either a terminal symbol or a non-terminal, designating a total procedure, of q. All
procedures that complete before q have already been replaced by non-terminals,
because the first end symbol appearing in the run belongs to q. Note that h is a
procedure that completes before q.

90 Misra

Suppose x is preceded by y which is not part of the execution of q. We show
how to bring x c10ser to h. Transposing x, y preserves NO, Nl. We show below
that transposition preserves N2, as well.

• Case 0 (Both x, y are terminals): Let y be a terminal of procedures p. Pro
cedure q is incomplete before y because its endq symbol comes later. If p, q
are in the same box then the relation corresponding to prefix a of the ron
up to y is /ö, from the Box condition. Hence, a y x = a x y. If p, q belong to
different boxes, from Observation 3, the symbols x, y can be transposed.

• Case 1 (Both x,y are non-terminals): Symbol x is part of q's execution;
therefore, q.root calls* x. Symbol y is not a part of q's execution, nor can
it be a part of the execution of any procedure that calls q because q is
incomplete before y; therefore, q.root =F y.root.

q is incomplete just before y
=? {(NI)}

q.root = y.root V q.root rv y.root
=? {q.root =F y.root (see above)}

q.root rv y.root
=? {q.root calls* x 1\ y.root calls* y; Lemma 4}

xrvy

=? {x is total; Lemma 3}
yx ~xy

• Case 2 (x is a terminal, y a non-terminal): q is incomplete just before y.
Applying Lemma 2 (part 1), x, y may be transposed.

• Case 3 (x is a non-terminal, y is a terminal): Let Y be the procedure of
which y is a symbol. Since the first end symbol in the ron belongs to q,
endy comes after x. Therefore, Y is incomplete before x. Applying Lemma
2 (part 2) with Y as the incomplete procedure, x, y may be transposed.

Thus, x, y may be transposed in all cases, preserving N3. Hence, all symbols in
the execution of q to the right of h can be brought next to h.

Next, we bring the beginq symbol and the predicate b next to h, using an argu
ment similar to Case 3, above. Thus, all of q's symbols to the left and right of h
can be made contiguous around h, and areplacement step can then be applied.

For a total pr9cedure q the reduction is done similarly; beginq serves the role of
h in the above argument. For a procedure q that has no preprocedure, the reduction
process is similar with b serving the role of h.

Pro%/ Termination 0/ the Reduction Scheme

We show that only a finite number of replacement and transposition steps can be
applied to any loose execution. For a given ron, consider the procedure q whose
end symbol, endq , is the first end symbol in the ron. Define two parameters of the
ron, n, c, as follows.

4. A reduction theorem for concurrent object-oriented programs 91

n = number of end symbols in the ron,
C = ~ Cj,

where Cj is the number of symbols not belonging to q between the preprocedure h
of q and thelh symbol of q, and the sum is over all symbols of q. C has an arbitrary
value if the ron has no end symbol.

The pair (n, c) decreases lexicographically with each transposition and replace
ment step. This is because areplacement step removes one end symbol from
the ron, thus decreasing n. A transposition step decreases C while keeping n un
changed. Ultimately, therefore, n will become 0; then the ron has no end symbol,
and, from (NO), the symbols are the roots of the execution trees.

4.7 Concluding remarks

The following variation of the Reduction theorem may be useful for applications
on the world-wide web. Consider a Seuss program in which every procedure calls
at most one other procedure. Define all pairs of procedures to be compatible. The
reduction theorem then holds: any loose execution may be simulated by some
tight execution.

The proof of this result is similar to the proof already given. As before, we
reduce procedure q, whose end symbol, endq, is the first end symbol in the ron.
If this procedure calls no other procedure then all its symbols are terminals and,
by applying Case (0) and Case (2) of the transposition step, we can bring all its
symbols together next to its first symbol. If the procedure calls another procedure
then, according to the reduction procedure, the called procedure has already been
reduced and we bring all the symbols next to the called procedure symbol in a
similar fashion.

The major simplification in the reduction scheme for this special case is due
to the fact that it is never necessary to transpose two non-terminals. Therefore,
Case (1) of the transposition step never arises. Consequently, the condition for
compatibility of two procedures (page 84) is irrelevant in this case.

Acknowledgments

This paper owes a great deal to discussions with Rajeev Joshi and Will Adams. I
am grateful to Carroll Morgan who gave me useful comments on an earlier draft.
Ernie Cohen has taught me a great deal about reduction theorems, in general.

References

[1] Emie Cohen and Leslie Lamport. Reduction in TLA. In David Sangiorgi and Robert
de Simone, editors, CONCUR'98 Concurrency Theory, volume 1466 of Lecture Notes

92 Misra

in Computer Science, pages 317-331. Springer-Verlag, 1998. Compaq SRC Research
Note 1998-005.

[2] L. Lamport and Fred B. Schneider. Pretending atomicity. Technical Report 44, DEC
Systems Research Center, May 1989.

[3] Richard J. Lipton. Reduction: A method of proving properties of parallel programs.
Communications ofthe ACM, 18(12):717-721, December 1975.

[4] Jayadev Misra. Loosely coupled processes. Future Generation Computer Systems,
8:269-286, 1992. North-Holland.

[5] Jayadev Misra. A Discipline of Multiprogramming. Monographs in Computer Science.
Springer-Verlag, New York, 2001. The first chapter is available at
http://www.cs.utexas.edu/users/psp/discipline.ps.gz

5

Abstractions from time

Manfred Broy

Abstract
Mathematical models of the timed behaviour of system components form

a hierarchy of timing concepts. This is demonstrated for systems that com
municate via input and output streams. We distinguish non-timed streams,
discrete streams with discrete and with continuous time, and dense streams
with continuous time. We demonstrate how exchanges of the timing models
during the system-development process are captured as classical abstraction
steps.

5.1 Introduction

Although the timing of events is an important issue for many information process
ing systems, all the first attempts to provide logical, algebraic, or mathematical
foundations for programming and for system development tried to abstract en
tirely from timing issues. This is of course fine as long as we are only interested
in sequential, non-reactive algorithms. However, looking at interactive systems,
especially at reactive embedded systems, timing issues immediately become cru
cial. In fact, many application systems of today have to react within timed bounds
to time events. However, at a logicallevel of system specification and design the
main issue is not the reaction within time bounds, but rather the reaction to ab
stract events. Only if there is no sensor to record such events, and if by physical
theories time bounds on the events are available, can quantitative time replace the
observation of events.

We are interested in the following in the description of components that react
interactively to input by output. Operationally, input and output take place within
a global time frame. It is one of the goals of this paper to show what consequences
the abstraction from time within a semantic model actually has. In fact, the seman
tics becomes less robust since the flow of time leads to a quite explicit modelling
of causality and thus to more realistic, simpler models of computation. As a con
sequence, fixpoint theory becomes more straightforward as well, and does not

A. McIver et al. (eds.), Programming Methodology
© Springer Science+Business Media New York 2003

96 Broy

need more sophisticated theoretical concepts such as least fixpoints, complete
partially-ordered sets or metric spaces (see [17] and [18]). This simplicity is lost,
however, if we abstract from timing information partially or completely. Exem
plars for these problems are models of computations based on the idea of full
synchrony (see [5]). Here the lack of explicit information about causality leads
into semantic pathologies such as causalloops.

In the following, we introduce a semantic model of system behaviour that in
cludes discrete and dense streams with discrete and continuous time. In the first
section, we introduce our mathematical basis. Then we show how to describe the
syntactic interfaces and the dynamic behaviours of interactive systems. We intro
duce concepts for systematic and schematic abstractions of time. In particular, we
show how the different time models can be related by refinement relations.

5.2 Streams

Streams are helpful models for many aspects of information processing systems.
A stream describes the communication history of a channel, the ftow of values
assumed by a variable of a system, or the sequence of actions executed.

5.2.1 Mathematicalfoundation: streams

By N we denote the set of natural numbers {O, 1, ... }; by N+ we denote N\ {O}.
By {i, ... ,j} we denote for i,j E N the set {n E N : i :S n :S j}. By 1Ft we
denote the set of real numbers and by lR.+ the set {r E lR. : 0 < r}. By [r : s]
we denote for r,s E 1Ft the set {x E 1Ft : r :S x :S s}' by [r : s[we denote for
r, s E 1Ft the set {x E 1Ft : r :S x < s} and by]r : s] we denote for r, s E 1Ft the set
{x E lR. : r < x :S s}. By M* we denote the set of finite sequences over the set M.

A time domain is a linearly ordered set of elements representing time points. A
stream is a mapping

s: T ----+ S(M)

where T is a time domain and S(M) is the stream domain. Typically, the stream
domain S(M) is identical to M or M*.

An example of a time domain is the set 1Ft+ of the positive reals. Continuous
infinite streams of sort M are mappings from the positive reals into the set M.
Hence a continuous infinite stream s is a mapping

s : 1Ft+ ----+ M

A finite continuous stream is a mapping

s :]0: r]----+M

where r E 1Ft. We call r the length of the stream sand denote it by #s. Also
concatenation easily extends from discrete to continuous streams.

5. Abstractions from time 97

Next we study four different classes of streams in connection with the mod
elling of time: non-timed streams, discrete streams with discrete and continuous
time, and finally dense streams with continuous time.

5.2.2 Modelling time

Streams represent communication histories for sequential channels. Given a set
M of messages, a non-timed history for a sequential channel is given by a discrete
stream of sort M. Such a stream reftects the order in which the messages are
communicated. It does not contain any quantitative aspects of the timing of its
messages. Hence we speak of a non-timed stream.

If additional quantitative time information is contained, we speak of a timed
stream. In the following, we are interested in separating aspects of data and
message ftow of a channel from timing aspects.

Typical time models that we find in the literature are the natural numbers N
and the positive real numbers IR+. We might also work with the rational numbers,
however: as long as we do not study limits and infinitely small differences, there
is not a significant difference between the real numbers and the rational numbers
when modelling time. These numbers are all models of linear time. Linear time
is most appropriate for system models with a global time.

A timed communication history for a channel carrying messages from a given
set M is represented by a timed stream. A timed stream with discrete time is a
finite or infinite sequence of messages with additional timing information from a
discrete time space. We work with the following models of streams with notions
of quantitative time.

timedomain stream
domain

non-timed streams T = N v::ln E N: T = {O, ... ,n} M
discrete streamsl TC:;;;N M*
discrete time
discrete streamsl T c:;;; JR+where T is finite or countable M
continuous time
dense streamsl T = JR+ V ::l r E JR+ : T = [0 : r[M
continuous time

Note that we use M* as the stream domain in the case of discrete streams with
discrete time to allow for several messages in one time slot.

sli denotes the communication history ofthe stream s till time i. We extend this
notation, of truncating streams at time points, to sets W of streams pointwise, as
follows

Wlt = {slt: s E W}

Let s be a discrete stream with discrete time and with stream domain M*; then
s : N -; M*. By (M*)N we denote the set of discrete streams. By s we denote
the finite or infinite discrete stream in N -; M that is the result of replacing

98 Broy

its time domain by that of non-timed streams while retaining the sequence of
data elements. Consider as an example the stream s : N --t {a, b, c} * where
s.n = (abc). Then we get s.n = a if n mod 3 = 0, s.n = b if n mod 3 = 1 and
s.n = c if n mod 3 = 2. Seen as sequences we have:

s = ((abc) (abc) (abc) (abc) ...)
S = (abcabcabcabc . ..)

This corresponds to a time abstraction in which we forget a11 the timing
information in the stream sand only keep the sequence of its elements.

Each discrete stream s contains a finite or infinite number #s of messages. For
each discrete stream s we define a mapping

st : {n E N : n < #s} --t ~+

that associates its time point with the i-tb message in the discrete stream s.
Working with real numbers to represent time, the time points can be cho

sen more freely. Actua11y, we require strict monotonicity for the timing function
of the time stamps since continuous time is the finest time granularity we can
choose. The set of discrete streams over the message set M with continuous time
is represented by the set

MR

Using real numbers for modelling time, we have to cope with Zeno's paradox.
Given a stream s, we speak of Zeno's paradox if we have

Vi E dom[s] : sti < t
for some time t E ~+, although #s = 00. A simple example of a stream that
exhibits Zeno's paradox is given in the fo11owing. Define the infinite stream s by
the equations

s.i = i
sti = 1/2 i

Then the time function is strictly monotonie, and the stream is infinite, but its time
points are bounded. In many applications such a behaviour is not of interest and
should be excluded. We therefore require for any infinite stream s the proposition

V k E N : :J i E N : sti > k

to avoid Zeno's paradox. A simple way to achieve this is to assume a minimal
time distance {j E ~, {j > 0, for a11 the messages in the timed stream s such that

st(i + 1) - sti > {j for a11 i with i, i + 1 E dom[s].

The notation for streams with discrete time can easily be extended to streams with
continuous time. For a stream s we denote for t E ~+ by

the stream of messages ti11 time point t.

5. Abstractions from time 99

The crucial difference between discrete and continuous time is as follows. In
the case of continuous time we have in contrast to discrete time:

• separability: we can always find a time point in between two given distinct
time points; and

• limits: we can make our time intervals infinitely small leading to limit
points.

Separability is certainly helpful since it supports the ftexibility of the timing.
Limits lead to Zeno's paradox and are better ruled out whenever possible.

A discrete stream is a sequence of messages such that we can speak about
the first, second, third, and so on, message in a stream. Using continuous time a
stream may contain uncountably many message elements. We speak of a dense
stream in that case: a dense stream is represented by a function

s : lR.+ ----+ M

For every time tE lR.+ we obtain a message s(t) E M. By

MIR

we denote the set of dense streams. We easily extend the notation slt to dense
streams for t E R slt is a finite stream obtained from s by restricting it to the
time domain]O : t].

5.3 Components as functions on streams

In this section we introduce the general concept of a component as a function on
timed streams. We consider the most general case of dense streams. (Since all
other streams can be seen as special cases or abstractions of dense streams, these
are included automatically.)

5.3.1 Behaviours of components

We work with channels as identifiers for streams. By C we denote the set of
channels. Given a set of sorts T and a function

sort: C ----+ T

we speak of sorted channels. Given a set C of sorted channels we denote by

C
the set of channel valuations

x: C ----+ MIR

where x.c is a timed stream of the appropriate sort sort(c) of channel c E C.

100 Broy

m

Figure 5.1. Graphical representation of a component as a dataflow node with n input and
m output channels

A function

F : 7 --dP(Ö)

is called a component behaviour. F is called

• timed or weakly causal, if for all t E lR we have for all x, Z E 7 :

xLt = z!t ::::} F(x)!t = F(z)!t

• time guarded by a finite delay 8 E lR +, 8 > 0, or causal, if for all t E lR we
haveforallx,Z E 7:

xLt = z!t ::::} F(x)!(t + 8) = F(z)!(t + 8)

A timed function has a proper time ftow. That is, the choice of the output at
the time point t does not depend on input that comes only after time t. Time
guardedness models some delay in the reaction of a system, which introduces a
fundamental notion of causality.

We use time-guarded stream-processing functions F to model the behaviour of
a component. A graphical representation of the function F as a nondeterministic
dataftow node is given in Fig. 5.1.

A behaviour F on discrete streams with discrete time is called time-unbiased,
if for discrete input histories x and Z we have

F.x = {y: :lx' E 7,y' E Ö: y' E F.x' 1\ y ="1 1\ x = XI}

For time unbiased behaviours the timing of the messages in the input streams does
not inftuence the messages in the output streams, but it may inftuence their timing.

5.4 Time abstraction

Refinement is the basic concept for the stepwise development of components. We
describe only one form of refinement: interaction refinement. It is the basis of
abstraction.

5. Abstractions from time 101

abstract level
+---~----------;----.--~

concrete level
----~--------------~--~

Figure 5.2. Communication History Refinement

abstract level

concrete level

Figure 5.3. Commuting Diagram of Interaction Refinement (U-simulation)

5.4.1 General concepts 0/ abstraction

By abstractions the syntactic interface of a component is changed. We work with
pairs of abstraction and representation functions.

By interaction refinement we can change the number of input and output chan
nels of a system, as weH as the type and granularity of their messages, but
still relate the behaviours in a formal way. A communication-history rejinement
requires timed functions

R : 0 --> lP'(1)

where

RoA = Id

Here R 0 Adenotes the functial composition of Rand A, defined by

(R oA).x = {z E A.y: y E R.x}

and Id denotes the identity relation

Id.x = {x}

Fig. 5.2 shows the "commuting diagram" of history refinement.
Note that the requirement R 0 A ~ Id instead of R 0 A = Id is too weak, since

this way we would allow abstract streams not to be represented at aH.
Based on the idea of a history refinement we introduce the idea of an interaction

refinement for components.

102 Broy

Given two communication history refinements

Al : 12 -+ lP'(11)

A2 : O2 -+ lP'(01)

R1 : 11 -+ lP'(12)

R2 : 0 1 -+ lP'(O2)

we call the behaviour

F 1 : 11 -+ lP'(Od

an interaction abstraction of the behaviour

F2 : 12 -+ lP'(O2)

if one of the following four propositions holds:

R10F20A2~F1

R1 oF2 ~ F1 oR2
F2 oA2 ~A1 oF1

F2 ~A1 oF1 oR2

U -simulation
downward simulation
upward simulation
U- 1-simulation

Note that U-1-simulation is the strongest condition, from which all others follow
by straightforward algebraic manipulation.

5.4.2 Abstractionsfrom time

In this section we study interaction abstractions that support abstractions from
dense streams to streams with continuous time and further on to streams with
discrete time and finally to non-timed streams.

From discrete timed to non-timed streams

A non-timed stream can be seen as the abstraction from all discrete timed
streams with the same message set but arbitrary timing. The specification of the
abstraction function A is simple:

A.y = {y}

The specification of the representation function R is also simple:

R.x = {y : y = x} .

Although the abstraction is so simple to specify, forgetting about time has seri
ous consequences for functions that describe the behaviour of components. Time
guardedness is lost and, as a consequence, we also lose the uniqueness of fixpoints
- which has crucial impacts on the compositionality of the semantic models (for
an extensive discussion, see [8]).

From continuous- to discrete Time

For relating discrete streams with discrete time to discrete streams with continu
ous time we work with an abstraction function

5. Abstractions from time 103

It is specified by the following equations (let r E M R)

(cu).} = r.}
(oe.rH) = min {n E N : rtf :'S n}

We define the abstraction relation

as

A.r = {oe.r}

and the representation specification

by the equation

R.s={r:s=oe.r}

The step from discrete to continuous time (or back) is rather simple and does
not have many consequences for the semantic techniques, as long as the time
granularity chosen is fine enough to maintain time-guardedness.

From dense streams to discrete streams

To abstract a dense stream into a discrete stream we can use the following two
techniques:

• sampling; and

• event discretisation.

In sampling, we select a countable number of time points as sampies. We define
the abstraction specification

that maps dense to discrete streams by

A.r = {oe.r}

where (choosing a simple variant of sampling in which we select the natural
numbers as the sampie time points)

(oe.r).} = r.}
(oe.rH) =}

A representation specification for sampling in continuous time is obtained by the
function

104 Broy

defined by (we ignore for simplicity the possibility of successive identical
messages in a stream)

R.s={r:s=a.r}

By sampling, continuous streams are related to discrete streams of events.

5.5 Conclusions

Modelling information processing systems appropriately is a matter of choosing
the adequate abstractions in terms of the corresponding mathematical models.
This applies for the models of time, in particular.

5.5.1 Time models in the literature

Time issues were always of great practical relevance for a number of applications
of software systems such as embedded software and telecommunications. Nev
ertheless, in the scientific literature of mathematical models for software, time
issues were considered only in the late seventies and then only in a few publica
tions (see, for instance [20]). In the theoretical foundations of interactive systems,
timing aspects were ignored in the beginning. It seems that the researchers tried
hard to abstract from time, which was considered an operational notion. Early log
ical approaches were given in [12] and [6]. An early denotational model is found
in [7].

Since then the interest in real time and its modelling has considerably increased
in scientific research. In most of the approaches one particular time model is se
lected, without arguing much about the rationale of the particular choice. Often
the time model is implicit (such as in statecharts, see [9], in SDL, see [19], or in
Esterel [4]). This caused a lot of discussion about the right time model for such
modelling languages. Other approaches such as the duration calculus (see [21]),
where continuous time and dense message streams are essential, are explicitly
directed towards time and a specific model of time.

Only a few publications discuss and compare different time models. One exam
pIe is [10] which discusses the relation between the task of the specification and
verification of real time programs and representations of time. Another example is
[11] by Kopetz who compares what he calls dense time with what he calls sparse
time. In sparse time events can only occur at "some sections of the time line". So
sparse time seems to be what we call discrete time. A careful discussion of time
models for hardware is found in [15], chapter 6. However, so far there is no ap
proach that defines a formal relationship between systems working with different
time models as we do with the concept of interaction abstraction.

Operational models of timing issues are found in [1], [2], [3], and [13, 14].
A specific issue is system models that incorporate aspects of continuous time and
discrete events (see [2], [16]). In [17] and [18] the introduction of"hiatons", which
are very similar to time ticks, are used to avoid problems with fixpoint theory.

5. Abstractions from time 105

5.5.2 Concluding remarks

Giving straightforward operational models that contain all the technical compu
tational details of interactive nondeterministic computations is relatively simple.
However, for systems-engineering purposes operational models are not very help
ful. Finding appropriate abstractions for operational models of distributed systems
is a difficult but nevertheless important task. Good abstract non-operational mod
els are the basis for tractable system specifications and of a discipline of systems
development.

Abstraction means forgetting information. Of course, we may forget only in
formation that is not needed. Which information is needed does not only depend
upon the explicit concept of observation, but also upon the considered forms of
the composition of systems from subsystems.

As shown above, there are many ways to obtain time abstractions. Typical
examples are

• from dense streams to discrete streams with continuous time,

• from discrete streams with continuous time to discrete time,

• from a finer discrete time to a coarser discrete time,

• from timed to non-timed streams.

In fact, all four abstraction steps mean that we use a coarser, more abstract time
model. This way we lose some information about the timing of messages. As a
consequence, messages at different time points may be represented by identical
time points. This means we lose the principle of causality for certain input and
output. This leads to intricate problems as we find them in the approaches that
work with the assumption of so-called perfect synchrony (cf. [5]). The specifica
tion of interactive systems has to be done in a time/space frame. A specification
should indicate which events (communication actions) can take place where, and
when, and how they are causally related. Time information can be treated as any
other information except, however, that the time ftow follows certain laws. This is
expressed by the timing requirements such as time guardedness. Such specifica
tion techniques are an important prerequisite for the development of safety-critical
systems.

Acknowledgement

I am grateful to Ketil Stjljlen for a number of discussions that were helpful to
clarify the basic concepts. It is a pleasure to thank my colleagues Olaf Müller and
Jan Philipps for many useful remarks on a draft version of this paper.

106 Broy

References

[1] R. Alur, D. Dill. A theory of timed automata. Theoretical Computer Science 126,
1994, 183-235

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin, A.
Olivero, l Sifakis, S. Yovine. Algorithrnic analysis of hybrid systems. Theoretical
Computer Science 138, 1995,3-34

[3] lC.M. Baeten, J.A. Bergstra. Real Time Process Algebra. Formal Aspects of
Computing 3, 1991, 142-188

[4] G. Berry, G. Gonthier. The ESTEREL Synchronous Programrning Language: Design,
Semantics, Implementation. INRlA, Research Report 842,1988

[5] G. Berry. Preemption in Concurrent Systems. In: Proceedings of the FSTTCS '93,
Lecture Notes in Computer Science 761, Springer Verlag 1993,72-93

[6] A. Bernstein, P.K. Harter. Proving Real Time Properties of Programs with Temporal
Logic. In: Proceedings of the 8th Annual ACM Symposium on Operating Systems,
1981,1-11

[7] M. Broy. Applicative real time programrning. In: Information Processing 83, IFlP
World Congress, Paris 1983, North Holland 1983,259-264

[8] M. Broy. Functional Specification of Time Sensitive Communicating Systems. ACM
Transactions on Software Engineering and Methodology 2:1, January 1993, 1-46

[9] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming 8,1987,231-274

[10] M. Joseph. Problems, prornises and performance: Some questions for real-time sys
tem specification. In: Real Time: Theory in Practice, REX workshop. Lecture Notes
in Computer Science 600,1991,315-324

[11] H. Kopetz. Sparse Time versus Dense Time in Distributed Real-Time Systems. In:
Proceedings ofthe 12th International Conference on Distributed Computing Systems.
IEEE Computer Society Press 1992,460-467,

[12] L. Lamport. TIMESETS: a new method for temporal reasoning about programs. In:
D. Kozen (ed.): Logics of Programs. Lecture Notes in Computer Science 131, 1981,
177-196

[13] N. Lynch, F. Vaandrager. Action Transducers and Time Automata. Formal Aspects of
Computing 8,1996,499-538

[14] N. Lynch, F. Vaandrager. Forward and Backward Simulations, Part 11: Tirning-Based
Systems. Information and Computation 128:1, 1996

[15] T. Melham. Higher Order Logic and Hardware Verijication. Cambridge University
Press. 1993

[16] O. Müller, P. Scholz. Functional Specification ofReal-Time and Hybrid Systems. In:
HART'97, Proc. ofthe 1st Int. Workshop on Hybrid and Real-Time Systems, Lecture
Notes in Computer Science 1201, 1997,273-286

[17] D. Park. On the Semantics of Fair Parallelism. In: D. Bjl/lrner (ed.): Abstract Software
Specijication. Lecture Notes in Computer Science 86, Springer 1980, 504-526

[18] D. Park. The "Fairness" Problem and Nondeterministic Computing Networks.
Proc. 4th Foundations of Computer Science, Mathematical Centre Tracts 159,
Mathematisch Centrum Amsterdam, (1983) 133-161

5. Abstractions from time 107

[19] Specification and Description Language (SDL), Recommendation Z.100. Technical
Report, CCITT, 1988

[20] N. Wirth. Towards a Discipline of Real Time Programming. Communications of the
ACM 20:8, 1977, 577-583

[21] Zhou Chaochen, C.A.R. Hoare, A.P. Ravn. A Ca1culus of Durations. Information
Processing Letters 40:5, 1991,269-276

6

A predicative semantics for real-time
refinement

lan Hayes

Abstract

Real-time systems play an important role in many safety-critical systems.
Hence it is essential to have a fonnal basis for the development of real-time
software. In this chapter we present a predicative semantics for areal-time,
wide-spectrum language. The semantics includes a special variable repre
senting the current time, and uses timed traces to represent the values of
extemal input and outputs over time so that reactive control systems can
be handled. Because areal-time control system may be a nonterminating
process, we allow the specification of nonterrninating pro grams and the de
velopment of nonterrninating repetitions. We present a set of refinement laws
covering the constructs in the language. The laws make use of a relational
style sirnilar to that of Cliff Jones, although they have been generalised to
handle nontenninating constructs.

6.1 Background

The sequential refinement ca1culus for non-real-time prograrns is a mature theory
for the development of sequential prograrns [1, 2, 19,20]. Dur goal is to develop
an equivalent theory for real-time prograrns. Work by Mahony modelled real-time
systems by representing the observable variables as timed traces: functions from
time (real numbers) to their type [17, 18]. That work concentrated on model
ing system components over all time, and on decomposing systems into parallel
combinations of such components, and had a semantics based on predicate trans
formers [16]. Mark Utting and Colin Fidge used a related approach to develop a
sequential real-time refinement ca1culus that was also based on timed traces and
predicate transformers [22, 23]. In that work, in common with a number of other
approaches to real-time [21, 13], an execution time is associated with each com
ponent of a command. This leads to complex timing conditions as well as overly

A. McIver et al. (eds.), Programming Methodology
© Springer Science+Business Media New York 2003

110 Hayes

restricted timing constraints on the execution of individual commands and their
components.

A breakthrough came with the introduction of the deadline command [9, 3].
The deadline command has a simple semantics: it takes no time to execute and
guarantees to complete by a given time. For example, the following code reads
the value of the input d1 into the local variable x, ca1culates f(x) and assigns it
to y, writes y to the output d2 . The special variable T stands for the current time.
The starting time of the commands is captured in the auxiliary variable m, and the
final command is a deadline of m + U; this ensures that the commands complete
within U time units of their beginning.

m := T; - - T is the current time variable
x: read(dd;
y:=f(x);
d2 : write(y);
deadline m + U

(1)

In isolation a deadline command cannot be implemented, but if it can be shown
that all execution paths leading to a deadline command reach it before its dead
line, then it can be removed. The deadline command allows machine-independent
real-time programs to be expressed. It also allows one to separate out timing con
straints to leave components that are purely ca1culations [5]; these components
can then be developed as in the non-real-time ca1culus.

The semantics used in the earlier work was based on that of Utting and Fidge
[22, 23]. The current time variable, T, was treated in the same manner as in the
standard refinement ca1culus with a before and after value for each command, but
all other variables were treated as functions of time (real numbers), which were
constrained by the execution of a command [10].

As real-time systems often use processes which are potentially nonterminat
ing, we desired to extend the approach to handle these. At the specification level
this was quite easy: the current time variable, T, was allowed to take on the value
infinity to indicate nontermination. However, the earlier semantics was based on
weakest-precondition predicate transformers and hence dealt only with terminat
ing commands and only allowed the development of terminating repetitions. As in
the standard refinement ca1culus, nonterminating repetitions were identified with
abort. Hence that semantics was unsuitable.

For the new semantics, the primary infiuences are the work of Hehner [11],
and Hoare and He [12] using predicative semantics for program development.
These were first used to tackle the semantics of nonterminating repetitions [7].
Hooman's work on real-time Hoare logic [13] also allows nonterminating rep
etitions and was infiuential in the approach taken to the laws for introducing
nonterminating repetitions. Auxiliary variables and procedure parameters were
also added to facilitate the expression of timing constraints [6].

The final infiuence on this paper is the work of Jones [15] on a relational ap
proach to proof rules for sequential programs. This paper brings together the
above pieces of work to give a relational, predicative semantics for a sequen-

6. A predicative semantics for real-time refinement 111

tial real-time refinement calculus that supports nonterminating processes and
auxiliary variables.

6.1.1 Related work

Hooman and Van Roosmalen [14] have developed a platform-independent ap
proach to real-time software development similar to ours. Their approach makes
use of timing annotations that are associated with commands. The annotations
allow the capture in auxiliary timing variables of the time of occurrence of sig
nificant events that occur with the associated command, and the expression of
timing deadlines on the command relative to such timing variables. They give an
example similar to (1) above, using their notation:

in(d1,x)[m?];
y := f(x);
out(d2 ,y)[< m + U]

The constructs in square brackets are timing annotations [14, Sect. 2]. On the
input the annotation 'm?' indicates that the time at which the input occurs should
be assigned to timing variable m, and on the output the annotation '< m + U'
requires the output to take effect before m + U, i.e. within U time units of the
input time. Hooman and Van Roosmalen keep timing annotations separate from
the rest of the program. They give Hoare-like mIes for reasoning about programs
in their notation, but there is no semantics against which to justify the mIes. The
approach to real-time semantics given in this paper could be used to justify their
Hoare axioms.

Section 6.2 introduces the machine-independent, wide-spectrum language and
gives its semantics, along with suitable refinement mIes. Section 6.3 presents an
example refinement that makes use of the refinement laws, Section 6.4 discusses
repetitions, and Section 6.5 discusses timing constraint analysis.

6.2 Language and semantics

We model time by nonnegative real numbers:

Time ~ {r : realoo I 0 :::; r < oo}.

where realoo stands for the real numbers extended with plus and minus infinity,
and real operators such as '<' are extended to work with infinite arguments. The
real-time refinement calculus makes use of a special real-valued variable, T, for
the current time. To allow for nonterminating programs, we allow T to take on the
value infinity (00):

Timeoo ~ Time U {oo}.

We refer to the set of variables in scope as the environment, and use the name p
for the environment. In real-time programs we distinguish four kinds of variables:

112 Hayes

• inputs, p.in, whieh are under external eontrol;

• outputs, p.out, whieh are under the eontrol of the program;

• loeal variables, p.local, whieh are under the eontrol of the pro gram, but
unlike outputs are not externally visible; and

• auxiliary variables, p.aux, whieh are similar to loeal variables, but are re
strieted to appear only in assumptions, speeifieations, deadline eommands
and assignments to auxiliary variables.

To simplify the presentation in this paper, we only treat the types of variables
informally.

Inputs and outputs are modelled as timed traees: funetions from Time to the
declared type of the variable. This allows one to model both eontinuous and dis
erete inputs within the same framework. As a running example, we use the simple
real-time task of closing a railway gate when a train is deteeted as being near,
and reopening the gate when the train is out of the danger region. The example
is treated in more detail in Sec. 6.3. The controller reads from the external inputs
near and out, and writes to the output gate.

input near, out: boolean;
output gate: {open, close};

The inputs near and out are modelled as funetions from Time to boolean, and the
output gate is modelled as a funetion from Time to {open, close}. For t in Time
(whieh does not include infinity), the expression near(t) gives the value of near
at time t.

The primitive eommands in our language only eonstrain an output over the
exeeution interval of the eommand, whieh is the left-open, right-closed interval
from the start time, Ta, to the finish time of the eommand, T, whieh we write
as tTo ... Tl The initial value of the output at Ta is determined by the previous
eommand, and then the eommand determines the values up to and including T.

Any programs eomposed of these eommands using the standard struetures like
sequential eomposition, seleetion and repetition also satisfy this property.

In earlier work [22, 10] all variables, exeept T, were modelled as funetions of
time (timed traees). With the addition of auxiliary variables [6] this is not possible,
beeause assignments to auxiliary variables take no time and a timed traee only
allows a variable to have a single value at any one time. Henee to represent the
effeet of a eommand on an auxiliary variable, z, we use a relation between its
initial value (represented in predieates by zo) and its final value (represented in
predieates by z). Having introdueed this model for auxiliary variables, we deeided
to use the same model for loeal variables. Either model eould be used for loeal
variables, but ehoosing a similar model for auxiliary and loeal variables makes
the semanties a little simpler. In addition, this model is more abstract beeause it
does not eonsider intermediate values of loeal variables during the exeeution of
a eommand. We refer to the eombination of loeal and auxiliary variables as the

6. A predicative semantics for real-time refinement 113

state, and use the abbreviation p.v to stand for the state variables, and decorations
of p.v, such as p.Vo, to stand for the decorated state variables.

For the railway crossing example, we declare a local boolean variable, sens,
and an auxiliary time-valued variable, before, as foHows.

var sens: boolean;
auxbefore: Time;

We represent the semantics of a command by a predicate in a form similar to
that of Hehner [11], and Hoare and He [12]. The predicate is in terms of the input
and output traces over time, the initial and final values of the state variables, and
the initial and final values of the current time, TO and T. The meaning function, M,
takes the variables in scope, p, and a command C and returns the corresponding
predicate, M p (C). Refinement of commands (in an environment, p) is defined as
reverse entailment:

C ~p D ~ (M p (C) ~ M p (D)) ,

where 'P ~ Q' holds if for all values of the variables, whenever Q holds, P
holds. We use the relation '0 p' for refinement equivalence, i.e. refinement in
both directions. When the environment is clear from the context the subscript p
may be omitted.

6.2.1 Real-time specijication command

We introduce a possibly nonterminating real-time specijication command,

oox: [p, Q],
where x is a vector of variables (caHed the frame) that may be modified by the
command, the predicate P is the assumption made by the specification, and the
predicate Q is its effect. The '00' at the beginning is just part of the syntax; it re
minds us that the command might not terminate. The assumption P is assumed to
hold at the start time ofthe command. It is a single-state predicate. That is, it may
reference any of the variables in the environment plus T, but it may not reference
TO or initial state (zero-subscripted) variables. The effect predicate Q describes a
relation between before and after state variables in the environment, and TO and T,

as weH as a constraint on the values of the outputs. To simplify the presentation
in this paper, we refer to such predicates as relations. We also assume that aH
predicates and relations are weH formed with respect to the relevant environment
in the context in which they are used.

We define a terminating specification command similarly. The only difference
is the additional requirement that the effect should achieve T < 00.

x: [p, Q] ~ oox: [p, Q 1\ T < 00]

This is the real-time equivalent of the Morgan specification command, which is
guaranteed to terminate [19]. Below we state laws for the more general, pos si
bly nonterminating, specification command, but special cases for a terminating

114 Hayes

specification command are easily derived, and we make use of those in the
examples.

For example, in the following specification the frame consists of the local vari
able, sens, and the time-valued, auxiliary variable, before. The notation near i 0
stands for the time at which the input near makes its first transition from false
to true, or it is infinity if there is no such transition. If near does make a transi
tion, then the following specification terminates at some time after that transition.
However, if near never makes a transition, the specification never terminates.

00 sens, before: [S, near i 0 ::; T < 00 V near i 0 = T = 00]

The assumption S (which is needed for the refinement of this specification) will
be explained further below.

The frame of a specification command lists those variables that may be mod
ified by the command. The frame may not inc1ude inputs. The current time
variable, T, is implicitly in the frame. All outputs not in the frame are defined to be
stable for the duration of the command, provided the assumption holds initially.
We define the predicate stable by

stable(z, TS) ~ TS -=I- {} =} (:3 x • z~TS~ = {x})

where z~TS~ is the image of the set (of times) TS through the function z (repre
senting an external variable). We allow the first argument of stable to be a set (or
vector) of variables, in which case all variables in the set are stable. To specify
the c10sed interval of times from s until t, we use the notation Es ... tj. The open
interval is specified by E-s ... tl

Any state variable, y, not in the frame is unchanged. Hence for these variables
we require that Yo = y, except that in the case of a nonterminating command there
is no final state and hence the equality is not required if the final time is infinity.
For a vector of outputs, out, a vector of state variables, Z, and times to and t, we
introduce the following notation.

eq(out, to, t, zo, Z) ~ stable(out, Eta ... tj) 1\ (t < 00 =} ZO = Z)

Definition 6.2.1 (real-time specification) Given an environment, p, a specijica
tion command, oox: [p, Q], is well-formedprovided itsframe, X, is contained
in p.local U p.aux U p.out, P is a single-state predicate, and Q is a relation. The
meaning of a possibly nonterminating real-time specification command is defi.ned
by the following,

M p (oox: [p, Q]) ~ Ta::; T 1\

(Ta< 00 1\ P [P.VQ,TQ] =} (Q 1\ eq(p.out \ x, Ta, T, p.vo \ xo, p.v \ X)))
p.V,T

where the operator '\' is set difference. D

As abbreviations, if Pis ornitted, then it is taken to be true, and if the frame is
empty the ':' is ornitted. Note that if P does not hold initially the command still
guarantees that time does not go backwards.

6. A predicative semantics for real-time refinement 115

Because T may take on the value infinity, the above specification command
allows nontermination. If the command does not terminate then the final values
of the state variables have no counterpart in reality. Hence it does not make sense
to write specifications that require, for example, the final value of a local variable
y to be zero and the command to not terminate: y = 0 1\ T = 00. There is
no program code that can implement such a specification, so they are of little
use. The following property states the condition under which an effect relation (a
predicate) is independent ofthe final values ofthe state variables ifthe command
does not terminate.

Definition 6.2.2 (nontermination state independent) Given a relation, Q, that
is welllormed in an environment, p, Q is nontermination state independent
provided

T = 00 =? (Q {:} (3p.v. Q)) 0

A command, C, is nontermination state independent if its meaning predicate,
M p (C), is nontermination state independent. In the definition of the specifica
tion command the equality within eq between the initial and final values of state
variables that are not in the frame does not apply if the command does not ter
minate. All the primitive real-time commands defined in Sec. 6.2.2 satisfy this
property, and compound commands preserve it. Hence the only commands that
may not satisfy it are specification commands, because the effect Q constrains the
final values of the state variables at time infinity. We require all specifications to
satisfy this healthiness property.

The law for weakening an assumption is similar to that for the standard
refinement calculus.

Law 6.2.3 (weaken assumption) Provided P =? pI,

oox: [p, Q] I;;;; oox: [pI, Q] 0

A common refinement step is to strengthen the effect of a specification com
mand. In the real-time case one can take into account the following: time cannot
go backwards; if the start time of the command is infinity (i.e., the finishing time
of the previous command was infinity) it is never executed so its effect is irrele
vant; the assumption holds for the initial state of the variables; any outputs not in
the frame are stable; and any state variables not in the frame are unchanged.

Law 6.2.4 (strengthen effect) Provided

Ta :s; T 1\ Ta< 00 1\ P [e.vo,To] 1\
p.V,T

eq(p.out \ x, Ta, T, p.vo \ xo, p.v \ x) 1\ Q'
=?Q

then 00 x: [p, Q] I;;;; oox: [p, Q/]. 0

For a time interval I, and a predicate P, that contains unindexed occurrences
of extern al inputs and outputs, the notation P on I stands for (\:I t : I • P @ t)

116 Rayes

where P @ t stands for the predicate P with all occurrences of each extemal input
or output, e, replaced by e(t). For example, the notation

(gate = open) on ETo ... near I Oj

stands for

('"It: ETo ... near I Oj • gate(t) = open)

The following is an example of strengthening the effect of a specification. The
predicate SENS will be explained later.

[ga~(T) =topoen /\ (gate = open) on ETo ... near I Oj /\]
gate: T _ near I /\, t 0 < /\ SE'ATS

SENS near I _ T ",
(2)

~ Law 6.2.4 (strengthen effect); Law 6.2.3 (weaken assumption)

. [< t 0 SE'l\TS stable(gate, ETo ... Tj) /\] gate. T _ near I /\ "" t 0 < near I _ T
(3)

The strengthening of the effect is valid provided the following condition holds.
The occurrences of the conjunct T < 00 come from the fact that the specifications
are terminating.

TO S T /\ TO < 00 /\

gate (TO) = open /\ TO S near I 0 /\ SENS [~]/\
stable(gate, ETo ... Tj) /\ near lOS T /\ T < 00

=7 (gate = open) on ETo ... near I Oj /\ near lOS T /\ SENS /\ T < 00

Ignoring the occurrences of SENS (which is defined later) the remainder holds
because the gate is initially open at time TO and stable until time T, which is after
time near I O.

Astate variable can always be removed from the frame. This effectively
strengthens the post-condition to ensure that the variable is unchanged.

Law 6.2.5 (contract frame) For astate variable z, not in X,

ooz,x: [p, Q] ~ oox: [p, Q] D

If an output is to be stable for the whole of the execution time of a command,
it can be removed from the frame.

Law 6.2.6 (output stable) For an output 0, not in X,

ooo,x: [p, Q /\ stable(o, ETo ... Tj)] g oox: [p, Q] D

For example, the following holds the gate open by keeping it stable (i.e., not
changing it) over the required interval.

. [< t 0 /\ SE'ATS stable(gate, ETo ... Tj) /\] gate. T _ near I ", , t 0 < near I _ T
(3)

~ Law 6.2.6 (output stable) for gate

[T S near I 0 /\ SENS, near lOS T] (4)

6. A predicative semantics for real-time refinement 117

Let x be a vector of variables, not including any inputs; E be a vector of idle
stable expressions of the same length as x and assignment compatible with x; D
be a time-valued expression; z be a local variable; i be an input that is assign
ment compatible with z; 0 be an output; and E be an idle-stable expression that is
assignment compatible with o.

skip ~ h = 7]
idle ~ h s 7]

x:= E ~ x: [x = (E [,]) @ 70] , -- x only locals

_ - ~ _ [70 = 7 /\]
x := E = x: x = (E [,]) @ 70 '

-- x only auxiliaries

deadline D ~ h = 7 S D @ 7]
z: read(i) ~ z: [z E i~E-70 ... 7j~]

0: write(E) ~ 0: [0(7) = E@ 70]

Figure 6.1. Definition of primitive real-time commands

All our commands insist that time does not go backwards.

(5)

(6)

(7)

(8)

(9)

(10)

(11)

Law 6.2.7 (time progresses) For any command, C, that is well-formed in an en
vironment, p, thefollowing holds: M p (C) ~ 70 S 7. D

6.2.2 Primitive real-time commands

The primitive real-time commands can be defined in terms of equivalent specifica
tion commands. In Fig. 6.1 we define: the null command, skip, that does nothing
and takes no time; a command, idle, that does nothing but may take time; mul
tiple assignment commands for both local and auxiliary variables; the deadline
command; a command, read, to sampie a value from an external input; and a
command, write, to output a value to an externaioutput, o.

We allow expressions used in programs, e.g. in assignments and guards, to re
fer to external variables without explicit time indices. When these expressions
are used within predicates within the equivalent specification commands, all ref
erences to external variables need to be explicitly indexed. Hence we use the
notation E @ t to refer to the expression E with all occurrences of any external
variable e replaced by e(t), and all occurrences of 7 replaced by t.

Because an expression takes time to evaluate, we require that its value does
not change over the interval during which it is being evaluated. We refer to such
expressions as being idle-stable, that is, their value does not change over time
provided all the variables under the control of the program are stable. In practice
this means that such expressions cannot refer to 7 or to the value of external
inputs.

118 Hayes

Definition 6.2.8 (idle-stable) Given an environment p, an expression E is idle
stable provided,

70 ::; 7 < 00 1\ stable(p.out, E70 ... 7j) =t E @ 70 = E @ 7 0

The deadline command guarantees to meet its deadline, even if the deadline
time has already passed. If the deadline has already passed, the effect of the dead
line command is false, which means that the command is miraculous and cannot
possibly be implemented.

6.2.3 Sequential composition

Because we allow nonterminating commands, we need to be careful with oUf
definition of sequential composition. If the first command of the sequential com
position does not terminate, then we want the effect of the sequential composition
on the values of the outputs over time to be the same as the effect of the first com
mand. This is achieved by ensuring that for any command in oUf language, if it is
'executed' at 70 = 00, it has no effect.

Law 6.2.9 (nontermination preserved) For any command, C, that is well
formed in an environment, p, the following holds: 70 = 00 =t (M p (C) {:} 7 =
00). 0

For the specification command this is achieved by the assumption 70 < 00 in
Def. 6.2.1 (real-time specification).

The definition of sequential composition combines the effects of the two com
mands via a hidden intermediate state (p.v' in the definition below). First we
introduce a forward relational composition operator, 'r.
Definition 6.2.10 (relational composition) Given an environment p and two re
lations R1 and R2 the (forward) relational composition of R1 and R2 is defined as
folIows,

R1 9 R2 ~ 37' : Timeoo ; p.v' : Tv • R1 [T1,p·VV/] 1\ R2 [T1'pP.V/]
T,p. TO, .Va

where Tv is the type of p.v'. o

Definition 6.2.11 (sequential composition) Given an environment p, and real
time commands C and D, their sequential composition is defined as the relational
composition of their meaning predicates.

Because both C and D guarantee 70 ::; 7, their sequential composition does
also. Note that even if the assumption of the second command does not hold,
the sequential composition still guarantees the effect of the first command for the
external variables. It also guarantees that the finish time is greater than or equal to
the finish time of the first command.

6. A predicative semantics for real-time refinement 119

The following law is a generalisation of the standard law for refining a spec
ification to a sequential composition of specifications. For the termination case
both commands must terminate. The first establishes the intermediate single-state
predicate PI as well as the relation R I between the start and finish states of the
first command. The second command assurnes PI initially and establishes the
single-state predicate P2 as well as the relation R2 between its initial and final
states. Hence the sequential composition establishes P2 as well as the relational
composition of R I and R2 between its initial and final states.

For the nontermination case either the first command does not terminate and
establishes QI, or the first command terminates establishing PI and R I and the
second command does not terminate and establishes Q2. The overall effect is thus
either QI or the composition of R I and Q2.

Law 6.2.12 (sequential composition) Given single-state predicates Po, PI and
P2, and relations RI, R2, QI and Q2,

oox: [Po, (T < 00 1\ P2 1\ (R I 9 R2)) V (T = 00 1\ (QI V (R I 9 Q2)))]
c:::

oo~: [po, (T < 00 1\ PI 1\ Rd V (T = 00 1\ Qdl ;
oox: [PI, (T < 00 1\ P2 1\ R2) V (T = 00 1\ Q2) D

Taking QI and Q2 asfalse reduces the law back to the standard law of Iones [15]
for terminating commands:

For example, if we instantiate the above law with Po the predicate S, PI the
predicate true, P2 the predicate T :::; near r 0 + err, R I the relation Ta = T =

before, R 2 the relation sens E near~ETo ... near r 0 + errj~, and QI and Q2 both
false, then because R I 9 R 2 is the following

(:3 T' : Time; sens' ; baalean; before' ; Time. Ta = T' = before 1\

sens E near~ET' ... near r 0 + errj~)
== Ta = before 1\ sens E near~ETo ... near r 0 + errj~

we can derive the following refinement.

b [s before = Ta 1\ T :::; near r 0 + err 1\]
sens, efore: ~E J~ , sens E near~ Ta ... near r 0 + errJV

[;;; Law 6.2.12 (sequential composition)

sens,before: [s, Ta = T = before];

sens, before: true -[T < near r 0 + err 1\]
, sens E near~ETo ... near r 0 + errj~

Specification (13) can be refined as follows.

(12)

(13)

(14)

(13) [;;; Law 6.2.5 (contract frame) by sens; Law 6.2.3 (weaken assumption)

before: [before = T 1\ T = Ta]

120 Hayes

g Def. 8 (auxiliary assignment)

before:= T

A deadline command can be used to ensure that a command completes by a
given time. The following law can be proved using Law 6.2.12 (sequential compo
sition), with the deadline command given in its specification command equivalent
(9).

Law 6.2.13 (separate deadline) Provided D does not refer to initial variables,

x: [p, Q 1\ T s:; D] [;;; x: [p, Q]; deadlineD 0

For example, the specification (14) can be refined as folIows.

(14) [;;; Law 6.2.5 (contract frame) by before; Law 6.2.4 (strengthen effect)

sens: [sens E near~ETo ... T-j~ 1\ T s:; near r 0 + err]

[;;; Law 6.2.13 (separate deadline)

sens: [sens E near~ETo '" T-j~] ; (15)

deadline near r 0 + err

The specification (15) is equivalent to sens: read(near).
Commonly a specification is refined to a sequence of more than two spec

ifications. The following law follows by multiple application of Law 6.2.12
(sequential composition) for the terminating case. A more complex version for
nonterminating commands can also be devised.

Law 6.2.14 (multiple sequential compositions) Given single-state predicates
Po, P1, ... , Pn, and relations Rb R2, ... , Rn, where n 2': 1, then

x: [Po, Pn 1\ (R 1 9 R2 9 ... 9 Rn)]
C

6.2.4 Nondeterministic choice, guards and selection

The selection (if) command is defined in terms of sequential composition and
(nondeterministic) choice. We first define choice (D.

Definition 6.2.15 (choice) Given an environment, p, and real-time commands, C
and C', the nondeterministic choice between C and C' is defined by the following.

M p (C ~ C') ~ M p (C) V M p (C') 0

Nondeterministic choice is symmetrie, associative and idempotent.

6. A predicative semantics for real-time refinement 121

For a selection command we model evaluation of a guard B by [B @ 7], i.e., a
specification command with an empty frame. The guard may take time to evalu
ate (note that 7 is implicitly in the frame of any specification command, including
guards). A guard is only feasible if the guard B evaluates to true when the com
mand is reached. Aselection assurnes that one of its guards holds, and hence that
one of the guards is feasible. The guard expressions are required to be idle-stable
so that their values do not change while they are being evaluated. The final idle
command allows for the time taken to exit the selection.

Definition 6.2.16 (selection) Given a set of real-time commands, Cl,"" Cn,

and idle-stable, boolean-valued expressions, BI, ... ,Bn, aselection command is
defined as foUows.

ifB I --+ Cl ~ ... ~ Bn --+ Cnfi ~
([BB, BI @7J; Cl ~ ... ~ [BB, Bn @7J; Cn); idle

where BB ~ BI @ 7 V ... V Bn @ 7. o

The definition of a selection puts no bounds on the time to evaluate the guards or
the time to exit the selection. It is expected that deadline commands, either within
branches of the selection or following the selection, will indirectly introduce time
bounds on these activities. Evaluation of the guards of aselection command takes
time. Hence if some assumption P holds before guard evaluation, P may no longer
hold after guard evaluation. Even though none of the variables under the control
of the program are modified during guard evaluation, P may refer to the current
time 7 or to external inputs, both of which may change during the time taken for
guard evaluation. To avoid this problem we restrict our attention to assumptions
that are invariant over the execution of an idle command. Such assumptions are
referred to as heing idle-invariant.

Definition 6.2.17 (idle-invariant) A single-state predicate P is idle-invariant
provided,

70::; 7 < CXJ 1\ stable(p.out, E70 ... 7j) 1\ P [~J =7 P. 0

Note that predicates of the form 7 ::; D (where D is idle-stable) are not idle
invariant, but predicates of the form D ::; 7 are. If the only references to 7 in P
are as indices of outputs, then P is idle-invariant.

Similarly, the effect of a specification command being refined to aselection is
required to be impervious to the time taken to evaluate the guards and to exit the
selection. We refer to it as being both pre-idle-invariant and post-idle-invariant.
A relation R is pre-idle-invariant if prefixing it with an idle period has no effect.
That is, whenever it holds over an interval from 70 to 7, then for any u less than
or equal to 70 it holds over the interval from u to 7, provided the variables under
the control of the program are not modified over the interval from u to 70.

122 Hayes

Definition 6.2.18 (pre-idle-invariant) A relation R is pre-idle-invariant pro
vided,

Ta < 00 1\ u S Ta S T 1\ stable(p.out, tU ... Toj) 1\ R ~ R [;;-] D

The interval from u to Ta corresponds to the idle period before executing the
command with effect R.

A predicate R is post-idle-invariant if adding a postfix idle period has no effect.
That is, for any u greater than or equal to T, whenever R holds over an interval
from Ta to T, it also holds over the interval from Ta to u, provided the variables
under the control of the program are not modified between T and u.

Definition 6.2.19 (post-idle-invariant) A relation R is post-idle-invariant pro
vided,

Ta S T S U < 00 1\ stable(p.out, tT ... uj) 1\ R ~ R [~] D

The interval from T to u corresponds to the idle period after executing the com
mand with effect R. Note that we rule out T and u being infinity; if T is infinity the
command does not terminate and nothing can follow it. If the only references to
Ta and Tin R are as indices of outputs, then R is both pre- and post-idle-invariant.

Law 6.2.20 (selection) Given an idle-invariant, single-state predicate P, a pre
and post-idle-invariant relation R, and idle-stable boolean-valued expressions
BI, ... ,Bn, provided P ~ (BI @T V ... V Bn @T),

oox: [p, R]
r;;; if BI ----> oox: [p 1\ BI @ T, RJ ~ ... ~ Bn ----> oox: [p 1\ Bn @ T, RJ fi

D

For example,

[(gate(To) = close =} (gate = close) on tTo ... Tj) 1\]
gate: true,

gate(T) = close

~ if gate = close ---->

gate: gate(T) = close, (gate = close) on tTo ... Tj) 1\ (16) [
(gate (Ta) = close =} 1

~ gate = open ---->

gat" [gat'(7) ~ opm,

fi

gate(T) = close

(gate (Ta) = close =} 1
(gate = close) on tTo ... Tj) 1\

gate(T) = close
(17)

The first branch (16) can be refined via Law 6.2.6 (output stable) to skip, and the
second branch (17) to gate: write(dose).

6. A predicative semantics for real-time refinement 123

6.2.5 Local and auxiliary variables

A variable block introduces a new loeal or auxiliary variable. The alloeation and
dealloeation of a loeal variable may take time. This is allowed for in the defini
tion by the use of idle eommands. Auxiliary variables require no alloeation or
dealloeation time. In the definition of a loeal or auxiliary variable block we need
to allow for the fact that a variable of the same name may be declared at an outer
seope, i.e. that it is already in p. Henee we introduee a fresh variable name, not in
p, that we use in the definition via appropriate renamings. If the variable name is
itself fresh, it may be used instead and the renaming avoided.

Definition 6.2.21 (block) Given an environment, p, a command, C, a nonempty
type T, and a fresh variable, w, not in p,

M p (I[vary: T; C ll) ~ (3wo, w: T. Mpl (idle; C [~~:;] ; idle))

where p' is p updated with the local variable w, and

M p (I[auxy: T; ClI) ~ (3wo, w: T. Mpll (c [~~:; J))
where pli is p updated with the auxiliary variable w. D

For the law to refine a speeifieation to a loeal variable block, we require that
the assumption of a speeifieation be impervious to the time taken to alloeate the
loeal variable, and the effeet be impervious to both the time taken to alloeate and
deallocate the loeal variable.

Law 6.2.22 (Iocal variable) Provided Pis an idle-invariant, single-state predi
cate, R is a pre- and post-idle-invariant relation, T is a nonempty type, and y does
not occur free in X, P and R,

x: [p, RJ r;;; I[vary: T; y,x: [p, RJ 11 D

Beeause no time is required to alloeate and dealloeate auxiliary variables, the
law for them is the same as above but without all the idle-invariant requirements.
We abbreviate multiple declarations with distinet names by merging them into a
single block, e.g., I[vary; auxx; C II = I[vary; I[auxx; C lIll. For example,

00 [S, nearjO:::;T<ooVnearjO=T=ooJ (18)

~ Law 6.2.22 (Ioeal variable)

I [var sens : boolean; aux before : Time;

oosens,before: [S, near j 0:::; T < 00 V near j 0 = T = ooJ (19)

II
provided the assumption, S, is idle-invariant (see below), and the effeet is pre
idle-invariant, that is, provided TO < 00 and u :::; TO :::; T the following holds,

stable(gate, tU ... To:3) 1\ (near j 0 :::; T < 00 V near j 0 = T = 00)

=t near j 0 :::; T < 00 V near j 0 = T = 00

124 Rayes

and post-idle-invariant, that is, provided TO :::; T :::; U < 00 the following holds,

stable(gate, tT ... uj) 1\ (near i 0:::; T < 00 V near i 0 = T = 00)
=1 near i 0 :::; u < 00 V near i 0 = u = 00

which holds because T :::; U < 00.

6.3 An example

The example we consider is that of a railway crossing. There are sensors that
detect when a train arrives near to the crossing and when it has passed out of the
region of the crossing.

input near, out: boolean;

The gate at the crossing is controlled by an output gate, which has values either
open or dose.

output gate: {open, dose}

We use the notation near i 0 to refer to the time at which the train reaches
the near sensor and it rises (fromjalse to true) for the first time, and out i 0 for
the time it reaches the out sensor. The sensors remain true for a minimum period
when a train passes. The near sensor is placed so that there is aperiod of at least
300 seconds between a train arriving at the sensor and its arriving at the crossing.
From the time the gate is set to dose it takes at most 100 seconds for the gate to
actually reach the c10sed position, and a similar time for it to rise. The gate should
start reopening within 5 seconds of the train passing the out sensor.

const err = 1 s; - - minimum time the sensors are true
const train_to_crossing = 300 S ;

const time_to_dosLgate = 100 S ;

const oULlim = 5 S ;

The out sensor is placed to ensure that the train has left the crossing before it
reaches the out sensor. The controller may assume the following holds initially.

(near = jalse) on tT ... near i O-j 1\

(near = true) on tnear i 0 ... near i 0 + err-j 1\

SENS ~ (out = jalse) on tT ... out i O-j 1\ (20)
(out = true) on tout i 0 ... out i 0 + err-j 1\

near i 0 + train_to_crossing < out i 0

Because the above predicate is idle-invariant and no variables appearing within
it are in the frame, it may be assumed throughout the development. Note that
tT ... near i O-j may be empty, but the predicate is still idle-invariant.

The specification of the gate controller is as follows, in which the constant 200 S

is derived from train_to_crossing minus timLto_dose_gate. The final conjunct

6. A predicative semantics for real-time refinement 125

in the effect, gate(T) = open, is required because the interval in the second last
conjunct may be empty.

(gate = open) on tTo ... near r Oj 1\

(gate = dose) on
tnear r 0 + 200 S ... out r Oj 1\

gate(T) = open
gate: 1\ T ~ near r 0,

1\ SENS (gate = open) on tout r 0 + ouLlim ... Tj 1\

gate (T) = open

r;;;; Law 6.2.l4 (multiple sequential compositions)

[gate~) = op/On (gate = open) on tTo ... near r Oj]
gate: 1\ T _ near I '1\ t 0 < 1\ SE'MS ;

1\ SENS near I _ T 1V,

(2)

[
near r 0 < T (gate = dose) on]

gate: 1\ SENS -, t near r 0 + 200 S ... out r Oj ;
1\ out r 0 ~ T 1\ SENS

(21)

ate' [out r 0 ~ T (gate = open) on tout r 0 + ouLlim ... Tj]
g . 1\ SENS '1\ gate(T) = open (22)

The specification (2) is refined earlier. Specification (21) is refined as folIows.

(21) r;;;; Law 6.2.12 (sequential composition)

[near r 0 ~ T gate(T) = dose 1\ T ~ near r 0 + 200S]
gate: 1\ SENS '1\ SENS ; (23)

[
gate (T) = dose 1\ (gate = dose) on]

gate: T ~ near r 0 + 200 S, tnear r 0 + 200 S ... out r Oj
1\ SENS 1\ out r 0 ~ T 1\ SENS

(24)

The specification (23) may be refined by setting gate to close by the deadline.

(23) r;;;; Law 6.2.13 (separate deadline); Law 6.2.4 (strengthen effect)

gate: [near r 0 ~ T 1\ SENS, gate (T) = close 1 ; (25)

deadline near r 0 + 200 S

Specification (25) can be implemented by gate: write(close). Specification (24)
can be refined in a manner sirnilar to (2) to give the following specification.

[SENS, out r 0 ~ Tl (26)

Specification (22) can be refined to the following (similar to (23».

gate: write(open); deadline out r 0 + ouLlim

The program so far is shown in Fig. 6.2. The initial assumption, T ~

near r 0, has been factored out of the specification (4). The remaining unrefined
components, Band D, require arepetition for their implementation.

126 Hayes

A :: {T ::; near r O} ;
B :: [SENS, near r 0 ::; T];

gate: write(close);

C :: deadline near r 0 + 200 S ;

D:: [SENS, out r 0 ::; T];

gate : write(open);

E :: deadline out r 0 + ouLlim

Figure 6.2. Collected program without repetitions

6.4 Repetitions

The specification [SENS, near r 0 ::; T] can be implemented by repeatedly test
ing the near sensor until it becomes true. The specification [SENS, out r 0 ::; T]
can be implemented in a similar manner. Hence we only consider the former here.
To provide an example of refinement to a possibly nonterminating repetition, we
generalise the specification to

00 [S, near r 0::; T < 00 V near r 0 = T = 00] (18)

although in this particular example we know near r 0 < 00. From the assumption
SENS we may assume the near sensor is false until time near r 0 and then true
for a minimum period of err. We need to sampIe the sensor frequently enough to
ensure its high transition is not missed.

s::: (near = false) on E-T ... near r O~ 1\
- (near = true) on E-near r 0 ... near r 0 + err~

The predicate (27) is idle-invariant because

Ta ::; T < 00 1\ stable(out, ETa ... Tj) 1\

(near = fa/se) on E-Ta '" near r O~ 1\

(near = true) on E-near r 0 ... near r 0 + err~
~ (near = false) on E-T ... near r O~ 1\

(near = true) on E-near r 0 ... near r 0 + err~

(27)

We introduce a local variable sens, which is used for sampling the sensor, and
an auxiliary variable before, which is used to record the time immediately before
the senSor is sampled. Specification (18) has been refined in Sect. 6.2.5 to such a
block with body (19).

00 sens, before: [S, near r 0 ::; T < 00 V near r 0 = T = 00] (19)

Specification (19) can be refined by arepetition. We do not attempt to give a
complete definition of repetitions; more complete details can be found elsewhere

6. A predicative semantics for real-time refinement 127

[7,8]. Arepetition,

R :;, repeat C until B,

can (as a first approximation) be characterised by the following recurrence.

Before the body of the repetition is executed there is an idle to allow for any
overheads at the start of an iteration. After executing the body C, there is a (deter
ministic) choice between two guarded alternatives. The guard evaluation typically
takes time (unless the guard is a constant, true orfalse). The first alternative cor
responds to the guard evaluating to true and termination of the repetition. The
second alternative corresponds to the guard evaluating to false and the iteration
being repeated from the beginning.

Unfortunately, the above recurrence allows a single iteration of arepetition
(for example of 'repeat skip until false') to take zero time, or each successive
iteration to take half the time of the previous (as in Zeno's paradox). To avoid
this unrealistic behaviour, we define every iteration to take a minimum amount
of time, d, which is strictly positive (1 attosecond will do). Hence arepetition is
characterised by: there exists a strictly positive time, d, such that

R = I[auxs; s := T; idle; C;
([B@T] ~ ([-,B@T]; [S+d:ST];R))

]I

where s is a fresh auxiliary variable, which captures the start time of an iteration.
Before the repetition is restarted from the beginning there is a delay [s + d :S T]
to ensure the time is at least d time units later than the start time of the iteration,
s. This ensures that even if the guard is the constant false and the body is the
null command skip, each iteration takes at least d time units and hence Zeno-like
behaviour is avoided.

We give a rule for introducing arepetition with a body that terminates on every
iteration. The predicate Q' acts as an invariant that is established at the end of the
body on every iteration. Q' is not required to be idle-invariant. Hence we introduce
a weaker predicate Q that is idle-invariant. Only Q can be assumed after the guard
evaluation. If the repetition terminates both Band Q hold. If the guard evaluates
to false, then at the start of the next iteration one can assume both -, B and Q.
The body is executed initially when P is known to hold, or on arepetition when
the guard is false, in which case -, Band Q hold. The body of the repetition
establishes Q'.

The stronger (non-idle-invariant) predicate Q' is used in the case when the rep
etition does not terminate. If the repetition never terminates but the body always
terminates then there is an infinite sequence of ever increasing times, correspond
ing to the times at which the end of the body is reached, at which both Q' and
-, B hold for the current time and the current values of the state variables. This is
captured by the predicate Qoo in the following law:

128 Rayes

Law 6.4.1 (repetition) Given idle-invariant, single-state predicates P and Q, a
single-state predicate Q' such that Q' ~ Q, and an idle-stable, boolean-valued
expression B,

oox: [p, (B@7/\Q/\7< 00) V (Qoo /\ 7 = oo)J
I;;;; repeat x: [p V (---, B@7 /\ Q), Q'J untilB

where Qoo ~ (\1't: Time. (37: Time; p.v: Tv • t:::; 7 /\ ---, B@7 /\ Q')). D

Note that the existential quantification in Qoo ensures that Qoo satifies Def. 6.2.2
(nontermination state independent).

For the train crossing example, arepetition can be used to test for the train
passing the near sensor. We have weakened the assumption of the body (28) to S.

(19) I;;;; Law 6.4.1 (repetition); Law 6.2.3 (weaken assumption)

repeat

sens,
before:

untilsens

[
(sens=?nearrO:::;7)/\ 1

S, (---, sens =? before :::; near r 0) /\
7 :::; near r 0 + err /\ S

(28)

The effect of the body corresponds to the loop invariant Q' of Law 6.4.1 (repeti
tion). The conjunct 7 :::; near r 0 + err is not idle-invariant, but the remaining
conjuncts (sens =? near r 0 :::; 7), (---, sens =? before :::; near r 0) and S are idle
invariant. Hence these form the weaker condition Q in the law. If the repetition
terminates both Q and the termination guard (sens) hold. Together these imply
near r 0 :::; 7, which along with termination (7 < 00), implies the effect of (19).

For nontermination, for any time t there exists a later time 7 and corresponding
values of the state variables, such that the invariant Q' and the negation of the
termination guard (---, sens) hold. This implies the following.

(\1' t : Time. (37 : Time; sens: boolean; before : Time.
t:::; 7 /\ ---, sens /\ before :::; near r 0 /\ 7:::; near r 0 + err))

~ (\1' t : Time. t :::; near r 0 + err)
~ near r 0 = 00

Along with 7 = 00, this implies the effect of (19).
The refinement of the body (28) of the repetition depends on the assumption

about the sensor behaviour (27). The sensor is sampled between the start time of
the body of the repetition, which is captured in the time-valued auxiliary variable
before, and time near r 0 + err. If the sampled value is false, the body must have
begun execution before time near r 0, and if it is true, the finish time of the body
must be after near r o. Together these guarantee the effect of (28).

(28) I;;;; Law 6.2.4 (strengthen effect)

b [s before = 70 /\ 7 :::; near r 0 + err /\] sens efore:
, , sens E near~t70 ... near r 0 + errj~ (12)

6. A predicative semantics for real-time refinement 129

I[varsens : baalean; auxbe/ore : Time;

repeat

II

F :: be/are := T;

sens: read(near);

G :: deadline near l' 0 + err;

{
(sens '* near l' 0:::; T) 1\ }
(...., sens '* be/are :::; near l' 0) 1\

T :::; near l' 0 + err 1\ S

untilsens

Figure 6.3. Sensor detection repetition

A :: {T :::; near l' o} ;
alloc var sens: baalean; aux be/are: Time;

F :: be/are := T;
sens: read(near);

G :: deadline near l' 0 + err

Figure 6.4. Initial path entering sensor detection repetition

This specification is equivalent to (12), which has been refined earlier.
The complete repetition is given in Fig. 6.3. The deadline command in the

repetition ensures that the high transition of the sensor is not missed.

6.5 Timing-constraint analysis

In order for compiled machine code to implement a machine-independent pro
gram it must guarantee to meet all the deadlines. The auxiliary variables
introduced above aid this analysis. There is a deadline within the sensor detec
tion repetition (Fig. 6.3) labelled G. It is reached initially from the entry to the
repetition and subsequently on each iteration. The initial entry path (shown in
Fig. 6.4) starts at the assumption A in Fig. 6.2 before entering the sensor detection
repetition (which refines [SENS, near l' 0 :::; Tl) in Fig. 6.3. The path allocates
the local variable sens, extends the auxiliary variables with be/are, and follows the
path into the repetition, assigning T to be/are and reading near into sens, before
reaching the deadline G. From the assumption at A, we know that the start time
of the path is before near l' 0 and the deadline on the path is near l' 0 + err. If

130 Hayes

F :: befare := r;
sens: read(near);

G :: deadline near i 0 + err;

{
(sens:::} near i 0 ~ r) 1\ }
(-, sens:::} befare ~ near i 0) 1\ ;

r ~ near i 0 + err 1\ S
[-, sens]; - - repetition exit condition false

F:: befare := r;
sens: read(near);

G :: deadline near i 0 + err

Figure 6.5. Repetition path in sensor detection repetition

this path is guaranteed to execute in a time of less than err then the deadline is
guaranteed to be met. Hence the timing constraint on the path is err.

For an iteration we consider the path (shown in Fig. 6.5) that starts at the assign
ment to befare (F), reads the value of near into sens, passes through the deadline
(G), branches back to the start of the repetition because sens is not true, performs
the assignment to befare (F), reads the value of near, and reaches the deadline
(G). The guard evaluation is represented by [-, sens], which indicates that in order
for the path to be followed, sens must be false. Using the loop invariant we can
determine that the initial time assigned to befare, i.e. the time at which the path
begins execution, must be before near i 0 because the value of sens is false. The
final deadline on the path is near i 0 + err. Hence, if the path is guaranteed to
execute in less than time err, it will always meet its deadline.

If this path is guaranteed to reach its deadline then any path with this as a
suffix is also guaranteed to meet the final deadline, and hence any number of
repeated iterations will meet the deadline. The constraint on this path corresponds
to a maximum time of err between successive reads of the sensor. Although the
repetition is written as a busy wait, in a multi-tasking environment the repetition
could be implemented by scheduling the body to execute so that the deadline is
always met. For example, a common scheduling strategy is periodic scheduling in
which a task is scheduled with aperiod of P seconds and has to complete within
D seconds of the start of the period. In this case as long as P + D is less than or
equal to err, the requirements for meeting the deadline will be met.

The path shown in Fig. 6.6 starts from the deadline G within the body of the
repetition, exits the repetition (because sens is true), deallocates sens and befare,
and sets the gate to dase, before reaching the deadline at C. The initial deadline
guarantees the start time of the path is less than or equal to near i 0 + err. The
deadline on the path is near i 0 + 200 s. Therefore a suitable constraint on the
path is near i 0 + 200 s -(near i 0 + err) = 200 s -err.

6. A predicative semantics for real-time refinement 131

G:: deadlinenear r 0 + err;
[sens]; - - exit repetition
dealloc var sens: boolean; aux before : Time;
gate: write(close);

C :: deadline near r 0 + 200 s

Figure 6.6. Exit path from sensor detection repetition

We have considered all the paths concerned with the repetition testing the near
sensor. The remainder of the program which handles the sensor for the train
leaving the crossing is treated in a similar manner.

In general, timing constraint analysis is undecidable because it encompasses
the halting problem for a path containing a complete repetition without any in
ternal deadlines. However, for restricted forms of programs automating timing
constraint analysis is possible [4].

6.6 Conclusions

The real-time refinement calculus presented in this paper supports the devel
opment of machine-independent real-time programs. This has the advantage of
decoupling the program development process from the timing analysis required
for a particular machine. Timing constraints within the pro gram are represented
by deadline commands.

In this paper we have developed a predicative semantics for the calculus, in a
style similar to that used by Hehner, and Hoare and He. A novel feature is that ex
ternal inputs and outputs are represented by timed traces, and hence the values of
such variables over time, and not just their initial and final values are significant.
In addition, programs may be nonterminating. Commands in the language satisfy
a number of healthiness properties: time cannot go backwards; the semantics of a
nonterminating command is independent of the final values of the state variables;
and all commands have no effect if 'executed' at time infinity.

In the laws for reasoning about compound commands we desired that reason
ing about the behaviour of commands is independent of the time taken to execute
components of the commands, such as guard evaluation. This is achieved by re
quiring predicates to be idle invariant. As to be expected the most interesting
constructs to handle are sequential composition and repetitions. For a sequential
composition, in order to model the reactive nature of real-time programs, we de
sired that the behaviour of the sequential composition over time be composed
from the behaviour of the individual commands. Care needs to be taken with the
case in which the first command in the composition does not terminate, and the
behaviour of the sequential composition is the same as that of the first command.

132 Hayes

For a nonterminating repetition, the values of the outputs are extended on each
iteration. The law for reasoning about such repetitions relies on the loop invariant
being repeatedly re-established at an infinite sequence of ever increasing times.

Acknowledgements

This research was supported by Australian Research Council (ARC) Large Grant
A49801500, A Unified Formalism Jor Concurrent Real-time Software Develop
ment. I would like to thank Yifeng Chen, Colin Fidge, Karl Lermer, and Mark
Utting for fruitful discussions on the topic of this paper, and the members of IFIP
Working Group 2.3 on Programming Methodology for feedback on this topic, es
pecially Erlc Hehner for his advice on how to simplify our approach, and Cliff
Jones for his insights into the relational approach. I would like to acknowledge
the support of the University of Queensland Special Studies Program and thank
the Department of Computer Science at the University of York (UK) for their
hospitality.

References

[1] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

[2] R.-J. Back and J. von Wright. Refinement Calculus: A Systematic lntroduction.
Springer-Verlag, 1998.

[3] C. J. Fidge, I. J. Hayes, and G. Watson. The deadline command. lEE Proceedings
Software, 146(2):104-111, April 1999.

[4] S. Grundon, I. J. Hayes, and C. J. Fidge. Timing constraint analysis. In C. Mc
Donald, editor, Computer Seience '98: Proe. 21st Australasian Computer Sei. Conf.
(ACSC'98), Perth, 4-6 Feb., 575-586. Springer-Verlag, 1998.

[5] I. J. Hayes. Separating timing and calculation in real-time refinement. In J. Grundy,
M. Schwenke, and T. Vickers, editors, Int. Refinement Workshop and Formal Methods
Pacifie 1998,1-16. Springer-Verlag, 1998.

[6] I. J. Hayes. Real-time program refinement using auxiliary variables. In M. Joseph,
editor, Proc. Formal Techniques in Real-Time and Fault-Tolerant Systems, volume
1926 of Lecture Notes in Comp. Sei., 170-184. Springer-Verlag, 2000.

[7] I. J. Hayes. Reasoning about non-terminating loops using deadline commands. In
R. Backhouse and J. N. Oliveira, editors, Proc. Mathematics of Program Construc
tion, volume 1837 of Lecture Notes in Computer Seience, 60-79. Springer-Verlag,
2000.

[8] I. J. Hayes. Reasoning about real-time repetitions: Terminating and nonterminating.
Technical Report 01-04, Software Verification Research Centre, The University of
Queensland, Brisbane 4072, Australia, February 2001.

6. A predicative semantics for real-time refinement 133

[9] I. J. Hayes and M. Utting. Coercing real-time refinement: A transmitter. In D. J.
Duke and A. S. Evans, editors, BCS-FACS Northern Formal Methods Workshop
(NFMW'96). Springer-Verlag, 1997.

[10] I. J. Hayes and M. Utting. A sequential real-time refinement calculus. Acta
In/ormatica, 37(6):385-448, 2001.

[li] E. C. R. Hehner. A Practical Theory 0/ Programming. Springer-Verlag, 1993.

[12] C. A. R. Hoare and He Jifeng. Unifying Theories 0/ Programming. Prentice Hall,
1998.

[13] J. Hooman. Extending Hoare logic to real-time. Formal Aspects 0/ Computing,
6(6A):801-825, 1994.

[14] J. Hooman and O. van Roosmalen. Formal design of real-time systems in a platform
independent way. Parallel and Distributed Computing Practices, 1(2):15-30, 1998.

[15] C. B. Jones. Program specification and verification in VDM. Technical Report
UMCS-86-1O-5, Departrnent of Computer Science, University of Manchester, 1986.

[16] B. P. Mahony. The Specification and Refinement 0/ Timed Processes. PhD thesis,
Departrnent of Computer Science, University of Queensland, 1992.

[17] B. P. Mahony and I. J. Hayes. Using continuous real functions to model timed
histories. In P. A. Bailes, editor, Proc. 6th Australian Software Engineering Conf
(ASWEC9I), 257-270. Australian Comp. Soc., 1991.

[18] B. P. Mahony and I. J. Hayes. A case-study in timed refinement: A mine pump. IEEE
Trans. on Software Engineering, 18(9):817-826, 1992.

[19] C. C. Morgan. Programming /rom Specifications, Second edition. Prentice Hall,
1994.

[20] J. M. Morris. A theoretical basis for stepwise refinement and the programming
ca1culus. Science o/Computer Programming, 9(3):287-306,1987.

[21] A. C. Shaw. Reasoning about time in higher-Ievel language software. IEEE
Transactions on Software Engineering, 15(7):875-889, July 1989.

[22] M. Utting and C. J. Fidge. Areal-time refinement calculus that changes only time. In
He Jifeng, editor, Proc. 7th BCSIFACS Refinement Workshop, Electronic Workshops
in Computing. Springer-Verlag, July 1996.

[23] M. Utting and C. J. Fidge. Refinement of infeasible real-time programs. In Proc.
Formal Methods Pacific '97, 243-262, Wellington, New Zealand, July 1997.
Springer-Verlag.

7

Aspects of system description

Michael Jackson

Abstract
This paper discusses some aspects of system description that are impor

tant for software development. Because software development aims to solve
problems in the world, rather than merely in the computer, these aspects in
clude: the distinction between the hardware/software machine and the world
in which the problem is located; the relationship between phenomena in the
world and formal terms used in descriptions; the idea of a software model
of a problem world domain; and an approach to the decomposition of prob
lems and its consequences for the larger structure of software development
descriptions.

7.1 Introduction

The business of software development is, above all, the business of making
descriptions. A program is adescription of a computation-or, perhaps, of a ma
chine behaviour. A specification is a description of the input-output relation of a
computation-or, perhaps, of the extemally observable behaviour of a machine.
A requirement is adescription of some observable effect or condition that our cus
tomer wants the computation-or the machine- to guarantee. A software design
is a description of the structure of the computation-or, perhaps, of a machine
that will execute the computation.

In spite of its importance, we pay surprisingly little attention to the practice and
technique of description. For the most part, it is treated only implicitly and indi
rectly, either because it is thought too trivial to engage our attention, or because we
suppose that all software developers must already be fuHy competent practition
ers. In the same way, the great universities in the eighteenth and early nineteenth
century ignored the study of English literature. It was a truth universally ac
knowledged that anyone qualified to study Latin and Greek and mathematics in
the university must already know everything worth knowing about the subject of
English literature.

A. McIver et al. (eds.), Programming Methodology
© Springer Science+Business Media New York 2003

138 Jackson

But the discipline of description, like the study of English literature, is nei
ther trivial nor universally understood. Many aspects of description technique are
important in software development and merit explicit discussion. The following
sections discuss particular aspects, setting them in the context of some simple
problems. A conc1uding section briefty discusses the relationship between the
view presented here and a narrower view of the scope of research, teaching and
practice in software development.

7.2 Symbol manipulation

It has often seemed attractive to regard software development as a branch of pure
mathematics. The computer is a symbol-processing machine. Each problem to
be solved is formal, drawn from a pure mathematical domain. The development
methods to be used are largely formal, with the addition of the intuitive leaps that
are characteristic of creative mathematical work. And the criterion of success
correctness with respect to a precise program specification-is entirely formal.

This view has underpinned some notable advances in programming. It has led
to the evolution of a powerful discipline based on simuItaneous development of
a program and its correctness proof, and a c1ear demonstration that, for some
programs at least, correctness is an achievable practical goal. The c1ass of such
programs is large. It inc1udes a repertoire of well-known small examples-such
as GCD and searching or sorting an array- and many substantial applications
such as compiling pro gram texts, finding maximal strong components in a graph,
model-checking, and the travelling-salesman problem.

These are all problems with a strong algorithmic aspect. Their subject matter is
abstract and purely mathematical, even when the abstraction and the mathematics
have c1ear practical application. This is what allows the emphasis in software
development to be placed on symbol manipulation. As Hermann Weyl expressed
it [11]:

"We now come to the decisive step of mathematical abstraction: we for
get about what the symbols stand for. . .. [The mathematician] need
not be idle; there are many operations he may carry out with these
symbols, without ever having to look at the things they stand for."

He might have gone further. We can't look at what the symbols stand for, be
cause they don't stand for anything outside the mathematics: they are themselves
the subject matter of the computation. The task of relating the mathematics to
a practical problem is not part of the software developer's concem: it is some
one else's business. Although our problem may be called the Travelling Salesman
problem we are not really interested in the real salesmen and their travels, but only
in the abstraction we have made of them.

7. Aspects of system description 139

The
User

a: The Specification Interface: {keyboard,screen}

Figure 7.1. The machine and the user

7.2.1 The specification firewall

But even in the most formal problems an element of informality may intrude.
A useful program must make its results visible outside the computer; most pro
grams also accept some input. So questions of external representation and of data
formats, at least, must be considered. How, for example, should we require our
program's user to enter the nodes and arcs of the graph over which the salesman
travels?

These less formal concerns arise outside the core computation itself, in the
world of the software's users and the software developer's customers. In many
cases they can relegated to a limbo beyond a cordon sanitaire by focusing on the
program specification. As Dijkstra wrote [3]:

"The choice of functional specifications-and of the notation to write
them down in-may be far from obvious, but their role is dear:
it is to act as a logical 'firewall' between two different concerns.
The one is the 'pleasantness problem', i.e. the question of whether
an engine meeting the specification is the engine we would like
to have; the other one is the 'correctness problem,' ie the question
of how to design an engine meeting the specification. ... the two
problems are most effectively tackled by ... psychology and exper
imentation for the pleasantness problem and symbol manipulation
for the correctness problem."

Figure 7.1 pictures the situation. The specification interface a is an interface
of shared physical phenomena connecting the customer to the machine. At this
interface the customer enters input data, perhaps by keyboard, and receives output
data, perhaps by seeing it displayed on the screen. The shared phenomena for the
input are the keystrokes: these are shared events controlled by the customer. The
shared phenomena for the output are the characters or graphics visible on the
screen: these are shared states, controlled by the machine.

The specification firewall is erected at this interface. It enforces a fruitful sep
aration of the 'hard' formal concerns of the software developer and computer
scientist from the 'soft' concerns of the 'systems analyst', addressing informal
problems in the world outside the computer. The software developers are relieved
of responsibility for the world outside the computer: they need no more discuss

140 Jackson

The a The b
Machine Light Unit

a: The Specification Interface: {RPulse, GPulse}
b: The Requirement Interface: {Stop, Go}

Figure 7.2. The machine, the world and the customer

The
Customer

the external data format for a graph than automobile engineers need discuss the
range of paint colours for their cars' bodywork or the choice of upholstery fabric
for the seats. The subject matter for serious attention and reasoning is restricted
to the mathematics of the problem abstraction and of the computation that the
machine will execute.

The 'soft' concerns, then, are relatively unimportant; they are relegated to a
secondary place. The customer-who may weH be the developer or another com
puter scientist with sirnilar concerns and interests-may be slightly irritated by
an inferior choice of input-output format at the specification interface, but is not
expected to regard it as a crucial defect. The essential criterion, by which the work
is to be judged, is the correctness and efficiency of the computation.

7.3 The Machine and the World

Not aH customers will be so compliant. For most practical software development
the customer's vital need is not to solve a mathematical problem, but to achieve
specific observable physical effects in the world. Consider the very smaH problem
of controlling a traffic light unit. The unit is placed at the gateway to a factory,
and controls incoming traffic by allowing entry only during 15 seconds of each
minute. The unit has a Stop lamp and a Go lamp. The problem is to ensure that
the light shows alternately Stop for 45 seconds and Go for 15 seconds, starting
with Stop. We can picture the problem as it is shown in Figure 7.2.

In addition to the machine, we now show the problem domain: that is, the part
of the world in which the problem is located. There is no user: in this problem-as
in many others-it is not dear who is the user, or even whether the notion of a
user is useful. But there is certainly a customer: the person, or the group of people,
who pay for the development work and will look critically at its results.

7.3.1 The specijication inteiface

As before, the specification interface a is an interface of phenomena shared by the
machine domain and the problem domain. Here the problem domain is the lights

7. Aspects of system description 141

after(45s)/
RPulse;GPulse

after(l5s)/
GPulse;RPulse

Figure 7.3. A system description

unit, and the shared phenomena are the signal pulses {RPulse, GPulse} by which
the machine can cause it to switch on and off its Stop and Go lamps. The lights
unit itself is on the other side of the specification interface.

7.3.2 The requirement inteiface

The customer is more remote from the machine than the user in a symbol ma
nipulation problem. The customer's need is no longer located at the specification
interface: the customer is interested in the regime of Stop and Go lamps, not in
the signal pulses. So a new interface has appeared in the picture. The requirement
interface b is a notional interface at which we can think of the customer as observ
ing the world outside the machine. The phenomena of interest at this interface are
the states of the Stop and Go lamps of the lights unit; these are, of course, quite
distinct from the signal pulses at the interface with the machine.

The problem is about something physical and concrete. The externally visible
behaviour of the machine, and the resulting behaviour of the lights unit, are not
matters of pleasantness: they are the core of the problem.

7.3.3 A system description

Figure 7.3 is a description of the system as it rnight be described using a currently
fashionable [10] diagrarnmatic notation derived from Statecharts [5]. In the tran
sition markings the external stimulus, if any, is written before the slash ('I'), and
the sequence of actions, if any, taken by the machine is written after it.

The initial state is 1, in which neither lamp is lit. Immediately the machine
ernits an RPulse, causing a transition to state 2, in which Stop is lit but not Go. 45
seconds after entering state 2, the machine emits an RPulse followed by a GPulse,
causing a transition to state 3, in which Go is lit but not Stop. 15 seconds later the
machine ernits a GPulse followed by an RPulse, causing a transition back to state
2, and so on.

142 Jackson

7.3.4 Purposejul description

It is always salutary in software development to ask why a particular description
is worth making, and what particular purpose it serves in the development. In this
tiny problem we can recognise three distinct roles that our system description is
intended to play:

The requirement The requirement is a description that captures the effects our
customer wants the machine to produce in the world. When we talk to the
customer, we treat the description as a requirement. We ignore the actions
that cause the pulses, and focus just on the timing events and the states. "To
begin with," we say, "both lamps should be off; then, for 45 seconds, the
Stop lamp only should be lit; then, for the next 15 seconds, the Go lamp
only should be lit;" and so on. The requirement that emerges is:

forever {
show only Stop for 45 seconds;
show only Go for 15 seconds;

The machine specification The specification describes the behaviour of the ma
chine in terms of the phenomena at the specification interface. It provides
an interface between the problem analyst, who is concerned with the prob
lem world, and the programmer, who is concerned only with the computer.
When we talk to the programmer, we treat the description as a specification
of the machine. We look only at the transitions with the timing events and
the pulses. "First the machine must cause an RPulse," we tell the program
mer, "then, after 45 seconds, an RPulse and a GPulse;" and so on. The Stop
and Go states have no significance to the programmer, because they aren't
vIsible to the machine; at best they are enlightening comments suggesting
why the pulses are to be caused. The specification that emerges is:

}

RPulse;
forever {

wait 45 seconds; RPulse; GPulse;
wait 15 seconds; GPulse; RPulse;

The domain description The domain description bridges the gap between the
requirement and the specification. The customer wants a certain regime of
Stop and Go lamps, but the machine can directly cause only RPulses and
GPulses. The gap is bridged by the properties of the problem domain. Here
that means the properties of the lights unit. When we talk to the lights unit
designer to check our understanding of the domain properties, we focus just
on the pulses and the way they affect the states. "In the unit's initial state
both lamps are off: That's right, isn't it? Then an initial RPulse turns the
Stop lamp on; then an RPulse followed by a GPulse turns the Stop lamp

7. Aspects of system description 143

RPulse
2: StoP/\-' Go

RPulse

Figure 7.4. A partial domain description

off and lights the Go lamp, doesn't it?" and so on. The domain properties
description that emerges1 is shown in Figure 7.4.

7.3.5 Why separate descriptions are needed

Combining the three descriptions into one is tempting, but in a realistic problem it
is very poor practice for several reasons. First, if the description were only slightly
more complex it could be very hard to tease out the projection needed for each of
the three roles.

Second, the adequacy of our development must be shown by an argument re
lating the three separate descriptions. Our goal is to bring about the regime of
Stop and Go lamps that our customer desires. We must show that a machine pro
grammed according to our specification will ensure this regime by virtue of the
properties of the lights unit. That is:

specijication 1\ domain properties =? requirement

In other words: if the machine meets its specification, and the problem world is
as described in the domain properties, then the requirement will be satisfied2 • The
combined description does not allow this argument to be made explicitly.

Third, the single description combines descriptions of what we des ire to
achieve-the optative properties described in the requirement and specification
with adescription of the known and given properties relied on-the indicative
properties described in the domain description. It is always a bad idea to mix
indicative and optative statements in the same description.

Fourth, the combined description is inadequate in an important way. Being
based on adescription of the machine behaviour, it can't accomrnodate a de-

1 In fact, Figure 7.4 asserts much more than can be seen from the System Description given in
Figure 7.3. For example: that it is possible to return to the dark state; that the first lamp turned on
from the initial dark state may be the Go lamp; and that the RPulses affect only the Stop lamp and the
GPulses only the Go lamp. Nothing in Figure 7.3 warrants these assertions.

2 A fuller and more rigorous account of the relationship among the three descriptions is given in
[4].

144 Jackson

RPulse
I+-------t 2: StoPI\--, Go

RPulse

GPulse

RPulse

Figure 7.5. Lights-unit domain properties description

scription of what would happen if the machine were to behave differently-for
example, by reversing the order of GPulse and RPulse in each pair. Figure 7.5
shows what aseparate, full description of the domain properties might be.

Each lamp is toggled by pulses of the associated type: RPulse for Stop and
GPulse for Go. The designer tells us that the unit can not tolerate the illumination
of both lamps at the same time. We show state 4 as the unknown state, meaning
that nothing is known about subsequent behaviour of the unit once it has entered
state 4. Effectively, the unit is broken.

Fifth, the combined description isn't really re-usable. Because the embodied
domain description, in particular, is merged with the requirement and the specifi
cation, it can't easily be re-used in another problem that deals differently with the
same problem domain.

7.4 Describing the World

The three descriptions-requirements, domain properties and machine specific
ation-are all concemed with event and state phenomena of the world in which
the problem is located. But the first two are different from the third. The specifi
cation phenomena, shared with the machine, can properly be regarded as formal.
lust as the machine has been carefully engineered so that there is no doubt
whether a particular keystroke event has or has not occurred, so it has been care
fully engineered to avoid similar doubt about whether an RPulse or a GPulse
event has or has not occurred. The continuous underlying physical phenomena
of magnetic fields and capacitances and voltages have been tamed to conform to
sharply-defined discrete criteria.

But in general the phenomena and properties of the world have not been tamed
in this way, and must be regarded as informal. The formalisation must be de
vised and imposed by the software developer. As W. Scherlis remarked [8] in his
response to Dijkstra's observations [3] cited earlier:

"One of the greatest difficulties in software development is formaliz
ation--capturing in symbolic representation a worldly computational

7. Aspects of system description 145

problem so that the statements obtained by following rules of sym
bolic manipulation are useful statements once translated back into the
language of the world."

This task of formalization, along with appropriate techniques for its successful
performance, is an integral, but regrettably much neglected, aspect of software
development. Two important elements of this task are the use of designations,
and the use and proper understanding offormal definitions.

7.4.1 Designations

Because the world is informal it is very hard to describe precisely. It is therefore
necessary to lay a sound basis for description by saying as precisely as pos si
ble what phenomena are denoted by the formal terms in our requirements and
domain properties descriptions. The appropriate tool is a set of designations. A
designation gives a formal term, such as a predicate, and gives a-necessarily
informal-rule for recognising instances of the phenomenon.

For example, in a genealogical system we may need this designation:

Mother(x, y) ~ x is the mother of y

Probably this is a very poor recognition rule: it leaves us in considerable doubt
about what is induded. Does it encompass adoptive mothers, surrogate moth
ers, stepmothers, foster mothers? Egg donors? Probably we must be more exact.
Perhaps what we need is:

Mother(x, y) ~ x is the human genetic mother of y

Even this more conscientious attempt may be inadequate in a future world in
which genetic engineering has become commonplace.

Adequate precision of the underlying designations is fundamental to the pre
cision and intelligibility of the requirement and domain descriptions that rely on
them. If it proves too hard to write a satisfactory recognition rule for phenomena
of a chosen dass, that chosen dass should be rejected, and firmer ground should
be sought elsewhere.

This harsh stipulation is less obstructive than it may seem at first. The desig
nated terminology is intended for describing a particular part, or domain, of the
problem world for a particular problem. As so often in software development, we
may be tempted to multiply our difficulties a thousandfold by trying to treat the
general case instead of focusing, as practical engineers, on the particular case in
hand. The temptation must be resisted.

For example, in an inventory problem for the Office World Company, whose
business is supplying office fumiture, we may need to designate the entity dass
Chair. Perhaps we write this designation:

Chair(x) ~ x is a single unit of furniture whose primary
use is to provide seating for one person

146 Jackson

Philosophers have often cited 'chair' as an example of the irreducibly uncer
tain meaning of words in naturallanguage. In the general case no designation of
'chair' can be adequate. Is a bar stool achair? A bean bag? Asofa? A park beneh?
A motor car seat? A chaise longue? A shooting stick? These questions are impos
sibly difficult to answer: there are no right answers. But we do not have to answer
them. The OfficeWorld Company has quite a small catalogue. It doesn't supply
bar stools or park benches or bean bags. Our recognition rule is good enough for
the case in hand.

7.4.2 Using definitions

Another factor mitigating the severity of the stipulation that designations must
be precise is that the number of phenomenon classes to be designated usually
turns out to be surprisingly small. Many useful terms do not denote distinctly
observable phenomena at all, but must be defined on the basis of terms that do
and of previously defined terms. For example:

Sibling(a, b) ~f
a =I- b 1\:3 p, q. Mother(p, a) 1\ Mother(p, b)

1\ Father(q, a) 1\ Father(q, b)

The difference between definition and designation is crucial. Adesignation
introduces a fresh class of observations, and thus enlarges the scope of possi
ble assertions about the world. A definition, by contrast, merely introduces more
convenient terminology without increasing the expressive power at our disposal.

In an inventory problem, suppose that we have designated the event classes3

receive and issue:

Receive(e, q, t) ~ e is an event occurring at time t
in which q units of stock are received

Issue(e, q, t) ~ e is an event occurring at time t
in which q units of stock are issued

Then the definition:

ExpectedQuantity(qty, tt) ~
(~ e I ((Receive(e, q, t) V Issue(e, -q, t)) 1\ t < tt) : q) = qty

defines the predicate ExpectedQuantity(qty,tt) to mean that at time tt the number
qty is equal to a certain sumo This sum is the total number of units received in
receive events, minus the total number issued in issue events, taken over all events
e occurring at any time t that is earlier than time tt. Being a definition, it says
nothing at all about the world. By contrast, the designation and assertion:

3For uniformity, it is convenient to designate all formal terms as predicates. For any set of individ
uals, such as a class of events, the formal term in the designation denotes the characteristic predicate
of the set.

7. Aspects of system description 147

InStock(qty, tt) ~ At time tt qty items are in the stock bin
in the warehouse

't:/ qty, tt • InStock(qty, tt) {o}

(~e I ((Receive(e, q, t) V Issue(e, -q, t)) 1\ t < tt) : q) = qty

say that initially InStock(O,tO) and that subsequently stock changes only by
the quantities issued and received. There is no theft, no evaporation and no
spontaneous creation of stock. The definition of ExpectedQuantity expressed
only a choice of terminology; the designation of InStock, combined with the
accompanying assertion, expresses a falsifiable claim about the physical world.

7.4.3 Distinguishing Definition From Description

Many notations commonly used for description can also be used for defini
tion, distinguishing the two uses by certain restrictions and by suitable syntactic
conventions.

For example, it is often convenient to define terms for state components by
giving a finite-state machine. Since mixing definition with description-like mix
ing indicative with optative-is very undesirable, the state-machine description
should be empty qua description4. That is, in defining states it should place no
constraint on the described sequence of events. Suppose, for example, that in some
domain the sequence of events is

< a,b,a,b,a, ... >
and that we wish to define the state terms After-a and After-b. Figure 7.6 shows
the definition: it avoids assuming that the sequence of events is as given above.
After-a is defined to mean the state identified as state 2 in this state machine, and
After-b is defined similarly. Of course, if the meanings are intended to include
the clause " ... and the given sequence of events has been followed so far", then a
different definition is necessary.

7.5 Descriptions and models

An important aspect of description in software development is clarity in the dis
tinction between a description and a model. Unfortunately, the word model is
much overused and much misused. Its possible meanings5 inc1ude:

• An analytical model of a domain: that is, a formal description from which
further properties of the domain can be inferred. For example, a set of dif
ferential equations describing a country's economy, or a labelIed transition
diagram describing the behaviour of a vending machine.

4 A term defined in a non-empty description is undefined whenever the description is false. It then
becomes necessary either to use a three-valued logic or to prove at each of its occurrences that the
term is well-defined.

5This distinction among the three kinds of model is due to Ackoff [1].

148 Jackson

~ 2: ~ 3:
b

Figure 7.6. Defining states in a FSM

• An ieonic model of a domain: that is, a representation that eaptures the
appearanee of the domain. For example, an artist's drawing of a proposed
building .

• An analogie model of a domain: that is, another domain that ean aet as a
surrogate for purposes of providing information. For example, a computer
driven wall display showing the layout of a rail network in the form of a
graph, and the eurrent train traffic on the network in the form of a blob for
eaeh train moving along the ares of the graph.

Mueh diffieulty arises from eonfusion between the first and third of these mean
ings. It is a eommon and neeessary deviee in software development to introduee
an analogie model, in the form of a database or other data strueture, into the so
lution of an information problem or subproblem. Such an analogie model domain
is to be regarded as an elaboration of a eertain dass of loeal variables of the ma
chine. Deseriptions of this model domain are often eonfused with deseriptions of
the domain for whieh it is a surrogate.

7.5.1 A model of a lift

A small hotel has an old and somewhat primitive lift. Now it is to be fitted with
an information panel in the lobby, to show waiting guests where the lift is at any
time and its eurrent direetion of travel, so that they will know how long they ean
expeet to wait until it arrives.

The panel has a square lamp for eaeh floor, to show that the lift is at the floor.
In addition there are two arrow-shaped lamps to indieate the direetion of travel.
The panel display must be driven from a simple interface with the floor sensors of
the lift. A floor sensor is on when the lift is within 6 inches of the rest position at
the floor.

Figure 7.7 is the problem diagram. Here the eustomer manikin is replaeed by
the more impersonal dashed oval, representing the requirement. The requirement
is that the lamp states of the lobby display (the phenomena d) should eorre-

Information
Machine

a: {Sensor(f)}

a

c: {Rising,Falling,At(f)}

Hotel
Lift

Lobby
Display

7. Aspects of system description 149

b: {LampOn(p),LampOff(p)}
d: {Lamp States}

Figure 7.7. Lift position display problem

spond in a certain way to the states ofthe lift (the phenomena c). The arrow head
indicates that the requirement constrains the display, but not the hotel lift itself.

This simple information problem presents a standard cancern of problems of
this class[6]. The information necessary to maintain the required correspondence
is not available to the machine at the specification interface a at the moment when
it is needed. The requirement phenomena include the current lift position and
its current direction of travel; the specification phenomena include only the floor
sensor states. To satisfy the requirement as well as possible, the machine must
store information about the past history of the lift, and must interpret the current
state and events in the light of this history.

The local phenomena of the machine in which this history is stored-perhaps in
the form of program variables, or a data structure or small database---constitute
an analogic model domain. If these local phenomena are not totally trivial it is
desirable to decompose the original problem into two subproblems: one to build
and maintain the model, and one to use the model in producing the lobby display.
This problem decomposition is shown in Figure 7.8.

As the decomposed problem diagram shows clearly, the lift model and the hotel
lift itself are disjoint domains, with no phenomena in common. In designing the
lift model, the developer must devise model state phenomena f to correspond
to the lift domain requirement phenomena c. These model phenomena might be
called MRising and MFalling, corresponding to the lift states Rising and Falling,
and MAt(f), corresponding to At(f).

The modelling subproblem is then to ensure that MRising holds in the model
if and only if the lift is rising, that MAt(f) holds in the model if and only if the
lift is at floor f, and so on. The model constructor operations-the phenomena
e-will be invoked by the modelling machine when sensor state changes occur at
its interface a with the hotel lift domain.

The display subproblem is much simpler: the display machine must ensure that
the Up lamp is lit if and only if MRising holds; the floor lamp f is lit if and only
if MAt(f) holds; and so on.

150 Jackson

a Hotel c
Lift---- , , Modelling , Model- ,

Machine
Lift

Model

Lift
Model

,
...... ,

........ f , Lift ; ,
.... _--_

Display
Machine

.... ------
.... ,''' Display -"',

......... " Model "
Lobby

Display
' d -----

a: {Sensor(f)}
c: {Rising,Falling,At(f)}
e: {LiftModel ConstructorOps}
g: {LiftModel AccessOps}

b: {LampOn(p),LampOff(p)}
d: {Lamp States}
f: {LiftModel States}

Figure 7.8. Lift position display problem decomposition

7.5.2 The modelling relationship

,

The desired relationship between a model domain and the domain it models is, in
principle, simple. There should be a 1-1 correspondence between phenomena of
the two domains and their values. For example, the lift has state phenomena At(f)
for f = O ... 8 and the model has state phenomena MAt(f) for f = O ... 8. 6 For
any f, MAt(f) should hold if and only if At(f) holds.

Because of this relationship it seems clear that a description that is true of one
domain must be equally true of the other, with a suitable change of interpretation.
For example, the description:

"in any trace of values of P(x), 0 :::; x :::; 8 for each element of the trace,
and adjacent values of x differ by at most 1."

is true of the lift domain if we take P(x) to mean At(f), and must be true also of
the model domain if we take P(x) to mean MAt(f).

It therefore seems very attractive and economical to write only one descrip
tion. In a further economy, even the work of writing the two interpretations can
be eliminated by using the same names for phenomena in the lift and the corre
sponding phenomena in the model. Unfortunately, this is usually a false economy.

6Floor 0 is the lobby. In Europe floor 1 is the first above the ground floor; in the US the floors
would be numbered 1 ... 9.

7. Aspects of system description 151

Although almost universally attempted, both by practitioners and by researchers,
it can work weH only for an ideal model in which the desired relationship to the
model domain is known to hold; practical models are almost never ideal.

7.5.3 Practical models

The lift domain phenomenon At(j) means that the lift is eloser to floor f than to
any other floor. However, it is not possible to maintain a precise correspondence
between At(j) and the model phenomenon MAt(f), because the specification state
phenomena Sensor(f) do not convey enough information. The best that can be
done is, perhaps, to specify the modelling machine so that MAt(f) is true if and
only if Sensor(j) is the sensor that is on or was most recently on. So the corre
spondence between At(f) and MAt(f) is very imperfect. When the lift travels from
floor 1 to floor 2, MAt(I) remains true even when the lift is six inches from the
floor 2 horne position and the state Sensor(2) is just about to become true.

The Rising and Falling phenomena are even harder to deal with. Once again,
the modelling machine has access only to the Sensor(j) phenomena, and must
maintain the model phenomena MRising and MFalling from the information they
provide. Initially the lift may be considered to be Rising, because from the Lobby
it can go only upwards; subsequently, when it reaches floor 8 (or floor 0 again) it
must reverse direction. But it mayaiso reverse direction at an intermediate floor,
provided that it makes a service visit there and does not simply pass it without
stopping.

Investigation of the lift domain shows that on a service visit the floor sensor is
on for at least 4.8 seconds, aHowing time for the doors to open and elose. Passing a
floor takes no more than 1 second. The model phenomena MRising and MFalling
will be maintained as foHows:

• Initially: M Rising /\ -,M Falling

• Whenever MAt(n+I) becomes true when MAt(n) was previously true, for
(n = O ... 6): M Rising /\ -,M Falling

• Whenever MAt(8) becomes true whenMAt(7) was previously true: M Falling/\
-,MRising

• Whenever MAt(n-I) becomes true when MAt(n) was previously true for
(n = 2 ... 8): M Falling /\ -,M Rising

• Whenever MAt(O) becomes true when MAt(I) was previously true: M Rising /\
-,MFalling

• Whenever MAt(n) has been true for 2 seconds7 continuously, for (n
1 ... 7): -,M Falling /\ -,M Rising

7 A compromise between tbe limits of 1.0 and 4.8 seconds, affording an early but reasonably
reliable presumption that tbe lift has stopped to service the floor.

152 Jackson

These practical choices represent unavoidable departures from exact correspon
dence between the model and the lift domain. For example, during the first two
seconds of a service visit either MRising or MFalling is true, although neither Ris
ing nor Falling is true. Also, when the lift has reversed direction at an intermediate
floor but has not yet reached another floor, either Rising or Falling is true, but nei
ther MRising nor MFalling is true. Speaking anthropomorphically, we might say
that the modelling machine is waiting to discover whether the next floor arrival
will invite the inference of upwards or downwards travel.

7.5.4 Describing the model and modelled domains

Other factors that may prevent exact correspondence in a practical model inc1ude
errors and delays in the interface between the modelling machine and the mod
elled domain, and the approximation of continuous by discrete phenomena. A
further factor is the need to model the imperfection of the model itself. For exam
pIe, NULL values are often used in relational databases to model the absence of
information: a NULL value in a date-of-birth column indicates only that the date
of birth is unknown. In the presence of such discrepancies it may still be possible
to economise by using the same basic description for both domains and noting the
discrepancies explicitly.

Another factor militating against a single description is that a model domain
itself usually has additional phenomena that correspond to nothing in the mod
elled domain. The source of these phenomena is the underlying implementation
of the model. A relational database, for example, usually has delete operations
to conserve space, indexes to speed access to particular elements of the model,
and ordering of tuples within relational tables to speed select and join operations.
These discrepancies between the model and modelled domains can sometimes be
regarded as no more than the difference between abstract and concrete views of
the model. Introduction of the additional model phenomena is a refinement: the
resulting implementation satisfies the model's abstract specification. This view
applies easily to the introduction of tuple ordering and of indexing. It is less c1ear
that it can apply to record deletion.

The use of only one description for the two domains fails most notably when
the modelled domain has phenomena that do not and can not appear in the model.
For example, the lift domain has the moving and stationary states of the lift car,
and the opening and c10sing of the lift doors during a service visit to a floor. These
phenomena can not appear in the model because there is not enough evidence of
them in the shared phenomena of the specification interface. They are completely
hidden from the modelling machine, and can enter into the model only in a most
attenuated form-the choices based on assumptions about them. But they must
still appear in any careful description of the significant domain properties.

In sum, therefore, it is essential to recognise that a modelled domain and its
model are two distinct subjects for description. Confusion of the two results in
importing distracting irrelevancies and restrictions into the problem domain de
scription. For example, in UML [10] descriptions of a business domain must be

7. Aspects of system description 153

based on irrelevant programming concepts, such as attributes, visibility, inteifaces
and operations, taken from object-oriented languages such as C++ and Smalltalk.
At the same time, UML notations provide no way of describing the syntax of a
lexical problem domain, other than by describing a program to parse it.

This vital distinction between the model and the modelled domain is difficult to
bear in mind if the verb model is used where the verb describe would do as weH
or better. The claim "We are modelling the lift domain" invites the interpretation
"We are describing the lift domain", when often it means in fact "We are not
bothering to describe the lift domain: instead we are describing a domain that
purports to be an analogical model of it."

7.6 Problem decomposition and description structures

Realistic problems must be decomposed into simpler subproblems. Almost al
ways, the subproblems are related by having problem domains in common: that
is, they are not about disjoint parts of the world. The common problem domains
must, in general, be differently viewed and differently described in the different
subproblems. This section gives two small illustrations of this effect of problem
decomposition.

7.6.1 An auditing subproblem

A small sluice, with a rising and falling gate, is used in a simple irrigation system.
A control computer is to be prograrnmed to raise and lower the sluice gate: the
gate is to be open for ten minutes in each hour, and otherwise shut.

The gate is opened and c10sed by rotating vertical screws. The screws are driven
by a smaH motor, which can be controlled by Clockwise, Anticlockwise, On and
Off pulses. There are sensors at the top and bottom of the gate travel; at the top the
gate is fuHy open, at the bottom it is fuHy shut. The connection to the computer
consists of four pulse lines for motor control and two status lines for the gate
sensors.

The requirement phenomena are the gate states Open and Shut. The specifica
tion phenomena are the motor control pulses, and the states of the Top and Bottom
sensors. A mechanism of this kind moves slowly and has little inertia, so a spec
ification of the machine behaviour to satisfy the requirement is simple and easily
developed. EssentiaHy, the gate can be opened by setting the motor to run in the
appropriate sense and stopping it when the Top sensor goes on; it can be c10sed
similarly, stopping the motor when the Bottom sensor goes on.

The domain properties on which the machine must rely inc1ude:

• The behaviour of the motor unit in changing its state in response to
extemaHy caused motor control pulses;

154 Jackson

• the behaviour of the mechanical parts of the sluice that govern how the
gate moves vertically, rising and falling according to whether the motor is
stopped or rotating clockwise or anticlockwise;

• the relationship between the gate's vertical position and its Open and Shut
states; and

• the relationship between the gate's vertical position and the states of the
Top and Bottom sensors.

To develop a specification of the control machine it is necessary to investigate
and describe these domain properties explicitly.

7.6.2 Fruitful contradiction

Being physical devices, the sluice gate and its motor, on whose properties the
control machine is relying, are not so reliable as we might wish. Power cables can
be cut; motor windings burn out; insulation can be worn away or eaten by rodents;
screws rust and corrode; pinions become loose on their shafts; branches and other
debris can become jammed in the gate, preventing it from closing. The behaviour
of the control computer should take account of these possibilities-at least to the
extent of stopping the motor when something has clearly gone wrong.

Possible evidences of failure, detectable at the specification interface, include:

• the Top and Bottom sensors are on simultaneously;

• the motor has been set to raise the gate for more than m seconds but the
Bottom sensor is still on;

• the motor has been set to lower the gate for more than n seconds but the Top
sensor is still on;

• the motor has been set to raise the gate for more than p seconds but the Top
sensor is not yet on;

• the motor has been set to lower the gate for more than q seconds but the
Bottom sensor is not yet on.

Detecting these possible failures should be treated as aseparate subproblern,
of a class that we may call Auditing problems. The machine in this auditing sub
problem runs concurrently with the machine in the basic control problem. The two
subproblern machines are connected: the control machine, on detecting a failure,
causes a signal in response to which the control machine turns the motor off and
keeps it off thereafter.

The particular interest of this problem is that in a certain sense the domain
property description of the auditing subproblern contradicts the description on
which the solution of the control subproblern must rely. The indicative domain
description for the control subproblern asserts that when the motor is set in
such-and-such astate the gate will reach its Open state within p seconds; but

7. Aspects of system description 155

the description for the auditing problem contradicts this assertion by explicitly
showing the possibility of failure.

At a syntactic level, this conflict can be resolved by merging the two descrip
tions to give a single consistent description that accommodates both the correct
and the failing behaviour of the gate mechanism. This merged description might
then be used for the control subproblern, the auditing subproblern being embed
ded in the control subproblern as a collection of local behaviour variants. But this
merging is not a wise strategy. It is better to solve the control subproblern in the
context of explicit appropriate assumptions about the domain properties, leaving
the complications of the possible failures for aseparate concern and aseparate
subproblern.

7.6.3 An identities concern
In the lift display problem it was necessary to pay careful attention to the gap
between the requirement phenomena (the At(f), Rising and Falling states) and
the specification phenomena (the Sensor(f) states) of the lift domain. But we
were not at all careful about another phenomenological concern in the prob
lem. We resorted-naturally enough-to the standard mathematical practice of
indexing multiple phenomeria: we wrote f for the identifier of a floor, and used
that identifier freely in our informal discussion and-by implication-in our
descriptions.

This was too casual. The use of 'abstract indexes' in this way is sometimes
an abstraction too far: it throws out an important baby along with the bathwa
ter. Essentially, it distracts the developer from recognising an important class of
development concern: an Identities concern [6]. The potential importance of this
concern can be seen from an anecdote in Peter Neumann's book about computer
risks [7]:

"A British Midland Boeing 737-400 crashed at Kegworth in the United
Kingdom, killing 47 and injuring 74 seriously. The right engine had
been erroneously shut off in response to smoke and excessive vibra
tion that was in reality due to a fan-blade failure in the left engine.
The screen-based 'glass cockpit' and the procedures for crew training
were questioned. Cross-wiring, which was suspected-but not defini
tively confirmed-was subsequently detected in the warning systems
of 30 similar aircraft."

'Cross-wiring' is the hardware manifestation of an archetypal failure in treating
an identities concern.

7.6.4 Patient monitoring

In the well-known Patient Monitoring problem [9] the machine is required to
monitor temperature and other vital factors of intensive-care patients according to
parameters specified by medical staff. The physical interface between the machine

156 Jackson

and the problem world of the intensive-care patients is essentially restricted to the
shared register values ofthe analog-digital sensor devices attached to the patients.
A significant concern in this problem is therefore to associate these shared regis
ters correctly with the individual patients, and to describe how this association is
realised in the problem domain. The complete chain of associations is this:

• each patient has a name, used by the medical staff in specifying the
parameters of monitoring for the patient;

• each patient is physically attached to one or more analog-digital devices;

• each device is plugged into a port of the machine through which its internal
register is shared by the machine;

• each port of the machine has a unique name.

To perform the monitoring as required, the machine must have access to a data
structure representing these chains of associations. This data structure is a very
specialised restricted identities model of the problem world of patients, devices
and medical staff. It is, of course, quite distinct from any model of the patients that
may be needed for managing the frequency of their monitoring and for detecting
patterns in the values of their vital factors. The two models may be merged in
an eventual joint implementation of the machines of the constituent subproblems,
but they must be kept distinct in the earlier stages of the development process.

There is a further concern. Since neither the population of patients, nor the
set of monitoring devices deemed necessary for each one, is constant, there must
be an editing process in which the identities model data structure is created and
changed. Concurrent access to this data structure by the monitoring and modifying
processes therefore raises concerns of mutual exclusion and process scheduling.
An excessively abstract view of the problem context will miss the existence of
the data structure, and with it these important concerns and their impact on the
Patient Monitoring system.

7.7 The scope of software development

The description concerns raised in this paper are primarily concerns about de
scribing the problem world rather than designing the software to be executed by
the machine. It's natural to ask again whether these description concerns are re
ally the business of software developers at all. Perhaps the specification firewall
does, after all, divide the business of software development from the business of
the application domain expert.

Barry Boehm paints a vivid picture of software developers anxious to remain
behind the firewall and not to encroach on application domain territory [2]:

"I observed the social consequences of this approach in sev
eral aerospace system-architecture-definition meetings ("Integrating

7. Aspects of system description 157

Software Engineering and System Engineering", Journal of IN
COSE, pages 61-67, January 1994). While the hardware and systems
engineers sat around the table discussing their previous system archi
tectures, the software engineers sat on the side, waiting for someone
to give them a precise specification they could turn into code."

It's c1early true that software developers can not and should not try to be experts
in all application domains. For example, in a problem to control road traffic at a
very complex intersection it must be the traffic engineer's responsibility to de
termine and analyse the patterns of incorning traffic, to design the traffic flows
through the intersection, and to balance the conflicting needs of the different
pedestrian and vehic1e users. Software developers are not traffic engineers. But
this is far from the whole answer.

There are several reasons why a large part of our responsibility must lie outside
the computer, beyond the specification firewall. Here we will mention only two of
them. First, the specification firewall usually cuts the development project along
a line that makes the programrning task unintelligibly arbitrary when viewed
purely from the machine side: effectively, pure specifications are meaningless.
And second, having created the technology that spawns huge discrete complexity
in the problem domain, we have a moral obligation to contribute to mastering that
complexity.

7.7.1 Meaningless specijications

In the problem of controlling traffic at a complex road intersection the pure speci
fication is an 1/0 relation. Its domain is the set of possible traces of c10ck ticks and
input signals at the computer's ports; its range is a set of corresponding traces of
output signals. These trace sets may be characterised more or less elegantly, but,
however described, they are strictly confined to these signals. The specification
alphabet will be something like this-

{clocktick, outsignaLXlFF, ... , insignaLX207, ... }

- where the event c1asses in the alphabet are events occurring in the hardware 1/0
interface of the computer. Nothing is said about lights or push buttons, about the
layout of the intersection, or about vehic1es and pedestrians. These are all private
phenomena of the problem domain, hidden from the machine because they are
not shared at the specification interface.

It's c1ear that such a specification is unintelligible. A small improvement can
be achieved by narning the signals at the specification interface to indicate the
corresponding lights and buttons-

{clocktick, outsignaLred27, ... , insignaL.hutton8, ... }

-but the improvement is very small. Further improvement would need additional
descriptions, showing the layout of the intersection and the positions of the lights.
Then the domain properties of vehic1es and pedestrians, existing and desired

158 Jackson

traffiG flows, and everything else necessary to justify and clarify the otherwise
impenetrable machine behaviour specification.

In short, the machine behaviour specification makes sense only in the larger
context of the problem; and the problem is not located at the specification in
terface. If we restrict our work to developing software to meet given formal
specifications, most of what we do will make no sense to uso We will be deprived
of the intuitive understanding of the customer's problem that is essential both as a
stimulus to creativity in program design and as a sanity check on the pro gram we
write.

7.7.2 Discrete complexity

Computers frequently introduce an unprecedented behavioural complexity into
problem worlds with which they interact. This behavioural complexity arises nat
urally from the complexity of the software itself, and from its interplay with the
causal, human and lexical properties of the problem domains.

In older systems behavioural complexity was kept under control by three fac
tors. First, the software itself-whether in the form of a computer program or an
administrators' procedure manual-was usually smaller and simpler than today's
software by more than one order of magnitude. Second, there was neither the
possibility nor the ambition of integrating distinct systems, and so bringing about
an exponential increase in their combined behavioural complexity. Third, almost
every system, whether a 'data-processing' or a 'control' system, relied explicitly
on human cooperation and intervention. When inconvenient and absurd results
emerged, some human operator had the opportunity, the skill and the authority to
intervene and overrule the computer.

In many application areas we have gradually lost all of these safeguards.
The ambitions of software developers increase to keep pace with the available
resources of computational power and space. Systems are becoming more in
tegrated, or, at least, more interdependent. And it is increasingly common to
find levels of automation-as in flight control systems-that preclude human
intervention to correct errors in software design or specification.

A large part of the responsibility for dealing with the resulting increased be
havioural complexity must lie with computer scientists and software developers,
if only because no other discipline has tools to master it. We can not discharge
this responsibility by mastering complexity only in software: we must playa ma
jor role in mastering the resulting complexity in the problem world outside the
computer.

7.8 Acknowledgements

Many of the ideas presented here have been the subject of joint work over aperiod
of several years with Pamela Zave. They have also been discussed at length on

7. Aspects of system description 159

many occasions with Daniel Jackson. This paper has been much improved by his
comments.

References

[1] R LAckoff. Scientific M ethod: Optimizing Applied Research Decisions; Wiley, 1962.

[2] Barry W Boehm. Unifying Software Engineering and Systems Engineering; IEEE
Computer Volume 33 Number 3, pages 114-116, March 2000.

[3] Edsger W Dijkstra. On the Cruelty of Really Teaching Computer Science; Commu
nications of the ACM Volume 32 Number 12, page 1414, December 1989.

[4] Carl A Gunter, Eisa L Gunter, Michael Jackson, and Pamela Zave. A Reference
Model for Requirements and Specifications; Proceedings of ICRE 2000, Chicago
Ill, USA; reprinted in IEEE Software Volume 17 Number 3, pages 37-43, May/June
2000.

[5] David Harel. Statecharts: A visual formalism for complex systems; Science of
Computer Programming 8, pages 231-274,1987.

[6] Michael Jackson. Problem Frames: Analysing and Structuring Software Development
Problems; Addison-Wesley, 2000.

[7] Peter G Neumann. Computer-Related Risks; Addison-Wesley, 1995, pages 44-45.

[8] W L Scherlis. responding to E W Dijkstra "On the Cruelty of Really Teaching Com
puting Science"; Communications of the ACM Volume 32 Number 12, page 1407,
December 1989.

[9] W P Stevens, G J Myers, and L L Constantine; Structured Design. ffiM Systems
Journal Volume 13 Number2, pages 115-139,1974. Reprinted in Tutorial on Sofware
Design Techniques; Peter Freeman and Anthony I Wasserman eds, pages 328-352,
IEEE Computer Society Press, 4th edition 1983.

[10] James Rumbaugh, Ivar Jacobson and Grady Booch. The Unified Modeling Language
Reference Manual; Addison-Wesley Longman 1999.

[11] Hermann Weyl. The Mathematical Way of Thinking; address given at the Bicenten
nial Conference at the University of Pennsylvania, 1940.

8

Modelling architectures for dynamic
systems

Peter Henderson

Abstract

A dynamic system is one that changes its configuration as it runs. It is a
system into which we can drop new components that then cooperate with the
existing ones. We are concemed with formally defining architectures for such
systems and with realistically validating designs for applications that run on
those architectures. We describe a generic architecture based on the familiar
registry services of CORBA, DCOM and Jini. We illustrate this architecture
by formally describing a simple point-of-sale system buHt according to this
architecture. We then look at the sorts of global properties that a designer of
applications would wish a robust system to have and discuss variations on
the architecture which make validation of applications more practical.

8.1 Introduction

The advent of ubiquitous computing, where everything is connected to every
thing else, has created a new challenge for Software Engineering and for Software
Reuse in particular. It is now increasingly important that software components are
designed for a life of constant change and frequent reuse.

With everything connected to everything else, systems are necessarily subject
to dynarnic change. You can't stop the whole world just to plug in a new com
ponent. Components need to be as nearly plug-and-play as possible. Flexible
architectures such as Jini [35], are making the evolution of dynarnic systems
possible. The question is, how do you design for such architectures and how
do you design components which will survive a lifetime of use and reuse even
though their environment and the expectations which their users have of them,
are constantly changing?

A. McIver et al. (eds.), Programming Methodology
© Springer Science+Business Media New York 2003

162 Henderson

8.1.1 Dynamic systems

In [16] dynamic systems are described as being built from components and having
the property that a new component could be added to a running system at any
time and the system would embrace its contribution without having to stop. It is
the requirement that the system can evolve by accretion, without ever having to
stop, that leads us to call the system"dynamic". The consequences for component
reuse are dramatic. Components will be reused in ways that were not imagined by
their original designers. In [16] we addressed the issue of who would be to blame
if the consequence of adding a new component was that something broke.

In this paper, we formally describe some of the issues which arise for the de
veloper of dynamic systems, not least of all the evolution of functionality in an
incremental way. We do this by introducing an elementary architecture modelling
language, ARC [17], which allows for experimentation with alternative architec
tural designs and for the validation of these designs using state-space search. In
particular, ARC models can be compiled to run on the SPIN model-checker [21].
The ARC modelling paradigm, it is conjectured, is simple enough to allow many
experiments to be performed quickly with modest cost and yet powerful enough
to describe a range of practical architectures and generate valuable insight into
their properties.

8.1.2 The context of constant change

We are concerned with dynamic systems in the context of constant change, where
the system supports a business process which is constantly needing to be changed
to match the rapidly moving marketplace. We wish to explore architectures which
will allow the incremental enhancement of the system without having to be
stopped for upgrade. Consequently we are concerned with issues of reconfigura
bility, where new components can be added to the system which then embraces
the new services which they offer. We are less concerned with the removal of old
components in that we anticipate architectures which will allow such components
to gradually become obsolete and eventually retire.

However we are concerned with issues of survivaI. We will articulate scenarios
in which the system can survive despite the fact that some components faiI. One
way of looking at this issue is to characterise the interaction between a system
and its environment as a two-person game [1]. The moves made by the system
are to m3?Cirnise the number of components which can operate. The moves of
the environment are to damage key components with the intention of preventing
as many components as possible from operating successfully. We show how our
modelling paradigm lends itself to this metaphor.

8. Modelling architectures for dynarnic systems 163

3: look up price

2:acquire 1 :register D
~~I~

Till NS PLU

Figure 8.1. A UML Collaboration Diagram

8.2 Models of dynamic systems

In order to be able to make precise statements about alternative architectural pro
posals we need to use a language which has a precise meaning and which operates
at a level of abstraction appropriate to the kinds of reasoning which we wish
to perform. There is a choice of paradigms. Many architecture modelling lan
guages base themselves on a message-passing, process-oriented view. Examples
are Wright [2, 3, 32], Darwin [27, 28] and more recently FSPILTSA [29]. Oth
ers, such as Rapide [24, 25, 26] take an event-based approach where events are
specified by condition-action rules. This is the approach we will take in ARe. Ar
chitecture languages concern themselves with structure and behaviour [36]. We
are, of course, concerned with both here. But, in adynamie system, structure is
dynamic and so structure merges into behaviour.

8.2.1 The ARe notation

Our conjecture is that our modelling language is appropriate to the design of
reusable components for dynamic systems, because it operates at a level-of
abstraction that allows reasonably large systems to be modelled, but still allows a
useful degree of validation of the models in a cost-effective manner.

The modelling paradigm is influenced by the collaboration diagrams of UML
[9]. These diagrams are a variety of Object Interaction Diagram, where the be
haviour of a (scenario) from a system is depicted. In collaboration diagrams (see
Figure 8.1), objects (rather than classes) are shown along with the messages which
pass between them. The objects are usually boxes and the messages are arrows.
The sequencing is shown by numbering the messages. The reader can then follow
a scenario by reading the messages in order. Designers use such a diagram to first
convince themselves, then others, that they have a valid behaviour.

Figure 8.1 shows an example of a UML collaboration diagram and also serves
to introduce the example which we will use throughout this paper both to in
troduce ARe and to consider alternative architectures. Figure 8.1 shows an EPOS
(Electronic Point-of-Sale) system.1t shows three objects: Till is the (hardware and

164 Henderson

Register

supplies

knows

TiII1

Aequire

supplies

knows

NS1

requires

Figure 8.2. An ARe Diagram

Priee Look Up

supplies

PLU1

software) component where customers' purchases are scanned and paid for; NS is
the Name Server which (in this dient-server architecture) acts as the registry for
objects offering and requiring services; and H.U is the Price Look Up component
which offers the service of supplying prices for purchased items.

The scenario depicted in the UML diagram of Figure 8.1 shows a sequence of
three operations: first the H.U invokes a register operation on NS to register its
availability as a supplier of the PriceLookUp service; then Till acquires from NS
the name (H.U) of the supplier of this service; finally the Till invokes a look-up
price operation on the H.U.

Although inspired by the collaboration diagrams of UML, our paradigm uses a
slightly higher level of abstraction. Rather than show messages, we show relation
ships or associations, between objects. The implication is that, if an appropriate
relationship exists between two objects, one may have access to the services of
the other. We will illustrate this in detail in what follows. The behavioural aspect
of the system that we will then be able to illustrate is the configuration and recon
figuration of those relationships as, in a dynamic system, components first join
and then acquire relationships with other components which they intend to use.

In ARC we use the terms component and object interchangeably. We think of
objects or components as having state, behaviour and autonomy. That is, they are
active, as if they were servers or dients.

Figure 8.2 shows the state of a system in ARC diagrammatic form. There are six
components (Tilll, H.Ul, NSl, Register, Acquire and PriceLookUp) and three re
lationships (knows, supplies and requires). The diagram depicts the state in which,
among other things, Tilll requires PriceLookUp, H.Ul supplies PriceLookUp and
while Tilll does not yet know of H.Ul, it does know NSI which in turn knows
H.Ul. NSI is, of course, the Name Server in this distributed system. Tilll will
ask NSI for the name of a component which supplies PriceLookUp, and as a con-

8. Modelling architectures for dynamic systems 165

O knows 0 . '0 supplies ,

knows
Galler NS Register Galler NS Register

Figure 8.3. The Register Action

sequence the configuration will change dynamically to add the relationship that
Tilll knows]LUl.

In practice, the ARC diagrams become too cluttered to express realistic sce
narios, so we use them only to illustrate partial states. They come into their own
when a group of engineers are designing a new solution on a whiteboard, be
cause changes to the solution are quickly understood by all the participants. But
for formal presentation we use a textual form to capture the fuH meaning of any
situation. That is what we shall use here.

The ARC textual notation is based on logic, and in particular on the use of
logic in Prolog strongly influenced by conceptual modelling [4]. A similar use of
notation has recently been adopted in AHoy [22].

The state depicted in Figure 8.1 would be expressed by the conjunction

knows(Tilll, NSl)&knows(NSl,]LUl)&supplies(NSl, Register) &
supplies(NSl, Acquire)&supplies(]LUl, PriceLookUp)&
requires(Tilll, PriceLookUp)

This is how we describe astate, as a conjunction of (usually) binary relations.
Next we describe Actions which will enable us to move from state to state. We
use Condition-Action rules. Figure 8.3 shows a diagrammatic form of a rule, with
the condition to be met depicted in the left-hand box and the state to be moved
to depicted in the right hand box. What the Action in Figure 8.3 depicts is the act
of registering with a Name Server NS. The Caller knows NS initially, and in the
eventual state NS knows the Caller.

Putting this Action into textual form, we have

register(Caller, NS) =
knows(Caller, NS)&supplies(NS, Register)
~ +knows(NS, Caller)

Thus we define actions, which we give names to, which have a side-effect of
adding and deleting relationships. Actions have parameters. The addition and
deletion of relationships is denoted by + and - signs just in front of the rela
tionship name. An example of relationship-deletion would be the reverse of the
Register operation, shown in Figure 8.4.

166 Henderson

D knows D D • supplies • . .

knows
Caller NS Deregister Caller NS Deregister

Figure 8.4. The deRegister Action

deregister(Caller, NS) =

knows(Caller, NS)&knows(NS, Caller)&supplies(NS, Deregister)
-t -knows(NS, Caller)

A more complex Action is shown in Figure 8.5. This is the Acquire action that
also involves a Name Server. It is the way that components obtain knowledge of
others that supply services which they require. The Action depicted in Figure 8.3
has the meaning

acquire(Caller, NS, Service) = exists Object.
knows(Caller, NS)&knows(NS, Object)&supplies(NS,Acquire)&
supplies(Object, Service)&requires(Caller, Service)
-t +knows(Caller, Object)

You can see how this would match astate in which, for example

knows(Tilll, NSl)&knows(NSl, FLUl)

and NSl, Tilll and PLUI are as previously described. So if this action is per
formed on that state, we would move to astate in which Tilll knows PLUl, an
obviously desirable state of affairs.

This is mostly all there is to ARC. In the formula for acquire, the compo
nent Object has a particular status. It is not a parameter of the operation. It is
a local variable, which can match any component that satisfies the relational
structure in which it is involved. In logical terms, it is existentially quantified
with scope the condition and action parts of the rule. In addition to the logical
structures which we have exhibited here, we allow explicit negation, disjunc
tion, implication and universal quantification. Negation could have been used
in the formula for acquire, for example, to strengthen the condition in such a
way as to ensure that the Caller did not acquire something which supplied a ser
vice which was already supplied by some component which it already knew (add
-,(knows(Caller, Objectl)&supplies(Objectl, Service)) to the condition).

8.2.2 Validation ofmodels

The models we have made are particular forms of finite state machines, with
the states represented by a particular edge-coloured graph, where the nodes are
Components, the edges are Relationships and the colours are the actual Relations.

8. Modelling architectures for dynarnic systems 167

requires requires

Caller NS Acquire Caller NS Acquire

Figure 8.5. The Acquire Action

Transitions between states are accomplished by Actions, which add and remove
edges from the graph.

Consequently, validation of the models can be accomplished by various finite
state-machine checking capabilities. In particular, model checking can be used
[6,13,21,22, 29].1t is also straightforward to build animations ofthe models, and
this is an effective way for a group of engineers to persuade themselves that their
design is complete and consistent, and to look at the consequences, for example,
of component failure.

As an example of validating a model, consider the example we have used
throughout this introduction to ARC. In the simplest scenario, we might begin
in the state

knows(Tilll,NS1)&knows(PLU1,NS1)&supplies(NS1,Acquire)&
supplies(NSl, Register)&requires(Tilll, PriceLookUp)&
supplies(PLU1, PriceLookUp)

Now the reader will realise that the sequence of Actions

register(PLU1, NSl); acquire(Tilll, NSl, PriceLookUp)

will move us to a situation where, in addition to the above state, we also have
the following relationships

knows(NSl, PLUl)&knows(Tilll, PLUl)

Figure 8.6 shows the ARC validation tool which supports various types of state
space search. The model developed in this section has been presented to the tool
which displays three panels each containing a list. The user chooses to instanti
ate a small number of objects of each type, in this case one Name Server (NSl),
two Tills (Tilll and Till2) and two PLUs (PLUI and PLU2). The list of Actions
displays (in alphabetical order) just those which are effective in that their condi
tion part evaluates to true and their action part will actually change the state. The
State list comprises terms in the conjunction which describes part of the (graph
representing the) current state in which we have expressed an interest. Selecting

168 Henderson

ARe (ver ion 1.--l): C:\ Progrdlll File~ \ End(t iorl \€po\l.cl(l RIiiEi

newPlU(PLU2)
n Tin(Till2)

Stole
knows(NS1. PLU1)
knows(PlUI. NS1)
knows(T,Ul . NS1)
knows(T,1I1 . PLUI)

ocqulle(T,Ul. NSl. PllceLookUp. PLU1)

Path

newNS(NS1)
newPlU(PlUl)
leglSter(PlU I. NS1)
n TiIl(TiIII)
ocqUlle(Till1 . NS 1. PllceLookUp.

Figure 8.6. The ARe evaluation tool

an action from the Action list applies it to the current state and hence progresses
to the next state. The actions which have been invoked so far are shown (this time
in sequential order) in the Path list. Various methods of searching the state space
are provided.

ARC models can also be translated into Promela [21] in a very straightforward
way and executed on the SPIN model-checker. Every relationship of the form
rel(objl , obj2) (that is, every edge potentially in the graph representing the state)
is represented as a Promela (bit) variable. Adding the relationship to the state
corresponds to setting this variable to true, removing the relationship to setting
it to false. Experiments have shown that ARC and SPIN generate the same state
machines. Translating to SPIN has the advantage that we can make use of SPIN's
mature model-checking capabilities, particularly its performance and its ability to
check temporal properties expessed in LTL.

8.3 Architectures for reuse

The dient-server architecture which we have used to illustrate our modelling lan
guage is an example of a flexible architecture designed for reuse of (Services
supplied by) Servers. We have shown that it is able to support the elementary kind
of reconfiguration required by the initial marriage of dients to servers. And we
can show that it is tolerant of some types of failure and incremental change.

8.3.1 Survival

Consider the following kind of attack on the dient-server architecture

break(Object) =
all Service .supplies(Object, Service) -->

-supplies(Object, Service)

8. Modelling architectures for dynamic systems 169

Clearly, if we execute break(PLUl) then this can be fixed by the system
performing acquire(Tilll, NSl, PriceLookUp) again, which will locate PLU2,
assuming it has registered with NSl.

Breaking NSI with break(NSl) is a little more serious, but not immediately.
The system continues to function.1t runs into trouble after break(PLUl), for now
Tilll cannot find PLU2. Unless of course Tilll had had the foresight to prepare for
this eventuality by acquiring PLU2 even though, having PLUl, it didn't strictly
need it. But of course, eventua11y the loss of NSI is more serious.

The semantics of creation of new objects gives a te11ing insight

newPLU(PLU) =

true -+ +knows(PLU,NSl); + supplies(PLU,PriceLookUp)

The other object creating definitions are similar. In this system, every new ob
ject comes into existence knowing the name of the same single registry NSl. When
NSI dies, the system can only deteriorate.

But even here, there is a solution. It has to do with where the initiative for
performing actions is assigned. In the model, we have purposely not assigned the
actions to the objects. But we should, because we want objects to be autonomous
and active. The reason we haven't done this in the model is that we don't want to
decide early either who has the initiative or what their goal iso But suppose that a11
objects know how to invoke acquire on objects which supply that service and that
their objective (goal) is to acquire as many instances of the objects which supply
services which they may be able to use. Then, if NS2 is created and registers with
NSl, a11 the objects which know NSI can now acquire NS2 and thus increase their
chances of survival.

Note that forma11y our architecture requires one of two changes. Either we
weaken the condition on acquire to omit requires(Caller, Service) so that ob
jects can acquire anything, whether they need it or not. Or, we strengthen the
requirements of a11 objects to inc1ude +requires(Object, Acquire).

8.3.2 Incremental change

This leads to another consideration of how systems evolve, rather than just sur
vive. Suppose that we plan to upgrade our EPOS system with a new service.
For the sake of argument let us assume it is a Loyalty scheme whereby the sys
tem identifies the customer at the point-of-sale and offers bespoke services (such
as targeted coupons). We will run through one scenario which illustrates this
happening.

First we have a new Loyalty Server,

newLS(LS) =
true -+ +knows(LS, NSl); +supplies(LS,Loyalty)

Then we have a new Till

170 Henderson

\ knows ,'/
PLU1 :' NS1

\

localKn ows loca IKnows

TX'?
glob,'Kno~ \\~_

TX2

Figure 8.7. Separation of Levels

newLSTill(LSTill) =
true ---+ +knows(LSTill,NSl);
+requires(LSTill, PriceLookUp); + requires(LSTill, Loyalty)

The interesting question is, if we create newLSTill(Tilll) say, does it inherit the
existing configuration of Tililo The formal model says it does. If that is not what
we intended, then we need a tighter description.

Suppose we define

exists(Object) =
exists relationship.(relationship(Object, Something)or
relationship(Something, Object))

then we can strengthen the precondition on newLSTill to be -,exists(LSTill).
Ifhowever, what we require is to genuinely model the fact that the old Tilll and

the new Tilll actually share something other than a name, for example that they
share the same hardware, then we need to separate the objects which represent the
Till application from those that represent the Till hardware. This can be done, but
we will not go into it here.

Gf course, in all practical cases we must realise that systems are implemented
at different levels and we will need to model components at different levels of
abstraction. Figure 8.7 shows how this is done. In a high level model, the relation
ship knows will be stored explicitly. In a refinement of that model, the relationship
knows will be derived from other relationships (stored or derived). Figure 8.7
shows how the PLUI and the NSl, in separate environments (processes, name
spaces, machines etc) come to know each other by a conjunction of relationships,
set up presumably by more primitive actions than acquire.

8. Modelling architectures for dynamic systems 171

knows(A, B) =
locaIKnows(A, 1Xl)&locaIKnows(B, 1X2)&
globaIKnows(1Xl,1X2)

8.3.3 Loosely-coupled components

The architectures we are trying to describe to support reuse in the context of con
stant change, with its consequent need for dynamic reconfiguration, are leading
us towards increasingly loosely-coupled components.

The architecture which we have used as our example, the client-server architec
ture, has some ofthis looseness of coupling. Dynamic binding is achieved through
the use of registry services such as the Name Server which we have used.

As an example of something more loosely coupled consider the following ar
chitecture which is a development of the client-server. We don't have specialised
Name Servers. Rather, every object is a Name Server. This is achieved by ensuring
that every object supplies both Register and Acquire. Now, on creation, every ob
ject must know the name of some other object, but that doesn't have to be always
the same object.

Given the initiative to seek out as many new objects as it can, a new object
can increase substantially its chances of being able to survive and continue to
function, notwithstanding attacks from elsewhere.

8.3.4 It's all agame

We can characterise the fight for survival of a system, or perhaps more accurately
the components within the system as a 2-person game. Imagine that the two play
ers are the System itself and the Environment. The System can make a move
comprising a sequence of actions, thus moving to a desired state, whereupon it
yields. The Environment can then make a move which we presume will break
something. The Environment wins if the System gets into a position from which
it can not recover to a position which it is required to achieve.

Restricting the Environment to a single break action is a modelling choice,
but it does allow us now to specify an interesting property of a System state. The
property is an integer which counts the number of moves the System is away from
losing.

Consider Figure 8.8. This shows a common situation in the game of survival.
Each node in the diagram represents astate of the system and the integer in the
circle is the number of moves the System is away from disaster. The game starts
at node A. If the System is astute enough always to move to C, whenever it is at
A, then the System survives. If it ever moves to D, then there is the chance that
the Environment will win by moving to B.

You can see how this metaphor reasonably captures the notation of survival for
a dynamic system. We hope to show that it also reasonably captures the notion
of incremental change and improvement as the System moves further away from
zero. We expect that this will require a considerably more complex numbering

172 Henderson

D

A

o
B

Figure 8.8. Positions in agame of Survival

scheme. We are investigating whether or not we can develop state models based
on the game representation schemes devised by Conway [7].

8.4 Conc1usions

We have concemed ourselves with the formalisation of dynamic systems, which
we have characterised as systems of components that need to reconfigure them
selves in order to respond to changes in the requirements upon them. We have
shown how systems based on registry services are basically appropriate to this
problem and have suggested some refinements to this architecture, specifically
generalising the reasons why any component might store information about an
other. Another extension is to make every component (at a certain level) able to
provide the capabilities of a registry.

We have introduced an architecture modelling language, ARC, which adopts
the paradigm of modelling systems as objects and relations. This leads to an ele
mentary behavioural description language which we have shown to be powerful
enough to describe the systems which we wished to discuss. Validating the prop
erties which we have proposed for solutions is possible using state-space search.
We have a tool for doing this which we described briefly. More details, and the
tool itself, are available on the web [17]

Further work on architecture modelling is ongoing. In particular we are build
ing models of MQM [8], of Jini [35] and of the Ambients [5] paradigm as weIl
as showing whether or not ARC can model most of the things that other archi
tectural modelling languages can. Of course, theoretically it is possible to show
that ARC can represent anything but we are more concemed with the practical
use of the paradigm by software architects and software engineers in practice in
real industrial scale tasks. We are confident that this objective will be achieved.

8. Modelling architectures for dynamic systems 173

References

[1] Abramsky, S and G McCusker. Game Semanties, see http://dcs.ed.ac.ukJabramsky.

[2] R. J. Allen and D. Gar1an, A Formal Basis For Architectural Connection, ACM
transactions on Software Engineering and Methodology, Ju1y 97.

[3] R. J. Allen, Remi Douence, and David Gar1an, Specifying Dynamism in Software
Architectures Workshop of Foundations of Component Based Systems, Zurich, 1997,
see http://www.cs.iastate.eduJ 1eavenslFoCBS/index.html

[4] M. Boman, J .A . Bubenko, P. Johannesson, and B Wang1er, Conceptual Modelling,
Prentice Hall, 1997.

[5] Luca Cardelli, Abstractions for Mobile Computation. Microsoft Research Technical
Report MSR-TR-98-34 avai1ab1e at research.microsoft.com.

[6] E. M. Clarke et al. Model Checking and Abstraction, ACM Transactions on
Programming Languages and Systems, Sept. 94.

[7] J. Conway. On Numbers and Games, Academic Press, 1976.

[8] A. Dickman. Designing Applications with MSMQ, Addison Wes1ey, 1998.

[9] M. Fow1er. UML Distilled - Applying the standard Object Modelling language,
Addison Wes1ey, 1997.

[10] David Gar1an et al. Architectura1 Mismatch, or, why it's hard to bui1d systems out of
existing parts. ICSE, 179-185, 1995.

[11] A. Gravell and P. Henderson. Executing formal specifications need not be harmfu1,
Software Engineering Journal, vol. 11, num 2., IEE, 1996.

[12] David N. Gray et al. Modem Languages and Microsoft's Component Object Model.
Communications ofthe ACM, Vo141, No 5, 55-65,1998.

[13] O. Grumberg and D. Long. Model Checking and Modular Verification, ACM
Transactions on Programming Languages and Systems, 843-871, May 1994.

[14] M. Heimdah1 and N. Leveson. Comp1eteness and Consistency in hierarchical state
based requirements, IEEE Transactions on Software Enginerring, 22(6):363-377,
1996.

[15] P. Henderson and G. D. Pratten. POSD - A Notation for Presenting Comp1ex Systems
of Processes, Proceedings of the First IEEE International Conference on Engineering
ofComplex Systems, IEEE Computer Society Press, 1995.

[16] Peter Henderson. Laws for Dynamic Systems, International Conference on Software
Re-Use (ICSR 98), Victoria, Canada, June 1998, IEEE Computer Society Press.

[17] Peter Henderson. ARC: A language and a tool for system level architecture
modelling, Ju1y 1999, see http://www.ecs.soton.ac.uk/ph/arc.htm .

[18] Peter Henderson and Bob Wa1ters. System Design Validation using Formal Mod
els, Proceedings 10th IEEE Conference on Rapid System Prototyping, RSP'99, IEEE
Computer Society Press, 1999.

[19] Peter Henderson and Bob Walters. Component Based systems as an aid to Design
Validation, Proceedings 14th IEEE Conference on Automated Software Engineering,
ASE'99, IEEE Computer Society Press, 1999.

174 Henderson

[20] C. A. R. Hoare. How did Software get to be so reliable without proof? Keynote ad
dress at the 18th International Conference on Software Engineering. IEEE Computer
Society Press, 1996. See also
http://www.comlab.ox.ac.uk/oucl/users/tony.hoare/publicationS.html .

[21] G. J. Holtzmann. The Model Checker SPIN, IEEE Transactions on Software
Engineering, Vo123, No 5, 279-295, 1997.

[22] D. Jackson. Alloy: A lightweight Object Modelling Notation, available at
http://sdg.lcs.mit.edu/dnj/abstracts.html, July 1999.

[23] R. Kurki-Suoni. Component and Interface Refinement in Closed-System Specifica
tions, Proceedings ofWorld Congress on Fomal Methods, Toulouse, September 1999,
LNCS 1709, 134-154.

[24] D. C. Luckham et al. Specification and Analysis of System Architecture using
Rapide, IEEE Transactions on Software Engineering, 21(4):336-355, April 1995.

[25] D. C. Luckham and J. Vera. An event-based architecture definition language, IEEE
Transactions on Software Engineering, 21(9):717-734, September 1995.

[26] D. C. Luckham. Rapide: A language and toolset for simulation of distributed systems
by partial orderings of events, http://pavg.stanford.edu .

[27] J. Magee and 1. Kramer. Dynamic Structure in Software Architecture, Proceeed
ings of the ACM Conference on Foundations of Software Engineering, Software
Engineering Notes, 21(6):3-14, IEEE Computer Society Press, 1996.

[28] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying Distributed Software
Architectures, Proceedings of 5th European Software Engineering Conference (ESEC
95), Sitges, Spain, LNCS 989, 137-154, September 1995.

[29] J. Magee and J. Kramer. Concurrency: State Models and JavaPrograms, Wiley, 1999.

[30] Object Management Group. Common Object Request Broker: Architecture Specifi
cation, http://www.omg.com .

[31] M. Shaw et al. Abstractions for Software Architecture and Tools to Support Them,
IEEE Transactions on Software Engineering, 21(4) 314-335, April 1995.

[32] M. Shaw and D. Garlan. Software Architecture - Perspectives on an emerging
discipline. Prentice Hall, 1996.

[33] K. Sullivan J. C. Knight. Experience Assessing an Architectural Approach to Large
Scale Reuse, Proceedings of ICSE-I8, 1996 IEEE Computer Society Press.

[34] K. Sullivan,1. Socha, and M. Marchukov. Using Formal Methods to Reason about
Architectural Standards, 19th International Conference on Software Engineering,
Boston, IEEE Computer Press, 1997.

[35] Sun Microsystems. Jini Software Simplifies Network Computing, available at
www.sun.comljini .

[36] D. Wile. AML: an Architecture Meta-Language, Proceedings ASE 1999, IEEE
Computer Society Press, pp 183-190.

9

"What is a method?" - an essay on
some aspects of domain engineering

Dines Bj0rner

Abstract

We discuss a concept of method in terms of its postulated principles,
techniques and tools for the realm of software engineering. Software en
gineering is here seen as a confluence of domain engineering, requirements
engineering and software design. Our scope is the concept of domains and
domain engineering, and, our span is the concept of domain facets. We shall
briefly contrast these with domain attributes such as for example put forward
by Michael Jackson [1]. For the domain facet area of software development
we then identify, exemplify and investigate, the latter rather briefly, a number
of domain facet development principles and techniques. The main contribu
tions of this essay are believed to be the identification of the domain facet
concept, and the collection (including identification), classification, part in
vestigation, and "fitting into a larger whole", of domain facet principles and
techniques, as weH as the thereby substantiated claim that these principles
and techniques help characterise methods.

The essay has technical examples, but they are merely sketches. Had
they been more substantial, the essay would not have been an essay. More
substantial examples are given elsewhere'

9.1 Introduction

9.1.1 Domains, Requirements and Software Design

We assume the basic dogma: Before software can be designed it must be require
ments specitied. And before requirements can be expressed, an understanding of
the world in which these requirements reside, the domain, must be formulated.

'See the author's lecture notes: http://www.imm.dtu.dkrdb/setap/contents.ps

A. McIver et al. (eds.), Programming Methodology
© Springer Science+Business Media New York 2003

176 Bj~mer

The software design describes how a computer (the hardware) is to proceed
in order to achieve stated requirements. The requirements usually describe three
things: (1) Which phenomena of the domain shall be supported by computing
(the domain requirements); (2) which interface between the machine (hardware
+ software) and extemal phenomena - People, and other sensors and actua
tors - shall be provided (the interface requirements); and (3) what performance,
dependability, maintenance, platform, and documentation measures are expected
(the machine requirements).

Domain descriptions are indicative: Describe the "chosen world as it is", i.e.
the domain - without any reference to requirements, let alone software de
sign. Requirements prescriptions are putative: Prescribe what there is to be -
properties, not designs, of the machine.

Domain descriptions must describe the chosen domain with its imperfections,
not try to "paint a picture" of a "world as one would like it to be". In this essay
we shall focus on such domain descriptions.

In this essay we shall not touch upon the methodological principles, techniques
and tools that allow the software developer, based on formal descriptions of the
domain to rigorously project, instantiate, extend and initialise a domain descrip
tion "into" a domain requirements definition, and, from domain and interface
requirements definitions, to similarly rigorously develop software architecture
designs. We cover such principles, techniques and tools in other papers, e.g.
[2, 3,4,5], and in our lecture notes.

We summarise:

• Domains

• Requirements

• Software Design:

- Software Arehitecture
- Program Organisation
- Ete. - Coding

9.1.2 The Problem to be Addressed

In this essay we shall study some aspects of domain engineering only.
The overall problem that we are generally studying is that of methods for the

development of large scale, typically infrastructure component software systems.
Excluded from our software development method concems are therefore

those related to the discovery, the invention of algorithms & data structures,
for well-delineated problems such as sorting and searching, graph operations, fast
Fourier transforms, parsing, etc. The borderline between infrastructure software
systems and algorithms and & structures is indeed a fuzzy one - and one
that we really do not wish to further investigate here. Suffice it to say that the
infrastructure software systems we have in mind will indeed contain many
examples of algorithms & data structures ! But as concems the principles and

9. "What is a method?" - an essay on some aspects of domain engineering 177

techniques of methods - we only claim that we investigate some that are deemed
applicable to infrastructure software systems development.

9.1.3 Aspirations

The current author's ambition is to understand - in a comprehensive manner
- suitable complements of principles and techniques for software development:
Where to start, how to proceed, and when to end.

As forcefully pointed out by Jackson [1, 6, 7, 8], no one method suffices for
all software development. Compilers seems best developed using one approach
[9, 10, 11, 12], while real-time embedded and safety critical systems are perhaps
best developed using an altogether different approach [13, 14, 15, 16].

Many software development principles and techniques transcend, however,
their use in the development of individual, (frame) specific program packages
and software systems. This essay is about such development issues.

9.1.4 Structure 0/ Essay

In Section 9.2 we put forward a characterisation of what we consider to be a
method, with its principles, teachniques, and tools, for (efficiently) analysing
and synthesizing, i.e. constructing, (efficient, in this case) software.

The main section, Section 9.3, has two parts:
In Section 9.3.1 we look at problems of modelling the concerns of stake

holders: Their perspective on the domain2•

In Section 9.3.2 we then look at a number of what we term domain facets:
We currently list five such facets: Intrinsics, support technology, management &
organisation, rules & regulations and human behaviour. Singling those out for in
dividual, or otherwise c1early identified, modelling, we claim, satisfies an overall
principle, that of separation of concerns, and seems to lead to more elegant
descriptions.

Section 9.3 follows up on Section 9.2 in which we delineate what we, in
general, see to be methods, methodology, principles, techniques, and tools.

9.1.5 Some Typographical Conventions

The text alternates between paragraphs which either contain plain text, or
characterises, or defines a concept, which are then usually followed
by paragraphs which discuss the concept, and paragraphs which state a
principle, a technique, or a taal. We use the • delimiter to show the
end ofthe specialised paragraphs .

2 As these stake-holders will also, later (but not to be covered in this essay) have a perspective on
requirements

178 Bj13mer

We make a distinction between characterisations and definitions: The fonner
are (oftentimes necessarily) infonnal, the latter sometimes fonnalisable.

9.2 Method and Methodology

The notions of method and methodology are being "bandied about": "Some
rules for engineering conduct", "some notation", or other, is claimed to be 'a
method'. Some 'methods' are claimed to be 'fonnal'. In this section we take a
first look at what might constitute a method. And we make a necessary distinction
between method and methodology.

9.2.1 Method

Characterisation: Method. By a method we understand a set of principles for
selecting amongst, and applying, a set of designated techniques and
tools such which allow analysis and construction of artefacts. •

Discussion: The selections (of analysis and synthesis techniques and
tools) and some of the deployments (of these techniques and tools) are to be
carried out by people. The principles are usually of such a nature as to guide the
developer, not to interfere with that person's possible ingenuity and creativeness,
that person's ability to discover, to reflect and be skeptic. Hence we cannot ever
expect to get anywhere near a fonnalisation of such principles. Therefore the
tenn 'fonnal method' is unfortunate. Better would be formal techniques and
formally based tools. Even better, to paraphrase Michel Sintzoff, would be to
speak of logical or precise techniques and tools, as infonnal such are very
much needed, but illogical or imprecise not. •

9.2.2 Methodology

Characterisation: Methodology. By methodology we understand the study of
and knowledge about methods. •

Discussion: The two tenns 'method' and 'methodology' are often used
interchangeably - especially, it seems, in the USo •

9.2.3 Method Constituents

Discussion: The above 'method' characterisation identifies the following con
cepts: principle, analysis, construction, technique, tool, and 'artefact' . We need
characterise these concepts. In the following we focus on domain descriptions as
being the artefacts of interest. •

9. "What is a method?" - an essay on some aspects of domain engineering 179

Principle

Characterisation: Principle (I). We quote from [17]: "An accepted or professed
rule of action or conduct, ... , a fundamental doctrine, right ruIes of conduct, ... " .

•
Discussion: The concept of 'principle' is "fluid". Usually, by a method, some

people understand an orderliness. Our 'definition' makes the orderliness part of
the overall principles. Also: One usually expects analysis and construction to be
efficient and to result in efficient artefacts. This too we relegate to be implied by
some principles, techniques and tools. •

Characterisation: Principle (Il). We make here the distinction between
development principles (8), and principles related to concepts (-)') of domain other
than software development. We highlight the former by the texts "The Develop
ment Principle of 8", and the latter by the texts "The Principle of Modelling
the'Y Domain Concept". •

Analysis

Characterisation: Analysis is performed on descriptions. There seem to be three
kinds of analysis. (i-ii) Informal validation or formal verification, including proof
or model checking. This kind of analysis is performed, typically on narratives3,

respectively on formal texts. Such analyses lead to statements (i.e. meta-linguistic
document texts) such as "Such-and-such description textes) denotes such-and
-such properties" ('is correct', or 'is not correct' [relating one part of the text to
another], or 'denotes an NP-complete problem', etc.). (iii) Analysis performed
on rough sketches, are not formalisabIe, but have the aim of forming concepts. •

Discussion: Descriptions describe some universe of discourse. We may claim
that we are analysing that universe, but really, it is the model of that universe, in
the form of some description, that we analyse. •

Construction [or: Synthesis]

Characterisation: Construction (or: Synthesis) means: The creation of a de
scription, and thereby of a theory: A collection of properties that can be deduced

3We take it for granted that software development (in each (domain, requirements or software de
sign) phase, and for each refinement or other development stage within phases, and for steps within
stages) aims at constructing a number of documents : (a) informative, (b) descripti ve
both informal and formal - and (c) analytic. Within informal descriptions we distinguish
between those that are [non-deliverable] rough sketches - where rough sketches, often
contain rough formalisations, cf. Example of Section 9.3.1 - and those that are narra
ti ves and terminologies. Informative documents inform about the development. Descriptions
"inform" about (i.e. describe) a universe of discourse, as here: domain. And analyses "inform" about
(i.e. analyse) descriptions; they are, in that sense, meta-linguistic.

180 Bjlilmer

from that description. The creation invo1ves elicitation (acquisition), writing,
analysis, rewriting, analysis again, rewriting, etc. •

Discussion: Writing informative or ana1ytica1 documents may not be con
sidered construction. They are necessary documents, but they do not describe
manifest phenomena in the domain. •

Technique

Characterisation: Technique. [17]: "Method or technical skin, ... ". •
Discussion: Already here we see a possible conBict: Our characterisation of

'method' invo1ves the term 'technique' which by [17] is defined in terms of the
term 'method'. We shan use the term 'technique' in the sense of the, or a specific
'procedure', 'routine' or 'approach' that characterises the technica1 skin. •

Too1

Characterisation: Tool. [17]: "An instrument for performing mechanical opera
tions, a person used by another for his own ends, ... , to work or shape with a too1,

•
Discussion: We shal1 use the term too1 in a wider sense: Any 1anguage is a

too1, so is paper & penci1, b1ackboard & chalk, and so is any software package.
Indeed, with 1anguage we shape concepts. •

9.2.4 The Method Principles

If, as we are now c1aiming, one can indeed identify a set of princip1es, techniques
and too1s that app1y, conditional1y, in a number of deve10pment situations, then
these princip1es, techniques and too1s ought probab1y also be dep10yed. Hence:

The Development Principle of 'Methodicity' - being Methodical is
now that of actual1y dep10ying relevant domain [and requirements] engineering
[as wen as software design] princip1es, techniques and too1s during software
development. •

Discussion: The hedge here is, obvious1y, the term 'relevant'. There is thus
another meta-princip1e buried here. •

The Development Principle of 'Development Choice' is a meta-princip1e, a
'conditional' that is part of every princip1e, technique and too1 characterisation
is: App1y on1y a princip1e, a technique or a too1 if its pre-conditions are met. •

The Meta-Technique of 'Methodicity' expresses that, in respective phases of
software deve10pment, one adheres to a list of (i) general abstraction & modelling,
(ii) domain attribute, perspective and facet, (iii) domain requirements projec
tion, instantiation, extension and initialisation, (iv) interface and (v) machine
requirements, (vi) software architecture, (vii) program organisation - and many

9. "What is a method?" - an essay on some aspects of domain engineering 181

other program design - principles, techniques and tools, ensuring that a11 due
consideration is paid to these in the development. •

Discussion: In the current paper we sha11 onIy cover domain perspective and
facet principles and techniques. In other papers and in lecture notes available over
the net we cover many of the other principles and techniques mentioned above. •

The Meta-Technique of 'Development Choice' expresses, relative to the pre
vious 'methodicity' techniques, that for each of these one carefu11y writes down
the assumptions upon which a choice of specific principle, technique or tool was
depIoyed. •

Discussion: We have not, in this pape, for the sake of print space, enunci
ated these conditionals explicitly: They are, however, part of, and hence transpire
indirectly from our coverage. •

9.2.5 Discussion

We have risked some debate as to whether the above delineations of what rnight
constitute a method form a suitable basis.

Since 'methods' are to be deployed primarily by humans we prefer to char
acterise than to define. Definitions seem to have something more definite, more
absolute about them. Characterisations seem more at ease.

Some may argue that the method principIes, techniques and tool that we sha11
now endeavour to enumerate and investigate may unduly constrain the ingenu
ity of software developers: That having to follow these principIes, to use those
techniques and to deploy those tools may stifte their creativity. We believe the
contrary: That the principies set the developer free, that having recognized tech
niques and tools allow the developer to focus on concepts, and put the mind to
work on those: thinking, rather than "bureaucratic" Iabouring.

9.3 Domain Perspectives and Facets

We treat the subject of domain engineering in two parts. First we consider the
plethora of stake-holders, that is: Individuals and institutions that are more-or
less interested in, or inftuenced by what goes on in the domain. Then we consider
a concept of domain facets.

Thus we omit consideration of domain attributes ((i) static and dynamic, (ii)
tangible and intangible, (iii) configuration spectra between contexts and states,
(iv) time, space and space-time, (v) discreteness, continuity and chaos, (vi)
hierarchies and compositions, and many others)4 - some ofwhich, (i-ii), have
been put forward by Michael Jackson [1].

4This omission is due to page limitations. A proper study of 'methods', 'principles', 'techniques',
and 'tools', would benefit, it is believed, from more comprehensive comparisons.

182 Bjlllmer

Domain attributes and domain facets are different: Attributes of different do
main entities can be modelled more or less independently, i.e. "in parallel" ! In
contrast, one usually tackles the description of a domain facet-by-facet. The do
main attributes (tangibility, statics vs. dynamics, etc.) are not exclusively domain
attributes: One may reasonably claim that during subsequent development phases
(after domain engineering: Requirements engineering and software design) one
may also reconsider (hence: New) deployments of attendant attribute principles
and techniques.

Modelling stake-holder perspectives, domain attributes and domain facets
otherwise takes place, during development, "concurrently": One alternates
"to-and-from" iteratively.

There are additional description principles that we also do not cover: Prop
erty versus model oriented specification, representational and operational
abstraction, denotational vs. computational models, etc. They "belong" in a
class of modelling issues that we consider different from those of attributes and
facets.

Our choice of the term 'facet' is just a choice. Whatever term was chosen, it had
to be different from the term 'attribute'. Maybe for that other ("belong") class of
modelling issues, just referred to above, we could then choose the term 'aspects' !

9.3.1 Stake-holders and Stake-holder Perspectives

Stake-holders

Characterisation: Stake-holder. By a stake-holder we mean a closely knit,
tightly related group of either people or institutions, pressure groups - where
the "fabric" that "relates" members of the group, "separates" these from other
such stake-holder groups, and from non-stake-holder entities. •

Discussion: We shall not here try establish an ontology for the stake-holder
concept. If one tried, that ontology would, on one hand, need to deal with issues
of 'part of' and 'whole', as for system and component ontologies, and, on the
other hand, since we are dealing mostly with human institutions, the ontology
would probably have to incorporate a fuzzy membership notion. •

Examples: Stake-holders include enterprise staff: (i) owners, (ii) management
(a) executive management (b) line management, and (c) "floor", i.e. opera
tions management, and (iii) workers of all kinds, (iv) families of the above,
(v) the customers of the enterprise, (vi) competitors, and the external, "2nd
tier" stake-holders: (vii) resource providers (a) IT resource providers5 , (b) non
IT/non-finance 6, and (c) financial service providers, (viii) regulatory agencies

5Yiz.: Computer hardware and other IT equipment, software houses, facilities management, etc.
6Yiz.: Consumable goods, leasing agencies, etc.

9. "What is a method?" - an essay on some aspects of domain engineering 183

who oversee enterprise operations 7 , (ix) local and state authorities, (x) politicians,
and the (xi) "public at large". They all have a perspective on the enterprise. . •

Discussion: It always makes good, commercial as well as technical, sense
to incorporate the views of as many stake-holder groups as are relevant in the
software development process. One need not refer to social, inc1uding so-called
democratic, reasons for this inc1usion. It is simply more fun to make sure that
one has indeed understood as much of the domain (and, for that matter, as much
of possible requirements) as is feasible, before embarking on subsequent, costly
software development phases. •

The Principle of Modelling the Stake-holder Concept expresses that the
developer and the c1ient, when setting out on a domain description, c1early defines
which stake-holders must be recognised and duly involved in the development. •

Technique of Modelling the Stake-holder Concept: Consider modelling
each stake-holder group as a process, or a set of processes (i.e. behaviour[s]),
or define suitable stake-holder specific context and/or state components and
associated (observer and generator) functions. •

Stake-holder Perspectives

Characterisation: Stake-holder Perspeetive. By a stake-holder perspective we
mean a partial description, adescription which emphasises the designations, defi
nitions and refutable assertions8 that are particular to a given stake-holder group,
or the interface between pairs, etc., of such. •

Discussion: Each perspective usually gives rise to a distinct view of the
domain. These views share properties. A good structuring of the "totality" of
perspectives can be helped by suitable, usually algebraic specification langauge
constructs, such as possibly the c1ass, scheme and object constructs of the RAISE
[18] Specification Language RSL [19]. We shall not illustrate this point at present.

•
The Principle of Modelling the Stake-holder Perspective Concept ex

presses that the developer and the c1ient, when setting out on a domain description
together, suitably as part of the contract, c1early defines which stake-holder
perspectives must be recognised and duly inc1uded in the descriptions. •

Example: Strategie, Taetieal and Operations Resource Management. We now
present a rather lengthy example. It purports to illustrate the interface between a
number of stake-holder perspectives. The stake-holders are here: An enterprises's
top level, executive management (which plan, takes and follows up on strate
gic decisions), its line management (which plan, takes and follows up on tactical
decisions), its operations management (which plan, takes and follows up on oper
ational decisions), and the enterprise "workers" (who carry out decisions through

7Yiz.: Environment bureaus, finaneial industry authorities (e.g.: The US Federal Reserve Board),
food and drug administration (e.g.: The US FDA), health authorities (e.g.: The US HEW), ete.,
depending on the enterprise.

8Designations, definitions and refutable assertions are eoneepts defined in [I].

184 Bjpmer

tasks). Strategie management here has to do with upgrading or downsizing, i.e.
eonverting an enterprise's resourees from one form to another - making sure
that resourees are available for taetieal management. Taetieal management here
has to do with temporally seheduling and spatially alloeating these resourees, in
preparation for operations management. Operations management here makes fi
nal seheduling and alloeation, but now to tasks, in preparation for aetual enterprise
("floor") operations.

Let R, Rn, L, T, E and A stand for resourees, resouree names, spatial loea
tions, times, enterprises (with their estimates, service and/or produetion plans,
orders on hand, ete.), respeetively tasks (actions). SR, TR and OR stand for
strategie, taetieal and operation al resouree views, respeetively.9 SR expresses
(temporal) sehedules: Whieh sets of resourees are either bound or free in whieh
(pragmatieally speaking: overall, i.e. "larger") time intervals. TR expresses tem
poral and spatial alloeations of sets of resourees, in eertain (pragmatieally
speaking: mode finer "grained", i.e. "smaller") time intervals, and to eertain 10-
eations. OR expresses that eertain aetions, A, are to be, or are being, applied to
(parameter-named) resourees in eertain time intervals.

type R, Rn, L, T, E, A
RS = R-set
SR = (TxT) ;n+RS, SRS = SR-infset
TR = (TxT) ;n+RS ;n+L, TRS = TR-set
OR = (TxT) ;n+ RS ;n+ A
A = (Rn ;n+ RS) ~ (Rn ;n+ RS)

value
obs~n:R---->Rn

srm: RS ----> ExE ~ Ex (SRS x SR)
trm: SR ----> ExE ~ Ex (TRS x TR)
orm:TR---->ExE~E x OR
p: RS x E ----> Bool
ope: OR ----> TR ----> SR ----> (ExExExE) ----> E x RS

The partial, including loosely speeified, and in eases the non-deterministie fune
tions: srm, trm and orm stand for strategie, taetical, respeetively operations
resouree management. p is a predieate whieh determines whether the enterprise
ean eontinue to operate (with its state and in its environment, e), or not. To keep
our model "small", we have had to resort to a "trick": Putting all the facts know
able and needed in order for management to funetion adequately into E ! Besides

9In the formalisation, take for example that of OR, i.e.: OR = (TxT) "'" RS "'" A = defines OR
to be the type of maps (""') fro time periods (intervals (TxT)) into maps from sets of resources RS
into actions (A) [to be performed on these resources during the stated time intervall. These actions are
partial functions (~) from argument (Rn) named sets of resources (RS) into similarly such named
results.

9. "What is a method?" - an essay on some aspects of domain engineering 185

the enterprise itself, E also models its environment: That part of the world whieh
affeets the enterprise.

There are, aeeordingly, the following management funetions:
Strategie resouree management, srm(rs)(e,e"") ,let us eall the result (e', (srs,sr))

[see "definition" of the enterprise "function" below],proeeeds on the ba
sis of the enterprise (e) and its eurrent resourees (rs), and "ideally estimates"
all possible strategie resouree aequisitions (upgrading) and/or downsizings (di
vestmments) (srs), and seleets one, desirable strategie resouree sehedule (sr).
The "estimation" is heuristie. Too little is normally known to eompute sr al
gorithmieally. One ean, however, based on eareful analysis of srm's pre/post
eonditions, usually provide some form of eomputerised deeision support for
strategie management.

Taetieal resouree management, trm(sr)(e,e"") ,let us eall the result(e" ,(trs,tr)),
proeeeds on the basis of the enterprise (e) and one chosen strategie resouree
view (sr) and "ideally ea1culates" all possible taetieal resouree possibilities (trs),
and seleets one, desirable taetieal resouree sehedule & alloeation (tr). Again
trm ean not be fully algorithmitised. But some eombinations of partial answer
eomputations and deeision support ean be provided.

Operations resouree management, orm(tr)(e,e""),let us eall the result(e"',or),
proeeeds on the basis of the enterprise (e) and one chosen taetieal resouree view
(tr) and effeetively deeides on one operations resouree view (or). Typieally orm
ean be algorithmitised - applying standard operations research teehniques.

We refer to [20] for details on the above and below model.
Aetual enterprise operation, ope, enables, but does not guarantee, some "eom

mon" view of the enterprise: ope depends on the views of the enterprise, its
eontext, state and environment, e, as "passed down" by management; and ope
applies, aeeording to preseriptions kept in the enterprise eontext and state, aetions,
a, to named (rn:Rn) sets ofresourees.

The above aecount is, obviously, rather "idealised". But we hope it is indica
tive of what is going on. To give a further abstraetion of the "life eyde" of the
enterprise, we "idealise" it, as now shown:

value
enterprise: RS ~ E ~ Unit
enterprise(rs)(e) ==

if p(rs)(e) then
let (e',(srs,sr» = srm(rs)(e,elll'),

(e",(trs,tr» = trm(sr)(e,e""),
(e"',or) = orm(tr)(e,e""),
(e"",rs') = ope(or)(tr)(sr)(e,e',e",e"') in

let e""':E • p'(e"",e""') in
enterprise(rs')(e"lII) end end

else stop end

p': E x E -+ Bool

186 Bjpmer

The enterprise re-invocation argument, rs', a result of operations, is intended to
reflect the use of strategially, tactically and operationally acquired, spatially and
task allocated and scheduled resources, including partial consumption, "wear &
tear", loss, replacements, etc.

The let e"Ill:E • p'(e"",e"lll) in ... shall model achanging environment.
Thus there were two forms of recursion at play here: The simple tail-recursion,

and the recursive "build-up" ofthe enterprise state e"". The latter is the interesting
one. Solution, by iteration towards some acceptable, not necessarily minimal fix
point, "mimics" the way the three levels of management and the "floor" operations
change that state and "pass it around, up-&-down" the management "hierarchy".
The operate function "uni fies" the views that different management levels have
of the enterprise, and influences their decision making. Dependence on E also
models potential interaction between enterprise management and, conceivably,
all other stake-holders. •

Discussion: We remind the reader that - in the previous example - we are
"only" modelling the domain ! That model is, obviously, sketchy. But we believe
it portrays important facets of domain modelling and stake-holder perspectives.
The stake-holders were, to repeat: Strategy ("executive") management (srm, p),
tactical ("line") management (trm), operations ("floor") management (orm), and
the workers (ope). The perpective being modelled focused on two aspects: Their
individual jobs, as "modelled" by the "functions" (srm, p, trm, orm, ope), and
their interactions, as "modelled" by the passing around of arguments (e, e', eil,
eil', e"") The let e""': E • p' (e"" ,e"IlI) in ... which "models" the changing en
vironment is thus summarising the perspectives of "all other" stake-holders ! We
are modelling a domain with all its imperfections: We are not specifying anything
a1gorithmically; aIl functions are rather loosely, hence partially defined, in fact
only their signature is given. This means that we model well-managed as weIl as
badly, sloppily, or disastrously managed enterprises. We can, of course, define a
great number of predicates on the enterprise state and its environment (e:E), and
we can partially characterise intrinsics - facts that must always be true of an
enterprise, no matter how.

If we "programme-specified" the enterprise then we would not be modeIling the
domain of enterprises, but a specifically "business process engineered" enterprise.
Or we would be into requirements engineering - we claim. •

Technique of Modelling the Stake-holder Perspective Concept: Emphasize
how the distinct stake-holders interact, which phenomena in the domian they
generate, share, or consume. This 'technique' follows up on the 'Stake-holder'
modelling technique. •

Discussion

The stake-holder example given above is "sketchy". It identifies, we believe, the
most important entities and operations that are relevant to a small number of
interacting stake-holders. We believe that "rough sketches" like the above are
necessary in the iterative development of domains.

9. "What is a method?" - an essay on some aspects of domain engineering 187

9.3.2 Domain Facets

We shall outline the following facets:
Domain intrinsics: That which is common to all facets.
Domain support technologies: That in terms of which several other

facets (intrinsics, management & organisation, and rules & regulations) are
implemented.

Domain management & organisation: That which primarily determines and
constrains communication between enterprise stake-holders.

Domain rules & regulations: That which guides the work of enterprise stake
holders, their interaction, and the interaction with non-enterprise stake-holders.

Domain human behaviour: The way in which domain stake-holders despatch
their actions and interactions with respect to enterprise: dutifully, forgetfully,
sloppily - yes, even criminally.

We shall briefly characterise each of these facets. We venture to express
"specification patterns" that "most closely capture" essences of the facet.

Separating the treatment of each of these (and possibly other) facets reflect a
principle:

The Development Principle of Separation of Concems expresses that when
possible one should separate distinguishable concerns and treat them separately .•

Discussion: We believe that the facets we shall present can be treated sepa
rately in most developments - but not necessarily always. Separation or not is a
matter also of development as weH as of presentation style.

The separation, in more generality, of computing systems development into
the triptych of domain engineering, requirements engineering and machine (hard
ware + software) design, is also a result of separation of concerns - as are the
separations of domain requirements, interface requirements and machine require
ments (within requirements engineering), as well as the separations of software
architecture and program organisation design [3]. •

Intrinsics

The Concept

Characterisation: Intrinsics: That which is common to all facets. •

An Example

Example: Rail nets and switches. We first give a summary view of a domain
model for railway nets, first informaHy, then formally, leaving out axioms: A rail
way net consists of two or more stations and one or more lines. Nets, lines and
stations consists of rail units. A rail unit is either a linear unit, or a switch unit,
or a crossover unit, etc. Units have connectors. A linear unit has two connectors,
a switch unit has three, a crossover unit has four, etc. A line is a linear sequence
of connected linear units. Astation usually has all kinds of units. A line connects
exactly two distinct stations. Astation contains one or more tracks (say, pragmat
ically, for passenger platforms or for cargo sidings). A path is a pair of connectors

188 Bjf/lmer

of a unit, and pragmatically defines a way for a train to traverse that unit. A unit
is at any one time in astate (u), which we may consider a set of paths. Over a
lifetime a unit may attain one or another state in that unit's state space (w).

type
N,L,S, V,C

value
obs--Ls: N -+ L-set, ObLSS: N -+ S-set,
ObLVS: (NILIS) -+ V-set, ObLCS: V -+ C-set
obLTrs: S -+ Tr-set

type
p' = V x (CxC), E = P-set, 0 = E-set
P = {I p:P' o let (u,(c,c'»=p in (C,C')E ObLE(u) end I}

value
ObLE: V -+ E, ObLO: V -+ 0

From the perspective of a train passenger or a cargo customer it is not part of
the intrinsics that nets have units and units have connectors. Therefore also paths,
states and state-spaces are not part of the intrinsics of a net as seen from such
stake-holders.

From the perspective of the train driver and of those who provide the setting of
switches and signalling in general, units, paths, and states are indeed part of the
intrinsics: The intrinsics of a rail switch is that it can take on a number of states.
A simple switch (I y: I) has three connectors: {c, cI ' C j }. C is the connector of the
common rail from which one can either "go straight" cI' or "fork" C j.

wg, : { {},

{(c, cI)}' {(c, cI)' (cI' c)}, {(cI' c)},
{(c,Cj)},{(c,Cj),(Cj,c)},{(Cj,c)},
{(c,Cj), (cl,c)},{(c,Cj), (Cj,c), (cl,c)},{(Cj,c), (cl'c)} }

wg, ideally models a general switch. Any particular switch wp, may have wp, cWg"

Nothing is said about how astate is determined: Who sets and resets it, whether
determined solely by the physical position of the switch gear, or also by visible or
virtual (i.e. invisible, intangible) signals up or down the rail away from the switch .

•

Methodological Consequences

The Principle of Modelling the Intrinsics Domain Facet expresses that in any
modelling one first form and describe the intrinsic concepts. •

Technique of Modelling the Intrinsics Domain Facet: The intrinsics model
of a domain is a partial specification. As such it involves the use of well-nigh all
description principles. Typically we resort to property oriented models, i.e. sorts
and axioms. •

9. "What is a method?" - an essay on some aspects of domain engineering 189

Discussion

Thus the intrinsics become part of every one of the next facets. From an algebraic
semantics point of view these latter are extension of the above.

Support Technologies

TheConcept

Characterisation: Support Technology - that in terms of which several other
facets (intrinsics, management & organisation, and roles & regulations) are
implemented. •

An Example

Example: Railway switches. An example of different technology stimuli: A rail
way switch, "in ye olde days" of the "childhood" of railways, was manually
"thrown"; later it could be mechanically controlled from a distance by wires
and momentum "amplification"; again later it could be electro-mechanically
controlled from a further distance by electric signals that then activated me
chanical controls; and today switches are usually controlled in groups that are
electronically interlocked.

An aspect of supporting technology includes the recording of state-behaviour in
response to external stimuli. Figure 9.1 indicates a way of formalising this aspect
of a supporting technology.

Figure 9.1. Probabilistic State Switching

sw/psd

dil1-pdd-edd

dilpds

Input stimuli:
IW: Switch to switched state

di: Revel1 to dlrect state

Probabillties:
pas: Swttchlng to 8wltchecl state trom swltched state
psd: Switchlng tu swHched atate Irom dlrect atate

pd.: Revertlng to dlrect .tate from 8wHched stale

pd.: ReV8rting to dlreet state trom dlrect &tate

ud: Swltchlng to .rror state trom dlrect state

edd: Ravertlng to .rror state trom dlrect state

ess: Switchlng to erTOr state from .wltchael state

ada: Reverting to .rror state trom swttched state

Probabilities: 0 <= p .. <= 1
States:

s: Swttched state

d: Dlrect (reverted) state

e: Error state

Figure 9.1 intends to model the probabilistic (erroneous and correct) behaviour
of a switch when subjected to settings (to switched (s) state) and re-settings (to
direct (d) state). A switch may go to the switched state from the direct state when
subjected to a switch setting S with probability psd.. •

190 Bjpmer

Another Example

Another example shows another aspect of support technology.
Example: Air traffic radar. Air traffk (iAT), intrinsically, is a total function

over some time interval, from time (T) to monotonically positioned (P) aircraft
(A).

A conventional air traffic radar "sampies", at regular intervals, the intrinsie air
traffic. Hence aradar is a partial function 10 from intrinsie to sampled air traffies
(sAT).

type
iAT = T ---7 (A m+ P), sAT = T m+ (A m+ P)

value
[radar 1 r: iAT ~ sAT, [close 1 c: P x P ---7 Bool

axiom
I;j iatiAT • let sat = r(iat) in I;j tT • t E dom sat •

tE dom iat 1\ I;j a:A • a E dom iat(t) =}

a E dom sat(t) 1\ c«iat(t))(a),(sat(t))(a)) end

The axioms express a property that one expects to hold for aradar: That the radar
displayed aircraft positions are close to those of the aircraft in the actual world .

•

Methodological Consequences

Technique of Modelling the Support Technology Domain Facet: The support
technologies model of a domain is a partial specification - hence all the usual
abstraction and modelling principles, techniques and tools apply. More specifi
cally: Support technologies (stST) "implements" intrinsic contexts and states:
'Ti : r i , (Ji : ~i in tenns of "actual" contexts and states: 'Ta : r a, (Ja : ~a

type
Syntax,
r .-1, ~_i, VAL.-1, r _a, ~_a, VAL_a,

ST = r.-1 x ~.-1 ~ r _a x ~_a
value

sts:ST-set
axiom

I;j stST • st E sts =} ...

Support technology is not a refinement, but an extension. Support technology
typically introduces considerations of technology accuracy, failure, etc. Axioms

IOThis example is due to my former MSc Thesis student Kristian M. Kalsing.

9. "What is a method?" - an essay on some aspects of domain engineering 191

characterise members of the set of support technologies sts. An example axiom
was given in the air traffic radar example . •

The Principle of Modelling the Support Technology Domain Facet is a
principle that is relative to all other domain facets. It expresses that one must
first describe essential intrinsics. Then it expresses that support technology is
any means of implementing concrete instantiations of some intrinsics, of some
management & organisation, and/or of some rules & regulations. Generally the
principle states that one must always be on the look-out for and inspire new sup
port technologies. The most abstract form of the principle is: "What is a support
technology one day becomes part ofthe domain intrinsics a future day". •

Discussion

[14, 13] exemplify the use of the Duration Calculus [21, 22, 23, 24, 25] in de
scribing supporting technologies that help achieve safe operation of a road level
rail crossing, and of agas bumer.

The support technology facet descriptions "re-appear" in the requirements
definitions: Projected, instantiated, extended and initialised [3]. In the domain de
scription we "only" record our understanding of all aspects of support technology
"failures". In the requirements definition we then follow up and make decisions as
to which kinds of "breakdowns" the computing system, the machine, is to handle,
and what is to be achieved by such "handlings".

Management and Organisation

The Concept

Characterisation: Management and Organisation: That which primarily deter
mines and constrains communication between enterprise stake-holders. •

Conceptual Examples - I

Discussion: People staff enterprises, the components of infrastructures with
which we are concemed, for which we develop software. The larger these
enterprises, these infrastructure components, are, the more need there is for man
agement & organisation. The röle of management is roughly, for our purposes,
twofold: Firstly, to perform strategie, tactical and operational work (cf. example
of Seetion 9.3.1), to make strategie, tactical and operational policies - induding
ruIes & regulations, cf. Seetion 9.3.2 - and to see to it that they are followed.
The röle of management is, secondly, to react to adverse conditions, unfore
seen situations, and decide upon their handling, i.e. conflict resolution. Policy
setting should help non-management staff operate in normal situations - for
which no management interference is thus needed. And management "back
-stops" problems: Takes these problems off the shoulders of non-management
staff.

To help management and staff know who's in charge with respect to policy
setting and problem handling, a dear conception of the overall organisation is

192 Bj~mer

needed: Organisation defines lines of communication within management and
staff and between these. Whenever management and staff has to turn to others
for assistance they usually, in a reasonably well-functioning enterprise, follow
the command line: The paths of organigrams - the usually hierarchical box and
arrow/line diagrams. •

Methodological Consequences - I

Techniques of Modelling the Management & Organisational Domain At
tributes Concepts: The management & organisation model of a domain is a
partial specification - hence all the usual abstraction and modelling principles,
techniques and tools apply. More specifically: Management is a set of predicates,
observer and generator functions which either parameterise others, the operations
functions, (that is, determine their behaviour), or yield results that become argu
ments to these otherfunctions. We have indicated, in the example of Section 9.3.1,
some of the techniques. Organisation is a set of constraints on communication
behaviours. "Hierarchical", rather than "linear", and "matrix" structured organ
isations can also be modelled as sets (of recursively invoked sets) of equations .

•

Conceptual Example - 11

Examples: Management & Organisation To relate "classical" organigrams to
formal descriptions we first show such an organigram, see Figure 9.2, and then
we show schematic processes which - for a rather simple case (i.e. scenario) -
model managers and managed !

Figure 9.2. Organisationa1 Structures

A HIe hlcal Organlllllon

type Msg, W, E, Sx
channel {ms[i]:Msg I i:Sx}
value

sys: Unit ---> Unit

A MatrIx Organisation

9. "What is a method?" - an essay on some aspects of domain engineering 193

mgr: \f! ---t in,out {ms[i]1 i:Sx } Unit
stf: i:Sx ---t E ---t in,out ms[i] Unit
sysO == 11 { stf(i)(io") I i:Sx } 11 mgr(~)

value
mgr(~) ==

let~' = ... ;
(11 {ms[i]!msg;Lm(msg)(~)li:Sx})

o
(0 {let msg' = ms[i]? in gJIJ.(msg')(~) endli:Sx}) in

mgr(~') end

stf(i)«(T) ==
let (T' = ... ;

«let msg = ms[i] ? in Ls(msg)«(T) end)

o
(ms[i] ! msg' ; g_s(msg')«(T))) in

stf(i)«(T') end

f JIJ., g JIJ.: Ms g ---t \f! ---t \f!,
Ls, g_s: Msg ---t E ---t E

Both manager and staffproeesses reeurse (i.e. iterates) over possibly changing
states. Management proeess non-deterministieally, external ehoice, "alternates"
between "broadeast"-issuing orders to staff and reeeiving individual messages
from staff. Staff processes likewise non-deterministieally, external ehoice, "al
ternates" between reeeiving orders from management and issuing individual
messages to management. The example also illustrates modelling stake-holder
behaviours as interaeting (here CSP-like, [26,27,28]) processes. •

Methodologieal Consequenees - 11

Discussion: The strategie, taetieal and operations resouree management ex
ample of Seetion 9.3.1 (pages 183-186) illustrated another management &
organisation deseription pattern. It is based on a set of, in this ease, reeursive
equations. Any way of solving these equations, finding a suitable fixpoint, or an
approximation thereof, inc1uding just ehoosing and imposing an arbitrary "solu
tion", refieets some management eommunieation. The syntaetie ordering of the
equations - in this ease: a "linear" passing of enterprise "results" from "upper"
equations onto "lower" equations - refieets some organisation. •

The Principle of Modelling the Management & Organisation Domain
Facets expresses that relations between resourees, and deeisions to aequire and
dispose resourees, to de-, re- and sehedule and de-, re- and alloeate resourees,
and to de-, re- and aetivate resourees, are the prerogatives of well-funetioning
management, refieet a funetioning oranisation, and imply invoeation of proee-

194 Bjpmer

dures that are modelled as actions that "set up" and "take-down" contexts and
change states. As such these principles tell us which sub-problems of development
to tackle. •

Techniques of Modelling the Management & Organisation Domain Facet:
We have already, under techniques for modelling 'Stake-holder' and 'Stake
holder Perspectives', mentioned some of the techniques. In this section we have
used these techniques. Two "extremes" were shown: In Section 9.3.1 we modelled
individual management groups by their respective functions (strm, trm, orm),
and their interaction (i.e. organisation) by "solutions" to a set of recursive equa
tions ! In this section we modelled management & organisation, especially the
latter, by communicating sequential behaviours. •

Discussion

The domain models of management and organisation, of this section, as well as of
the earlier section 9.3.1, eventually find their way into requirements, and, hence,
the software design - for the cases that the requirements are about computing
support of management and its organisation.

Support to solution of the recursive equations of the example of Section 9.3.1
may be offered in the form of constraint based logic sol vers which may partially
handle logic characterisations of the strategic and tactical management functions,
and in the form of computerised support of message passing between the various
management groups of the example of Section 9.3.1, as well as of the generic
example of the present section.

Rules & Regulations

The Concept

Characterisation: Rule. That which guides the work of enterprise stake-holders
as well as their interaction and the interaction with non-enterprise stake-holders .•

Characterisation: Regulation. That which stipulate what is to happen if a rule
can be detected not to have been followed when such was deemed necessary. •

Rules & regulations are set by enterprises, enterprise associations, [govem
ment] regulatory agencies, and by law.

Three Examples

Examples: Rail and Banking. (i) Rail: Rule: In China arrival and departure of
trains at, respectively from railway stations are subject to the following rule: In
any three minute interval at most one train may either arrive or depart. Regu
lation: Disciplinary procedures. (ii) Rail: Rule: In many countries railway lines
(between stations) are segmented into blocks or sectors. The purpose is to stip
ulate that if two or more trains are moving - obviously in the same direction
- along the line, then there must be at least one free sec tor (i.e. without a train)
between any two such trains. Regulation: Disciplinary procedures. (iii) Banking:
Rule: In the Uni ted States of America personal checks issued in any one state of

9. "What is a method?" - an essay on some aspects of domain engineering 195

the Union must be cleared by the sen ding and receiving banks, if within the same
state, then within 24 hours, and else within 48 or 72 hours, depending on cer
tain further stipulated relations between the states. Regulation: Fines and tripie
damages to affected c1ients. •

Methodological Consequences

Technique of Modelling the Rules & Regulations Domain Facets: There are
usually three kinds of syntax involved with respect to (i.e. when expressing) rules
& regulations (resp. when invoking actions that are subject to rules & regulations:
The syntaxes (SyntaLrul, SyntaLreg) describing rules, respectively regula
tions; and the syntax (Syntax_cmd) of [always current] domain extemal action
stimuli. A rule, denotationally, is a predicate over domain stimuli, and current and
next domain configurations (r x ~). A regulation, denotationally, is astate chang
ing function over domain stimuli, and current and next domain configurations
(r x ~). We omit treatment of [current] stimuli:

type Syntax_cmd, SyntaxJUI, SyntaxJeg, r, ~
RuleLand-Regulations = SyntaxJUI x SyntaxJeg
RUL = (rx~) ~ (rx~) ~ Bool,
REG = (rx~) ~ (rx~)

value
interpret: SyntaxJUI ~ r ~ ~ ~ RUL-set,
interpret: SyntaxJeg ~ r ~ ~ ~ REG

valid: RUL-set ~ (r x~) x (r x~) ~ Bool
valid(ruls)((')' ,0"),(,),' ,a'» ==

V rul:RUL· rul E ruls ::::} rul(,)"a)(,),',a')

valid: REG ~ (r x~) ~ (r x~) ~ Bool
valid(reg)(')' ,a) as (')" ,a')

post reg(,)"a) = h',a')

axiom
V (ruls,reg):Rules-aDd-Regulations· :l (')',a),(')",a'):rx~ •

:l ')''':r, a":~
• ,,-,valid(ruls)((')' ,a),(')''' ,a"»

::::} valid(reg)(')''' ,a") = (')" ,a')

Rules & regulations are therefore modelled by abstract or concrete syntaxes of
syntactic rules etc., by abstract types of denotations, and by semantics definitions,
usually in the form ofaxioms or denotation-ascribing functions. •

The Principle of Modelling the Rules & Regulations Domain Facet ex
presses that domains are govemed by rules & regulations: By laws of nature
or edicts by humans. Laws of nature can be part of intrinsics, or can be mod
elled as rules & regulations constraining the intrinsics. Edicts by humans usually

196 Bjj/lmer

change, but are usually considered part of an irregularly changing context, not a
recurrently changing state. Modelling techniques follow these priciples. •

RuIes & Regulation Scripts

We discuss an issue that arises with the above and which points to possible pre
cautionary and/or remedial actions - as they would first be expressed in some
reguirements:

Discussion: Domain mIes & regulations are usually formulated in "almost
legalese" , i.e. in rather precise, albeit perhaps "stilted" subsets of the professional
language of the domain in question. In cases such mIes & regulation languages
can be formalised, and we then call them script languages. A particular set of mIes
& regulations is thus a script. Such script languages can be mechanised: Making
it "easy" for appropriate (mIes & regulation issuing) stake-holders to script such
scripts - and to have them inserted into their computing system: As predicates
that detect mle violations, respectively suggest alternative actions (rather than
causing a potentially violating action) or remedy an actual mle violation. • The
mies & regulations, that may be stipulated far a domain, can thus find their way
into requirements that specify computerised support for their enforcement.

Human Behaviour

TheConcept

Discussion: Some peopIe try their best to perform actions according to expecta
tions set by their colleagues, customers, etc. And they usually succeed in doing so.
They are therefore judged reliable and trustworthy, good, punctual professionals
(b_p) of their domain. Some people set lower standards for their professional con
duct: Are sometimes or often sloppy (b_s), make mistakes, unknowingly or even
knowingly. And yet other people are outright delinquent (b_d) in the despatch of
their work: Couldn't care l6ss about living up to expectations of their colleagues
and customers. Finally some people are explicitly crirninal (b_c) in the conduct
of what they do: Deliberately "do the opposite" of what is expected, circumvent
mIes & regulations, etc. And we must abstract and model, in any given situation
where a human interferes in the "workings" of a domain action, any one of the
above possible behaviours. •

Characterisation: Human Behaviour. The way in which domain stake
-holders despatch their actions and interactions with respect to an enterprise:
professionally, sloppily, delinquently, yes even crirninally. •

Methodological Consequences

Techniques of Modelling the Human Behaviour (I-II) Domain Facet: We
often model the "arbitrariness" of human behaviour by internal non-deterrninism:

9. "What is a method?" - an essay on some aspects of domain engineering 197

The exact, possibly deterministic, meaning of each of the b's can be separately
described.

In addition we can model human behaviour by the arbitrary selection of
elements from sets and of subsets of sets:

type
X

value
hb~: X-set ... ----+ ... , hb~(xs, ...) == let x:X • xE xs in ... end
hb_j: X-set ... ----+ ... , hb_j(xs, ...) == let xs':X-set • xs' c:;;; xs in ... end

The above shows just fragments of formal descriptions of those parts which reflect
human behaviour. Similar, loose, descriptions are used when describing faulty
supporting technologies, or the "uncertainties" of the intrinsic world. •

Technique of Modelling the Human Behaviour (III) Domain Facet: Com
mensurate with the above, humans interpret mIes & regulations differently,
and not always "consistently" in the sense of repeatedly applying the same
interpretations. Our final specification pattern is therefore:

type
RULS = RUL-set
Action = r ~ L; ~ (r x L;)-infset

value
interpret: SyntaxJUI ----+ r ----+ L; ----+ RULS-infset

human_behaviour: Action ----+ SyntaxJl' ----+ r ~ L; ~ r x L;
humaLbehaviour(a)(srr)(r)(O') as ("(',0")

post
let "(O'S = a("()(O') in
:3 ("(' ,O"):(r x L;) • ("(',0") E "(O'S 1\

let mles:RULS • mIes E interpret(srr)("()(O') in
'V mle:RUL· mle E mIes =} mle("(,O')("(',O") end end

The above is, necessarily, sketchy: There is a possibly infinite variety of ways
of interpreting some mle[s]. A human, in carrying out an action, interprets appli
cable mIes and chooses a set which that person believes suits some (professional,
sloppy, delinquent or criminal) intent. "Suits" means that it satisfies the intent, i.e.
yields true on the pre/post state pair, when the action is performed - whether as
intended by the ones who issued the mIes & regulations or not. •

Discussion: Please observe the difference between the version of interpret as
indicated in Section 9.3.2 and the present version: The former reflected the seman
tics as intended by the stake-holder who issued the mIes & regulations. The latter
reftects the professional, or the sloppy, or the delinquent, or the criminal seman
tics as intended by the similarly "qualified" staff which carries out the mle abiding

198 Bj~rner

or mIe vioIating actions. Please also observe that we do not here exemplify any
regulations. •

The Principle of Modelling the Human Behaviour Domain Facet ex
presses what has now been mentioned several times, namely that some people
are perfect: FoIlow mIes & regulations as per intentions; other people are sloppy:
Fail to foIlow the prescriptions; and yet other people are derelict or even criminal
in the pursuit of their job: Deliberately flaunt mIes & regulations. And the prin
ciple concludes that one must be prepared for the "worst". That is: Model it aIl .

•

Discussion

The results of informal as weIl as formal domain descriptions of human shortcom
ings find their way into those requirements which define computerised support for
taking precautionary actions should human errors be detected.

Discussion

We have covered a nurnber of domain facets: Intrinsics ('the very basics'), sup
port technologies (implementations of some parts of other facets), management &
organisation, mIes & regulations, and human behaviour. One can possibly think
of other facets. With each domain facet the "fuIl force" of all abstraction and mod
elling principles and techniques apply, and a careful "sequencing" ("fitting-in") of
the treatment of 'that' facet with respect to other facets must be considered.

For each of the facets we have shown principles of and techniques for their
modelling, and we have indicated that these facet models may eventually find
their way into requirements models, and hence determine software designs.

9.3.3 Discussion

And we have covered, on a larger scale, the domain modelling of (domain) stake
holder perspectives and domain facets. The two concepts are not orthogonal. Their
individual and combined treatment again demands judicious choice.

It has, throughout, been indicated how the domain model predicates the
requirements, and hence the design.

One will never be able, it is conjectured, to achieve a complete domain model.
But one can do far better than is practice today - where no such models are
even attempted. Most claims of domain models are reaIly biased towards contem
pIated software designs, embodying requirements, and are just covering at most
the domain being projected, etc.

In the validation interaction between the software developers - who are ma
jor "players" in the development of both domain descriptions and requirements
definitions - and the domain stake-holders, in that validation process, we claim,
many errors - that before couId, and hence would, creep unconsciously into the
software development - can now be avoided. When indeed errors, i.e. "holes" in

9. "What is a method?" - an essay on some aspects of domain engineering 199

the domain description, are still discovered, later, perhaps after final software de
livery, then it is now easier, we claim, to pinpoint where these errors first occurred,
and hence who were the perpetrators: The software, cum domain or requirements
or design, developers, or the stake-holders, or both parties. On one hand it is
now easier to resolve legal issues, and, as well, to repair malfunctioning soft
ware. The latter because, in its development, from domains via requirements to
designs, we adhere to an unstated principle: That of homomorphic development:
If two or more algebraica1ly independent ("orthogonal") concepts are expressed
in the domain and are to be "found", somehow, also in the software, then their
implementation must be likewise distinguishable.

9.4 Conc1usion

We have tried, more precisely, than what is normally experienced, to formu
late a concept of method, in particular as it applies to a narrow part of domain
engineering.

We have emphasised method principles and techniques, and we have pro
posed a number of domain perspective and facet modelling principles and related
techniques.

We have only briefly referred to tools, and then only to linguistic tools such
as natural language, the professional (i.e. subset natural) languages of specific
universes of discourse, here almost exclusively domains, and the formallanguages
that "carry" formal techniques such as RSL, Finite State Machines and the
Duration Calculi.

9.4.1 Discussion

Now: Have we achieved what we wished ?
To some extent, "Yes !" To some other extent, "No !"
As concerns the 'Yes', the essay speaks for itself: Presents our "Yes !".
As concerns the 'No', we discuss now some shortcomings, such as we presently

see them.
Not all principles need or seem to need associated tecniques: 'Separation of

Concern' appears to be a meta-principle that is then followed up by a choice
between various techniques - but we cannot really say that these latter techniques
are that intimately associated with the 'Separation of Concern' principle ?

Those principles, for which we have listed associated techniques, these tech
niques have be rather simple-mindedly expressed. We should like to see sharper
characterisations - of a nature that sets them more apart, that distinguishes them
more uniquely.

For some techniques we have achieved a formal characterisation, viz.: 'Support
Technology', 'Rules & Regulations' and, partly, 'Human Behaviour'. We should

200 Bj!<1mer

like to see these further elaborated; and we should like to see remaining facets
characterised more formally.

Then the essay, as it stands, isolated from treatments of many other software
development principles and techniques, risks being too narrow in its view of
methods, their principles and techniques. We refer here to the obvious lack of
the mentioning of principles and techniques for such general abstraction &
modelling issues as property vs. model-oriented descriptions, representation &
operation abstraction, denotation, computation and process abstractions, time,
space and time-space concems, 'hierarc[h]ality' vs. compositionality, contigura
tion, context and state modelling, etc.; to such domain attribute issues as statics
and dynamics [1], tangibility [1], dimensionality [1], discreteness, continuityand
chaos, etc.; to such domain requirements issues as projection, instantiation,
extension and initialisation, etcetera, etcetera !

Since we can identify very many principles and techniques, some specific to
distinct phases of development (to domains, or to requirements, or to software
design), some generally applicable - since this is possible - it gives, we believe,
strength to the argument that we must collect all these principles and techniques,
we must investigate them individually and in relation to others, structure their
presentation, and come up with such structured lists of principles and techniques
as were referred to in the 'Methodicity' principles and its related technique, etc.

9.4.2 Future Work

The above discussion has pointed out some weaknesses, and has indicated addi
tional work to be done: In meta-formalising some techniques, in collating "all so
far identifiable" principles and techniques across at least the spectrum from and
including domain engineering via requirements engineering [2] to inital parts of
software design, notably software architecture and program organisation [3].

9.4.3 Acknowledgements

Acknowledgements are gratefully extended to Michael A. Jackson for his inspir
ing publications [29, 30, 31, 6, 32,1,7,33,34,8], to the WG2.3 membership for
discussions of topics presented; to Hidetaka Kondoh of Hitachi Software Devel
opment Laboratories, Tokyo, for his thoughtful views on software development;
and to my many, patient students, who have "suffered" lectures along the lines
of this essay, and who have tested out their import in innumerable term and MSc
projects.

9. "What is a method?" - an essay on some aspects of domain engineering 201

It was at UNUIIISTII that we l2 systematically studied and applied, amongst
may other programrning and software engineering methodological issues, also the
domain facets expounded in this chapter. My warmest acknowledgements goes to
my colleagues during those years at UNUIIIST, 1991-1997, and beyond.

References

[1] Michael A. Jackson. Software Requirements & Specijications: a lexicon of practice,
principles and prejudices, Addison-Wes1ey, 1995.

[2] Dines Bj!ilmer. Domains as Prerequisites for Requirements and Software &c. In
M. Broy and B. Rumpe, editors, RTSE'97: Requirements Targeted Software and Sys
tems Engineering, vo1ume 1526 of Lecture Notes in Computer Science, pages 1--41.
Springer-Verlag, Berlin Heide1berg, 1998.

[3] Dines Bj!ilmer. Where do Software Architectures come from ? Systematic Deve1op
ment from Domains and Requirements. A Re-assessment of Software Engneering ?
SouthAfrican Journal ofComputer Science, 22: 3-13, 1999.

[4] Dines Bj!ilmer. Formal Software Techniques in Rai1way Systems. In Eckehard
Schnieder, editor, 9th IFAC Symposium on Contral in Transportation Systems,
pages 1-12, Technica1 University, Braunschweig, Germany, 13-15 June 2000.
VDINDE-Gesellschaft Mess- und Automatisieringstechnik, VDI-Gesellschatt
tür Fahrzeug- und Verkehrstechnik. Invited plenum 1ecture.

[5] Dines Bj!ilmer. Pinnacles of Software Engineering: 25 Years of Formal Methods.
Annals of Software Engineering, 10: 11-66, 2000. Eds. Di1ip Patel and Wang Yi.

[6] Michael A. Jackson. Problems, Methods and Specialisation. Software Engineering
Journal, pages 249-255, November 1994.

[7] Michael A. Jackson. Problems and requirements (software development). In Second
IEEE International Symposium on Requirements Engineering (Cat. No.95TH8040),
pages 2-8. IEEE Comput. Soc. Press, 1995.

[8] Michael A. Jackson. The meaning of requirements. Annals of Software Engineering,
3:5-21, 1997.

[9] Dines Bj!ilmer and O. Oest, editors. Towards a Formal Description of Ada, LNCS,
vol. 98. Springer-Verlag, 1980.

[10] Dines Bj!ilmer and M. Nie1sen. Meta Programs and Project Graphs. In ETW: Esprit
Technical Week, pages 479--491. Elsevier, May 1985.

[l1] Dines Bj!ilmer. Project Graphs and Meta-Programs: Towards a Theory of Software
Deve1opment. In N. Habermann and U. Montanari, editors, Praceedings Capri '86
Conference on Innovative Software Factories and Ada, Lecture Notes on Computer
Science. Springer-Verlag, 1986.

11 UNUIIIST is a Research and Post-graduate & -doctoral Training Centre whose financial basis
has been provided, 1992-1996, by The Republic of Portugal (US $ 5 mio), The [then] Portuguese
administrated Territory of Macau (US $ 20 mio), and The People's Republic of China (US $ 5 mio).

12The author, as first and founding Director, Prof. Zhou Chaochen (then Principal Research Fellow,
now Director), Sliiren Prehn, Chris W. George, Dr. Xu Qiwen, Dr. Richard C. Moore, Dr. Tomasz
Janowski, and Dr. Cornelis A. Middelburg.

202 Bjjljrner

[12] Dines Bjjljrner. Software Development Graphs - A Unifying Concept for Software
Development? In K.v. Nori, editor, Vol. 241 of Lecture Notes in Computer Science:
Foundations of Software Technology and Theoretical Computer Science, pages 1-9.
Springer-Verlag, Dec. 1986.

[13] AP. Ravn and H. Rischel. Requirements capture for embedded real-time systems. In
P. Borne, editor, 1MACS-IFAC Symposium MCTS, Villeneuve d'Ascq, France, May
1991. IMACS Transaction Series, 1991.

[14] Jens U. Skakkebaek, Anders P. Ravn, Hans Rischel, and Zhou ChaoChen. Specifica
tion of Embedded, Real-time Systems. Technical report, Dept. of Computer Science,
Technical University of Denmark, EuroMicro Workshop on Formal Methods for
Real-time Systems, 1992 December 1991. The example: A railway roadlrail crossing.

[15] Jens Ulrik Skakkebaek. Development of Provably Correct Systems. Technical report,
Dept. ofComputer Science, Technical University ofDenmark, 30 August 1991 M.Sc.
Thesis.

[16] Dines Bjjljrner. A ProCoS Project Description. Published in two slightly different ver
sions: (1) EATCS Bulletin, Oetober 1989, (2) (Ed. Ivan Plander:) Proeeedings: Intl.
Conf. on AI & Roboties, Strebske Pleso, Slovakia, Nov. 5-9, 1989, North-Holland ,
Dept. ofComputer Science, Teehnical University ofDenmark, October 1989.

[17] Jess Stein (Ed.). The Random House American Everyday Dictionary. Random
House, New York, N.Y., USA, 1949, 1961.

[18] Chris George, Anne Haxthausen, Steven Hughes, Robert Milne, Sjljren Prehn, and
Jan Storbank Pedersen. The RAISE Method. The BCS Practitioner Series. Prentice
Hall, 1995.

[19] Chris George, Peter Haff, Klaus Havelund, Anne Haxthausen, Robert Milne,
Claus Bendix Nielsen, Sjljren Prehn, and Kim Ritter Wagner. The RA1SE Specijication
Language. The BCS Practitioner Series. Prentice-Hall, Hemel Hampstead, England,
1992.

[20] Dines Bjjljrner. Domain Modelling: Resource Management Strategics, Tactics & Op
erations, Decision Support and Algorithmic Software. In J.C.P. Woodcock, editor,
Millennial perspectives in computer science, Palgrave, 2000.

[21] Zhou Chaochen, C. A R. Hoare, and A P. Ravn. A Calculus of Durations.
Information Proc. Letters, 40(5), 1992.

[22] Zhou Chaochen and Li Xiaoshan. A Mean Value Duration Calculus. Research Re
port 5, UNUlIIST, P.O.Box 3058, Macau, March 1993. Published as Chapter 25 in
A Classical Mind, Festschrift for C.AR. Hoare, Prentice-Hall International, 1994, pp
432-451.

[23] Zhou Chaochen, Anders P. Ravn, and Michael R. Hansen. An Extended Duration Cal
culus for Real-time Systems. Research Report 9, UNUlIIST, P.O.Box 3058, Macau,
January 1993. Published in: Hybrid Systems, LNCS 736,1993.

[24] Zhou Chaochen. Duration Calculi: An Overview. Research Report 10, UNUlIIST,
P.O.Box 3058, Macau, June 1993. Published in: Formal Methods in Programming
and Their Applieations, Conference Proceedings, June 28 - July 2, 1993, Novosi
birsk, Russia; (Eds.: D. Bjjljrner, M. Broy and I. Pottosin) LNCS 736, Springer-Verlag,
1993, pp 36-59.

9. "What is a method?" - an essay on some aspects of domain engineering 203

[25] Zhou Chaochen, Zhang Jingzhong, Yang Lu, and Li Xiaoshan. Linear Duration
Invariants. Research Report 11, UNU/IIST, P.O.Box 3058, Macau, July 1993. Pub
lished in: Formal Techniques in Real-Time and Fault-Tolerant systems, LNCS 863,
1994.

[26] C.A.R. Hoare. Communicating Sequential Processes. Communications of the ACM,
21(8), Aug. 1978.

[27] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International,
1985.

[28] A.W. Roseoe. Theory and Practice of Concurrency. Prentice-Hall, 1997.

[29] Michael A. Jackson. Description is Our Business. In VDM '91: Formal Software
Development Methods, pages 1-8. Springer-Verlag, October 1991.

[30] Pamela Zave and Michael A. Jackson. Techniques for partial specification and spec
ification of switching systems. In S. Prehn and W.J. Toetenel, editors, VDM'9I:
Formal Software Development Methods, volume 551 of LNCS, pages 511-525.
Springer-Verlag, 1991.

[31] Michael A. Jackson. Problems, methods and specialisation. Software Engineering
Journal, 9(6):249-255, November 1994.

[32] Michael A. Jackson. Software Development Method, chapter 13, pages 215-234.
Prentice Hall Intl., 1994. Festschrift for C. A. R. Hoare: A Classical Mind, Ed. W.
Roseoe.

[33] Pamela Zave and Michael A. Jackson. Where do operations come from? a multi
paradigm specification technique. IEEE transactions on software engineering, 22(7),
July 1996.

[34] Pamela Zave and Michael A. Jackson. Four dark Corners of Requirements Engi
neering. ACM Transactians on Software Engineering and Methodology, 6(1):1-30,
January 1997.

