SEARCHING MULTIMEDIA
DATABASES BY CONTENT

SEARCHING
MULTIMEDIA
DATABASES BY
CONTENT

Christos FALOUTSOS
University of Maryland

College Park, MD, USA

KLUWER ACADEMIC PUBLISHERS
Boston/London/Dordrecht

Dedication

To my wife Christina and my parents Sophia and Nikos.

CONTENTS

PREFACE

1 INTRODUCTION

Part I DATABASE INDEXING METHODS

2 INTRODUCTION TO RELATIONAL DBMS

3 PRIMARY KEY ACCESS METHODS
3.1 Hashing
3.2 B-trees

3.3 Conclusions

4 SECONDARY KEY ACCESS METHODS
4.1 Inverted files
4.2 Point access methods (PAMs)

4.3 Conclusions

5 SPATIAL ACCESS METHODS (SAMS)
5.1 Space filling curves
5.2 R-trees
5.3 Transformation to higher-d points

5.4 Conclusions

6 ACCESS METHODS FOR TEXT

6.1 Introduction

6.2 Full text scanning

1X

11
11
13
16

19
20
21
23

25
27
34
37
37

41
41
42

vi

SEARCHING MULTIMEDIA DATABASES BY CONTENT

6.3 Inversion
6.4 Signature Files
6.5 Vector Space Model and Clustering

6.6 Conclusions

Part II INDEXING SIGNALS

7

10

11

12

PROBLEM - INTUITION
7.1 Introduction
7.2 Basic idea

1-D TIME SEQUENCES
8.1 Distance Function
8.2 Feature extraction and lower-bounding

8.3 Experiments

2-D COLOR IMAGES
9.1 Distance Function
9.2 Lower-bounding

9.3 Experiments

SUB-PATTERN MATCHING
10.1 Introduction

10.2 Sketch of the Approach - ‘ST-indez’
10.3 Experiments

FASTMAP

11.1 Introduction

11.2 Multi-Dimensional Scaling (MDS)

11.3 A fast, approximate alternative: FASTMAP

11.4 Case Study: Document Vectors and Information Retrieval.

11.5 Conclusions

CONCLUSIONS

Part III MATHEMATICAL TOOLBOX

43
45
47
52

99

57
57
59

65
65
65
68

71
72
73
75

77
77
78
80

83
83
85
86
90
92

95

97

Contents

A PRELIMINARIES

FOURIER ANALYSIS

B.1 Definitions

B.2 Properties of DFT

B.3 Examples

B.4 Discrete Cosine Transform (DCT)
B.5 m-dimensional DFT/DCT (JPEG)

B.6 Conclusions

C WAVELETS
C.1 Motivation
C.2 Description
C.3 Discussion
C.4 Code for Daubechies-4 DWT

C.5 Conclusions

D K-LANDSVD
D.1 The Karhunen-Loeve (K-L) Transform
D.2 SVD
D.3 SVD and LSI

D.4 Conclusions

REFERENCES

Vil

99

103
103
104
106
109
110
111

113
113
114
116
117
120

121
121
126
130
131

133

PREFACE

The problem on target is the searching of large multimedia databases by con-
tent. For example, ‘given a collection of color images, find the ones that look like
a sunset’. Research on a specific domain (eg., machine vision, voice processing,
text retrieval) typically focuses on feature extraction and similarity functions,
with little regard to the efficiency of the search. Conversely, database research
has focused on fast searching for a set of numbers or strings or vectors.

The main goal of this book is to try to bridge the gap between the database
and signal processing communities. The book provides enough background
information for both areas, presenting the intuition and the mechanics of the
best tools in each area, as well as discussing when and how these tools can work
together.

The structure of the book reflects its goal. The first half of the book reviews
the most successful database access methods, in increasing complexity. It starts
from primary-key access methods, where B-trees and hashing are the industry
work-horses, and continues with methods that handle n-dimensional vectors.
A chapter is also devoted to text retrieval, because text is important on its own
right, and because it has led to some extremely useful ideas, like relevance feed-
back, clustering and the vector-space model. In all the sections, the emphasis
is on practical approaches that have been incorporated in commercial systems,
or that seem very promising.

The second half of the book uses the above access methods to achieve fast
searching in a database of signals. In all cases, the underlying idea is to extract
n features from each signal (eg, the first n Discrete Fourier Transform (DFT)
coefficients), to map a signal into a point in n-dimensional space; subsequently,
the access methods of the first part can be applied to search for similar signals in
time that is much faster than sequential scanning, without missing any signals
that sequential scanning would find (‘complete’ searching). Then, the book
presents some recent, successful applications of this approach on time series
and color images. It also describes methods to extract automatically features

1X

X SEARCHING MULTIMEDIA DATABASES BY CONTENT

from a distance function, using the so-called Multidimensional Scaling (MDS),
as well as a newer, faster approximation, called ‘FastMap’.

Finally, the appendix gives some background information on fundamental sig-
nal processing and linear algebra techniques: the traditional Discrete Fourier
Transform (DFT), the Discrete Cosine Transform (used in the JPEG stan-
dard), the Discrete Wavelet transform, which is the state-of-the-art in signal
processing, the Karhunen-Loeve transform for optimal dimensionality reduc-
tion, and the closely related Singular Value Decomposition (SVD), which is a
powerful tool for approximation problems. In all the above discussions, the
emphasis is on the physical intuition behind each technique, as opposed to the
mathematical properties. Source code is also provided for several of them.

The book is targeted towards researchers and developers of multimedia systems.
It can also serve as a textbook for a one-semester graduate course on multi-
media searching, covering both access methods as well as the basics of signal
processing. The reader is expected to have an undergraduate degree in engi-
neering or computer science, and experience with some high-level programming
language (eg., ‘C’). The exercises at the end of each chapter are rated according
to their difficulty. The rating follows a logarithmic scheme similar to the one

by Knuth [Knu73]:

00 Trivial - it should take a few seconds

10 Easy - it should take a few minutes

20 It should take a few hours. Suitable for homework exercises.

30 It should take a few days. Suitable for a week-long class project.
40 It should take weeks. Suitable for a semester class project.

50 Open research question.

Acknowledgements Several friends and colleagues have helped in this ef-
fort. In alphabetic order: Rakesh Agrawal, Howard Elman, Will Equitz, My-
ron Flickner, H.V. Jagadish, Philip (Flip) Korn, King-Tp (David) Lin, Yannis
Manolopoulos, Wayne Niblack, Douglas Oard, Dragutin Petkovic, M. Ran-
ganathan, Arun Swami, and Kuansan Wang. The research funding of the Na-
tional Science Foundation (NSF) is also gratefully acknowledged (IRI-8958546,
TRI-9205273).

INTRODUCTION

As a working definition of a Multimedia Database System we shall consider a
system that can store and retrieve multimedia objects, such as 2-dimensional
color images, gray-scale medical images in 2-d or 3-d (eg., MRI brain scans),
1-dimensional time series, digitized voice or music, video clips, traditional data
types, like ‘product-id’, ‘date’, ‘title’, and any other user-defined data types.
For such a system, what this book focuses on is the design of fast searching
methods by content. A typical query by content would be, eg., “en a collection
of color photographs, find ones with a same color distribution like a sunset
photograph’.

Specific applications include the following:

m Image databases, where we would like to support queries on color, shape
and texture [NBE193].

m Financial, marketing and production time series, such as stock prices, sales
numbers etc. In such databases, typical queries would be ‘find companies
whose stock prices move similarly’, or ‘find other companies that have simi-
lar sales patterns with our company’, or ‘find cases in the past that resemble
last month’s sales pattern of our product’

m Scientific databases, with collections of sensor data. In this case, the
objects are time series, or, more general, vector fields, that is, tuples of
the form, eg., < z,y, z,t, pressure, temperature,... >. For example, in
weather data [CoPES92], geological, environmental, astrophysics [Vas93]
databases, etc., we want to ask queries of the form, e.g., ‘find past days in
which the solar magnetic wind showed patterns similar to today’s pattern’
to help in predictions of the earth’s magnetic field [Vas93].

2 CHAPTER 1

® multimedia databases, with audio (voice, music), video etc. [NC91]. Users
might want to retrieve, eg., similar music scores, or video clips.

B Medical databases, where 1-d objects (eg., ECGs), 2-d images (eg., X-rays)
[PF94] and 3-d images (eg., MRI brain scans) [ACF*93] are stored. Ability
to retrieve quickly past cases with similar symptoms would be valuable for
diagnosis, as well as for medical teaching and research purposes.

m text and photograph archives [Nof86], digital libraries [TSWT85] [Har94]
with ASCII text, bitmaps, gray-scale and color images.

m office automation [MRT91], electronic encyclopedias [ST84] [GT87], elec-
tronic books [YMD85].

= DNA databases [AGM190] [WZ96] where there is a large collection of long
strings (hundred or thousand characters long) from a four-letter alphabet
(A,G,C/T); a new string has to be matched against the old strings, to
find the best candidates. The distance function is the editing distance
(smallest number of insertions, deletions and substitutions that are needed
to transform the first string to the second).

It is instructive to classify the queries of interest in increasing complexity. Con-
sider, for illustration, a set of employee records, where each record contains the
employee number emp#, name, salary, job-title, a resume (ASCII text), a
greeting (digitized voice clip) and a photograph (2-d color image). Then, the
queries of interest form the following classes.

primary key ‘Find the employee record with emp#= 123". That is, the speci-
fied attribute has no duplicates.

secondary key ‘Find the employee records with salary=40K and job-title
= engineer’. That is, the queries involve attributes that may have duplicate
values.

text ‘Find the employee records containing the words ‘manager’, ‘marketing’
i their resume’. A text attribute contains an unspecified number of al-
phanumeric strings.

signals For example, a query on 1-d signals could be ‘ Find the employee records
whose greeting sounds similar to mine’. Similarly, for 2-d signals, a query
could be ‘Find employee photos that look like a desirable photo’.

Introduction 3

Acronym | Definition

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

DNA DeoxyriboNucleic Acid

DWT Discrete Wavelet Transform
GEMINI | GEneric Multimedia INdexIng method
GIS Geographic Information Systems
IR Information Retrieval

LSI Latent Semantic Indexing

MBR Minimum Bounding Rectangle
MDS Multi-Dimensional Scaling

MRI Magnetic Resonance Imaging
PAM Point Access Method

SAM Spatial Access Method

SVD Singular Value Decomposition
SWFT Short-Window Fourier Transform
WWWwW World-Wide-Web

Table 1.1 Summary of Acronyms and Definitions

The book is organized in two parts and an appendix, following the above classi-
fication of queries. In the first part, we present the most successful methods for
indexing traditional data (primary, secondary, and text data). Most of these
methods, like B-trees and hashing, are textbook methods and have been suc-
cessfully incorporated in commercial products. In the second part we examine
methods for indexing signals. The goal is to adapt the previously mentioned
tools and to make them work in this new environments. Finally, in the appendix
we present some fundamental techniques from signal processing and matrix al-
gebra, such as the Fourier transform and the Singular Value Decomposition

(SVD).

Table 1.1 gives a list of the acronyms that we shall use in the book.

PART 1

DATABASE INDEXING METHODS

2

INTRODUCTION TO RELATIONAL
DBMS

This chapter presents the minimal necessary set of concepts from relational
database management systems. Excellent textbooks include, eg., [IKS91] [Dat86].
The chapter also describes how the proposed methods will fit in an extensible
DBMS, customized to support multimedia datatypes.

Traditional, relational database management systems (‘RDBMS’ or just ‘DBMS”)
are extremely popular. They use the relational model [Cod70] to describe the
data of interest. In the relational model, the information is organized in tables
(‘relations’); the rows of the tables correspond to records, while the columns
correspond to attributes. The language to store and retrieve information from
such tables is the Structured Query Language (SQL).

For example, if we want to create a table with employee records, so that we can

store their employee number, name, age and salary, we can use the following
SQL statement:

create table EMPLOYEE (
emp# integer,
name char(50),
age float,
salary float);

The result of the above statement is to notify the DBMS about the EMPLOYEE
table (see Figure 2.1). The DBMS will create a table, which will be empty, but
ready to hold EMPLOYEE records.

Tables can be populated with the SQL insert command. E.g.

7

8 CHAPTER 2

EMPLOYEE | emp# | name | age | salary |

Figure 2.1 An empty EMPLOYEE table (‘relation’).

insert into EMPLOYEE values (
123, "Smith, John", 30, 38000.00);

will insert a row in the EMPLOYEE table, recording the information about
the employee ‘Smith’. Similarly, the command to insert the record for another
employee, say, ‘Johnson’, is:

insert into EMPLOYEE values (
456, "Johnson, Tom", 25, 55000.00);

The result is shown in Figure 2.2

EMPLOYEE | emp# name age salary
123 Smith, John 30 | 38000.00
456 Johnson, Tom | 25 | 55000.00

Figure 2.2 The EMPLOYEE table, after two insertions

We can retrieve information using the select command. E.g., if we want to
find all the employees with salary less than 50,000, we issue the following query:

select *
from EMPLOYEE
where salary <= 50000.00

In the absence of indices, the DBMS will perform a sequential scanning, check-
ing the salary of each and every employee record against the desired threshold
of 50,000. To accelerate queries, we can create an index (usually, a B-tree in-
dex, as described in Chapters 3 and 4), with the command create index. For

Introduction to Relational DBMS 9

example, to build an index on the employee’s salary, we would issue the SQL
statement:

create index salIndex on EMPLOYEE (salary);

SQL provides a large number of additional, valuable features, such as the ability
to retrieve information from several tables (‘joins’) and the ability to perform
aggregate operations (sums, averages). However, we restrict the discussion to
the above few features of SQL, which are the absolutely essential ones for this

book.

Every commercial DBMS offers the above functionalities, supporting numerical
and string datatypes. Additional, user-defined datatypes, like images, voice
etc., need an extensible DBMS. Such a system offers the facility to provide
new data types, along with functions that operate on them. For example, one
datatype could be ‘voiceClip’, which would store audio files in some specified
format; another datatype could be ‘image’; which would store, eg., JPEG color
images. The definition of new datatypes and the associated functions for them
(‘display’, ‘compare’ etc.) are typically implemented by a specialist. After such
datatypes have been defined, we could create tables that can hold multimedia
employee records, with the command, eg.:

create table EMPLOYEE (
emp# fixed,
name char(50),
salary float,
age float,
greeting voiceClip,
face image);

Assuming that the predicate similar has been appropriately defined for the
‘image’ datatype, we can look for employees that look like given person, as
follows:

select name
from EMPLOYEE
where EMPLOYEE.face similar desirableFace

10 CHAPTER 2

where ‘desirableFace’ is the object-id of the desirable JPEG image.

Providing the ability to answer such queries is exactly the focus of this book.
The challenges are two: (a) how to measure ‘similarity” and (b) how to search
efficiently. In this part of the book we examine older database access meth-
ods that can help accelerate the search. In the second part we discuss some
similarity measures for multimedia data types, like time sequences and color
images.

Before we continue with the discussion of database access methods, we should
notice that they are mainly geared towards a two-level storage hierarchy:

m The first level is fast, small, and expensive. Typically, it is the main
memory or core or RAM, with an access time of micro-seconds or faster.

m The second level (secondary store) is much slower, but much larger and
cheaper. Typically, it is a magnetic disk, with ~5-10 msec access time.

Typically, database research has focused on large databases, which do not fit in
main memory and thus have to be store on secondary store. A major charac-
teristic of the secondary store is that it is organized into blocks (= pages). The
reason is that, accessing data from the disk involves the mechanical move of the
read/write head of the disk above the appropriate track on the disk. Exactly
because these moves (‘seeks’) are slow and expensive, every time we do a disk-
read we bring into main memory a whole disk block, of the order of 1Kb-8Kb.
Thus, 1t makes a huge performance difference if we manage to group similar
data in the same disk blocks. Successful access methods (like the B-trees) try
exactly to achieve good clustering, to minimize the number of disk-reads.

PRIMARY KEY ACCESS METHODS

Here we give a brief overview of the traditional methods to handle queries on
primary (ie, unique) keys. Considering the running example of EMPLOYEE
records, a typical query 1is, eg., ‘find the employee with emp# = 344’. Notice
that the emp# is assumed to have no duplicates.

Primary key access methods are useful for multimedia data for two reasons:

1. primary keys will be part of the information: for example, in an employee
database, we may have the emp# as the primary key; in a video database,
we may have the title or the ISBN as the primary key, etc.

2. The primary key access methods provide fundamental ideas, like the hier-
archical organization of records that the B-trees suggest. These 1deas were
the basis for newer, more general and more powerful access methods, like
the R-trees (see Section 5.2), that can be used for multimedia data as well.

For primary keys on secondary store, the textbook approaches are two: B-trees

and hashing [Knu73].

3.1 HASHING

The idea behind hashing is the key-to-address transformation. For example,
consider a set of 40,000 employee records, with unique 9-digit emp#. Also as-
sume that we are interested in providing fast responses for queries on emp#.

11

12 CHAPTER 3

Suppose we have decided to use 1,000 consecutive disk pages (=blocks = buck-
ets), each capable of holding 50 records. Then, we can use a hashing function
h(), to map each key to a bucket. For example:

h(emp#) = (emp#) mod 1000 (3.1)

is a function that maps each emp# to its last three digits, and therefore, to the
corresponding bucket, as shown in Figure 3.1

page #0
page#1
239.443.669 Smith ...
" "
page #669
TG G
page #999

Figure 3.1 Illustration of a hash table, with ’division hashing’ (h(emp#) =
(emp#) mod 1000).

The first step in the design of a hashing scheme 1s the choice of the hashing
function. There are several classes of them, the most successful ones being
(a) the division hashing, like the function of Eq. 3.1 and (b) the multiplication
hashing.

The second step in the design of a hashing scheme is to choose a collision resolu-
tion method. Notice that we deliberately allocate more space in the hash table
than needed: in our example, 50,000 slots, versus 40,000 records; in general, we
opt for 80%-90% load factor. However, due to the almost random nature of the
hashing function, there is always the possibility for bucket-overflows. In such
a case, we have several choices, the most popular being: (a) using a separate
overflow area (‘separate chaining’) and (b) re-hashing to another bucket (‘open
addressing’).

Primary key access methods 13

There are numerous surveys, variations and analyses of hashing [Kno75, SD76,
Sta80, Lar85]. An easily accessible hash-table implementation is the ndbm pack-
age of UNIX™ which uses hashing with ‘open addressing’.

3.1.1 Extensible hashing

The original hashing suffered from the fact that the hash table can not grow or
shrink, to adapt to the volume of insertions and deletions. The reason is that
the size of the table is ‘hardwired’ in the hashing function; changing the size
implies changing the hashing function, which may force relocation of each and
every record, a very expensive operation.

Relatively recent developments tried to alleviate this problem by allowing the
hash table to grow and shrink without expensive reorganizations. These meth-
ods come under the name of extensible hashing: extendible hashing [FNPS79],
dynamic hashing [Lar78], spiral hashing [Mar79], linear hashing [Lit80], linear
hashing with partial expansions [Lar82]. See [Lar88] for a recent survey and
analysis of such methods.

3.2 B-TREES

B-trees and variants are among the most popular methods for physical file
organization on disks [BM72]. Following Knuth [Knu73], we have:

Definition 3.1 A B-iree of order m is a multiway tree, with the key-ordering
property, satisfying the following restrictions:

1. Every node has < m sons.

2. Every node, excepl for the rootl, has > m/2 sons.
3. The root has at least 2 sons, unless it is a leaf.
4. All leaves appear at the same level
5

. A non-leaf node with k sons contains k-1 keys.

14 CHAPTER 3

The key-ordering property means that, for every sub-tree, the root of the sub-
tree is greater than all the key values at the left and smaller than all the key
values at the right sub-tree. Notice that the leaves are empty; in practice, the
leaves and the pointers pointing to them are omitted, to save space.

To achieve a high fan-out, the tree does not store the full records; instead, it
stores pointers to the actual records. More specifically, the format of a B-tree
node of order m is as follows:

(pla keylaptrlap% keyZaptTZa .. apm)

where ptr; 1s the pointer to the record that corresponds to key;; p; is a pointer
to another B-tree node (or null). Figure 3.2 shows a B-tree of order m=3 and
height 2. Notice that (a) the pointers to the records are not shown (b) the tree
fulfills the B-tree properties.

dEER

Lol W Llelylely) el =]
L)

Figure 3.2 Tllustration of a B-tree of order m=3. ‘X’ indicates null pointers.

dERUE
.

/4 HnENE
i

15 18 X‘
Ll M Gl fled) =l DY el]

ot %%%%% %%

Figure 3.3 Insertion of key #17 in the previous B-tree.

Because of the above definition, a B-tree has the following desirable character-
istics:

m it is always balanced, thus leading to logarithmic search time O(log,,, (N +
1)) and few disk accesses.

Primary key access methods 15

m it has guaranteed 50% space utilization, while the average is & 69% [Yao78,
LW89, JS89]

®m it also has logarithmic insertion and deletion times.

The insertion and deletion algorithms are masterfully designed [BM72] to main-
tain the B-tree properties. A full discussion is outside the scope of this book
(see, eg., [Knu73]). A brief sketch of them is instructive, though:

The insertion algorithm works as follows: given a key to be inserted, we find
the appropriate leaf node; if there i1s not enough space there, then we split
the node in two, pushing the middle key to the parent node; the parent node
may recursively overflow and split again. Figure 3.3 shows the resulting B-tree,
after key ‘17’ is inserted into the B-tree of Figure 3.2. Notice the propagated
split, which created a new root, thus increasing the height of the B-tree. Thus,
the B-tree ‘grows from the leaves’. Notice that a node has the lowest possible
utilization (50%) immediately after a split, exactly because we split a 100%-full
node into 2 new ones.

Deletion is done in the reverse way: omitting several details, if a node under-
flows, it either borrows keys from one of its siblings, or it merges with a sibling
into a new node.

B-trees are very suitable for disks: each node of the B-tree is stored in one
page; typically, the fanout is large, and thus the B-tree has few levels, requiring
few disk (=node) accesses for a search.

This concludes the quick introduction to the basic B-trees. There are two very
successful variations, namely the Bt -trees and the B*-trees:

m The Bt-trees keep a copy of all the keys at the leaves, and string the leaves
together with pointers. Thus the scanning of the records in sorted order is
accelerated: after we locate the first leaf node, we just follow the pointer
to the next leaf.

m The B*-trees introduce the idea of deferred splitting. Splits hurt the per-
formance, because they create new, half-empty nodes, and potentially they
can make the tree taller (and therefore slower). The goal is to try to post-
pone splits: instead of splitting in two an overflowing node, we check to
see if there is a sibling node that could host some of the overflowing keys.
If the sibling node is also full, only then we do a split. The split though

16 CHAPTER 3

involves both of the full nodes, whose entries are divided among three new
nodes. This clever idea results in much fewer splits and in guaranteed 66%
(= 2/3) space utilization of the nodes, with a higher average than that.
These splits are called ‘2-to-3” splits; obviously, we can have ‘3-to-4’ and
‘s-to-(s + 1)’ splits. However, the programming complexity and the addi-
tional disk accesses on insertion time reach a point of diminishing returns.
Thus, the ‘2-to-3’ split policy usually provides a good trade-off between
search time and insertion effort.

3.3 CONCLUSIONS

B-trees and hashing are the industry work-horses. Each commercial system
provides at least one of them. Such an index is built, eg., by the create index
command of SQL, as discussed in Chapter 2. The two methods compare as
follows:

m B-trees guarantee logarithmic performance for any operation (insertion,
deletion, search), while hashing gives constant search on the average (with
linear performance, in the worst case). Depending on the specific version,
the insertion and update times for hashing can be constant, or grow linearly
with the relation size.

m B-trees can expand and shrink gracefully, as the relation sizes grows or
shrinks; hashing requires expensive reorganization unless an extensible
hashing method is used (such as the ‘linear hashing’).

m B-trees preserve the key order, which allows them to answer range queries,
nearest neighbor queries, as well as to support ordered sequential scanning.
(Eg., consider the query ‘print all the employees’ paychecks, in increasing
emp# order’).

Exercises

Exercise 3.1 [15] In the B-tree of Figure 3.2, inseri the key ‘7.

Exercise 3.2 [15] In the B-tree of Figure 3.3, delete the key ‘15

Primary key access methods 17

Exercise 3.3 [32] Design and implement the algorithm for insertion and dele-
tion in B-trees.

Exercise 3.4 [34] Design and implement the algorithm for insertion and dele-
tion in B*-trees (i.e., with deferred splitting).

Exercise 3.5 [25] Using an existing B-tree package, analyze ils average-case
space utilization through stmulation.

Exercise 3.6 [25] Implement a phone-book database, using the ndbm library of
UNIX™ Treat the phone number as the primary key.

SECONDARY KEY ACCESS
METHODS

Access methods for secondary key retrieval have attracted much interest. The
problem is stated as follows: Given a file, say, EMPLOYEE(name, salary,
age), organize the appropriate indices so that we can answer efficiently queries
on any and all of the available attributes. Rivest [Riv76] classified the possible
queries into the following classes, in increasing order of complexity:

m cxact match query, when the query specifies all the attribute values of the
desired record, e.g.:

name = ‘Smith’ and salary = 40,000 and age = 45

m partial match query, when only some of the attribute values are specified,
e.g.:

salary = 40,000 and age = 35

®m range queries, when ranges for some or all of the attributes are specified,
e.g.:

35,000 < salary < 45,000 and age = 45
m Boolean queries:

((not name = ‘Smith’) and salary > 40,000) or age > 50

In the above classification, each class is a special case of the next class. A class
of queries outside the above hierarchy is the nearest neighbor query:

19

20 CHAPTER 4

m nearest neighbor or best maich query, eg.:

salary =~ 45,000 and age & 55

where the user specifies some of the attribute values, and asks for the best
match(es), according to some pre-specified distance/dis-similarity function.

In this chapter, first we mention the inverted files, which 1s the industry work-
horse. Then we describe some methods that treat records as points in k-d
space (where k is the number of attributes); these methods are known as point
access methods or PAMs, and are closely related to the upcoming spatial access

methods (SAMs).

4.1 INVERTED FILES

This 1s the most popular approach in database systems. An inverted file on a
given attribute (say, ‘salary’) is built as follows: For each distinct attribute
value, we store:

1. A list of pointers to records that have this attribute value (postings list).
2. Optionally, the length of this list.

The set of distinct attribute values is typically organized as a B-tree or as a
hash table. The postings lists may be stored at the leaves, or in a separate area
on the disk. Figure 4.1 shows an index on the salary of an EMPLOYEE table.
A list of unique salary values is maintained, along with the ‘postings’ lists.

Given indices on the query attributes, complex boolean queries can be resolved
by manipulating the lists of record-pointers, before accessing the actual records.

A interesting variation that can handle conjunctive queries has been proposed
by Lum [Lum?70], by using combined indices: We can build an index on the
concatenation of two or more attributes, for example (salary, age). Such
an index can answer easily queries of the form ‘salary=40000 and age=30",
without the need of merging any lists. Such an index will contain all the unique,
existing pairs of (salary, age) values, sorted on lexicographical order. For each
pair, it will have a list of pointers to the EMPLOYEE records with the specified
combination of salary and age.

Secondary key access methods 21

}7 Salary Index 4{

EMPLOYEE

. Name Salary
postings
lists
(B-tree)
10K T E Jones 55K
Smith 38K

38K [

55K [

Figure 4.1 [Illustration of inversion: a B-tree index on salary.

As mentioned in Chapter 2, plain or combined indices can be created automat-
ically by a relational DBMS, with the SQL command create index.

4.2 POINT ACCESS METHODS (PAMS)

A fruitful point of view is to envision a record with k attributes as a point in
k-dimensional space. Then, there are several methods that can handle points,
the so-called Point Access Methods (PAMs) [SK90]. Since most of them can
also handle spatial objects (rectangles, polygons, etc.) in addition to points, we
postpone their description for the next chapter. Here we briefly describe two
of the PAMs, the grid files, and the k-d-trees. They both are mainly designed
for points and they have proposed important ideas that several SAMs have
subsequently used.

4.2.1 Grid File

The grid file [NHS84] can be envisioned as the generalization of extendible
hashing [FNPS79] in multiple dimensions. The idea is that it imposes a grid
on the address space; the grid adapts to the data density, by introducing more
divisions on areas of high data density. Each grid cell corresponds to one disk
page, although two or more cells may share a page. To simplify the ‘record-
keeping’, the cuts are allowed only on predefined points (1/2, 1/4, 3/4 etc. of
each axis) and they cut all the way through, to form a grid. Thus, the grid

22 CHAPTER 4

file needs only a list of cut-points for every axis, as well as a directory. The
directory has one entry for every grid cell, containing a pointer to the disk page
that contains the elements of the grid cell.

The grid file has the following desirable properties: it guarantees 2 disk ac-
cesses for exact match queries; it is symmetric with respect to the attributes;
and it adapts to non-uniform distributions. However, 1t suffers from two disad-
vantages: (a) it does not work well if the attribute values are correlated (eg.,
‘age’ and ‘salary’ might be linearly correlated in an EMPLOYEE file) and
(b) it might need a large directory, if the dimensionality of the address space is
high (‘dimensionality curse’). However, for a database with low-dimensionality
points and un-correlated attributes, the grid file is a solution to consider.

Several variations have been proposed, trying to avoid these problems: the
rotated grid file [HN83] rotates the address space, trying to de-correlate the
attributes; the tricell method [FR89a] uses triangular as opposed to rectangular
grid cells; the twin grid file [HSW8&8] uses a second, auxiliary grid file, to store
some points, in an attempt to postpone the directory growth of the main grid

file.

4.2.2 K-d-trees

This i1s the only main-memory access method that we shall describe in this
book. The exception is due to the fact that k-d-trees propose elegant ideas
that have been used subsequently in several access methods for disk-based
data. Moreover, extensions of the original k-d-tree method have been proposed
[Ben79] to group and store k-d-tree nodes on disk pages, at least for static data.

The k-d-tree [Ben75] divides the address space in disjoint regions, through ‘cuts’
on alternating dimensions/attributes. Structurally, it is a binary tree, with
every node containing (a) a data record (b) a left pointer and (¢) a right pointer.
At every level of the tree, a different attribute is used as the ‘discriminator’,
typically in a round-robin fashion.

Let n be a node, r be the record in this node, and A be the discriminator for
this node. Then, the left subtree of the node n will contain records with smaller
A values, while the right subtree will contain records with greater or equal A
values. Figure 4.2(a) illustrates the partitioning of the address space by a k-
d-tree: the file has 2 attributes (eg., ‘age’ and ‘salary’), and it contains the

Secondary key access methods 23

following records (in insertion order): (30,50), (60,10), (45, 20). Figure 4.2(b)

shows the equivalent k-d-tree as a binary tree.

Attribute
A2

60

|

|

}
(30,50) ‘

|

|

|

|

|

|

|

-

|

T

discriminator

40 AL

|
|
|
|
|
|
|
|
|
|
| (45,20)
20 A2
(60,10)

20 40 60 AL
Attribute A1

Figure 4.2 Illustration of a k-d tree with three records: (a) the divisions in
the address space and (b) the tree itself.

The k-d tree can easily handle exact-match queries, range queries and nearest-
neighbor queries [Ben75]. The algorithms are elegant and intuitive, and they
typically achieve good response times, thanks to the efficient ‘pruning’ of the
search space that the k-d-tree leads to.

Several disk-based PAMs have been inspired by or used k-d-trees. The k-d-B-
trees [Rob81] divide the address space in m regions for every node (as opposed
to just 2 that the k-d-tree does), where m is fanout of the tree. The hB-tree
[LS90] divides the address space in regions that may have ‘holes’; moreover,
the contents of every node/disk-page are organized into a k-d-tree.

4.3 CONCLUSIONS

With respect to secondary-key methods, inversion with a B-tree (or hashed)
index is automatically provided by commercial DBMS with the create index
SQL command. The rest of the point access methods are typically used in
stand-alone systems. Their extensions, the spatial access methods, are examined
next.

24 CHAPTER 4

Exercises

Exercise 4.1 [33] Implement a grid-file package, for n=2 dimensions wilh
msertion and range search routines.

Exercise 4.2 [33] Modify the previous package, so that the number of dimen-
stons n is user-defined.

Exercise 4.3 [30] For each of the above packages, implement a ‘nearest neigh-
bor’ search algorithm.

Exercise 4.4 [20] Extend your nearest neighbor algorithms to search for k
nearest neighbors, where k is user-defined.

Exercise 4.5 [30] Populate each of the above packages with N =10,000-100,000
points; issue 100 nearest-neighbor queries, and plot the response time of each
method, as well as the time for the sequential scanning.

Exercise 4.6 [30] Using a large database (real or synthetic, such as the Wis-
consin benchmark), and any available RDBMS, ask selections queries before
and after butlding an index on the query attributes; time the results.

SPATIAL ACCESS METHODS
(SAMS)

In the previous section we examined the so-called ‘secondary key’ access meth-
ods, which handle queries on keys that may have duplicates (eg., ‘salary’,
or ‘age’, in an EMPLOYEE file). As mentioned, records with k& numerical at-
tributes can be envisioned as k-dimensional points. Here we examine spatial
access methods, which are designed to handle multidimensional points, lines,
rectangles and other geometric bodies.

There are numerous applications that require efficient retrieval of spatial ob-
jects:

m Traditional relational databases, where, as we mentioned, records with
k-attributes become points in k-d spaces (see Figure 5.1(a)).

m Geographic Information Systems (GIS), which contain, eg., point data,
such as cities on a two-dimensional map (see Figure 5.1(b)).

m Medical image databases with, for example, three-dimensional MRI brain
scans, require the storage and retrieval of point-sets, such as digitized
surfaces of brain structures [ACF193].

m Multimedia databases, where multi-dimensional objects can be represented
as points in feature space [Jag9l, FRM94]. For example, 2-d color im-
ages correspond to points in (R,G,B) space (where R,G,B are the average
amount of red, green and blue [FBF194]). See Figure 5.1(c).

m Time-sequences analysis and forecasting [WG94, CE92], where k successive
values are treated as a point in k-d space; correlations and regularities in
this k-d space help in characterizing the dynamical process that generates
the time series.

25

26 CHAPTER 5

m Rule indexing in expert database systems [SSH86] where rules can be rep-
resented as ranges in address space (eg., ‘all the employees with salary in
the range (10K-20K) and age in the rage (30-50) are entitled to specific
health benefits’). See Figure 5.1(d).

In a collection of spatial objects, there are additional query types that are of
interest. The following query types seem to be the most frequent:

1. range queries, a slight generalization of the range queries we saw in sec-
ondary key retrieval. Eg., ‘find all cities within 10 miles from Washington
DC’; or ‘find all rivers in Canada’. Thus the user specifies a region (a
circle around Washington, or the region covered by Canada) and asks for
all the objects that intersect this region. The point query is a special case
of the range query, when the query region collapses to a point. Typically,
the range query request all the spatial objects that intersect a region; sim-
ilarly, it could request the spatial objects that are completely contained, or
that completely contain the query region. We mainly focus on the ‘inter-
section’ variation; the rest two can usually be easily answered, by slightly
modifying the algorithm for the ‘intersection’ version.

2. nearest neighbor queries, again a slight generalization of the nearest neigh-
bor queries for secondary keys. Eg., ‘find the § closest post-offices to our
office building’. The user specifies a point or a region, and the system has
to return the k closest objects. The distance is typically the Euclidean dis-
tance (Ly norm), or some other distance function (eg., city-block distance
L1, or the Ls norm etc).

3. spatial joins, or overlays: eg., in a CAD design, ‘find the pairs of elements
that are closer than € (and thus create electromagnetic interference to each
other). Or, given a collection of lakes and a collection of cities, ‘find all
the cities that are within 10km from a lake’.

The proposed methods in the literature form the following classes. For a recent,
extensive survey, see [GG95].

B Methods that use space filling curves (also known as z-ordering or linear
quadirees).

m Methods that use tree-like structures: R-trees and its variants.

Spatial access methods (SAMs) 27

salary X
' .
X
X
X X
X X
X
X X
X

age
(a) traditional db (b) Geographic db
Rule2
Johnson Salary
o, 60K
Smith
40K |
20K Rulel
S B R
20 40

(¢) Multimedia db

feature 1

(d) rule indexing

age

Figure 5.1 Applications of Spatial Access Methods

The next two sections are dedicated to each of the above classes. For each
class we discuss the main idea, its most successful variations, and sketch the
algorithms to handle the above query types. In the third section we present
the idea that transforms spatial objects into higher-dimensionality points. In
the last section we give the conclusions for this chapter.

5.1 SPACE FILLING CURVES

The method has attracted a lot of interest, under the names of N-trees [Whi81],
linear quadtrees [Gar82], z-ordering [Ore86] [OM88] [Ore89] [Ore90] ete. The
fundamental assumption is that there is a finite precision in the representation
of each co-ordinate, say K bits. The terminology is easiest described in 2-d
address space; the generalizations to n dimensions should be obvious. Following
the quadtree literature, the address space is a square, called an image , and it

28 CHAPTER 5

is represented as a 2% x 2K

a pizvel .

array of 1 x 1 squares. Each such square is called

Figure 5.2 gives an example for n=2 dimensional address space, with K=2 bits
of precision. Next, we describe how the method handles points and regions.

5.1.1 Handling points

The space filling curve tries to impose a linear ordering on the resulting pixels
of the address space, so that to translate the problem into a primary-key access
problem.

Y A

11 B

10

01

00 ¢

00 01 10 11 X

m = m.
0 4 8 12 16

Figure 5.2 [Illustration of Z-ordering

One such obvious mapping is to visit the pixels in a row-wise order. A better
idea is to use bit interleaving [OMB84]. Then, the z-value of a pixel is the value of
the resulting bit string, considered as a binary number. For example, consider
the pixel labeled ‘A’ in Figure 5.2, with coordinates 4= 00 and y4= 11.
Suppose that we decide to shuffle the bits, starting from the x-coordinate first,
that is, the order with which we pick bits from the coordinates is ‘1,2,1,2” (‘1°

corresponds to the z coordinate and ‘2’ to the y coordinate). Then, the z-value
z4 of pixel ‘A’ is computed as follows:

z4 = Shuffle (‘1,2,1,2’, 24, ya) = Shuffle (‘1,2,1,2°, 00, 11) = 0101 = (5)10

Spatial access methods (SAMs) 29

Visiting the pixels in ascending z-value order creates a self-similar trail as de-
picted in Figure 5.2 with a dashed line; the trail consists of ‘N’ shapes, organized
to form larger ‘N’ shapes recursively. Rotating the trail by 90 degrees gives ‘7’
shapes, which is probably the reason that the method was named z-ordering.
Figure 5.3 shows the trails of the z-ordering for a 2x2, a 4x4 and an 8x8 grid.
Notice that each larger grid contains four miniature replicas of the smaller grids,
joined in an ‘N’ shape.

Figure 5.3 Z-order curves for 2x2, 4x4 and 8x8 grids.

We have just described one method to compute the z-value of a point in 2-d
address space. The extension to n-d address spaces is obvious: we just shuffle
the bits from each of the n dimensions, visiting the dimensions in a round-robin
fashion. The inverse 1s also obvious: given a z-value, we translate it to a binary
number and un-shuffle its bits, to derive the n coordinate values.

5.1.2 Handling Regions

The z-value of a region is more complicated. In fact, a region typically breaks
into one or more pieces, each of which can be described by a z-value. For
example, the region labeled ‘C’ in Figure 5.2 breaks into two pixels C; and CY,
with z-values

Zc, = 0010 = (2)10
ze, = 1000 = (8)1¢

The region labeled ‘B’ consists of four pixels, which have the common prefix 11
in their z-values; in this case, the z-value of ‘B’ is exactly this common prefix:

zp = 11

A conceptually easier and computationally more efficient way to derive the z-
values of a region is through the concept of ‘quadtree blocks’. Consider the

30 CHAPTER 5

four equal squares that the image can be decomposed into. Each such square
is called a level-1 block ; a level-i block can be recursively defined as one of the
four equal squares that constitute a level-(¢ — 1) block. Thus, the pixels are
level-K blocks; the image is the (only) level-0 block. Notice that for a level-¢
block, all its pixels have the same prefix up to 2¢ bits; this common prefix is
defined as the z-value of the given block.

We obtain the quadtree decomposition of an object (region) by recursively
dividing it into blocks, until the blocks are homogeneous or until we reach the
pixel level (level-K blocks). For a 2-dimensional object, the decomposition can
be represented as a 4-way tree, as shown in Figure 5.4(b). Blocks that are
empty/full/partially-full are represented as white, black and gray nodes in the
quadtree, respectively.

For efficiency reasons (eg., see [Ore89, Ore90]), we typically approximate an
object with a ‘coarser resolution’ object. In this case, we stop the decomposition
earlier, eg., when we reach level-i blocks (i < K), or when we have a large
enough number of pieces. Figure 5.4(c) and (d) give an example.

The quadtree representation gives an easy way to obtain the z-value for a
quadtree block: Let ‘0’ stand for ‘south’ and for ‘west’, and ‘1’ stand for ‘north’
and for ‘east’. Then, each edge of the quadtree has a unique, 2-bit label, as
shown in Figure 5.4; the z-value of a block is defined as the concatenation of the
labels of the edges from the root of the quadtree to the node that corresponds
to the given block.

Since every block has a unique z-value, we can represent the quadtree decom-
position of an object by listing the corresponding z-values. Thus, the z-values
of the shaded rectangle in figure 5.4(a) are ‘0001’ (for ‘WS WN’) ‘0011” (for
‘WS EN’) and ‘01’ (for ‘WN’).

As described above, quadtrees have been used to store objects in main memory.
For disk storage, the prevailing approach is the so-called linear quadtree [Gar82],
or, equivalently the z-ordering method [Ore86]. Each object (and range query)
can be uniquely represented by the z-values of its blocks. Each such z-value can
be treated as a primary-key of a record of the form (z-value, object-id, other
attributes ...), and it can be inserted in a primary-key file structure, such as
a Bt-tree. Table 5.1 illustrates such a relation, containing the z-values of the
shaded rectangle of Figure 5.4(a).

Additional objects in the same address space can be handled in the same way;
their z-values will be inserted into the same B¥-tree.

Spatial access methods (SAMs)

11
10
01

00

00 01 10 11
(a) a spatial object

11 (NE)

level 2

(b) its exact quadtree decomposition

31

11
10
01

00

00 01 10 11

(d) the corresponding approximate object

0 (s 11 (NE)

gray-turned-black o1 (hw)

\ 14 (SE)

no nodes allowed at or below this level

(¢) an approximate quadtree decomposition

Figure 5.4 Counter-clockwise, from top-left: (a) The shaded rectangle is
decomposed into three blocks. (b) the corresponding quadtree, with z-values
01, 0001 and 0011 (c) an approximate quadtree, with z-values 01, 00 (d) the
corresponding approximate spatial object - the lightly-shaded region is the en-

largement, due to the approximation.

| z-value | object 1d

| (other attributes) |

0001 ‘ShadedRectangle’
0011 ‘ShadedRectangle’

01 ‘ShadedRectangle’

Table 5.1 Illustration of the relational table that will store the z-values of

the sample shaded rectangle.

5.1.3 Algorithms

The z-ordering method can handle all the queries that we have listed earlier.

32 CHAPTER 5

Range Queries: The query shape is translated into a set of z-values, as if it
were a data region. Typically, we opt for an approximate representation of it,
trying to balance the number of z-values and the amount of extra area in the
approximation [Ore90]. Then, we search the BT-tree with the z-values of the
data regions, for matching z-values. Orenstein and Manola [OM88] describe in
detail the conditions for matching.

Nearest neighbor queries: The sketch of the basic algorithm is as follows:
Given a query point P, we compute its z-value and search the Bt-tree for the
closest z-value; we compute the actual distance r, and then issue a range query
centered at P with radius r.

Spatial joins: The algorithm for spatial joins is a generalization of the algo-
rithm for the range query. Let S be a set of spatial objects (eg., lakes) and R be
another set (eg., railways line segments). The spatial join ‘find all the railways
that cross lakes’ is handled as follows: the elements of set S are translated
into z-values, sorted; the elements of set R are also translated into a sorted
list of z-values; the two lists of z-values are merged. The details are in [Ore86]

[OM38g].

5.1.4 Variations - improvements

We have seen that if we traverse the pixels on ascending z-value order, we
obtain a trail as shown in Figure 5.2. This trail imposes a mapping from
n-d space onto a 1-d space; ideally, we would like a mapping with distance
preserving properties; that is, pixels that are near in address space should have
nearby z-values. The reason is that good clustering will make sure that ‘similar’
pixels will end up in the same or nearby leaf pages of the Bt-tree, thus greatly
accelerating the retrieval on range queries.

The z-ordering indeed imposes a good such mapping: It does not leave a quad-
rant, unless it has visited all its pixels. However, it has some long, diago-
nal jumps, which maybe could be avoided. This observation prompted the
search for better space filling curves. Alternatives included a curve using Gray
codes [Fal88]; the best performing one is the Hilbert curve [FR89b], which has
been shown to achieve better clustering than the z-ordering and the gray-codes
curve, and it is the only one that we shall describe.

Figure 5.5 shows the Hilbert curves of order 1, 2 and 3: The order k curve is
derived from the original, order 1 curve, by substituting each of its four points

Spatial access methods (SAMs) 33

with an order (k-1) curve, appropriately rotated or reflected. In the limit,
the resulting curve has fractal dimension=2 [Man77], which intuitively means
that it is so inter-twined and dense that it ‘behaves’ like a 2-d object. Notice
also that the trail of a Hilbert curve does not have any abrupt jumps, like
the z-ordering does. Thus, intuitively it is expected to have better distance-
preserving properties than the z-ordering. Experiments in [FR89b] showed that
the claim holds for the reported settings.

Algorithms to compute the Hilbert value of an n-d pixel have been published
[Bia69, But71]; source code in the ‘C’ programming language is available in
[Jag90a] for n=2 dimensions. The complexity of all these algorithms, as well as
their inverses, is O(b) where b is the total number of bits of the z/Hilbert value.
The proportionality constant is small (a few operations per bit for the z-value,
a few more for the Hilbert value). For both curves, the time to compute a
z/Hilbert value is negligible compared to the disk access time.

11 ‘7 — |
1 2 —
3 2 13 12 :l |:| 5 |—|
e
0 35 I 15
H1 H, H,

Figure 5.5 Hilbert Curves of order 1,2 and 3

There are several analytical and simulation studies of space filling curves:
in [FR89b] we used exhaustive enumeration to study the clustering proper-
ties of several curves, showing that the Hilbert curve is best; Jagadish [Jag90a]
provides analysis for partial match and 2x2 range queries; in [RF91] we derive
closed formulas for the z-ordering; Moon et al. [MJFS96] derive closed formulas
for range queries on the Hilbert curve.

Also related is the analytical study for quadtrees, trying to determine the num-
ber of quadtree blocks that a spatial object will be decomposed into [HS79],
[Dye82, Sha88], [Fal92a], [FIM94], [Gae95], [FG96]. The common observation
is that the number of quadtree blocks and the number of z/Hilbert values that
a spatial object requires is proportional to the measure of its boundary (eg.,
perimeter for 2-d objects, surface area for 3-d etc.). As intuitively expected,

34 CHAPTER 5

the constant of proportionality is smaller for the Hilbert curve, compared to
the z-ordering.

5.2 R-TREES

[ale[c] | [o[e[[| [Fleln] |
(a) (b)

Figure 5.6 (a) Data (solid-line rectangles) organized in an R-tree with
fanout=4 (b) the resulting R-tree, on disk.

The R-tree was proposed by Guttman [Gut84]. Tt can be thought of as an exten-
sion of the B-tree for multidimensional objects. A spatial object is represented
by its minimum bounding rectangle (MBR). Non-leaf nodes contain entries of
the form (ptr, R), where ptr is a pointer to a child node in the R-tree; R is the
MBR that covers all rectangles in the child node. Leaf nodes contain entries of
the form (obj — id, R) where obj —id is a pointer to the object description, and
R i1s the MBR of the object. The main innovation in the R-tree is that parent
nodes are allowed to overlap. This way, the R-tree can guarantee good space
utilization and remain balanced. Figure 5.6(a) illustrates data rectangles (solid
boundaries), organized in an R-tree with fanout 3, while Figure 5.6(b) shows
the file structure for the same R-tree, where nodes correspond to disk pages.

The R-tree inspired much subsequent work, whose main focus was to improve
the search time. A packing technique is proposed in [RL85] to minimize the
overlap between different nodes in the R-tree for static data. The 1dea was to
order the data in, say, ascending x-low value, and scan the list, filling each leaf
node to capacity. Figure 5.7(a) illustrates 200 points in 2-d, and Figure 5.7(b)
shows the resulting R-tree parents according to the x-low sorting. An improved
packing technique based on the Hilbert Curve is proposed in [KF93]: the idea

Spatial access methods (SAMs) 35

is to sort the data rectangles on the Hilbert value of their centers. Figure 5.7(c)
shows the resulting R-tree parents; notice that their MBRs are closer to a square
shape, which was shown to give better search performance than the elongated

shapes of Figure 5.7(b).

o

—HEr T

‘T
S5 [

‘\
—
O]

1000

L
000 20 w000 000 000 1000 000 200 w000 000 000 1000 000 200 w000 000 000

Figure 5.7 Packing algorithms for R-trees: (a) 200 points (b) their parent
MBRs, when sorting on x-low (c) the parent MBRs when sorting on the Hilbert
value.

A class of variations consider more general minimum bounding shapes, trying to
minimize the ‘dead space’ that an MBR may cover. Gunther proposed the cell
trees [Gun86], which introduce diagonal cuts in arbitrary orientation. Jagadish
proposed the polygon trees (P-trees) [Jag90b], where the minimum bounding
shapes are polygons with slopes of sides 0, 45, 90, 135 degrees. Minimum
bounding shapes that are concave or even have holes have been suggested, eg.,

in the hB-tree [LS90].

One of the most successful ideas in R-tree research is the idea of deferred
splitting: Beckmann et. al. proposed the R*-tree [BKSS90], which was reported
to outperform Guttman’s R-trees by ~30%. The main idea is the concept of
forced re-insert, which tries to defer the splits, to achieve better utilization:
When a node overflows, some of its children are carefully chosen and they
are deleted and re-inserted, usually resulting in a better structured R-tree.
The idea of deferred splitting was also exploited in the Hilbert R-tree [KF94];
there, the Hilbert curve is used to impose a linear ordering on rectangles, thus
defining who the sibling of a given rectangle is, and subsequently applying the
2-t0-3 (or s-to-(s 4+ 1)) splitting policy of the B*-trees (see section 3.2). Both
methods achieve higher space utilization than Guttman’s R-trees, as well as
better response time (since the tree is shorter and more compact).

36 CHAPTER 5

Finally, analysis of the R-tree performance has attracted a lot of interest: in
[FSR87] we provide formulas, assuming that the spatial objects are uniformly
distributed in the address space. The uniformity assumption was relaxed in
[FK94], where we showed that the fractal dimension is an excellent measure of
the non-uniformity, and we provided accurate formulas to estimate the average
number of disk accesses of the resulting R-tree. The fractal dimension also
helps estimate the selectivity of spatial joins, as shown in [BF95]. When the
sizes of the MBRs of the R-tree are known, formulas for the expected number

of disk access are given in [PSTW93] and [KF93].

5.2.1 Algorithms

Since the R-tree is one of the most successful spatial access methods, we describe
the related algorithms in some more detail:

Insertion: When a new rectangle is inserted, we traverse the tree to find the
most suitable leaf node; we extend its MBR if necessary, and store the new
rectangle there. If the leaf node overflows, we split it, as discussed next:

Split: This is one of the most crucial operations for the performance of the
R-tree. Guttman suggested several heuristics to divide the contents of an over-
flowing node into two sets, and store each set in a different node. Deferred
splitting, as mentioned in the R*-tree and in the Hilbert R-tree, will improve
performance. Of course, as in B-trees, a split may propagate upwards.

Range Queries: The tree is traversed, comparing the query MBR with the
MBRs in the current node; thus, non-promising (and potentially large) branches
of the tree can be ‘pruned’ early.

Nearest Neighbors: The algorithm follows a ‘branch-and-bound’ technique
similar to [FN75] for nearest-neighbor searching in clustered files. Roussopoulos
et al. [RKV95] give the detailed algorithm for R-trees.

Spatial Joins: Given two R-trees, the obvious algorithm builds a list of pairs
of MBRs, that intersect; then, it examines each pair in more detail, until we
hit the leaf level. Significantly faster methods than the above straightforward
method have been suggested in [BKS93] [BKSS94]. Lo and Ravishankar [LR94]
proposed an efficient method to perform a spatial join when only one of the
two spatial datasets has an R-tree index on it.

Spatial access methods (SAMs) 37

5.2.2 Conclusions

R-trees is one of the most promising SAMs. Among its variations, the R*-
trees and the Hilbert R-trees seem to achieve the best response time and space
utilization, in exchange for more elaborate splitting algorithms.

5.3 TRANSFORMATION TO HIGHER-D
POINTS

The idea is to transform 2-d rectangles into 4-d points [HN83], by using the
low- and high-values for each axis; then, any point access method (PAM) can
be used. In general, an n-dimensional rectangle will become a 2n-dimensional
point. The original and final space are called ‘native’ and ‘parameter’ space,
respectively [Ore90]. Figure 5.8 illustrates the idea for 1-d address space: line
segments A(0:0.25) and B(0.75:1) are mapped into 2-d points. A range query
()(0.25:0.75) in native space becomes a range query in parameter space, as
illustrated by the shaded region in Figure 5.8.

The strong point of this idea is that we can turn any Point Access Method
(PAM) into a Spatial Access Method (SAM) with very little effort. This ap-
proach has been used or suggested in several settings, eg., with grid files [HN83],
B-trees [FR91], hB-trees [LS90] as the underlying PAM.

The weak points are the following: (a) the parameter space has high dimen-
sionality, inviting ‘dimensionality curse’ problems earlier on (see the discussion
on page 39). (b) except for range queries, there are no published algorithms
for nearest-neighbor and spatial join queries. Nevertheless, it is a clever idea,
which can be valuable for a stand-alone, special purpose system, operating on
a low-dimensionality address space. Such an application could be, eg., a tem-
poral database system [SS88], where the spatial objects are 1-dimensional time
segments [KTF95].

54 CONCLUSIONS

From a practical point of view, the most promising methods seem to be:

38

CHAPTER 5

x-end

Q 05
A B
}—Y—V—Y—{ o
0 0.25 05 075 1 0 0.5 x—start

0.75

Figure 5.8 Transformation of 1-d rectangles into points in higher dimension-
ality.

Z-ordering: Z-ordering and, equivalently, linear quadtrees have been very
popular for 2-dimensional spaces. One of the major application is in
geographic information systems: linear quadtrees have been used both
in production systems, like the TIGER system at the U.S. Bureau of
Census [Whi81] (http://tiger.census.gov/ tiger/tiger.html), which
stores the map and statistical data of the U.S.A., as well as research proto-
types such as QUILT [SSN87], PROBE [OM88], and GODOT [GR94]. For
higher dimensions, oct-trees have been used in 3-d graphics and robotics
[BB82]; in databases of 3-d medical images [ACF194], etc. Z-ordering per-
forms very well for a low dimensionality and for points. It is particularly
attractive because it can be implemented on top of a B-tree with relatively
little effort. However, for objects with non-zero area (= hyper-volume),
the practitioner should be aware of the fact that each such object may
require a large number of z-values for its exact representation; the recom-
mended approach is to approximate each object with a small number of

z-values [Ore89, Ore90].

R-trees and variants: they operate on the native space (requiring no trans-
forms to high-dimensionality spaces), and they can handle rectangles and
other shapes without the need to divide them into pieces. Cutting data into
pieces results in an artificially increased database size (linear on the num-
ber of pieces); moreover, it requires a duplicate-elimination step, because a
query may retrieve the same object-id several times (once for each piece of
the qualifying object) R-trees have been tried successfully for 20-30 dimen-
sional address spaces [FBFT94, PF94]. Thanks to the above properties,
R-trees have been incorporated in academic as well as commercial sys-

Spatial access methods (SAMs) 39

tems, like POSTGRES (http: //s2k-ftp.cs. berkeley.edu: 8000
/postgres95/) and ILLUSTRA (http: //www.illustra.com/).

Before we close this chapter, we should mention about the ‘dimensionality
curse’. Unfortunately, all the SAMs will suffer for high dimensionalities n: For
the z-ordering, the range queries of radius r will require effort proportional
to the hyper-surface of the query region O(r(”_l)) as mentioned on page 33.
Similarly, for the R-trees as the dimensionality n grows, each MBR, will re-
quire more space; thus, the fanout of each R-tree page will decrease. This will
make the R-tree taller and slower. However, as mentioned, R-trees have been
successfully used for 20-30 dimensions [FBF*94] [PF94]. To the best of this
author’s knowledge, performance results for the z-ordering method are avail-
able for low dimensionalities only (typically, n=2). A comparison of R-trees
versus z-ordering for high dimensionalities is an interesting research question.

Exercises

Exercise 5.1 [07] What is the z-value of the pizel (11, 00) in Figure 5.2¢
What is its Hilbert value?

Exercises

Exercise 5.2 [20] Design an algorithm for the spatial join in R-lrees
Exercise 5.3 [30] Design an algorithm for the k nearest neighbors in R-lrees
Exercise 5.4 [30] Repeat the two previous exercises for the Z-ordering

Exercise 5.5 [38] Implement the code for the Hilbert curve, for 2 dimensions;
for n dimensions.

6

ACCESS METHODS FOR TEXT

6.1 INTRODUCTION

In this chapter we present the main ideas for text retrieval methods. For
more details, see the survey in [Fal85] and the book by Frakes and Baeza-
Yates [FBY92]. Access methods for text are interesting for three reasons: (a)
multimedia objects often have captions in free text; exploiting these captions
may help retrieve some additional relevant objects [OS95] (b) research in text
retrieval has led to some extremely useful ideas, like the relevance feedback and
the wvector space model that we discuss next and (¢) text retrieval has several
applications in itself.

Such applications include the following:

m Library automation [SM83] [Pri84] and distributed digital libraries [GGMT94],
where large amounts of text data are stored on the world-wide-web (WWW).
In this setting, search engines are extremely useful and popular, like ‘veron-
ica’ [ODL93], ‘lycos’ (http: //lycos. cs.cmu.edu/), ‘inktomi’ (http:
//inktomi. berkeley. edu/), etc..

® Automated law and patent offices [Hol79] [HH83]; electronic office filing
[CTHT86]; electronic encyclopedias [EMST86] and dictionaries [GT87].

m Information filtering (eg., the RightPages project [SOFt92] and the La-
tent Semantic Indexing project [DDF190] [FD92a]); also, the ‘selective
dissemination of information’ (SDI) [YGM94].

In text retrieval, the queries can be classified as follows [Fal85]:

41

42 CHAPTER 6

®m Boolean queries, eg. ‘(data or information) and retrievel and (not text).
Here, the user specifies terms, connected with Boolean operators. Some
additional operators are also supported, like adjacent, or within <n>
words or within sentence, with the obvious meanings. For example the
query ‘data within sentence retricval’ will retrieve documents which con-
tain a sentence with both the words ‘data’ and ‘retrieval’.

m Keyword search: here, the user specifies a set of keywords, like, eg., ‘data,
retrieval, information’; the retrieval system should return the documents
that contain as many of the above keywords as possible. This interface
offers less control to the user, but it is more user-friendly, because it does
not require familiarity with Boolean logic.

Several systems typically allow for prefix matches, eg., ‘organ® will match all
the words that start with ‘organ’, like ‘organs’; ‘organization’, ‘organism’ etc.
We shall use the star “*’ as the variable-length don’t care character.

The rest of this chapter i1s organized as follows: in the next three sections we
discuss the main three methods for text retrieval, namely (a) full text scanning,
(b) inversion and (c) signature files. In the last section we discuss the clustering
approach.

6.2 FULL TEXT SCANNING

According to this method, no preprocessing of the document collection is re-
quired. When a query arrives, the whole collection is inspected, until the
matching documents are found.

When the user specifies a pattern that is a regular expression, the textbook
approach is to use a finite state automaton (FSA) [HU79, pp. 29-35]. If the
search pattern is a single string with no don’ care characters, faster methods
exist, like the Knuth, Morris and Pratt algorithm [KMP77], and the fastest of
all, the Boyer and Moore algorithm [BM77] and its recent variations [Sun90,
HS91].

For multiple query strings, the algorithm by Aho and Corasick [AC75] builds
a finite state automaton in time linear on the total length of the strings, and
reports all the matches in a single pass over the document collection.

Access methods for text 43

Searching algorithms that can tolerate typing errors have been developed by
Wu and Manber [WM92] and Baeza-Yates and Gonnet [BYG92]. The idea
is to scan the database one character at a time, keeping track of the cur-
rently matched characters. The algorithm can retrieve all the strings within
a desired editing distance from the query string. The editing distance of two
strings is the minimum number of insertions, deletions and substitutions that
are needed to transform the first string into the second [HD80, LW75, SK83].
The method 1s flexible and fast, requiring a few seconds for a few Megabytes
of text on a SUN-class workstation. Moreover, its source code is available
(ftp://cs.arizona.edu/agrep).

In general, the advantage of every full text scanning method 1s that it requires
no space overhead and minimal effort on insertions and updates, since no indices
have to be changed. The price is that the response time is slow for large data
bases. Therefore, full text scanning is typically used for small databases (a few
Mbytes in size), or in conjunction with another access method (e.g., inversion)
that would restrict the scope of searching.

6.3 INVERSION

In inversion, each document can be represented by a list of (key)words, which
describe the contents of the document for retrieval purposes. Fast retrieval
can be achieved if we invert on those keywords: The keywords are stored, eg.,
alphabetically, in the ‘index file’; for each keyword we maintain a list of pointers
to the qualifying documents in the ‘postings file’. Figure 6.1 illustrates the file
structure, which is very similar to the inverted index for secondary keys (see
Figure 4.1).

Typically, the index file is organized using sophisticated primary-key access
methods, such as B-trees, hashing, TRIEs [Fre60] or variations and combina-
tions of these (e.g., see [Knu73, pp. 471-542], or Chapter 3). For example, in
an early version of the UNIX™ utility refer, Lesk used an over-loaded hash
table with separate chaining, in order to achieve fast searching in a database of
bibliographic entries [Les78]; the Oxford English Dictionary uses an extension
of the PATRICTA trees [Mor68], called PAT trees [GBYS92].

The advantages are that inversion is relatively easy to implement, it is fast, and
it supports synonyms easily (e.g., the synonyms can be organized as a threaded
list within the dictionary). For the above reasons, the inversion method has

44 CHAPTER 6

dictionary postings
lists
document file
‘Aaron’
—_—=
T
\

‘z00’

Figure 6.1 [Illustration of inversion

been adopted in most of the commercial systems such as DIALOG, BRS, MED-
LARS, ORBIT, STAIRS [SM&3, ch. 2].

The disadvantages of this method are the storage overhead (which can reach up
to 300% of the original file size [Has81] if too much information is kept about
each word occurrence), and the cost of updating and reorganizing the index, if
the environment is dynamic.

Recent work exactly focuses on these problems: Techniques to achieve fast
insertions incrementally include the work by Tomasic et al., [TGMS94]; Cutting
and Pedersen [CP90] and Brown et. al. [BCC94]. These efforts typically
exploit the skewness of the distribution of postings lists, treating the short lists
differently than the long ones.

It is important to elaborate on the skewness, because it has serious implica-
tions for the design of fast text retrieval methods. The distribution typically
follows Zipf’s law [Zip49], which states that the occurrence frequency of a word
is inversely proportional to its rank (after we sort the vocabulary words in

Access methods for text 45

decreasing frequency order). More specifically, we have [Sch91]:

1

1) = s (6.1)

where r is the rank of the vocabulary word, f(r) is the percentage of times it
appears, and V is the vocabulary size. This means that a few vocabulary words
will appear very often, while the majority of vocabulary words will appear once
or twice. Figure 6.2 plots the frequency versus the rank of the words in the
Bible, in logarithmic scales. The Figure also plots the predictions, according to
Eq. 6.1. Notice that the first few most common words appear tens of thousands
of times, while the vast majority of the vocabulary words appear less than
10 times. Zipf reported that similar skeweness is observed in several other
languages, in addition to English.

100000 T
"bible.data" ~—
“zipf.law" -+

10000

1000

log(freq)

100 |

10

00 1000 10000 100000
log(rank)

Figure 6.2 Rank-Frequency plot for the words in the Bible - both scales are
logarithmic. The line corresponds to Zipf’s law.

Given the large size of indices, compression methods have also been investi-
gated: Zobel et al. [ZMSD92] use Elias’s [Eli75] compression scheme for post-
ings lists, reporting small space overheads for the index. Finally, the glimpse
package [MWO94] uses a coarse index plus the agrep package [WM92] for ap-
proximate matching. Like the agrep package, glimpse is also available from
the University of Arizona (ftp: //cs.arizona.edu/ glimpse).

46 CHAPTER 6

6.4 SIGNATURE FILES

The idea behind signature files is to create a ‘quick and dirty’ filter, which
will be able to quickly eliminate most of the non-qualifying documents. As we
shall see next and in Chapter 7, this idea has been used several times in very
different contexts, often with excellent results. A recent survey on signature

files is in [Fal92b].

The method works as illustrated in Figure 6.3: For every document, a short,
typically hash-coded version of it is created (its document signature); document
signatures are typically stored sequentially, and are searched upon a query. The
signature test returns all the qualifying documents, plus (hopefully, few) false
matches, or ‘false alarms’ or ‘false drops’. The documents whose signatures
qualify are further examined, to eliminate the false drops.

signature text file
file
...JoSm.. ... John Smith ...

Figure 6.3 FExample of signature files. For illustration, the signature of a
word is decided to be its first two letters.

Figure 6.3 shows a naive (and not recommended) method of creating signatures,
namely, by keeping the first 2 letters of every word in the document. One of the
best methods to create signatures is superimposed coding [Moo49]. Following
the notation in [CF84], each word yields a bit pattern (word signature) of size
F, with m bits set to ‘1’ and the rest left as ‘0’. These bit patterns are OR-ed to
form the document signature. Table 6.3 gives an example for a toy document,
with two words: ‘data’ and “base’.

Access methods for text A7

Word Signature
data 001 000 110 010
base 000 010 101 001

doc. signature 001 010 111 011

Table 6.1 lustration of superimposed coding: F'=12 bits for a signature,
with m=4 bits per word set to 1.

On searching for a word, say ‘data’, we create its word signature, and exclude
all the document signatures that do not have a ‘1’ at the corresponding bit
positions. The choice of the signature length F' depends on the desirable false-
drop rate; the m parameter is chosen such that, on the average, half of the bits
should be ‘17 in a document signature [Sti60].

The method has been studied and used extensively in text retrieval: on bibli-
ographic entries [FH69]; for fast substring matching [Har71] [KR87]; in office
automation and message filing [TC83] [FC87]. It has been used in academic
[SDR83, SDKRS87] as well as commercial systems [SK86, Kim8&8].

Moreover, signature files with some variation of superimposed coding have been
used in numerous other applications: For indexing of formatted records [Rob79,
(CS89]; for indexing of images [RS92]; for set-membership testing in the so-called
Bloom filters, which have been used for spelling checking in UNIX™ [McI82],
in differential files [SL76], and in semi-joins for distributed query optimization
[ML8&6]. A variation of superimposed coding has even been used in chess-playing
programs, to alert for potentially dangerous combinations of conditions [ZC77].

In concluding this discussion on the signature file approach, its advantages are
the simplicity of its implementation, and the efficiency in handling insertions.
In addition, the method is trivially parallelizable [SK86]. The disadvantage is
that it may be slow for large databases, unless the sequential scanning of the
signature file is somehow accelerated [SDR83, LL89, ZRT91].

48 CHAPTER 6

6.5 VECTOR SPACE MODEL AND
CLUSTERING

The Vector Space Model is very popular in information retrieval [Sal71b] [SM83]
[VRT79], and it is well suited for ‘keyword queries’. The motivation behind the
approach is the so-called cluster hypothesis: closely associated documents tend
to be relevant to the same requests. Grouping similar documents accelerates
the searching.

Document

. . ‘Aaron’ ‘data’ ‘200’
indexing

.. data ... %‘ ‘ “ “ ‘

Figure 6.4 [Illustration of the ‘indexing’ process in IR

An important contribution of the vector space model is to envision each docu-
ment as a V-dimensional vector, where V is the number of terms in the docu-
ment collection. The procedure of mapping a document into a vector is called
indexing (overloading the word!); ‘indexing’ can be done either manually (by
trained experts), or automatically, using a stop list of common words, some
stemming algorithm, and possibly a thesaurus of terms. The final result of
the ‘indexing’ process 1s that each document is represented by a V-dimensional
vector, where V' is the number of permissible index terms. Absence of a term
is indicated by a 0 (or by -1 [Coo70]); presence of a term is indicated by 1 (for
binary document vectors) or by a positive number (term weight), which reflects
the importance of the term for the document.

The next step in the vector space model is to decide how to group similar vec-
tors together (‘cluster generation’); the last step is to decide how to search a
cluster hierarchy for a given query (‘cluster search’). For both the above prob-
lems, we have to decide on a document-to-document similarity function and
on a document-to-cluster stmilarity function. For the document-to-document
similarity function, several choices are available, with very similar performance
([SM83, pp. 202-203] [VR79, p. 38]). Thus, we present only the cosine simi-
larity function [Sal71b] which seems to be the most popular:

cos(Z,) = Zog/(| & || || F11) (6.2)

where & and § are two V-dimensional document vectors, ‘o’ stands for the inner
product of two vectors and || . || for the Euclidean norm of its argument.

Access methods for text 49

There are also several choices for the document-to-cluster distance/similarity
function. The most popular seems to be the method that treats the centroid of
the cluster as a single document, and then applies the document-to-document
similarity /distance function. Other choices include the ‘single link’ method,
which estimates the minimum distance (= dis-similarity) of the document from
all the members of the cluster, and the ‘all link” method which computes the
maximum of the above distances.

An interesting and effective recent development is the ‘Latent Semantic In-
dexing’ (LST), which applies the Singular Value Decomposition (SVD) on the
document-term matrix and it automatically groups co-occurring terms. These
groups can be used as a thesaurus, to expand future queries. Experiments [FD92b]
showed up to 30% improvement over the traditional vector model. More details
on the method are in Appendix D.3, along with the description of the SVD.

In the next subsections we briefly describe the main ideas behind (a) the cluster
generation algorithms, (b) the cluster search algorithms and (¢) the evaluation
methods of the clustering schemes.

6.5.1 Cluster generation

Several cluster generation methods have been proposed; recent surveys can
be found in [Ras92] [Mur83] [VR79]. Following Van-Rijsbergen [VR79], we

distinguish two classes:

m ‘sound’ methods, that are based on the document-to-document similarity
matrix and

m ‘iterative’ methods, that are more efficient and proceed directly from the
document vectors.

Sound Methods: If N is the number of documents, these methods usually re-
quire O(N?) time (or more) and apply graph theoretic techniques. A simplified
version of such a clustering method would work as follows ([DH73b, p. 238]):
An appropriate threshold is chosen and two documents with a similarity mea-
sure that exceeds the threshold are assumed to be connected with an edge. The
connected components (or the maximal cliques) of the resulting graph are the
proposed clusters.

50 CHAPTER 6

The problem is the selection of the appropriate threshold: different values for
the threshold give different results. The method proposed by Zahn [ZahT71]
is an attempt to circumvent this problem. He suggests finding a minimum
spanning tree for the given set of points (documents) and then deleting the
‘inconsistent’ edges. An edge is inconsistent if its length [is much larger than
the average length {,,, of its incident edges. The connected components of the
resulting graph are the suggested clusters. Figure 6.5 gives an illustration of
the method. Notice that the long edges with solid lines are not inconsistent,
because, although long, they are not significantly longer than their adjacent
edges.

Figure 6.5 [Illustration of Zahn’s method: the dashed edge of the MST is
‘inconsistent’ and therefore deleted; the connected components are the clusters.

Iterative methods: This class consists of methods that are faster: O(N log N)
or O(N?/log N)) on the average. They are based directly on the object (docu-
ment) descriptions and they do not require the similarity matrix to be computed
in advance. The typical iterative method works as follows:

®m Choose some seeds (eg., from sound clustering on a sample)

m Assign each vector to the closest seed (possibly adjusting the cluster cen-
troid)

m Possibly, re-assign some vectors, to improve clusters

Several iterative methods have been proposed along these lines, The simplest
and fastest one seems to be the ‘single pass’ method [SW78]: Each document
is processed once and is either assigned to one (or more, if overlap is allowed)
of the existing clusters, or it creates a new cluster.

Access methods for text 51

In conclusion, as mentioned before, the iterative ones are fast and practical,
but they are sensitive to the insertion order.

6.5.2 Cluster searching

Searching in a clustered file is much simpler than cluster generation. The input
query is represented as a V-dimensional vector and it is compared with the
cluster-centroids. The searching proceeds in the most similar clusters, i.e., those
whose similarity with the query vector exceeds a threshold. As mentioned, a
typical cluster-to-query similarity function is the cosine function - see Eq. 6.2

Figure 6.6 Searching in clustered files: For the query vector g, searching
continues in the closest cluster at the left.

The vector representation of queries and documents has led to two important
ideas:

m ranked output and

m relevance feedback

The first 1dea, ranked output, comes naturally, because we can always compute
the distance/similarity of the retrieved documents to the query, and we can
sort them (‘most similar first’) and present only the first screenful to the user.

H2 CHAPTER 6

The second idea, the relevance feedback, is even more important, because it
can easily increase the effectiveness of the search [Roc71]: The user pinpoints
the relevant documents among the retrieved ones and the system re-formulates
the query vector and starts the searching from the beginning. To carry out the
query re-formulation, we operate on the query vector and add (vector addition)
the vectors of the relevant documents and subtract the vectors of the non-
relevant ones. Experiments indicate that the above method gives excellent
results after only two or three iterations [Sal7la].

6.5.3 Evaluation of clustering methods

The standard way to evaluate the ‘goodness’ of a clustering method is to use the
so-called precision and recall concepts. Thus, given a collection of documents,
a set of queries and a human expert’s responses to the above queries, the ideal
system 1is the one that will retrieve exactly what the human dictated, and
nothing more. The deviations from the above ideal situation are measured by
the precision and recall: consider the set of documents that the computerized
system returned; then the precision 1s defined as the percentage of relevant
documents among the retrieved ones:

retrieved and relevant

precision = -
retrieved

and recall is the percentage of relevant documents that we retrieved, over the
total number of relevant documents in the document collection:

retrieved and relevant

recall =
relevant
Thus, high precision means that we have few false alarms; high recall means
that we have few false dismissals.

The popular precision-recall plot gives the scatter-plot of the precision-recall
values for several queries. Figure 6.7 shows such a plot, for fictitious data.
When comparing the precision-recall plots of competing methods, the one closer
to the (1.0,1.0) point is the winner.

The annual Text REtrieval Conference (TREC) provides a test-bed for an
open competition of text retrieval methods. See http: //potomac. ncsl.
nist.gov/ TREC/ for more details.

Access methods for text 53

6.6

1 | x ideal
X
X
precision
X
X
x
X
X
x

0 X

I

0 1

recall

Figure 6.7 A fictitious, typical recall-precision diagram

CONCLUSIONS

We have discussed several methods for text searching and information retrieval
(TR). Among them, the conclusions for a practitioner are as follows:

Full text scanning is suitable for small databases (up to a few Megabytes);
‘agrep’ is a recent, excellent free-ware search package. Its scaled-up ver-

sion, ‘glimpse’, allows fast searching for up to a few Gigabytes of size.

m Inversion is the industry work-horse, for larger databases.

Signatures can provide a ‘quick-and-dirty’ test, when false alarms are tol-

erable or when they can be quickly discarded.

m The major ideas from the vector space model are two: (a) the relevance
feedback and (b) the ability to provide ranked output (i.e., documents
sorted on relevance order)

Exercises

Exercise 6.1 [20] Produce the (rank, frequency) plot for a text file. (Hint:
use the commands sort —u, tr and awk from UNIX™)

Exercise 6.2 [30] For queries with a single siring and no ‘don’t care’ charac-
ters, tmplement the straightforward method for full text scanning,; also, type-in

H4 CHAPTER 6

the Boyer-Moore code from Sunday [Sun90]; time them on some large files;
compare them to grep and agrep.

Exercise 6.3 [25] Implement an algorithm that will compute the editing dis-
tance of two strings, that is, the minimum number of insertions, deletions or
substitutions that are needed to transform one string to the other. (Hint: see
the discussion by Hall and Dowling [HD80]).

Exercise 6.4 [40] Develop a B-tree package and use il to build an index for
text files.

Exercise 6.5 [40] Develop and implement algorithms to do insertion and search
in a cluster hierarchy, as described in [SW78].

