
SEARCHING MULTIMEDIADATABASES BY CONTENT

SEARCHINGMULTIMEDIADATABASES BYCONTENTChristos FALOUTSOSUniversity of MarylandCollege Park, MD, USA
KLUWER ACADEMIC PUBLISHERSBoston/London/Dordrecht

Dedication
To my wife Christina and my parents Sophia and Nikos.

CONTENTSPREFACE ix1 INTRODUCTION 1Part I DATABASE INDEXINGMETHODS 52 INTRODUCTION TO RELATIONAL DBMS 73 PRIMARY KEY ACCESS METHODS 113.1 Hashing 113.2 B-trees 133.3 Conclusions 164 SECONDARY KEY ACCESS METHODS 194.1 Inverted �les 204.2 Point access methods (PAMs) 214.3 Conclusions 235 SPATIAL ACCESS METHODS (SAMS) 255.1 Space �lling curves 275.2 R-trees 345.3 Transformation to higher-d points 375.4 Conclusions 376 ACCESS METHODS FOR TEXT 416.1 Introduction 416.2 Full text scanning 42v

vi Searching multimedia databases by content6.3 Inversion 436.4 Signature Files 456.5 Vector Space Model and Clustering 476.6 Conclusions 52Part II INDEXING SIGNALS 557 PROBLEM - INTUITION 577.1 Introduction 577.2 Basic idea 598 1-D TIME SEQUENCES 658.1 Distance Function 658.2 Feature extraction and lower-bounding 658.3 Experiments 689 2-D COLOR IMAGES 719.1 Distance Function 729.2 Lower-bounding 739.3 Experiments 7510 SUB-PATTERNMATCHING 7710.1 Introduction 7710.2 Sketch of the Approach - `ST-index' 7810.3 Experiments 8011 FASTMAP 8311.1 Introduction 8311.2 Multi-Dimensional Scaling (MDS) 8511.3 A fast, approximate alternative: FASTMAP 8611.4 Case Study: Document Vectors and Information Retrieval. 9011.5 Conclusions 9212 CONCLUSIONS 95Part III MATHEMATICAL TOOLBOX 97

Contents viiA PRELIMINARIES 99B FOURIER ANALYSIS 103B.1 De�nitions 103B.2 Properties of DFT 104B.3 Examples 106B.4 Discrete Cosine Transform (DCT) 109B.5 m-dimensional DFT/DCT (JPEG) 110B.6 Conclusions 111C WAVELETS 113C.1 Motivation 113C.2 Description 114C.3 Discussion 116C.4 Code for Daubechies-4 DWT 117C.5 Conclusions 120D K-L AND SVD 121D.1 The Karhunen-Loeve (K-L) Transform 121D.2 SVD 126D.3 SVD and LSI 130D.4 Conclusions 131REFERENCES 133

PREFACEThe problem on target is the searching of large multimedia databases by con-tent. For example, `given a collection of color images, �nd the ones that look likea sunset'. Research on a speci�c domain (eg., machine vision, voice processing,text retrieval) typically focuses on feature extraction and similarity functions,with little regard to the e�ciency of the search. Conversely, database researchhas focused on fast searching for a set of numbers or strings or vectors.The main goal of this book is to try to bridge the gap between the databaseand signal processing communities. The book provides enough backgroundinformation for both areas, presenting the intuition and the mechanics of thebest tools in each area, as well as discussing when and how these tools can worktogether.The structure of the book re
ects its goal. The �rst half of the book reviewsthe most successful database access methods, in increasing complexity. It startsfrom primary-key access methods, where B-trees and hashing are the industrywork-horses, and continues with methods that handle n-dimensional vectors.A chapter is also devoted to text retrieval, because text is important on its ownright, and because it has led to some extremely useful ideas, like relevance feed-back, clustering and the vector-space model. In all the sections, the emphasisis on practical approaches that have been incorporated in commercial systems,or that seem very promising.The second half of the book uses the above access methods to achieve fastsearching in a database of signals. In all cases, the underlying idea is to extractn features from each signal (eg, the �rst n Discrete Fourier Transform (DFT)coe�cients), to map a signal into a point in n-dimensional space; subsequently,the access methods of the �rst part can be applied to search for similar signals intime that is much faster than sequential scanning, without missing any signalsthat sequential scanning would �nd (`complete' searching). Then, the bookpresents some recent, successful applications of this approach on time seriesand color images. It also describes methods to extract automatically featuresix

x Searching multimedia databases by contentfrom a distance function, using the so-called Multidimensional Scaling (MDS),as well as a newer, faster approximation, called `FastMap'.Finally, the appendix gives some background information on fundamental sig-nal processing and linear algebra techniques: the traditional Discrete FourierTransform (DFT), the Discrete Cosine Transform (used in the JPEG stan-dard), the Discrete Wavelet transform, which is the state-of-the-art in signalprocessing, the Karhunen-Loeve transform for optimal dimensionality reduc-tion, and the closely related Singular Value Decomposition (SVD), which is apowerful tool for approximation problems. In all the above discussions, theemphasis is on the physical intuition behind each technique, as opposed to themathematical properties. Source code is also provided for several of them.The book is targeted towards researchers and developers of multimedia systems.It can also serve as a textbook for a one-semester graduate course on multi-media searching, covering both access methods as well as the basics of signalprocessing. The reader is expected to have an undergraduate degree in engi-neering or computer science, and experience with some high-level programminglanguage (eg., `C'). The exercises at the end of each chapter are rated accordingto their di�culty. The rating follows a logarithmic scheme similar to the oneby Knuth [Knu73]:00 Trivial - it should take a few seconds10 Easy - it should take a few minutes20 It should take a few hours. Suitable for homework exercises.30 It should take a few days. Suitable for a week-long class project.40 It should take weeks. Suitable for a semester class project.50 Open research question.Acknowledgements Several friends and colleagues have helped in this ef-fort. In alphabetic order: Rakesh Agrawal, Howard Elman, Will Equitz, My-ron Flickner, H.V. Jagadish, Philip (Flip) Korn, King-Ip (David) Lin, YannisManolopoulos, Wayne Niblack, Douglas Oard, Dragutin Petkovic, M. Ran-ganathan, Arun Swami, and Kuansan Wang. The research funding of the Na-tional Science Foundation (NSF) is also gratefully acknowledged (IRI-8958546,IRI-9205273).

1INTRODUCTION
As a working de�nition of a Multimedia Database System we shall consider asystem that can store and retrieve multimedia objects, such as 2-dimensionalcolor images, gray-scale medical images in 2-d or 3-d (eg., MRI brain scans),1-dimensional time series, digitized voice or music, video clips, traditional datatypes, like `product-id', `date', `title', and any other user-de�ned data types.For such a system, what this book focuses on is the design of fast searchingmethods by content. A typical query by content would be, eg., `in a collectionof color photographs, �nd ones with a same color distribution like a sunsetphotograph'.Speci�c applications include the following:Image databases, where we would like to support queries on color, shapeand texture [NBE+93].Financial, marketing and production time series, such as stock prices, salesnumbers etc. In such databases, typical queries would be `�nd companieswhose stock prices move similarly', or `�nd other companies that have simi-lar sales patterns with our company', or `�nd cases in the past that resemblelast month's sales pattern of our product'Scienti�c databases, with collections of sensor data. In this case, theobjects are time series, or, more general, vector �elds, that is, tuples ofthe form, eg., < x; y; z; t; pressure; temperature; : : : >. For example, inweather data [CoPES92], geological, environmental, astrophysics [Vas93]databases, etc., we want to ask queries of the form, e.g., `�nd past days inwhich the solar magnetic wind showed patterns similar to today's pattern'to help in predictions of the earth's magnetic �eld [Vas93].1

2 Chapter 1multimedia databases, with audio (voice, music), video etc. [NC91]. Usersmight want to retrieve, eg., similar music scores, or video clips.Medical databases, where 1-d objects (eg., ECGs), 2-d images (eg., X-rays)[PF94] and 3-d images (eg., MRI brain scans) [ACF+93] are stored. Abilityto retrieve quickly past cases with similar symptoms would be valuable fordiagnosis, as well as for medical teaching and research purposes.text and photograph archives [Nof86], digital libraries [TSW+85] [Har94]with ASCII text, bitmaps, gray-scale and color images.o�ce automation [MRT91], electronic encyclopedias [ST84] [GT87], elec-tronic books [YMD85].DNA databases [AGM+90] [WZ96] where there is a large collection of longstrings (hundred or thousand characters long) from a four-letter alphabet(A,G,C,T); a new string has to be matched against the old strings, to�nd the best candidates. The distance function is the editing distance(smallest number of insertions, deletions and substitutions that are neededto transform the �rst string to the second).It is instructive to classify the queries of interest in increasing complexity. Con-sider, for illustration, a set of employee records, where each record contains theemployee number emp#, name, salary, job-title, a resume (ASCII text), agreeting (digitized voice clip) and a photograph (2-d color image). Then, thequeries of interest form the following classes.primary key `Find the employee record with emp#= 123'. That is, the speci-�ed attribute has no duplicates.secondary key `Find the employee records with salary=40K and job-title= engineer'. That is, the queries involve attributes that may have duplicatevalues.text `Find the employee records containing the words `manager', `marketing'in their resume'. A text attribute contains an unspeci�ed number of al-phanumeric strings.signals For example, a query on 1-d signals could be `Find the employee recordswhose greeting sounds similar to mine'. Similarly, for 2-d signals, a querycould be `Find employee photos that look like a desirable photo'.

Introduction 3Acronym De�nitionDCT Discrete Cosine TransformDFT Discrete Fourier TransformDNA DeoxyriboNucleic AcidDWT Discrete Wavelet TransformGEMINI GEneric Multimedia INdexIng methodGIS Geographic Information SystemsIR Information RetrievalLSI Latent Semantic IndexingMBR Minimum Bounding RectangleMDS Multi-Dimensional ScalingMRI Magnetic Resonance ImagingPAM Point Access MethodSAM Spatial Access MethodSVD Singular Value DecompositionSWFT Short-Window Fourier TransformWWW World-Wide-WebTable 1.1 Summary of Acronyms and De�nitionsThe book is organized in two parts and an appendix, following the above classi-�cation of queries. In the �rst part, we present the most successful methods forindexing traditional data (primary, secondary, and text data). Most of thesemethods, like B-trees and hashing, are textbook methods and have been suc-cessfully incorporated in commercial products. In the second part we examinemethods for indexing signals. The goal is to adapt the previously mentionedtools and to make them work in this new environments. Finally, in the appendixwe present some fundamental techniques from signal processing and matrix al-gebra, such as the Fourier transform and the Singular Value Decomposition(SVD).Table 1.1 gives a list of the acronyms that we shall use in the book.

PART IDATABASE INDEXING METHODS

2INTRODUCTION TO RELATIONALDBMS
This chapter presents the minimal necessary set of concepts from relationaldatabase management systems. Excellent textbooks include, eg., [KS91] [Dat86].The chapter also describes how the proposed methods will �t in an extensibleDBMS, customized to support multimedia datatypes.Traditional, relational database management systems (`RDBMS' or just `DBMS')are extremely popular. They use the relational model [Cod70] to describe thedata of interest. In the relational model, the information is organized in tables(`relations'); the rows of the tables correspond to records, while the columnscorrespond to attributes. The language to store and retrieve information fromsuch tables is the Structured Query Language (SQL).For example, if we want to create a table with employee records, so that we canstore their employee number, name, age and salary, we can use the followingSQL statement:create table EMPLOYEE (emp# integer,name char(50),age float,salary float);The result of the above statement is to notify the DBMS about the EMPLOYEEtable (see Figure 2.1). The DBMS will create a table, which will be empty, butready to hold EMPLOYEE records.Tables can be populated with the SQL insert command. E.g.7

8 Chapter 2EMPLOYEE emp# name age salaryFigure 2.1 An empty EMPLOYEE table (`relation').insert into EMPLOYEE values (123, "Smith, John", 30, 38000.00);will insert a row in the EMPLOYEE table, recording the information aboutthe employee `Smith'. Similarly, the command to insert the record for anotheremployee, say, `Johnson', is:insert into EMPLOYEE values (456, "Johnson, Tom", 25, 55000.00);The result is shown in Figure 2.2EMPLOYEE emp# name age salary123 Smith, John 30 38000.00456 Johnson, Tom 25 55000.00Figure 2.2 The EMPLOYEE table, after two insertionsWe can retrieve information using the select command. E.g., if we want to�nd all the employees with salary less than 50,000, we issue the following query:select *from EMPLOYEEwhere salary <= 50000.00In the absence of indices, the DBMS will perform a sequential scanning, check-ing the salary of each and every employee record against the desired thresholdof 50,000. To accelerate queries, we can create an index (usually, a B-tree in-dex, as described in Chapters 3 and 4), with the command create index. For

Introduction to Relational DBMS 9example, to build an index on the employee's salary, we would issue the SQLstatement:create index salIndex on EMPLOYEE (salary);SQL provides a large number of additional, valuable features, such as the abilityto retrieve information from several tables (`joins') and the ability to performaggregate operations (sums, averages). However, we restrict the discussion tothe above few features of SQL, which are the absolutely essential ones for thisbook.Every commercial DBMS o�ers the above functionalities, supporting numericaland string datatypes. Additional, user-de�ned datatypes, like images, voiceetc., need an extensible DBMS. Such a system o�ers the facility to providenew data types, along with functions that operate on them. For example, onedatatype could be `voiceClip', which would store audio �les in some speci�edformat; another datatype could be `image', which would store, eg., JPEG colorimages. The de�nition of new datatypes and the associated functions for them(`display', `compare' etc.) are typically implemented by a specialist. After suchdatatypes have been de�ned, we could create tables that can hold multimediaemployee records, with the command, eg.:create table EMPLOYEE (emp# fixed,name char(50),salary float,age float,greeting voiceClip,face image);Assuming that the predicate similar has been appropriately de�ned for the`image' datatype, we can look for employees that look like given person, asfollows:select namefrom EMPLOYEEwhere EMPLOYEE.face similar desirableFace

10 Chapter 2where `desirableFace' is the object-id of the desirable JPEG image.Providing the ability to answer such queries is exactly the focus of this book.The challenges are two: (a) how to measure `similarity' and (b) how to searche�ciently. In this part of the book we examine older database access meth-ods that can help accelerate the search. In the second part we discuss somesimilarity measures for multimedia data types, like time sequences and colorimages.Before we continue with the discussion of database access methods, we shouldnotice that they are mainly geared towards a two-level storage hierarchy:The �rst level is fast, small, and expensive. Typically, it is the mainmemory or core or RAM, with an access time of micro-seconds or faster.The second level (secondary store) is much slower, but much larger andcheaper. Typically, it is a magnetic disk, with �5-10 msec access time.Typically, database research has focused on large databases, which do not �t inmain memory and thus have to be store on secondary store. A major charac-teristic of the secondary store is that it is organized into blocks (= pages). Thereason is that, accessing data from the disk involves the mechanical move of theread/write head of the disk above the appropriate track on the disk. Exactlybecause these moves (`seeks') are slow and expensive, every time we do a disk-read we bring into main memory a whole disk block, of the order of 1Kb-8Kb.Thus, it makes a huge performance di�erence if we manage to group similardata in the same disk blocks. Successful access methods (like the B-trees) tryexactly to achieve good clustering, to minimize the number of disk-reads.

3PRIMARY KEY ACCESS METHODS
Here we give a brief overview of the traditional methods to handle queries onprimary (ie, unique) keys. Considering the running example of EMPLOYEErecords, a typical query is, eg., `�nd the employee with emp# = 344'. Noticethat the emp# is assumed to have no duplicates.Primary key access methods are useful for multimedia data for two reasons:1. primary keys will be part of the information: for example, in an employeedatabase, we may have the emp# as the primary key; in a video database,we may have the title or the ISBN as the primary key, etc.2. The primary key access methods provide fundamental ideas, like the hier-archical organization of records that the B-trees suggest. These ideas werethe basis for newer, more general and more powerful access methods, likethe R-trees (see Section 5.2), that can be used for multimedia data as well.For primary keys on secondary store, the textbook approaches are two: B-treesand hashing [Knu73].3.1 HASHINGThe idea behind hashing is the key-to-address transformation. For example,consider a set of 40,000 employee records, with unique 9-digit emp#. Also as-sume that we are interested in providing fast responses for queries on emp#.11

12 Chapter 3Suppose we have decided to use 1,000 consecutive disk pages (=blocks = buck-ets), each capable of holding 50 records. Then, we can use a hashing functionh(), to map each key to a bucket. For example:h(emp#) = (emp#) mod 1000 (3.1)is a function that maps each emp# to its last three digits, and therefore, to thecorresponding bucket, as shown in Figure 3.1
...

...

...

...

239.443.669 Smith ...

page #0

page#1

page #669

page #999Figure 3.1 Illustration of a hash table, with 'division hashing' (h(emp#) =(emp#) mod 1000).The �rst step in the design of a hashing scheme is the choice of the hashingfunction. There are several classes of them, the most successful ones being(a) the division hashing, like the function of Eq. 3.1 and (b) the multiplicationhashing.The second step in the design of a hashing scheme is to choose a collision resolu-tion method. Notice that we deliberately allocate more space in the hash tablethan needed: in our example, 50,000 slots, versus 40,000 records; in general, weopt for 80%-90% load factor. However, due to the almost random nature of thehashing function, there is always the possibility for bucket-over
ows. In sucha case, we have several choices, the most popular being: (a) using a separateover
ow area (`separate chaining') and (b) re-hashing to another bucket (`openaddressing').

Primary key access methods 13There are numerous surveys, variations and analyses of hashing [Kno75, SD76,Sta80, Lar85]. An easily accessible hash-table implementation is the ndbm pack-age of UNIXTM, which uses hashing with `open addressing'.3.1.1 Extensible hashingThe original hashing su�ered from the fact that the hash table can not grow orshrink, to adapt to the volume of insertions and deletions. The reason is thatthe size of the table is `hardwired' in the hashing function; changing the sizeimplies changing the hashing function, which may force relocation of each andevery record, a very expensive operation.Relatively recent developments tried to alleviate this problem by allowing thehash table to grow and shrink without expensive reorganizations. These meth-ods come under the name of extensible hashing: extendible hashing [FNPS79],dynamic hashing [Lar78], spiral hashing [Mar79], linear hashing [Lit80], linearhashing with partial expansions [Lar82]. See [Lar88] for a recent survey andanalysis of such methods.3.2 B-TREESB-trees and variants are among the most popular methods for physical �leorganization on disks [BM72]. Following Knuth [Knu73], we have:De�nition 3.1 A B-tree of order m is a multiway tree, with the key-orderingproperty, satisfying the following restrictions:1. Every node has � m sons.2. Every node, except for the root, has � m/2 sons.3. The root has at least 2 sons, unless it is a leaf.4. All leaves appear at the same level5. A non-leaf node with k sons contains k-1 keys.

14 Chapter 3The key-ordering property means that, for every sub-tree, the root of the sub-tree is greater than all the key values at the left and smaller than all the keyvalues at the right sub-tree. Notice that the leaves are empty; in practice, theleaves and the pointers pointing to them are omitted, to save space.To achieve a high fan-out, the tree does not store the full records; instead, itstores pointers to the actual records. More speci�cally, the format of a B-treenode of order m is as follows:(p1; key1; ptr1; p2; key2; ptr2; : : : ; pm)where ptri is the pointer to the record that corresponds to keyi; pi is a pointerto another B-tree node (or null). Figure 3.2 shows a B-tree of order m=3 andheight 2. Notice that (a) the pointers to the records are not shown (b) the treeful�lls the B-tree properties.
4 12

3 5 8 15 18

omitted
in practice

XFigure 3.2 Illustration of a B-tree of orderm=3. `X' indicates null pointers.
4

12

3 5 8 15 18

17

X

X

X X X

XFigure 3.3 Insertion of key #17 in the previous B-tree.Because of the above de�nition, a B-tree has the following desirable character-istics:it is always balanced, thus leading to logarithmic search time O(logm(N +1)) and few disk accesses.

Primary key access methods 15it has guaranteed 50% space utilization, while the average is � 69% [Yao78,LW89, JS89]it also has logarithmic insertion and deletion times.The insertion and deletion algorithms are masterfully designed [BM72] to main-tain the B-tree properties. A full discussion is outside the scope of this book(see, eg., [Knu73]). A brief sketch of them is instructive, though:The insertion algorithm works as follows: given a key to be inserted, we �ndthe appropriate leaf node; if there is not enough space there, then we splitthe node in two, pushing the middle key to the parent node; the parent nodemay recursively over
ow and split again. Figure 3.3 shows the resulting B-tree,after key `17' is inserted into the B-tree of Figure 3.2. Notice the propagatedsplit, which created a new root, thus increasing the height of the B-tree. Thus,the B-tree `grows from the leaves'. Notice that a node has the lowest possibleutilization (50%) immediately after a split, exactly because we split a 100%-fullnode into 2 new ones.Deletion is done in the reverse way: omitting several details, if a node under-
ows, it either borrows keys from one of its siblings, or it merges with a siblinginto a new node.B-trees are very suitable for disks: each node of the B-tree is stored in onepage; typically, the fanout is large, and thus the B-tree has few levels, requiringfew disk (�node) accesses for a search.This concludes the quick introduction to the basic B-trees. There are two verysuccessful variations, namely the B+-trees and the B�-trees:The B+-trees keep a copy of all the keys at the leaves, and string the leavestogether with pointers. Thus the scanning of the records in sorted order isaccelerated: after we locate the �rst leaf node, we just follow the pointerto the next leaf.The B�-trees introduce the idea of deferred splitting. Splits hurt the per-formance, because they create new, half-empty nodes, and potentially theycan make the tree taller (and therefore slower). The goal is to try to post-pone splits: instead of splitting in two an over
owing node, we check tosee if there is a sibling node that could host some of the over
owing keys.If the sibling node is also full, only then we do a split. The split though

16 Chapter 3involves both of the full nodes, whose entries are divided among three newnodes. This clever idea results in much fewer splits and in guaranteed 66%(= 2/3) space utilization of the nodes, with a higher average than that.These splits are called `2-to-3' splits; obviously, we can have `3-to-4' and`s-to-(s + 1)' splits. However, the programming complexity and the addi-tional disk accesses on insertion time reach a point of diminishing returns.Thus, the `2-to-3' split policy usually provides a good trade-o� betweensearch time and insertion e�ort.3.3 CONCLUSIONSB-trees and hashing are the industry work-horses. Each commercial systemprovides at least one of them. Such an index is built, eg., by the create indexcommand of SQL, as discussed in Chapter 2. The two methods compare asfollows:B-trees guarantee logarithmic performance for any operation (insertion,deletion, search), while hashing gives constant search on the average (withlinear performance, in the worst case). Depending on the speci�c version,the insertion and update times for hashing can be constant, or grow linearlywith the relation size.B-trees can expand and shrink gracefully, as the relation sizes grows orshrinks; hashing requires expensive reorganization unless an extensiblehashing method is used (such as the `linear hashing').B-trees preserve the key order, which allows them to answer range queries,nearest neighbor queries, as well as to support ordered sequential scanning.(Eg., consider the query `print all the employees' paychecks, in increasingemp# order').ExercisesExercise 3.1 [15] In the B-tree of Figure 3.2, insert the key `7'.Exercise 3.2 [15] In the B-tree of Figure 3.3, delete the key `15'.

Primary key access methods 17Exercise 3.3 [32] Design and implement the algorithm for insertion and dele-tion in B-trees.Exercise 3.4 [34] Design and implement the algorithm for insertion and dele-tion in B�-trees (i.e., with deferred splitting).Exercise 3.5 [25] Using an existing B-tree package, analyze its average-casespace utilization through simulation.Exercise 3.6 [25] Implement a phone-book database, using the ndbm library ofUNIXTM. Treat the phone number as the primary key.

4SECONDARY KEY ACCESSMETHODS
Access methods for secondary key retrieval have attracted much interest. Theproblem is stated as follows: Given a �le, say, EMPLOYEE(name, salary,age), organize the appropriate indices so that we can answer e�ciently querieson any and all of the available attributes. Rivest [Riv76] classi�ed the possiblequeries into the following classes, in increasing order of complexity:exact match query, when the query speci�es all the attribute values of thedesired record, e.g.:name = `Smith' and salary = 40,000 and age = 45partial match query, when only some of the attribute values are speci�ed,e.g.: salary = 40,000 and age = 35range queries, when ranges for some or all of the attributes are speci�ed,e.g.: 35,000 � salary � 45,000 and age = 45Boolean queries:((not name = `Smith') and salary � 40,000) or age � 50In the above classi�cation, each class is a special case of the next class. A classof queries outside the above hierarchy is the nearest neighbor query:19

20 Chapter 4nearest neighbor or best match query, eg.:salary � 45,000 and age � 55where the user speci�es some of the attribute values, and asks for the bestmatch(es), according to some pre-speci�ed distance/dis-similarity function.In this chapter, �rst we mention the inverted �les, which is the industry work-horse. Then we describe some methods that treat records as points in k-dspace (where k is the number of attributes); these methods are known as pointaccess methods or PAMs, and are closely related to the upcoming spatial accessmethods (SAMs).4.1 INVERTED FILESThis is the most popular approach in database systems. An inverted �le on agiven attribute (say, `salary') is built as follows: For each distinct attributevalue, we store:1. A list of pointers to records that have this attribute value (postings list).2. Optionally, the length of this list.The set of distinct attribute values is typically organized as a B-tree or as ahash table. The postings lists may be stored at the leaves, or in a separate areaon the disk. Figure 4.1 shows an index on the salary of an EMPLOYEE table.A list of unique salary values is maintained, along with the `postings' lists.Given indices on the query attributes, complex boolean queries can be resolvedby manipulating the lists of record-pointers, before accessing the actual records.A interesting variation that can handle conjunctive queries has been proposedby Lum [Lum70], by using combined indices: We can build an index on theconcatenation of two or more attributes, for example (salary, age). Suchan index can answer easily queries of the form `salary=40000 and age=30',without the need of merging any lists. Such an index will contain all the unique,existing pairs of (salary, age) values, sorted on lexicographical order. For eachpair, it will have a list of pointers to the EMPLOYEE records with the speci�edcombination of salary and age.

Secondary key access methods 21
 ...

EMPLOYEE

Salary ...

Smith 38K

Name

Jones 55K

postings
lists

Salary Index

10K

38K

55K

(B−tree) ...

...Figure 4.1 Illustration of inversion: a B-tree index on salary.As mentioned in Chapter 2, plain or combined indices can be created automat-ically by a relational DBMS, with the SQL command create index.4.2 POINT ACCESS METHODS (PAMS)A fruitful point of view is to envision a record with k attributes as a point ink-dimensional space. Then, there are several methods that can handle points,the so-called Point Access Methods (PAMs) [SK90]. Since most of them canalso handle spatial objects (rectangles, polygons, etc.) in addition to points, wepostpone their description for the next chapter. Here we brie
y describe twoof the PAMs, the grid �les, and the k-d-trees. They both are mainly designedfor points and they have proposed important ideas that several SAMs havesubsequently used.4.2.1 Grid FileThe grid �le [NHS84] can be envisioned as the generalization of extendiblehashing [FNPS79] in multiple dimensions. The idea is that it imposes a gridon the address space; the grid adapts to the data density, by introducing moredivisions on areas of high data density. Each grid cell corresponds to one diskpage, although two or more cells may share a page. To simplify the `record-keeping', the cuts are allowed only on prede�ned points (1/2, 1/4, 3/4 etc. ofeach axis) and they cut all the way through, to form a grid. Thus, the grid

22 Chapter 4�le needs only a list of cut-points for every axis, as well as a directory. Thedirectory has one entry for every grid cell, containing a pointer to the disk pagethat contains the elements of the grid cell.The grid �le has the following desirable properties: it guarantees 2 disk ac-cesses for exact match queries; it is symmetric with respect to the attributes;and it adapts to non-uniform distributions. However, it su�ers from two disad-vantages: (a) it does not work well if the attribute values are correlated (eg.,`age' and `salary' might be linearly correlated in an EMPLOYEE �le) and(b) it might need a large directory, if the dimensionality of the address space ishigh (`dimensionality curse'). However, for a database with low-dimensionalitypoints and un-correlated attributes, the grid �le is a solution to consider.Several variations have been proposed, trying to avoid these problems: therotated grid �le [HN83] rotates the address space, trying to de-correlate theattributes; the tricell method [FR89a] uses triangular as opposed to rectangulargrid cells; the twin grid �le [HSW88] uses a second, auxiliary grid �le, to storesome points, in an attempt to postpone the directory growth of the main grid�le.4.2.2 K-d-treesThis is the only main-memory access method that we shall describe in thisbook. The exception is due to the fact that k-d-trees propose elegant ideasthat have been used subsequently in several access methods for disk-baseddata. Moreover, extensions of the original k-d-tree method have been proposed[Ben79] to group and store k-d-tree nodes on disk pages, at least for static data.The k-d-tree [Ben75] divides the address space in disjoint regions, through `cuts'on alternating dimensions/attributes. Structurally, it is a binary tree, withevery node containing (a) a data record (b) a left pointer and (c) a right pointer.At every level of the tree, a di�erent attribute is used as the `discriminator',typically in a round-robin fashion.Let n be a node, r be the record in this node, and A be the discriminator forthis node. Then, the left subtree of the node n will contain records with smallerA values, while the right subtree will contain records with greater or equal Avalues. Figure 4.2(a) illustrates the partitioning of the address space by a k-d-tree: the �le has 2 attributes (eg., `age' and `salary'), and it contains the

Secondary key access methods 23following records (in insertion order): (30,50), (60,10), (45, 20). Figure 4.2(b)shows the equivalent k-d-tree as a binary tree.
20 40 60

20

40

60

(30,50)

(60,10)

(45,20)

Attribute A1

Attribute
A2

30,50

discriminator

A1

A2

A1

A1 >= 30

60,10

A1 < 30

A2 >= 10A2 < 10

45,20

A1 >= 45A1 < 45(a) (b)Figure 4.2 Illustration of a k-d tree with three records: (a) the divisions inthe address space and (b) the tree itself.The k-d tree can easily handle exact-match queries, range queries and nearest-neighbor queries [Ben75]. The algorithms are elegant and intuitive, and theytypically achieve good response times, thanks to the e�cient `pruning' of thesearch space that the k-d-tree leads to.Several disk-based PAMs have been inspired by or used k-d-trees. The k-d-B-trees [Rob81] divide the address space in m regions for every node (as opposedto just 2 that the k-d-tree does), where m is fanout of the tree. The hB-tree[LS90] divides the address space in regions that may have `holes'; moreover,the contents of every node/disk-page are organized into a k-d-tree.4.3 CONCLUSIONSWith respect to secondary-key methods, inversion with a B-tree (or hashed)index is automatically provided by commercial DBMS with the create indexSQL command. The rest of the point access methods are typically used instand-alone systems. Their extensions, the spatial access methods, are examinednext.

24 Chapter 4ExercisesExercise 4.1 [33] Implement a grid-�le package, for n=2 dimensions withinsertion and range search routines.Exercise 4.2 [33] Modify the previous package, so that the number of dimen-sions n is user-de�ned.Exercise 4.3 [30] For each of the above packages, implement a `nearest neigh-bor' search algorithm.Exercise 4.4 [20] Extend your nearest neighbor algorithms to search for knearest neighbors, where k is user-de�ned.Exercise 4.5 [30] Populate each of the above packages with N=10,000-100,000points; issue 100 nearest-neighbor queries, and plot the response time of eachmethod, as well as the time for the sequential scanning.Exercise 4.6 [30] Using a large database (real or synthetic, such as the Wis-consin benchmark), and any available RDBMS, ask selections queries beforeand after building an index on the query attributes; time the results.

5SPATIAL ACCESS METHODS(SAMS)
In the previous section we examined the so-called `secondary key' access meth-ods, which handle queries on keys that may have duplicates (eg., `salary',or `age', in an EMPLOYEE �le). As mentioned, records with k numerical at-tributes can be envisioned as k-dimensional points. Here we examine spatialaccess methods, which are designed to handle multidimensional points, lines,rectangles and other geometric bodies.There are numerous applications that require e�cient retrieval of spatial ob-jects:Traditional relational databases, where, as we mentioned, records withk-attributes become points in k-d spaces (see Figure 5.1(a)).Geographic Information Systems (GIS), which contain, eg., point data,such as cities on a two-dimensional map (see Figure 5.1(b)).Medical image databases with, for example, three-dimensional MRI brainscans, require the storage and retrieval of point-sets, such as digitizedsurfaces of brain structures [ACF+93].Multimedia databases, where multi-dimensional objects can be representedas points in feature space [Jag91, FRM94]. For example, 2-d color im-ages correspond to points in (R,G,B) space (where R,G,B are the averageamount of red, green and blue [FBF+94]). See Figure 5.1(c).Time-sequences analysis and forecasting [WG94, CE92], where k successivevalues are treated as a point in k-d space; correlations and regularities inthis k-d space help in characterizing the dynamical process that generatesthe time series. 25

26 Chapter 5Rule indexing in expert database systems [SSH86] where rules can be rep-resented as ranges in address space (eg., `all the employees with salary inthe range (10K-20K) and age in the rage (30-50) are entitled to speci�chealth bene�ts'). See Figure 5.1(d).In a collection of spatial objects, there are additional query types that are ofinterest. The following query types seem to be the most frequent:1. range queries, a slight generalization of the range queries we saw in sec-ondary key retrieval. Eg., `�nd all cities within 10 miles from WashingtonDC'; or `�nd all rivers in Canada'. Thus the user speci�es a region (acircle around Washington, or the region covered by Canada) and asks forall the objects that intersect this region. The point query is a special caseof the range query, when the query region collapses to a point. Typically,the range query request all the spatial objects that intersect a region; sim-ilarly, it could request the spatial objects that are completely contained, orthat completely contain the query region. We mainly focus on the `inter-section' variation; the rest two can usually be easily answered, by slightlymodifying the algorithm for the `intersection' version.2. nearest neighbor queries, again a slight generalization of the nearest neigh-bor queries for secondary keys. Eg., `�nd the 5 closest post-o�ces to ouro�ce building'. The user speci�es a point or a region, and the system hasto return the k closest objects. The distance is typically the Euclidean dis-tance (L2 norm), or some other distance function (eg., city-block distanceL1, or the L1 norm etc).3. spatial joins, or overlays: eg., in a CAD design, `�nd the pairs of elementsthat are closer than �' (and thus create electromagnetic interference to eachother). Or, given a collection of lakes and a collection of cities, `�nd allthe cities that are within 10km from a lake'.The proposed methods in the literature form the following classes. For a recent,extensive survey, see [GG95].Methods that use space �lling curves (also known as z-ordering or linearquadtrees).Methods that use tree-like structures: R-trees and its variants.

Spatial access methods (SAMs) 27
x

x

x
x

x
xx

x x
x

x
x

x
x

x

x

age

salary

x

x

x

x
x

x

x(a) traditional db (b) Geographic db
o

o

o

o

o o

o

o

o

o

o

feature 1

feature 2

Thompson
. . .

Johnson

Smith

o

o

o

age

salary

Rule1

Rule2

20 40

20K

40K

60K(c) Multimedia db (d) rule indexingFigure 5.1 Applications of Spatial Access MethodsThe next two sections are dedicated to each of the above classes. For eachclass we discuss the main idea, its most successful variations, and sketch thealgorithms to handle the above query types. In the third section we presentthe idea that transforms spatial objects into higher-dimensionality points. Inthe last section we give the conclusions for this chapter.5.1 SPACE FILLING CURVESThe method has attracted a lot of interest, under the names of N-trees [Whi81],linear quadtrees [Gar82], z-ordering [Ore86] [OM88] [Ore89] [Ore90] etc. Thefundamental assumption is that there is a �nite precision in the representationof each co-ordinate, say K bits. The terminology is easiest described in 2-daddress space; the generalizations to n dimensions should be obvious. Followingthe quadtree literature, the address space is a square, called an image , and it

28 Chapter 5is represented as a 2K � 2K array of 1� 1 squares. Each such square is calleda pixel .Figure 5.2 gives an example for n=2 dimensional address space, with K=2 bitsof precision. Next, we describe how the method handles points and regions.5.1.1 Handling pointsThe space �lling curve tries to impose a linear ordering on the resulting pixelsof the address space, so that to translate the problem into a primary-key accessproblem.
00 01 10 11

00

01

10

11

X

Y

0 4 8 12 16

A

B

CFigure 5.2 Illustration of Z-orderingOne such obvious mapping is to visit the pixels in a row-wise order. A betteridea is to use bit interleaving [OM84]. Then, the z-value of a pixel is the value ofthe resulting bit string, considered as a binary number. For example, considerthe pixel labeled `A' in Figure 5.2, with coordinates xA= 00 and yA= 11.Suppose that we decide to shu�e the bits, starting from the x-coordinate �rst,that is, the order with which we pick bits from the coordinates is `1,2,1,2' (`1'corresponds to the x coordinate and `2' to the y coordinate). Then, the z-valuezA of pixel `A' is computed as follows:zA = Shu�e (`1,2,1,2', xA, yA) = Shu�e (`1,2,1,2', 00, 11) = 0101 = (5)10

Spatial access methods (SAMs) 29Visiting the pixels in ascending z-value order creates a self-similar trail as de-picted in Figure 5.2 with a dashed line; the trail consists of `N' shapes, organizedto form larger `N' shapes recursively. Rotating the trail by 90 degrees gives `z'shapes, which is probably the reason that the method was named z-ordering.Figure 5.3 shows the trails of the z-ordering for a 2�2, a 4�4 and an 8�8 grid.Notice that each larger grid contains four miniature replicas of the smaller grids,joined in an `N' shape.Figure 5.3 Z-order curves for 2x2, 4x4 and 8x8 grids.We have just described one method to compute the z-value of a point in 2-daddress space. The extension to n-d address spaces is obvious: we just shu�ethe bits from each of the n dimensions, visiting the dimensions in a round-robinfashion. The inverse is also obvious: given a z-value, we translate it to a binarynumber and un-shu�e its bits, to derive the n coordinate values.5.1.2 Handling RegionsThe z-value of a region is more complicated. In fact, a region typically breaksinto one or more pieces, each of which can be described by a z-value. Forexample, the region labeled `C' in Figure 5.2 breaks into two pixels C1 and C2,with z-values zC1 = 0010 = (2)10zC2 = 1000 = (8)10The region labeled `B' consists of four pixels, which have the common pre�x 11in their z-values; in this case, the z-value of `B' is exactly this common pre�x:zB = 11A conceptually easier and computationally more e�cient way to derive the z-values of a region is through the concept of `quadtree blocks'. Consider the

30 Chapter 5four equal squares that the image can be decomposed into. Each such squareis called a level-1 block ; a level-i block can be recursively de�ned as one of thefour equal squares that constitute a level-(i � 1) block. Thus, the pixels arelevel-K blocks; the image is the (only) level-0 block. Notice that for a level-iblock, all its pixels have the same pre�x up to 2i bits; this common pre�x isde�ned as the z-value of the given block.We obtain the quadtree decomposition of an object (region) by recursivelydividing it into blocks, until the blocks are homogeneous or until we reach thepixel level (level-K blocks). For a 2-dimensional object, the decomposition canbe represented as a 4-way tree, as shown in Figure 5.4(b). Blocks that areempty/full/partially-full are represented as white, black and gray nodes in thequadtree, respectively.For e�ciency reasons (eg., see [Ore89, Ore90]), we typically approximate anobject with a `coarser resolution' object. In this case, we stop the decompositionearlier, eg., when we reach level-i blocks (i < K), or when we have a largeenough number of pieces. Figure 5.4(c) and (d) give an example.The quadtree representation gives an easy way to obtain the z-value for aquadtree block: Let `0' stand for `south' and for `west', and `1' stand for `north'and for `east'. Then, each edge of the quadtree has a unique, 2-bit label, asshown in Figure 5.4; the z-value of a block is de�ned as the concatenation of thelabels of the edges from the root of the quadtree to the node that correspondsto the given block.Since every block has a unique z-value, we can represent the quadtree decom-position of an object by listing the corresponding z-values. Thus, the z-valuesof the shaded rectangle in �gure 5.4(a) are `0001' (for `WS WN') `0011' (for`WS EN') and `01' (for `WN').As described above, quadtrees have been used to store objects in main memory.For disk storage, the prevailing approach is the so-called linear quadtree [Gar82],or, equivalently the z-ordering method [Ore86]. Each object (and range query)can be uniquely represented by the z-values of its blocks. Each such z-value canbe treated as a primary-key of a record of the form (z-value, object-id, otherattributes : : :), and it can be inserted in a primary-key �le structure, such asa B+-tree. Table 5.1 illustrates such a relation, containing the z-values of theshaded rectangle of Figure 5.4(a).Additional objects in the same address space can be handled in the same way;their z-values will be inserted into the same B+-tree.

Spatial access methods (SAMs) 31
00 01 10 11

00

01

10

11

00 01 10 11

00

01

10

11(a) a spatial object (d) the corresponding approximate object
00 (SW)

01 (NW)
10 (SE)

11 (NE)

00 (SW)

01 (NW)
10 (SE)

11 (NE)

level 0

level 1

level 2

00 (SW)

01 (NW)
10 (SE)

11 (NE)

.

.

gray−turned−black

no nodes allowed at or below this level(b) its exact quadtree decomposition (c) an approximate quadtree decompositionFigure 5.4 Counter-clockwise, from top-left: (a) The shaded rectangle isdecomposed into three blocks. (b) the corresponding quadtree, with z-values01, 0001 and 0011 (c) an approximate quadtree, with z-values 01, 00 (d) thecorresponding approximate spatial object - the lightly-shaded region is the en-largement, due to the approximation.z-value object id (other attributes)...0001 `ShadedRectangle'0011 `ShadedRectangle'01 `ShadedRectangle'Table 5.1 Illustration of the relational table that will store the z-values ofthe sample shaded rectangle.5.1.3 AlgorithmsThe z-ordering method can handle all the queries that we have listed earlier.

32 Chapter 5Range Queries: The query shape is translated into a set of z-values, as if itwere a data region. Typically, we opt for an approximate representation of it,trying to balance the number of z-values and the amount of extra area in theapproximation [Ore90]. Then, we search the B+-tree with the z-values of thedata regions, for matching z-values. Orenstein and Manola [OM88] describe indetail the conditions for matching.Nearest neighbor queries: The sketch of the basic algorithm is as follows:Given a query point P , we compute its z-value and search the B+-tree for theclosest z-value; we compute the actual distance r, and then issue a range querycentered at P with radius r.Spatial joins: The algorithm for spatial joins is a generalization of the algo-rithm for the range query. Let S be a set of spatial objects (eg., lakes) and R beanother set (eg., railways line segments). The spatial join `�nd all the railwaysthat cross lakes' is handled as follows: the elements of set S are translatedinto z-values, sorted; the elements of set R are also translated into a sortedlist of z-values; the two lists of z-values are merged. The details are in [Ore86][OM88].5.1.4 Variations - improvementsWe have seen that if we traverse the pixels on ascending z-value order, weobtain a trail as shown in Figure 5.2. This trail imposes a mapping fromn-d space onto a 1-d space; ideally, we would like a mapping with distancepreserving properties, that is, pixels that are near in address space should havenearby z-values. The reason is that good clustering will make sure that `similar'pixels will end up in the same or nearby leaf pages of the B+-tree, thus greatlyaccelerating the retrieval on range queries.The z-ordering indeed imposes a good such mapping: It does not leave a quad-rant, unless it has visited all its pixels. However, it has some long, diago-nal jumps, which maybe could be avoided. This observation prompted thesearch for better space �lling curves. Alternatives included a curve using Graycodes [Fal88]; the best performing one is the Hilbert curve [FR89b], which hasbeen shown to achieve better clustering than the z-ordering and the gray-codescurve, and it is the only one that we shall describe.Figure 5.5 shows the Hilbert curves of order 1, 2 and 3: The order k curve isderived from the original, order 1 curve, by substituting each of its four points

Spatial access methods (SAMs) 33with an order (k-1) curve, appropriately rotated or re
ected. In the limit,the resulting curve has fractal dimension=2 [Man77], which intuitively meansthat it is so inter-twined and dense that it `behaves' like a 2-d object. Noticealso that the trail of a Hilbert curve does not have any abrupt jumps, likethe z-ordering does. Thus, intuitively it is expected to have better distance-preserving properties than the z-ordering. Experiments in [FR89b] showed thatthe claim holds for the reported settings.Algorithms to compute the Hilbert value of an n-d pixel have been published[Bia69, But71]; source code in the `C' programming language is available in[Jag90a] for n=2 dimensions. The complexity of all these algorithms, as well astheir inverses, is O(b) where b is the total number of bits of the z/Hilbert value.The proportionality constant is small (a few operations per bit for the z-value,a few more for the Hilbert value). For both curves, the time to compute az/Hilbert value is negligible compared to the disk access time.
0

1 2

3
0 1

23

4

5 6

7 8

9 10

11

1213

14 15

H HH
1 2 3Figure 5.5 Hilbert Curves of order 1,2 and 3There are several analytical and simulation studies of space �lling curves:in [FR89b] we used exhaustive enumeration to study the clustering proper-ties of several curves, showing that the Hilbert curve is best; Jagadish [Jag90a]provides analysis for partial match and 2�2 range queries; in [RF91] we deriveclosed formulas for the z-ordering; Moon et al. [MJFS96] derive closed formulasfor range queries on the Hilbert curve.Also related is the analytical study for quadtrees, trying to determine the num-ber of quadtree blocks that a spatial object will be decomposed into [HS79],[Dye82, Sha88], [Fal92a], [FJM94], [Gae95], [FG96]. The common observationis that the number of quadtree blocks and the number of z/Hilbert values thata spatial object requires is proportional to the measure of its boundary (eg.,perimeter for 2-d objects, surface area for 3-d etc.). As intuitively expected,

34 Chapter 5the constant of proportionality is smaller for the Hilbert curve, compared tothe z-ordering.5.2 R-TREES
A

B

C

P1

D

E

F

P2

G
H

P3

 P1 P2 P3

 A B C D E F G H(a) (b)Figure 5.6 (a) Data (solid-line rectangles) organized in an R-tree withfanout=4 (b) the resulting R-tree, on disk.The R-tree was proposed by Guttman [Gut84]. It can be thought of as an exten-sion of the B-tree for multidimensional objects. A spatial object is representedby its minimum bounding rectangle (MBR). Non-leaf nodes contain entries ofthe form (ptr, R), where ptr is a pointer to a child node in the R-tree; R is theMBR that covers all rectangles in the child node. Leaf nodes contain entries ofthe form (obj� id, R) where obj� id is a pointer to the object description, andR is the MBR of the object. The main innovation in the R-tree is that parentnodes are allowed to overlap. This way, the R-tree can guarantee good spaceutilization and remain balanced. Figure 5.6(a) illustrates data rectangles (solidboundaries), organized in an R-tree with fanout 3, while Figure 5.6(b) showsthe �le structure for the same R-tree, where nodes correspond to disk pages.The R-tree inspired much subsequent work, whose main focus was to improvethe search time. A packing technique is proposed in [RL85] to minimize theoverlap between di�erent nodes in the R-tree for static data. The idea was toorder the data in, say, ascending x-low value, and scan the list, �lling each leafnode to capacity. Figure 5.7(a) illustrates 200 points in 2-d, and Figure 5.7(b)shows the resulting R-tree parents according to the x-low sorting. An improvedpacking technique based on the Hilbert Curve is proposed in [KF93]: the idea

Spatial access methods (SAMs) 35is to sort the data rectangles on the Hilbert value of their centers. Figure 5.7(c)shows the resulting R-tree parents; notice that their MBRs are closer to a squareshape, which was shown to give better search performance than the elongatedshapes of Figure 5.7(b).
-5.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

0.00 20.00 40.00 60.00 80.00 100.00
-5.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

0.00 20.00 40.00 60.00 80.00 100.00
-5.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

0.00 20.00 40.00 60.00 80.00 100.00Figure 5.7 Packing algorithms for R-trees: (a) 200 points (b) their parentMBRs, when sorting on x-low (c) the parent MBRs when sorting on the Hilbertvalue.A class of variations consider more general minimumbounding shapes, trying tominimize the `dead space' that an MBR may cover. Gunther proposed the celltrees [Gun86], which introduce diagonal cuts in arbitrary orientation. Jagadishproposed the polygon trees (P-trees) [Jag90b], where the minimum boundingshapes are polygons with slopes of sides 0, 45, 90, 135 degrees. Minimumbounding shapes that are concave or even have holes have been suggested, eg.,in the hB-tree [LS90].One of the most successful ideas in R-tree research is the idea of deferredsplitting: Beckmann et. al. proposed the R�-tree [BKSS90], which was reportedto outperform Guttman's R-trees by �30%. The main idea is the concept offorced re-insert, which tries to defer the splits, to achieve better utilization:When a node over
ows, some of its children are carefully chosen and theyare deleted and re-inserted, usually resulting in a better structured R-tree.The idea of deferred splitting was also exploited in the Hilbert R-tree [KF94];there, the Hilbert curve is used to impose a linear ordering on rectangles, thusde�ning who the sibling of a given rectangle is, and subsequently applying the2-to-3 (or s-to-(s + 1)) splitting policy of the B�-trees (see section 3.2). Bothmethods achieve higher space utilization than Guttman's R-trees, as well asbetter response time (since the tree is shorter and more compact).

36 Chapter 5Finally, analysis of the R-tree performance has attracted a lot of interest: in[FSR87] we provide formulas, assuming that the spatial objects are uniformlydistributed in the address space. The uniformity assumption was relaxed in[FK94], where we showed that the fractal dimension is an excellent measure ofthe non-uniformity, and we provided accurate formulas to estimate the averagenumber of disk accesses of the resulting R-tree. The fractal dimension alsohelps estimate the selectivity of spatial joins, as shown in [BF95]. When thesizes of the MBRs of the R-tree are known, formulas for the expected numberof disk access are given in [PSTW93] and [KF93].5.2.1 AlgorithmsSince the R-tree is one of the most successful spatial access methods, we describethe related algorithms in some more detail:Insertion: When a new rectangle is inserted, we traverse the tree to �nd themost suitable leaf node; we extend its MBR if necessary, and store the newrectangle there. If the leaf node over
ows, we split it, as discussed next:Split: This is one of the most crucial operations for the performance of theR-tree. Guttman suggested several heuristics to divide the contents of an over-
owing node into two sets, and store each set in a di�erent node. Deferredsplitting, as mentioned in the R�-tree and in the Hilbert R-tree, will improveperformance. Of course, as in B-trees, a split may propagate upwards.Range Queries: The tree is traversed, comparing the query MBR with theMBRs in the current node; thus, non-promising (and potentially large) branchesof the tree can be `pruned' early.Nearest Neighbors: The algorithm follows a `branch-and-bound' techniquesimilar to [FN75] for nearest-neighbor searching in clustered �les. Roussopouloset al. [RKV95] give the detailed algorithm for R-trees.Spatial Joins: Given two R-trees, the obvious algorithm builds a list of pairsof MBRs, that intersect; then, it examines each pair in more detail, until wehit the leaf level. Signi�cantly faster methods than the above straightforwardmethod have been suggested in [BKS93] [BKSS94]. Lo and Ravishankar [LR94]proposed an e�cient method to perform a spatial join when only one of thetwo spatial datasets has an R-tree index on it.

Spatial access methods (SAMs) 375.2.2 ConclusionsR-trees is one of the most promising SAMs. Among its variations, the R�-trees and the Hilbert R-trees seem to achieve the best response time and spaceutilization, in exchange for more elaborate splitting algorithms.5.3 TRANSFORMATION TO HIGHER-DPOINTSThe idea is to transform 2-d rectangles into 4-d points [HN83], by using thelow- and high-values for each axis; then, any point access method (PAM) canbe used. In general, an n-dimensional rectangle will become a 2n-dimensionalpoint. The original and �nal space are called `native' and `parameter' space,respectively [Ore90]. Figure 5.8 illustrates the idea for 1-d address space: linesegments A(0:0.25) and B(0.75:1) are mapped into 2-d points. A range queryQ(0.25:0.75) in native space becomes a range query in parameter space, asillustrated by the shaded region in Figure 5.8.The strong point of this idea is that we can turn any Point Access Method(PAM) into a Spatial Access Method (SAM) with very little e�ort. This ap-proach has been used or suggested in several settings, eg., with grid �les [HN83],B-trees [FR91], hB-trees [LS90] as the underlying PAM.The weak points are the following: (a) the parameter space has high dimen-sionality, inviting `dimensionality curse' problems earlier on (see the discussionon page 39). (b) except for range queries, there are no published algorithmsfor nearest-neighbor and spatial join queries. Nevertheless, it is a clever idea,which can be valuable for a stand-alone, special purpose system, operating ona low-dimensionality address space. Such an application could be, eg., a tem-poral database system [SS88], where the spatial objects are 1-dimensional timesegments [KTF95].5.4 CONCLUSIONSFrom a practical point of view, the most promising methods seem to be:

38 Chapter 5
x−start

x−end

0 0.5

0

0.5

A B

0 0.5 10.75
0.75

A

B

0.25

Q

Q

Figure 5.8 Transformation of 1-d rectangles into points in higher dimension-ality.Z-ordering: Z-ordering and, equivalently, linear quadtrees have been verypopular for 2-dimensional spaces. One of the major application is ingeographic information systems: linear quadtrees have been used bothin production systems, like the TIGER system at the U.S. Bureau ofCensus [Whi81] (http://tiger.census.gov/ tiger/tiger.html), whichstores the map and statistical data of the U.S.A., as well as research proto-types such as QUILT [SSN87], PROBE [OM88], and GODOT [GR94]. Forhigher dimensions, oct-trees have been used in 3-d graphics and robotics[BB82]; in databases of 3-d medical images [ACF+94], etc. Z-ordering per-forms very well for a low dimensionality and for points. It is particularlyattractive because it can be implemented on top of a B-tree with relativelylittle e�ort. However, for objects with non-zero area (= hyper-volume),the practitioner should be aware of the fact that each such object mayrequire a large number of z-values for its exact representation; the recom-mended approach is to approximate each object with a small number ofz-values [Ore89, Ore90].R-trees and variants: they operate on the native space (requiring no trans-forms to high-dimensionality spaces), and they can handle rectangles andother shapes without the need to divide them into pieces. Cutting data intopieces results in an arti�cially increased database size (linear on the num-ber of pieces); moreover, it requires a duplicate-elimination step, because aquery may retrieve the same object-id several times (once for each piece ofthe qualifying object) R-trees have been tried successfully for 20-30 dimen-sional address spaces [FBF+94, PF94]. Thanks to the above properties,R-trees have been incorporated in academic as well as commercial sys-

Spatial access methods (SAMs) 39tems, like POSTGRES (http: //s2k-ftp.cs. berkeley.edu: 8000/postgres95/) and ILLUSTRA (http: //www.illustra.com/).Before we close this chapter, we should mention about the `dimensionalitycurse'. Unfortunately, all the SAMs will su�er for high dimensionalities n: Forthe z-ordering, the range queries of radius r will require e�ort proportionalto the hyper-surface of the query region O(r(n�1)) as mentioned on page 33.Similarly, for the R-trees as the dimensionality n grows, each MBR will re-quire more space; thus, the fanout of each R-tree page will decrease. This willmake the R-tree taller and slower. However, as mentioned, R-trees have beensuccessfully used for 20-30 dimensions [FBF+94] [PF94]. To the best of thisauthor's knowledge, performance results for the z-ordering method are avail-able for low dimensionalities only (typically, n=2). A comparison of R-treesversus z-ordering for high dimensionalities is an interesting research question.ExercisesExercise 5.1 [07] What is the z-value of the pixel (11, 00) in Figure 5.2?What is its Hilbert value?ExercisesExercise 5.2 [20] Design an algorithm for the spatial join in R-treesExercise 5.3 [30] Design an algorithm for the k nearest neighbors in R-treesExercise 5.4 [30] Repeat the two previous exercises for the Z-orderingExercise 5.5 [38] Implement the code for the Hilbert curve, for 2 dimensions;for n dimensions.

6ACCESS METHODS FOR TEXT
6.1 INTRODUCTIONIn this chapter we present the main ideas for text retrieval methods. Formore details, see the survey in [Fal85] and the book by Frakes and Baeza-Yates [FBY92]. Access methods for text are interesting for three reasons: (a)multimedia objects often have captions in free text; exploiting these captionsmay help retrieve some additional relevant objects [OS95] (b) research in textretrieval has led to some extremely useful ideas, like the relevance feedback andthe vector space model that we discuss next and (c) text retrieval has severalapplications in itself.Such applications include the following:Library automation [SM83] [Pri84] and distributed digital libraries [GGMT94],where large amounts of text data are stored on the world-wide-web (WWW).In this setting, search engines are extremely useful and popular, like `veron-ica' [ODL93], `lycos' (http: //lycos. cs.cmu.edu/), `inktomi' (http://inktomi. berkeley. edu/), etc..Automated law and patent o�ces [Hol79] [HH83]; electronic o�ce �ling[CTH+86]; electronic encyclopedias [EMS+86] and dictionaries [GT87].Information �ltering (eg., the RightPages project [SOF+92] and the La-tent Semantic Indexing project [DDF+90] [FD92a]); also, the `selectivedissemination of information' (SDI) [YGM94].In text retrieval, the queries can be classi�ed as follows [Fal85]:41

42 Chapter 6Boolean queries, eg. `(data or information) and retrieval and (not text)'.Here, the user speci�es terms, connected with Boolean operators. Someadditional operators are also supported, like adjacent, or within <n>words or within sentence, with the obvious meanings. For example thequery `data within sentence retrieval' will retrieve documents which con-tain a sentence with both the words `data' and `retrieval'.Keyword search: here, the user speci�es a set of keywords, like, eg., `data,retrieval, information'; the retrieval system should return the documentsthat contain as many of the above keywords as possible. This interfaceo�ers less control to the user, but it is more user-friendly, because it doesnot require familiarity with Boolean logic.Several systems typically allow for pre�x matches, eg., `organ*' will match allthe words that start with `organ', like `organs', `organization', `organism' etc.We shall use the star `*' as the variable-length don't care character.The rest of this chapter is organized as follows: in the next three sections wediscuss the main three methods for text retrieval, namely (a) full text scanning,(b) inversion and (c) signature �les. In the last section we discuss the clusteringapproach.6.2 FULL TEXT SCANNINGAccording to this method, no preprocessing of the document collection is re-quired. When a query arrives, the whole collection is inspected, until thematching documents are found.When the user speci�es a pattern that is a regular expression, the textbookapproach is to use a �nite state automaton (FSA) [HU79, pp. 29-35]. If thesearch pattern is a single string with no don't care characters, faster methodsexist, like the Knuth, Morris and Pratt algorithm [KMP77], and the fastest ofall, the Boyer and Moore algorithm [BM77] and its recent variations [Sun90,HS91].For multiple query strings, the algorithm by Aho and Corasick [AC75] buildsa �nite state automaton in time linear on the total length of the strings, andreports all the matches in a single pass over the document collection.

Access methods for text 43Searching algorithms that can tolerate typing errors have been developed byWu and Manber [WM92] and Baeza-Yates and Gonnet [BYG92]. The ideais to scan the database one character at a time, keeping track of the cur-rently matched characters. The algorithm can retrieve all the strings withina desired editing distance from the query string. The editing distance of twostrings is the minimum number of insertions, deletions and substitutions thatare needed to transform the �rst string into the second [HD80, LW75, SK83].The method is
exible and fast, requiring a few seconds for a few Megabytesof text on a SUN-class workstation. Moreover, its source code is available(ftp://cs.arizona.edu/agrep).In general, the advantage of every full text scanning method is that it requiresno space overhead and minimal e�ort on insertions and updates, since no indiceshave to be changed. The price is that the response time is slow for large databases. Therefore, full text scanning is typically used for small databases (a fewMbytes in size), or in conjunction with another access method (e.g., inversion)that would restrict the scope of searching.6.3 INVERSIONIn inversion, each document can be represented by a list of (key)words, whichdescribe the contents of the document for retrieval purposes. Fast retrievalcan be achieved if we invert on those keywords: The keywords are stored, eg.,alphabetically, in the `index �le'; for each keyword we maintain a list of pointersto the qualifying documents in the `postings �le'. Figure 6.1 illustrates the �lestructure, which is very similar to the inverted index for secondary keys (seeFigure 4.1).Typically, the index �le is organized using sophisticated primary-key accessmethods, such as B-trees, hashing, TRIEs [Fre60] or variations and combina-tions of these (e.g., see [Knu73, pp. 471-542], or Chapter 3). For example, inan early version of the UNIXTM utility refer, Lesk used an over-loaded hashtable with separate chaining, in order to achieve fast searching in a database ofbibliographic entries [Les78]; the Oxford English Dictionary uses an extensionof the PATRICIA trees [Mor68], called PAT trees [GBYS92].The advantages are that inversion is relatively easy to implement, it is fast, andit supports synonyms easily (e.g., the synonyms can be organized as a threadedlist within the dictionary). For the above reasons, the inversion method has

44 Chapter 6
 ...

document file

‘Aaron’

‘zoo’

......

postings
lists

dictionary

Figure 6.1 Illustration of inversionbeen adopted in most of the commercial systems such as DIALOG, BRS, MED-LARS, ORBIT, STAIRS [SM83, ch. 2].The disadvantages of this method are the storage overhead (which can reach upto 300% of the original �le size [Has81] if too much information is kept abouteach word occurrence), and the cost of updating and reorganizing the index, ifthe environment is dynamic.Recent work exactly focuses on these problems: Techniques to achieve fastinsertions incrementally include the work by Tomasic et al., [TGMS94]; Cuttingand Pedersen [CP90] and Brown et. al. [BCC94]. These e�orts typicallyexploit the skewness of the distribution of postings lists, treating the short listsdi�erently than the long ones.It is important to elaborate on the skewness, because it has serious implica-tions for the design of fast text retrieval methods. The distribution typicallyfollows Zipf's law [Zip49], which states that the occurrence frequency of a wordis inversely proportional to its rank (after we sort the vocabulary words in

Access methods for text 45decreasing frequency order). More speci�cally, we have [Sch91]:f(r) = 1r ln(1:78V) (6.1)where r is the rank of the vocabulary word, f(r) is the percentage of times itappears, and V is the vocabulary size. This means that a few vocabulary wordswill appear very often, while the majority of vocabulary words will appear onceor twice. Figure 6.2 plots the frequency versus the rank of the words in theBible, in logarithmic scales. The Figure also plots the predictions, according toEq. 6.1. Notice that the �rst few most commonwords appear tens of thousandsof times, while the vast majority of the vocabulary words appear less than10 times. Zipf reported that similar skeweness is observed in several otherlanguages, in addition to English.
1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

lo
g(

fr
eq

)

log(rank)

"bible.data"
"zipf.law"

Figure 6.2 Rank-Frequency plot for the words in the Bible - both scales arelogarithmic. The line corresponds to Zipf's law.Given the large size of indices, compression methods have also been investi-gated: Zobel et al. [ZMSD92] use Elias's [Eli75] compression scheme for post-ings lists, reporting small space overheads for the index. Finally, the glimpsepackage [MW94] uses a coarse index plus the agrep package [WM92] for ap-proximate matching. Like the agrep package, glimpse is also available fromthe University of Arizona (ftp: //cs.arizona.edu/ glimpse).

46 Chapter 66.4 SIGNATURE FILESThe idea behind signature �les is to create a `quick and dirty' �lter, whichwill be able to quickly eliminate most of the non-qualifying documents. As weshall see next and in Chapter 7, this idea has been used several times in verydi�erent contexts, often with excellent results. A recent survey on signature�les is in [Fal92b].The method works as illustrated in Figure 6.3: For every document, a short,typically hash-coded version of it is created (its document signature); documentsignatures are typically stored sequentially, and are searched upon a query. Thesignature test returns all the qualifying documents, plus (hopefully, few) falsematches, or `false alarms' or `false drops'. The documents whose signaturesqualify are further examined, to eliminate the false drops.
....

text filesignature
file

...JoSm.. ... John Smith ...

Figure 6.3 Example of signature �les. For illustration, the signature of aword is decided to be its �rst two letters.Figure 6.3 shows a naive (and not recommended) method of creating signatures,namely, by keeping the �rst 2 letters of every word in the document. One of thebest methods to create signatures is superimposed coding [Moo49]. Followingthe notation in [CF84], each word yields a bit pattern (word signature) of sizeF , withm bits set to `1' and the rest left as `0'. These bit patterns are OR-ed toform the document signature. Table 6.3 gives an example for a toy document,with two words: `data' and `base'.

Access methods for text 47Word Signaturedata 001 000 110 010base 000 010 101 001doc. signature 001 010 111 011Table 6.1 Illustration of superimposed coding: F=12 bits for a signature,with m=4 bits per word set to 1.On searching for a word, say `data', we create its word signature, and excludeall the document signatures that do not have a `1' at the corresponding bitpositions. The choice of the signature length F depends on the desirable false-drop rate; the m parameter is chosen such that, on the average, half of the bitsshould be `1' in a document signature [Sti60].The method has been studied and used extensively in text retrieval: on bibli-ographic entries [FH69]; for fast substring matching [Har71] [KR87]; in o�ceautomation and message �ling [TC83] [FC87]. It has been used in academic[SDR83, SDKR87] as well as commercial systems [SK86, Kim88].Moreover, signature �les with some variation of superimposed coding have beenused in numerous other applications: For indexing of formatted records [Rob79,CS89]; for indexing of images [RS92]; for set-membership testing in the so-calledBloom �lters, which have been used for spelling checking in UNIXTM [McI82],in di�erential �les [SL76], and in semi-joins for distributed query optimization[ML86]. A variation of superimposed coding has even been used in chess-playingprograms, to alert for potentially dangerous combinations of conditions [ZC77].In concluding this discussion on the signature �le approach, its advantages arethe simplicity of its implementation, and the e�ciency in handling insertions.In addition, the method is trivially parallelizable [SK86]. The disadvantage isthat it may be slow for large databases, unless the sequential scanning of thesignature �le is somehow accelerated [SDR83, LL89, ZRT91].

48 Chapter 66.5 VECTOR SPACE MODEL ANDCLUSTERINGThe Vector Space Model is very popular in information retrieval [Sal71b] [SM83][VR79], and it is well suited for `keyword queries'. The motivation behind theapproach is the so-called cluster hypothesis: closely associated documents tendto be relevant to the same requests. Grouping similar documents acceleratesthe searching.
... data ...

Document

indexing
‘Aaron’ ‘data’ ‘zoo’Figure 6.4 Illustration of the `indexing' process in IRAn important contribution of the vector space model is to envision each docu-ment as a V -dimensional vector, where V is the number of terms in the docu-ment collection. The procedure of mapping a document into a vector is calledindexing (overloading the word!); `indexing' can be done either manually (bytrained experts), or automatically, using a stop list of common words, somestemming algorithm, and possibly a thesaurus of terms. The �nal result ofthe `indexing' process is that each document is represented by a V -dimensionalvector, where V is the number of permissible index terms. Absence of a termis indicated by a 0 (or by -1 [Coo70]); presence of a term is indicated by 1 (forbinary document vectors) or by a positive number (term weight), which re
ectsthe importance of the term for the document.The next step in the vector space model is to decide how to group similar vec-tors together (`cluster generation'); the last step is to decide how to search acluster hierarchy for a given query (`cluster search'). For both the above prob-lems, we have to decide on a document-to-document similarity function andon a document-to-cluster similarity function. For the document-to-documentsimilarity function, several choices are available, with very similar performance([SM83, pp. 202-203] [VR79, p. 38]). Thus, we present only the cosine simi-larity function [Sal71b] which seems to be the most popular:cos(~x; ~y) = ~x�~y=(k ~x k k ~y k) (6.2)where ~x and ~y are two V -dimensional document vectors, `�' stands for the innerproduct of two vectors and k : k for the Euclidean norm of its argument.

Access methods for text 49There are also several choices for the document-to-cluster distance/similarityfunction. The most popular seems to be the method that treats the centroid ofthe cluster as a single document, and then applies the document-to-documentsimilarity/distance function. Other choices include the `single link' method,which estimates the minimumdistance (= dis-similarity) of the document fromall the members of the cluster, and the `all link' method which computes themaximum of the above distances.An interesting and e�ective recent development is the `Latent Semantic In-dexing' (LSI), which applies the Singular Value Decomposition (SVD) on thedocument-term matrix and it automatically groups co-occurring terms. Thesegroups can be used as a thesaurus, to expand future queries. Experiments [FD92b]showed up to 30% improvement over the traditional vector model. More detailson the method are in Appendix D.3, along with the description of the SVD.In the next subsections we brie
y describe the main ideas behind (a) the clustergeneration algorithms, (b) the cluster search algorithms and (c) the evaluationmethods of the clustering schemes.6.5.1 Cluster generationSeveral cluster generation methods have been proposed; recent surveys canbe found in [Ras92] [Mur83] [VR79]. Following Van-Rijsbergen [VR79], wedistinguish two classes:`sound' methods, that are based on the document-to-document similaritymatrix and`iterative' methods, that are more e�cient and proceed directly from thedocument vectors.Sound Methods: If N is the number of documents, these methods usually re-quire O(N2) time (or more) and apply graph theoretic techniques. A simpli�edversion of such a clustering method would work as follows ([DH73b, p. 238]):An appropriate threshold is chosen and two documents with a similarity mea-sure that exceeds the threshold are assumed to be connected with an edge. Theconnected components (or the maximal cliques) of the resulting graph are theproposed clusters.

50 Chapter 6The problem is the selection of the appropriate threshold: di�erent values forthe threshold give di�erent results. The method proposed by Zahn [Zah71]is an attempt to circumvent this problem. He suggests �nding a minimumspanning tree for the given set of points (documents) and then deleting the`inconsistent' edges. An edge is inconsistent if its length l is much larger thanthe average length lavg of its incident edges. The connected components of theresulting graph are the suggested clusters. Figure 6.5 gives an illustration ofthe method. Notice that the long edges with solid lines are not inconsistent,because, although long, they are not signi�cantly longer than their adjacentedges.
Figure 6.5 Illustration of Zahn's method: the dashed edge of the MST is`inconsistent' and therefore deleted; the connected components are the clusters.Iterativemethods: This class consists of methods that are faster: O(N logN)or O(N2= logN)) on the average. They are based directly on the object (docu-ment) descriptions and they do not require the similaritymatrix to be computedin advance. The typical iterative method works as follows:Choose some seeds (eg., from sound clustering on a sample)Assign each vector to the closest seed (possibly adjusting the cluster cen-troid)Possibly, re-assign some vectors, to improve clustersSeveral iterative methods have been proposed along these lines, The simplestand fastest one seems to be the `single pass' method [SW78]: Each documentis processed once and is either assigned to one (or more, if overlap is allowed)of the existing clusters, or it creates a new cluster.

Access methods for text 51In conclusion, as mentioned before, the iterative ones are fast and practical,but they are sensitive to the insertion order.6.5.2 Cluster searchingSearching in a clustered �le is much simpler than cluster generation. The inputquery is represented as a V -dimensional vector and it is compared with thecluster-centroids. The searching proceeds in the most similar clusters, i.e., thosewhose similarity with the query vector exceeds a threshold. As mentioned, atypical cluster-to-query similarity function is the cosine function - see Eq. 6.2
o

o
o
o

o

o
o

oo
o

o
o
o

o

o

o
o

q

Figure 6.6 Searching in clustered �les: For the query vector q, searchingcontinues in the closest cluster at the left.The vector representation of queries and documents has led to two importantideas:ranked output andrelevance feedbackThe �rst idea, ranked output, comes naturally, because we can always computethe distance/similarity of the retrieved documents to the query, and we cansort them (`most similar �rst') and present only the �rst screenful to the user.

52 Chapter 6The second idea, the relevance feedback, is even more important, because itcan easily increase the e�ectiveness of the search [Roc71]: The user pinpointsthe relevant documents among the retrieved ones and the system re-formulatesthe query vector and starts the searching from the beginning. To carry out thequery re-formulation, we operate on the query vector and add (vector addition)the vectors of the relevant documents and subtract the vectors of the non-relevant ones. Experiments indicate that the above method gives excellentresults after only two or three iterations [Sal71a].6.5.3 Evaluation of clustering methodsThe standard way to evaluate the `goodness' of a clustering method is to use theso-called precision and recall concepts. Thus, given a collection of documents,a set of queries and a human expert's responses to the above queries, the idealsystem is the one that will retrieve exactly what the human dictated, andnothing more. The deviations from the above ideal situation are measured bythe precision and recall: consider the set of documents that the computerizedsystem returned; then the precision is de�ned as the percentage of relevantdocuments among the retrieved ones:precision � retrieved and relevantretrievedand recall is the percentage of relevant documents that we retrieved, over thetotal number of relevant documents in the document collection:recall � retrieved and relevantrelevantThus, high precision means that we have few false alarms; high recall meansthat we have few false dismissals.The popular precision-recall plot gives the scatter-plot of the precision-recallvalues for several queries. Figure 6.7 shows such a plot, for �ctitious data.When comparing the precision-recall plots of competing methods, the one closerto the (1.0,1.0) point is the winner.The annual Text REtrieval Conference (TREC) provides a test-bed for anopen competition of text retrieval methods. See http: //potomac. ncsl.nist.gov/ TREC/ for more details.

Access methods for text 53
0 1

0

1 ideal

recall

precisionFigure 6.7 A �ctitious, typical recall-precision diagram6.6 CONCLUSIONSWe have discussed several methods for text searching and information retrieval(IR). Among them, the conclusions for a practitioner are as follows:Full text scanning is suitable for small databases (up to a few Megabytes);`agrep' is a recent, excellent free-ware search package. Its scaled-up ver-sion, `glimpse', allows fast searching for up to a few Gigabytes of size.Inversion is the industry work-horse, for larger databases.Signatures can provide a `quick-and-dirty' test, when false alarms are tol-erable or when they can be quickly discarded.The major ideas from the vector space model are two: (a) the relevancefeedback and (b) the ability to provide ranked output (i.e., documentssorted on relevance order)ExercisesExercise 6.1 [20] Produce the (rank, frequency) plot for a text �le. (Hint:use the commands sort -u, tr and awk from UNIXTM).Exercise 6.2 [30] For queries with a single string and no `don't care' charac-ters, implement the straightforward method for full text scanning; also, type-in

54 Chapter 6the Boyer-Moore code from Sunday [Sun90]; time them on some large �les;compare them to grep and agrep.Exercise 6.3 [25] Implement an algorithm that will compute the editing dis-tance of two strings, that is, the minimum number of insertions, deletions orsubstitutions that are needed to transform one string to the other. (Hint: seethe discussion by Hall and Dowling [HD80]).Exercise 6.4 [40] Develop a B-tree package and use it to build an index fortext �les.Exercise 6.5 [40] Develop and implement algorithms to do insertion and searchin a cluster hierarchy, as described in [SW78].

