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7PROBLEM - INTUITION
7.1 INTRODUCTIONThe problem we focus on is the design of fast searching methods that willsearch a database of multimedia objects, to locate objects that match a queryobject, exactly or approximately. Objects can be 2-dimensional color images,gray-scale medical images in 2-d or 3-d (eg., MRI brain scans), 1-dimensionaltime sequences, digitized voice or music, video clips etc. A typical query bycontent would be, eg., `in a collection of color photographs, �nd ones with asame color distribution as a sunset photograph'.Speci�c applications include image databases; �nancial, marketing and pro-duction time sequences; scienti�c databases with vector �elds; audio and videodatabases, DNA/genome databases, etc. In such databases, typical querieswould be `�nd companies whose stock prices move similarly', or `�nd imagesthat look like a sunset', or `�nd medical X-rays that contain something that hasthe texture of a tumor'.Searching for similar patterns in such databases as the above is essential,because it helps in predictions, decision making, computer-aided medical di-agnosis and teaching, hypothesis testing and, in general, in `data mining'[AGI+92, AIS93b] [AIS93a, AS94, HS95] and rule discovery.The �rst important step is to provide a measure for the distance between twoobjects. We rely on a domain expert to supply such a distance function D():57



58 Chapter 7De�nition 7.1 Given two objects, OA and OB , the distance (= dis-similarity)of the two objects is denoted by D(OA; OB) (7.1)For example, if the objects are two (equal-length) time sequences, the distanceD() could be their Euclidean distance (sum of squared di�erences, see Eq. 7.2).Similarity queries can been classi�ed into two categories:Whole Match: Given a collection of N objects OA; OB; : : : ; ON and a queryobject Q, we want to �nd those data objects that are within distance �from Q. Notice that the query and the objects are of the same type: forexample, if the objects are 512�512 gray-scale images, so is the query.Sub-pattern Match: Here the query is allowed to specify only part of theobject. Speci�cally, given N data objects (eg., images) OA; OB; : : : ; ON ,a query (sub-)object Q and a tolerance �, we want to identify the parts ofthe data objects that match the query. If the objects are, eg., 512�512gray-scale images (like medical X-rays), in this case the query could be,eg., a 16�16 sub-pattern (eg., a typical X-ray of a tumor).Additional types of queries include the `nearest neighbors' queries (eg., `�ndthe 5 most similar stocks to IBM's stock') and the `all pairs' queries or `spatialjoins' (eg., `report all the pairs of stocks that are within distance � from eachother'). Both the above types of queries can be supported by our approach: Aswe shall see, we reduce the problem into searching for multi-dimensional points,which will be organized in R-trees; in this case, we know of algorithms for bothnearest-neighbor search as well as spatial joins, as discussed in Chapter 5. Thus,we do not focus on nearest-neighbor and `all-pairs' queries.For all the above types of queries, the ideal method should ful�ll the followingrequirements:It should be fast. Sequential scanning and distance calculation with eachand every object will be too slow for large databases.It should be `correct'. In other words, it should return all the qualifyingobjects, without missing any (i.e., no `false dismissals'). Notice that `falsealarms' are acceptable, since they can be discarded easily through a post-processing step. Of course, as we see, eg., in Figure 8.2, we try to keeptheir number low, so that the total response time is minimized.



Problem - Intuition 59The proposed method should require a small space overhead.The method should be dynamic. It should be easy to insert, delete andupdate objects.As we see next, the heart of the proposed approach is to use k feature extractionfunctions, to map objects into points in k-dimensional space; thus, we can usehighly �ne-tuned database spatial access methods to accelerate the search. Inthe next Chapter we describe the details of the main idea. In Chapters 8 and 9we describe how this idea has been applied for time sequences and color images.Chapter 10 discusses how to extend the ideas to handle sub-pattern matching intime sequences. Chapter 11 discusses a fast, approximate method of extractingfeatures from objects, so that the distance is preserved. Chapter 12 lists theconclusions for this Part.7.2 BASIC IDEATo illustrate the basic idea, we shall focus on `whole match' queries. There, theproblem is de�ned as follows:we have a collection of N objects: OA, OB, : : :, ONthe distance/dis-similarity between two objects (Oi; Oj) is given by thefunction D(Oi; Oj), which can be implemented as a (possibly, slow) pro-gramthe user speci�es a query object Q, and a tolerance �Our goal is to �nd the objects in the collection that are within distance � fromthe query object. An obvious solution is to apply sequential scanning: Foreach and every object Oi (1 � i � N ), we can compute its distance from Qand report the objects with distance D(Q;Oi) � �.However, sequential scanning may be slow, for two reasons:1. the distance computation might be expensive. For example, the editingdistance [HD80] in DNA strings requires a dynamic-programming algo-rithm, which grows like the product of the string lengths (typically, in thehundreds or thousands, for DNA databases).



60 Chapter 72. the database size N might be huge.Thus, we are looking for a faster alternative. The proposed approach is basedon two ideas, each of which tries to avoid each of the two disadvantages ofsequential scanning:a `quick-and-dirty' test, to discard quickly the vast majority of non-qualifyingobjects (possibly, allowing some false-alarms)the use of Spatial Access Methods (SAMs), to achieve faster-than-sequentialsearching, as suggested by Jagadish [Jag91].The case is best illustrated with an example. Consider a database of time se-quences, such as yearly stock price movements, with one price per day. Assumethat the distance function between two such sequences S and Q is the Euclideandistance D(S;Q) �  Xi=1(S[i] � Q[i])2!1=2 (7.2)where S[i] stands for the value of stock S on the i-th day. Clearly, computingthe distance of two stocks will take 365 subtractions and 365 squarings in ourexample.The idea behind the `quick-and-dirty' test is to characterize a sequence witha single number, which will help us discard many non-qualifying sequences.Such a number could be, eg., the average stock price over the year: Clearly, iftwo stocks di�er in their averages by a large margin, it is impossible that theywill be similar. The converse is not true, which is exactly the reason we mayhave false alarms. Numbers that contain some information about a sequence(or a multimedia object, in general), will be referred to as `features' for therest of this paper. Using a good feature (like the `average', in the stock-pricesexample), we can have a quick test, which will discard many stocks with a singlenumerical comparison for each sequence, a big gain over the 365 subtractionsand squarings that the original distance function requires.If using one feature is good, using two or more features might be even better,because they may reduce the number of false alarms (at the cost of making the`quick-and-dirty' test a bit more elaborate and expensive). In our stock-pricesexample, additional features might be, eg., the standard deviation, or, evenbetter, some of the discrete Fourier transform (DFT) coe�cients, as we shallsee in Chapter 8.



Problem - Intuition 61The end result of using k features for each of our objects is that we can mapeach object into a point in k-dimensional space. We shall refer to this mappingas F() (for `F'eature):De�nition 7.2 Let F() be the mapping of objects to k-d points, that is F(O)will be the k-d point that corresponds to object O.This mapping provides the key to improve on the second drawback of sequentialscanning: by organizing these k-d points into a spatial access method, we cancluster them in a hierarchical structure, like the R-trees. Upon a query, wecan exploit the R-tree, to prune out large portions of the database that are notpromising. Thus, we do not even have to do the quick-and-dirty test on all ofthe k-d points!
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62 Chapter 7Algorithm 7.1 Search for whole-match queries:1. map the query object Q into a point F(Q) in feature space2. using the SAM, retrieve all points within the desired tolerance �from F(Q).3. retrieve the corresponding objects, compute their actual distancefrom Q and discard the false alarms.Figure 7.2 Pseudo-code for the search algorithm.Intuitively, this approach has the potential to relieve both problems of the se-quential scan, presumably resulting into much faster searches. The only stepthat we have to be careful with is that the mapping F() from objects to k-dpoints does not distort the distances. Let D() be the distance function of twoobjects, and Dfeature() be the (say, Euclidean) distance of the correspondingfeature vectors. Ideally, the mapping should preserve the distances exactly, inwhich case the SAM will have neither false alarms nor false dismissals. How-ever, requiring perfect distance preservation might be di�cult: For example,it is not obvious which features we have to use to match the editing distancebetween two DNA strings. Even if the features are obvious, there might bepractical problems: for example, in the stock-price example, we could treatevery sequence as a 365-dimensional vector; although in theory a SAM cansupport an arbitrary number of dimensions, in practice all SAMs su�er fromthe `dimensionality curse', as discussed in Chapter 5.The crucial observation is that we can guarantee that the proposed method willnot result in any false dismissals, if the distance in feature space matches orunderestimates the distance between two objects. Intuitively, this means thatour mapping F() from objects to points should make things look closer, ie., itshould be a contractive mapping.Mathematically, let OA and OB be two objects (e.g., same-length sequences)with distance function D() (e.g., the Euclidean distance) and F(O1), F(O2)be their feature vectors (e.g., their �rst few Fourier coe�cients), with distancefunction Dfeature() (e.g., the Euclidean distance, again). Then we have:Lemma 1 (Lower-bounding) To guarantee no false dismissals for whole-match queries, the feature extraction function F() should satisfy the followingformula:



Problem - Intuition 63Dfeature(F(O1);F(O2)) � D(O1; O2) (7.3)for every pair of objects O1, O2.Proof: Let Q be the query object, O be a qualifying object, and � be thetolerance. We want to prove that if the object O quali�es for the query, thenit will be retrieved when we issue a range query on the feature space. That is,we want to prove thatD(Q;O) � �)Dfeature(F(Q);F(O)) � �However, this is obvious, sinceDfeature(F(Q);F(O)) � D(Q;O) � �Thus, the proof is complete. 2We have just proved that lower-bounding the distance works correctly for rangequeries. Will it work for the other queries of interest, like `all-pairs' and`nearest neighbor' ones? The answer is a�rmative in both cases: An `all-pairs'query can easily be handled by a `spatial join' on the points of the featurespace: using a similar reasoning as before, we see that the resulting set of pairswill be a superset of the qualifying pairs. For the nearest-neighbor query, thefollowing algorithm guarantees no false dismissals: (a) �nd the point F(P ) thatis the nearest neighbor to the query point F(Q) (b) issue a range query, withquery object Q and radius � = D(Q;P ) (ie, the actual distance between thequery object Q and data object P . For more details and for an application ofthis algorithm on tumor-like shapes, see [KSF+96].In conclusion, the proposed generic approach to indexing multimedia objectsfor fast similarity searching shown in Figure 7.3 (named `GEMINI' for GEnericMultimedia object INdexIng):The �rst two steps of GEMINI deserve some more discussion: The �rst stepinvolves a domain expert. The methodology focuses on the speed of search only;the quality of the results is completely relying on the distance function that theexpert will provide. Thus, GEMINI will return exactly the same response-set(and therefore, the same quality of output) with what the sequential scanningof the database would provide; the only di�erence is that GEMINI will befaster.The second step of GEMINI requires intuition and imagination. It starts bytrying to answer the question (referred to as the `feature-extracting' questionfor the rest of this work):



64 Chapter 7Algorithm 7.2 (`GEMINI') (GEneric Multimedia INdexIng approach):1. determine the distance function D() between two objects2. �nd one or more numerical feature-extraction functions,to provide a `quick and dirty' test3. prove that the distance in feature space lower-bounds the actualdistance D(), to guarantee correctness4. use a SAM (eg., an R-tree), to store and retrieve the k-d featurevectorsFigure 7.3 Pseudo-code for the GEMINI algorithm.`Feature-extracting' question: If we are allowed to use only onenumerical feature to describe each data object, what should this featurebe?The successful answers to the above question should meet two goals: (a) theyshould facilitate step 3 (the distance lower-bounding) and (b) they should cap-ture most of the characteristics of the objects.We give case-studies of the GEMINI algorithm in the next two Chapters. The�rst involves 1-d time sequences, and the second focuses on 2-d color images.We shall see that the approach of the `quick-and-dirty' �lter, in conjunctionwith the lower-bounding lemma (Lemma 1), can lead to solutions to two prob-lems:The dimensionality curse (time sequences).The `cross-talk' of features (color images).For each case study we (a) describe the objects and the distance function (b)show how to apply the lower-bounding lemmaand (c) give experimental results,on real or realistic data. In Chapter 10 we show how to extend the idea of a`quick-and-dirty' �lter to handle sub-pattern matching in time sequences. InChapter 11 we present `FastMap', an automated method of extracting features,for a given set of objects O and for a given distance function D().



81-D TIME SEQUENCES
Here the goal is to search a collection of (equal-length) time sequences, to �ndthe ones that are similar to a desirable sequence. For example, `in a collectionof yearly stock-price movements, �nd the ones that are similar to IBM'.8.1 DISTANCE FUNCTIONAccording to GEMINI (Algorithm 7.2), the �rst step is to determine the dis-tance measure between two time sequences. As in [AFS93], we chose the Eu-clidean distance (Eq. 7.2), because it is the distance of choice in �nancial andforecasting applications (e.g., [LeB92]). Fast indexing for additional, more elab-orate distance functions that include time-warping [SK83] [WTK86] [RJ93] isthe topic of ongoing research (eg., [GK95, JMM95]).8.2 FEATURE EXTRACTION ANDLOWER-BOUNDINGHaving decided on the Euclidean distance as the dis-similarity measure, thenext step of the GEMINI algorithm is to �nd some features that can lower-bound it. We would like a set of features that (a) preserve/lower-bound thedistance and (b) carry much information about the corresponding time se-quence, so that the false alarms are few. The second requirement suggests thatwe use `good' features, that have much discriminatory power. In the stock-priceexample, a `bad' feature would be, eg., the �rst-day's value: the reason is that65



66 Chapter 8two stocks might have similar �rst-day values, yet they may di�er signi�cantlyfrom then on. Conversely, two otherwise similar sequences, may agree every-where, except for the �rst day's values. At the other extreme, we could usethe values of all 365 days as features. However, although this would perfectlymatch the actual distance, it would lead to the `dimensionality curse' problem.Clearly, we need some better features. Applying the second step of the GEMINIalgorithm,we ask the `feature-extracting' question: if we are allowed to use onlyone feature from each sequence, what would this feature be? A natural answer isthe average. By the same token, additional features could be the average of the�rst half, of the second half, of the �rst quarter, etc. Or, in a more systematicway, we could use the coe�cients of the Fourier transform, and, for our case,the Discrete Fourier Transform (DFT) (see, eg., [OS75], or Appendix B). Fora signal ~x = [xi], i = 0; : : : ; n� 1, let Xf denote the n-point DFT coe�cientat the f-th frequency (f = 0; : : : ; n � 1). Also, let ~X = [Xf ] be the n-pointDFT transform of ~x. Appendix B provides a quick introduction to the basicconcepts of the DFT.The third step of the GEMINI methodology is to show that the distance infeature space lower-bounds the actual distance. The solution is provided byParseval's theorem [OS75], which states that the DFT preserves the energy ofa signal, as well as the distances between two signals:D(~x; ~y) = D( ~X; ~Y ) (8.1)where ~X and ~Y are Fourier transforms of ~x and ~y respectively.Thus, if we keep the �rst k(� n) coe�cients of the DFT as the features, welower-bound the actual distance:Dfeature(F(~x);F(~y)) = k�1Xf=0 jXf � Yf j2� n�1Xf=0 jXf � Yf j2 = n�1Xi=0 jxi � yij2 � D(~x; ~y)because we ignore positive terms from the above Equation. Thus, there will beno false dismissals, according to Lemma 1.Notice that our GEMINI approach can be applied with any orthonormal trans-form, such as, the Discrete Cosine transform (DCT) (see [Wal91] or Appendix B.4),the wavelet transform (see [RBC+92], [PTVF92], or Appendix C) etc., because



1-d time sequences 67they all preserve the distance between the original and the transformed space.In fact, our response time will improve with the ability of the transform toconcentrate the energy: the fewer the coe�cients that contain most of the en-ergy, the more accurate our estimate for the actual distance, the fewer the falsealarms, and the faster our response time. The energy of a signal is the sum ofsquares of its elements (see De�nition A.7 in the Appendix). Thus, the per-formance results presented next are just pessimistic bounds; better transformswill achieve even better response times.In addition to being readily available, (eg., in mathematical symbolic manipula-tion packages, like `Mathematica', `S', `maple' etc.), the DFT concentrates theenergy in the �rst few coe�cients, for a large class of signals, the colored noises.These signals have a skewed energy spectrum that drops as O(f�b). The energyspectrum or power spectrum of a signal is the square of the amplitude jXf j, asa function of the the frequency f (see Appendix B).For b=2, we have the so-called random walks or brown noise, which modelsuccessfully stock movements and exchange rates (e.g., [Man77]). Ourmathematical argument for keeping the �rst few Fourier coe�cients agreeswith the intuitive argument of the Dow Jones theory for stock price move-ment (see, for example, [EM66]). This theory tries to detect primary andsecondary trends in the stock market movement, and ignores minor trends.Primary trends are de�ned as changes that are larger than 20%, typicallylasting more than a year; secondary trends show 1/3-2/3 relative changeover primary trends, with a typical duration of a few months; minor trendslast roughly a week. From the above de�nitions, we conclude that primaryand secondary trends correspond to strong, low frequency signals while mi-nor trends correspond to weak, high frequency signals. Thus, the primaryand secondary trends are exactly the ones that our method will automat-ically choose for indexing.With even more skewed spectrum (b > 2), we have the black noises [Sch91].Such signals model successfully, for example, the water level of rivers andthe rainfall patterns as they vary over time [Man77].with b=1, we have the pink noise. Birkho�'s theory [Sch91] claims that`interesting' signals, such as musical scores and other works of art, consistof `pink noise', whose energy spectrum follows O(f�1). The argument ofthe theory is that white noise with O(f0) energy spectrum is completelyunpredictable, while brown noise with O(f�2) energy spectrum is too pre-dictable and therefore `boring'. The energy spectrum of pink noise liesin-between.



68 Chapter 8As an illustration of a `colored noise', Figure 8.1 plots the closing prices of theIBM stock, 8/30/93 - 4/20/94, along with the amplitude spectrum in linear andlogarithmic scales. Notice how skewed the spectrum is, as well as how closelyit is approximated by the theoretically expected 1=f line.
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1-d time sequences 69
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Figure 8.2 Breakup of the execution time, for range queries: response timeversus number of DFT coe�cients.An interesting point is how to determine the number k of DFT coe�cients toretain. Figure 8.2 shows the break-up of the response time versus the numberk of DFT coe�cients retained. The diamonds, squares and crosses indicatetotal time, post-processing time and R-tree time, respectively. Notice that,as we keep more coe�cients, the R-tree becomes bigger and slower, but moreaccurate (fewer false alarms, and therefore shorter post-processing time). Thistrade-o� reaches an equilibrium for k=2 or 3.The major conclusions from the application of the GEMINI method on timesequences are the following:1. GEMINI can be successfully applied to time sequences, and speci�cally tothe ones that behave like `colored noises' (stock prices movements, currencyexchange rates, water-level in rivers etc.)2. For signals with skewed spectrum like the above ones, the minimum in theresponse time is achieved for a small number of Fourier coe�cients (k = 1�3). Moreover, the minimumis rather 
at, which implies that a sub-optimalchoice for k will give search time that is close to the minimum. Thus,with the help of the lower-bounding lemma and the energy-concentratingproperties of the DFT, we managed to avoid the `dimensionality curse'.



70 Chapter 83. The success in 1-d sequences suggests that the proposed GEMINI methodis promising for 2-d or higher-dimensionality signals, if those signals alsohave skewed spectrum. The success of JPEG (that uses DCT) indicatesthat real images indeed have a skewed spectrum.ExercisesExercise 8.1 [10] Write a program to generate a random walk. Let each stepbe the output of a fair coin tossing: +1 or -1, with probability 50% each.Exercise 8.2 [10] Compute and plot the spectrum of the above random walk,using some existing DFT package; also plot the 1/f line.Exercise 8.3 [15] Use some time sequences from, eg., [Ton90, BJR94], andcompute their DFT spectrum. List your observations.Exercise 8.4 [25] Experiment with the `energy concentrating' properties ofDFT versus the DCT, for the sequences of the previous exercise: For eachsequence, keep the k strongest coe�cients of the DFT and the DCT transform;plot the squared error (sum of squares of omitted coe�cients), as a function ofk, for each of the two transforms. List your observations.Exercise 8.5 [20] Write a program that will generate `pink noise', that is, asignal with 1/f amplitude spectrum. (Hint: use the random walk above fromExercise 8.1, compute its DFT spectrum, divide each Fourier coe�cient appro-priately, and invert).



92-D COLOR IMAGES
Retrieving images by content attracts high and increasing interest [JN92, OS95,FSN+95]. Queries on content may focus on color, texture, shape, position,etc. Potential applications include medical image databases (`Give me otherimages that contain a tumor with a texture like this one'), photo-journalism(`Find images that have blue at the top and red at the bottom'), art, fashion,cataloging, retailing etc..In this chapter we present a color indexing algorithm and speci�cally the dis-tance functions and the application of the GEMINI approach. We focus on`whole-match' queries, or, equivalently, `queries by example', where the userchooses an existing image (or draws one with a sketch-pad) and asks for similarcolor images. This color indexing algorithm was developed within the QBICsystem of IBM [FBF+94]; see [NBE+93, Equ93, FSN+95] for more details onthe shape and texture indexing algorithms of QBIC and their precision-recallperformance evaluation.Past work on image retrieval has resulted in many systems and methods tomatch images according to color, shape, texture and relative position. Forcolor, a typical choice is the color histograms which we describe next; forshape-matching, the turning angle [Hor86], the moments of inertia [FBF+94]or the pattern spectrum [KSF+96] are among the choices; for texture, thedirectionality, granularity and contrast [Equ93] are a good set of features;for the relative position, the 2-D strings method and its variants have beenused [CSY87, PO95]. However, although there is a lot of work on image match-ing in the Machine Vision community and on fast searching in the databasecommunity, the former typically focuses on the quality of the matching, whilethe latter focuses on the speed of the search; it is only recently that the two71



72 Chapter 9communities have started collaborating [JN92, NBE+93], in an attempt to pro-vide fast and e�ective image retrieval by content.Recent surveys on image matching are in [FBF+94, PF96]. A presentation ofimage retrieval systems is in the special issue of the IEEE Computer (Sept.1995) [GR95].9.1 DISTANCE FUNCTIONWe mainly focus on the color features, because color presents an interestingproblem (namely, the `cross-talk' of features), which can be resolved by theproposed `GEMINI' approach (algorithm 7.2). Features for shape and textureare described in [FSN+95], and can be easily mapped into k-d points.Each object is a color image, that is, a 2-d array of pixels; every pixel has 3color components (eg., 1 byte for `red', 1 byte for `green' and 1 byte for `blue').For each image, we compute an h-element color histogram using h colors. Con-ceptually, h can be as high as 224 colors, with each color being denoted bya point in a 3-dimensional color space. In practice, we cluster similar colorstogether using an agglomerative clustering technique [DH73a], and choose onerepresentative color for each bucket (= `color bin'). Typical numbers of colorbins are h = 256 and h = 64. Each component in the color histogram is thepercentage of pixels that are most similar to that color. Figure 9.1 gives anexample of such a histogram of a �ctitious photograph of a sunset: there aremany red, pink, orange and purple pixels, but only few white and green ones.
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countFigure 9.1 An example of a color histogramof a �ctitious sunset photograph:Many red, pink, orange, purple and blue-ish pixels; few yellow, white and green-ish ones



2-d color images 73Once these histograms are computed, one method to measure the distancebetween two histograms (h� 1 vectors) ~x and ~y is given byd2hist(~x; ~y) = (~x� ~y)t�A�(~x� ~y) = hXi hXj aij(xi � yi)(xj � yj) (9.1)where the superscript `t' indicates matrix transposition, `�' indicates matrixmultiplication, and the color-to-color similarity matrixA has entries aij whichdescribe the similarity between color i and color j, with aii = 1 for every i.9.2 LOWER-BOUNDINGIf we try to use the color-histograms as feature vectors in the GEMINI approach,there are two obstacles: (a) The `dimensionality curse' (h may be large, e.g. 64or 256 for color features) and, most importantly, (b) the quadratic nature of thedistance function: The distance function in the feature space involves `cross-talk' among the features (see Eq. 9.1), and it is thus a full quadratic forminvolving all cross terms. Not only is such a function much more expensive tocompute than the Euclidean and any Lp distance, but it also precludes the useof spatial access methods (`SAMs'), because SAMs implicitly assume that thereis no cross-talk. Figure 9.2 illustrates the situation: to compute the distancebetween the two color histograms ~x and ~q, the, eg., bright-red component of ~xhas to be compared not only to the bright-red component of ~q, but also to thepink, orange etc. components of ~q.
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eg, 64 colorsFigure 9.2 Illustration of the `cross-talk' between two color histogramsTo resolve the cross-talk problem, we resort to the `GEMINI' approach (algo-rithm 7.2). The �rst step of the algorithm has been done: the distance function



74 Chapter 9between two color images is given by Eq. 9.1: D() = dhist(). The second stepis to �nd one or more numerical features, whose Euclidean distance wouldlower-bound dhist(). Thus, we ask the `feature-extracting' question again: Ifwe are allowed to use only one numerical feature to describe each color image,what should this feature be? According to the previous chapter on time se-quences, we can consider some average value, or the �rst few coe�cients ofthe 2-dimensional DFT transform. Since we have three color components, (eg.,Red, Green and Blue), we could consider the average amount of red, green andblue in a given color image.Notice that di�erent color spaces can be used, with absolutely no change inthe indexing algorithms. Thus, we continue the discussion with the RGB colorspace. This means that the color of an individual pixel is described by thetriplet (R,G,B) (for `R'ed, `G'reen, `B'lue). The average color of an image�x = (Ravg; Gavg; Bavg)t, is de�ned in the obvious way, withRavg = (1=P ) PXp=1R(p)Gavg = (1=P ) PXp=1G(p)Bavg = (1=P ) PXp=1B(p)where P is the number of pixels in the image, and R(p), G(p), and B(p) arethe red, green and blue components (intensities, typically in the range 0-255)respectively of the p-th pixel. Given the average color vectors �x and �y of twoimages, we de�ne davg() as the Euclidean distance between the 3-dimensionalaverage color vectors,d2avg(�x; �y) = (�x� �y)t�(�x� �y) = 3Xi=1(xi � yi)2 (9.2)The third step of the GEMINI algorithm is to prove that our feature distanceDfeature() � davg() lower-bounds the actual distance D() � dhist(). Indeed,this is true, as an application of the so-called QDB- `Quadratic Distance Bound-ing' Theorem [FBF+94].The result is that, given a color query, our retrieval proceeds by �rst �lteringthe set of images based on their average (R;G;B) color, then doing a �nal,



2-d color images 75more accurate matching using their full h-element histogram. The resultingspeedup is discussed next.9.3 EXPERIMENTSExperiments are reported in [FBF+94], on a database of N=924 color imagehistograms, each of h=256 colors, of assorted natural images. The proposedmethod requires from a fraction of a second up to � 4 seconds, while sequentialscanning with the color-histogram distance (Eq. 9.1) requires � 10 seconds.The performance gap is expected to increase for larger databases.Thus, the conclusions are the following:The `GEMINI' approach (ie., the idea to extract some features for a quick-and-dirty test) motivated a fast method, using the average RGB distance(davg()); it also motivated a strong theorem (the so-calledQDB- `QuadraticDistance Bounding' Theorem [FBF+94]) which guarantees the correctnessin our case.In addition to resolving the cross-talk problem, `GEMINI' solved the `di-mensionality curse' problem at no extra cost, requiring only k=3 features,as opposed to h=64 or 256 that dhist() required.





10SUB-PATTERN MATCHING
10.1 INTRODUCTIONUp to now, we have examined the `whole-match' case. The goal in this chapteris to extend the `GEMINI' approach of the `quick-and-dirty' test, so that we canhandle sub-pattern matching queries. We focus on 1-d time series, to illustratethe problem and the solution more clearly. Then, the problem is de�ned asfollows:We are given a collection of N sequences of real numbers S1, S2, SN , eachone of potentially di�erent length.The user speci�es query subsequence Q of length Len(Q) (which may vary)and the tolerance �, that is, the maximum acceptable dis-similarity (=distance).We want to �nd quickly all the sequences Si ( 1 � i � N ), along with thecorrect o�sets p, such that the subsequence Si[p : p+Len(Q) �1] matchesthe query sequence: D(Q;Si[p : p+ Len(Q) � 1]) � �.As in Chapter 8, we use the Euclidean distance as the dis-similarity measureD(). The brute-force solution is to examine sequentially every possible subse-quence of the data sequences for a match. We shall refer to this method by`SequentialScan' method. Next, we describe a method that uses a small spaceoverhead, to achieve up to 2 orders of magnitudes savings over the `Sequen-tialScan' method [FRM94]. 77



78 Chapter 1010.2 SKETCH OF THE APPROACH -`ST-index'Without loss of generality, we assume that the minimum query length is w,where w (� 1) depends on the application. For example, in stock price databases,analysts are interested in weekly or monthly patterns because shorter patternsare susceptible to noise [EM66]. Notice that we never lose the ability to answershorter than w queries, because we can always resort to sequential scanning.
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offsetFigure 10.1 Illustration of the way that trails are created in feature spaceGeneralizing the reasoning of the method for `whole matching', we use a slidingwindow of size w and place it at every possible position (o�set), on every datasequence. For each such placement of the window, we extract the features ofthe subsequence inside the window. Thus, a data sequence of length Len(S) ismapped to a trail in feature space, consisting of (Len(S) -w+1) points: onepoint for each possible o�set of the sliding window. Figure 10.1 gives anexample of a trail: Consider the sequence S1, and assume that we keep the�rst k=2 features (eg, the amplitude of the �rst and second coe�cient of thew-point DFT). When the window of length w is placed at o�set=0 on S1, weobtain the �rst point of the trail; as the window slides over S1, we obtain therest of the points of the trail.The straightforward way to index these trails would be to keep track of theindividual points of each trail, storing them in a spatial access method. Wecall this method `I-naive' method, where `I' stands for `Index' (as opposed tosequential scanning). However, storing the individual points of the trail in anR-tree is ine�cient, both in terms of space as well as search speed. The reasonis that, almost every point in a data sequence will correspond to a point in thek-dimensional feature space, leading to an index with a 1:k increase in storagerequirements. Moreover, the search performance will also su�er because theR-tree will become tall and slow. As shown in [FRM94], the `I-naive' method
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Figure 10.2 Example of (a) dividing trails into sub-trails and MBRs, and(b) grouping of MBRs in larger ones.ended up being almost twice as slow as the `SequentialScan' ! Thus, we want toimprove the `I-naive' method, by making the representation of the trails morecompact.Here is where the idea of a `quick-and-dirty' test leads to a solution: Insteadof laboriously keeping track of each and every point of a trail in feature space,we propose to exploit the fact that successive points of the trail will probablybe similar, because the contents of the sliding window in nearby o�sets willbe similar. We propose to divide the trail of a given data sequence into sub-trails and represent each of them with its minimum bounding (hyper)-rectangle(MBR). Thus, instead of storing thousands of points of a given trail, we shallstore only a few MBRs. More importantly, at the same time we still guarantee`no false dismissals': when a query arrives, we shall retrieve all the MBRs thatintersect the query region; thus, we shall retrieve all the qualifying sub-trails,plus some false alarms (sub-trails that do not intersect the query region, whiletheir MBR does).Figure 10.2(a) gives an illustration of the proposed approach. Two trails aredrawn; the �rst curve, labeled C1 (in the north-west side), has been dividedinto three sub-trails (and MBRs), whereas the second one, labeled C2 (in thesouth-east side), has been divided in �ve sub-trails. Notice that it is possiblethat MBRs belonging to the same trail may overlap, as C2 illustrates.Thus, the idea is to map a data sequence into a set of rectangles in featurespace. This yields signi�cant improvements with respect to space, as well as



80 Chapter 10with respect to response time, as we shall see in section 10.3. Each MBRcorresponds to a whole sub-trail, that is, points in feature space that correspondto successive positionings of the sliding window on the data sequences.These MBRs can be subsequently stored in a spatial access method, such asan R-tree (see Chapter 5). Figure 10.2(b) shows how the eight leaf-level MBRsof Figure 10.2(a) will be grouped to form two MBRs at the next higher level,assuming a fanout of 4 (i.e. at most 4 items per non-leaf node). Note that thehigher-level MBRs may contain leaf-level MBRs from di�erent data sequences.For example, in Figure 10.2(b) notice that the left-side MBR1 contains a partof the C2 curve.This completes the sketch of the proposed index structure. We shall refer to itby `ST-index' , for `Sub-Trail index'. There are two questions that we have toanswer, to complete the description of the method:Insertions: When a new data sequence is inserted, what is a good way todivide its trail in feature space into sub-trails? The idea [FRM94] is touse an adaptive, heuristic algorithm, which will break the trail into sub-trails, so that the resulting MBRs of the sub-trails have small volume (and,therefore, result in few disk accesses on search).Queries: How to handle queries, and especially the ones that are longerthan w? Figure 10.3 shows how to handle queries of length w: the querysub-sequence is translated into a point Q in feature space; all the MBRsthat are within radius � from Q are retrieved. Searching for longer queriesis handled by breaking the query pattern into pieces of length w, searchingthe R-tree for each piece, and then merging the results. Figure 10.4 illus-trates the algorithm: the query sequence is broken into p=2 pieces, eachof length w; each piece gives rise to a range query in feature space.More details and the correctness proofs for the above algorithms are in [FRM94].10.3 EXPERIMENTSThe above method was implemented and tested on real stock-price time se-quences totaling 329,000 points [FRM94]. The proposed method achieved upto 100 times better response time, compared to the sequential scanning.
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Q1Figure 10.4 Illustration of the search algorithm for a longer query. Thequery is divided in p=2 pieces of length w each, giving rise to p range queriesin feature spaceThe conclusion is that the idea of using a `quick-and-dirty' �lter pays o� again.Every sequence is represented coarsely by a set of MBRs in feature space;despite the loss of information, these MBRs provide the basis for quick �ltering,which eventually achieves large savings over the sequential scanning.ExercisesExercise 10.1 [40] Implement a system which can search a collection of stock-prices for user-speci�ed patterns. Assume that the minimum length is one week;Use arti�cially generated random walks (exercise 8.1), or real data, from http://www.ai.mit.edu/ stocks.html.





11FASTMAP
11.1 INTRODUCTIONIn the previous chapters we saw the `GEMINI' approach, which suggests that werely on domain experts to derive k feature-extraction functions, thus mappingeach object into a point in k-dimensional space. Then the problem is reducedto storing, retrieving and displaying k-dimensional points, for which there is aplethora of algorithms available.However, it is not always easy to derive the above feature-extraction functions.Consider the case, eg., of typed English words, where the distance function isthe editing distance (minimumnumber of insertion, deletions and substitutionsto transform one string to the other). It is not clear which the features should bein this case. Similarly, in matching digitized voice excerpts, we typically haveto do some time-warping [SK83], which makes it di�cult to design feature-extraction functions.Overcoming these di�culties is exactly the motivation behind this chapter.Automatically mapping the objects into points in some k-d space provides twomajor bene�ts:1. It can accelerate the search time for queries. The reason is that we canemploy highly �ne-tuned Spatial Access Methods (SAMs), like the R�-trees [BKSS90] and the z-ordering [Ore86]. These methods provide fastsearching for range queries as well as spatial joins [BKSS94].2. It can help with visualization, clustering and data-mining: Plotting objectsas points in k=2 or 3 dimensions can reveal much of the structure of83



84 Chapter 11the dataset, such as the existence of major clusters, the general shape ofthe distribution (linear versus curvilinear versus Gaussian) etc.. Theseobservations can provide powerful insights in formulating hypotheses anddiscovering rules.Next, we shall use the following terminology:De�nition 11.1 The k-dimensional point Pi that corresponds to the objectOi, will be called `the image' of object Oi. That is, Pi = (xi;1; xi;2; : : : ; xi;k)De�nition 11.2 The k-dimensional space containing the `images' will be calledtarget space.Given the above, the problem is de�ned as follows (see Figure 11.1 for anillustration):ProblemGivenN objects and distance information about them (eg., an N�Ndistance matrix, or simply the distance function D(�; �) between twoobjects)�nd N points in a k-dimensional space,such that the distances are maintained as well as possible.A special case is the situation where the N objects are n-d vectors. Then, goalis to do dimensionality reduction, mapping them into points in k-d space, pre-serving the (Euclidean) distances as well as possible. In this case, the optimalsolution is given by the Karhunen-Loeve (`K-L') transform, which is describedin detail in Appendix D.1.For the general case, we expect that the distance function D() is non-negative,symmetric and obeys the triangular inequality. In the `target' (k-d) space, wetypically use the Euclidean distance, because it is invariant under rotations.Alternative distance metrics could be any of the Lp metrics, like the L1 (`city-block' or `Manhattan' distance).The ideal mapping should ful�ll the following requirements:
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B(a) input (b) desired outputFigure 11.1 (a) Six objects and their pair-wise distance information; (b) 3-dpoints that try to approximate the given distance information.1. It should be fast to compute: O(N ) or O(N logN ), but not O(N2) orhigher, because the cost will be prohibitive for large databases.2. It should preserve distances, leading to small discrepancies (low `stress' -see (Eq. 11.1)).3. It should provide a very fast algorithm to map a new object (eg., a queryobject) to its image. The algorithm should be O(1) or O(logN ). Thisrequirement is vital for `queries-by-example'.The outline of this chapter is as follows. In section 11.2 we present a brief surveyof Multi-Dimensional Scaling (MDS). In section 11.3 we describe `FastMap', alinear, approximate solution [FL95]. In section 11.4 we show the results ofFastMap on some real data (document vectors). Finally, section 11.5 lists theconclusions.11.2 MULTI-DIMENSIONAL SCALING(MDS)Multi-dimensional scaling (MDS) is used to discover the underlying (spatial)structure of a set of data items from the (dis)similarity information amongthem. There are several variations, but the basic method (eg., see [KW78]) isdescribed next. The method expects (a) a set of N items, (b) their pair-wise(dis)similarities and (c) the desirable dimensionality k. Then, the algorithm



86 Chapter 11will map each object to a point in a k dimensional space, to minimize the stressfunction: stress =vuutPi;j (d̂ij � dij)2Pi;j dij2 (11.1)where dij is the dissimilarity measure between object Oi and object Oj andd̂ij is the (Euclidean) distance between their `images': points Pi and Pj. The`stress' function gives the relative error that the distances in k-d space su�erfrom, on the average.To achieve its goal, MDS starts with a guess and iteratively improves it, until nofurther improvement is possible. In its simplest version, the algorithm worksroughly as follows: It originally assigns each item to a k-d point (eg., usingsome heuristic, or even at random). Then, it examines every point, computesthe distances from the other N � 1 points and moves the point to minimizethe discrepancy between the actual dissimilarities and the estimated k-d dis-tances. Technically, MDS employs the method of `steepest descent' to updatethe positions of the k-d points. Intuitively, it treats each pair-wise distance asa `spring' between the two points; then, the algorithm tries to re-arrange thepositions of the k-d points to minimize the `stress' of the springs.MDS has been used in numerous, diverse applications, to help visualize a set ofobjects, given their pair-wise similarities. However, for our applications, MDSsu�ers from two drawbacks:It requires O(N2) time, where N is the number of items. Thus, it isimpractical for large datasets. In the applications that MDS has beenused, the number of items was small (typically, N=10-100).Its use for fast retrieval is questionable: In the `query-by-example' setting,the query item has to be mapped to a point in k-d space. MDS is notprepared for this operation: Given that the MDS algorithm is O(N2), anincremental algorithm to search/add a new item in the database would beO(N ) at best. Thus, the complexity of answering a query would be as badas sequential scanning.The above two drawbacks are the motivation behind the next section.



FastMap 87Symbols De�nitions.N Number of objects in databasek dimensionality of `target space'D(�; �) the distance function between two objectsk ~x k the length (= L2 norm) of vector ~x(AB) the length of the line segment ABTable 11.1 Summary of Symbols and De�nitions11.3 A FAST, APPROXIMATEALTERNATIVE: FASTMAPThe goal is to �nd N points in k-d space, whose Euclidean distances will matchthe distances of a given N � N distance matrix. Table 11.1 lists the symbolsand their de�nitions. The key idea is to pretend that objects are indeed pointsin some unknown, n-dimensional space, and to try to project these points on kmutually orthogonal directions. The challenge is to compute these projectionsfrom the distance matrix only, since it is the only input we have. For the restof this discussion, an object will be treated as if it were a point in an n-d space,with unknown n.The heart of the `FastMap' method is to project the objects on a carefullyselected `line'. To do that, we choose two objects OA and OB (referred to as`pivot objects' from now on), and consider the `line' that passes through themin n-d space. The algorithm to choose pivot objects uses a linear, approximateheuristic, and is discussed later (see Figure 11.4).The projections of the objects on that line are computed using the cosine law:db;i2 = da;i2 + da;b2 � 2xida;b (11.2)See Figure 11.2 for an illustration. Eq. 11.2 can be solved for xi, the �rstcoordinate of object Oi: xi = da;i2 + da;b2 � db;i22da;b (11.3)In the above equations, dij is a shorthand for the distance D(Oi; Oj) (for i; j =1; : : : ; N ). Notice that the computation of xi only needs the distances betweenobjects, which are given.
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Figure 11.2 Illustration of the `cosine law' - projection on the line OAOB.Observe that, thanks to Eq. 11.3, we can map objects into points on a line,preserving some of the distance information: For example, if Oi is close to thepivot OA, then xi will be small. Thus, we have the solution to our originalproblem, for k=1.
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xi -xjFigure 11.3 Projection on a hyper-planeH, perpendicular to the lineOAOBof the previous �gure.To extend this method for 2-d and k-d target spaces, we keep on pretendingthat the objects are indeed points in n-d space: We consider a (n�1)-d hyper-plane H that is perpendicular to the line (OA, OB); then, project our objectson this hyper-plane. Let Oi0 stand for the projection of Oi (for i = 1; : : : ; N ).



FastMap 89Algorithm 11.1 FastMap ( k, D(), O )k: number of dimensions;D(): the distance function;O: the set of objects.1. Pick-pivots OA and OB from O.2. Project all objects Oi along the line OA - OB.3. Call FastMap(k � 1, D0(), O), unless k = 0.Figure 11.4 Pseudo-code for the FastMap algorithm.The problem is the same as the original problem, with n and k decreased byone.The only missing part is to determine the distance function D0() between two ofthe projections on the hyper-plane H, such as, Oi0 and Oj 0. Once this is done,we can recursively apply the previous steps. Figure 11.3 depicts two objectsOi, Oj, and their projections Oi0, Oj0 on the H hyper-plane.The distance function D0() is given by:(D0(Oi0; Oj 0))2 = (D(Oi; Oj))2 � (xi � xj)2 i; j = 1; : : : ; N (11.4)using the Pythagorean theorem on the triangle OiCOj (see Figure 11.3).Ability to compute the distance D0() allows us to project on a second line, lyingon the hyper-plane H, and, therefore, orthogonal to the �rst line (OA, OB) byconstruction. Thus, we can solve the problem for a 2-d `target' space. Moreimportantly, we can apply the same steps recursively, k times, thus solving theproblem for any k.Figure 11.4 gives the pseudo-code for FastMap.To pick the pivot objects, we use a linear-time heuristic, to choose a pair ofobjects that are far-away from each other. Notice that �nding the exact solutionrequires a quadratic number of steps (O(N2)), because we have to examineevery possible pair at least once.



90 Chapter 11Algorithm 11.2 Pick-pivots ( O, D() )1. Chose arbitrarily an object; let it be the second pivot object OB2. Set OA = (the object that is farthest apart from OB)3. Set OB = (the object that is farthest apart from OA)4. Repeat the last two steps a �xed number of times5. Report the objects OA and OB as the pivot objectsFigure 11.5 Heuristic to choose two distant objects for pivots.11.4 CASE STUDY: DOCUMENTVECTORS AND INFORMATIONRETRIEVAL.Here we use the algorithm on an information retrieval application [SM83]. Aswe mentioned in section 6.5, in the vector space model, documents are repre-sented as vectors in V -dimensional space, where V is the size of the vocabularyof the collection. For the English language, we can expect V to range from2,000 up to and exceeding 100,000 (the vocabulary of every-day English, andthe size of a very detailed dictionary, respectively [Pet80]). The coordinatesof such vectors are called term weights and can be binary (`1' if the term ap-pears in the document; `0' if not) or real-valued, with values increasing withthe importance (eg., occurrence frequency) of the term in the document.Consider two documents d1 and d2, with vectors ~u1, ~u2 respectively. As wementioned, the similarity between two documents is typically measured by thecosine similarity of their vectors [SM83]:similarity(d1 ; d2) = ~u1� ~u2k ~u1 k k ~u2 kwhere `�' stands for the inner product of two vectors and k � k stands for thelength (=Euclidean norm) of the vector. Clearly the cosine similarity takes val-ues between -1 and 1. Figure 11.6 gives an example. There, cos(�) is consideredas the similarity of the two vectors ~u1 and ~u2. Intuitively, the cosine similarityprojects all the document vectors on the unit hyper-sphere (see vectors ~u1;0and ~u2;0 in the Figure) and measures the cosine of the angle of the projections.In order to apply FastMap, we �rst need to de�ne a distance function thatdecreases with increasing similarity. From Figure 11.6 it would make sense
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Figure 11.6 Two vectors ~u1, ~u2, their angle � and the cosine similarityfunction cos(�)to use the length of the line segment AB: (AB) =k ~u1;0 � ~u2;0 k. Aftertrigonometric manipulations, the result isD(d1; d2) = 2 � sin(�=2)= p2 � (1� cos(�))= p2 � (1� similarity(d1 ; d2)) (11.5)Notice that Eq. 11.5 de�nes a distance function (non-negative, symmetric, satis-fying the triangular inequality) and that it decreases with increasing similarity.Also notice that it allows us to respond to range queries: Suppose that the userwants all the documents d that are similar to the query document q:similarity(d; q) � �Thanks to Eq. 11.5, the requirement becomesD(d; q) �p2 � (1� �) (11.6)which eventually becomes a range query in our `target' space and can be han-dled e�ciently by any SAM.In [FL95], one of the testbeds we used was a collection of 35 text documents in7 groups, with 5 documents per group: Abstracts of computer science technical



92 Chapter 11reports (labeled as `Abs'), reports about basketball games (`Bbr'), `call forpapers' for technical conferences (`Cal'), portions of the Bible (from the Gospelof Matthew) (`Mat'), cooking recipes (`Rec'), `world news' (documents aboutthe Middle East - October 1994) (`Wor'), and sale advertisements for computersand software (`Sal')Figure 11.7 shows the results of FastMap on the above dataset, with k=3dimensions. The Figure shows the 3-d scatter-plot, (a) in its entirety and (b)after zooming into the center, to highlight the clustering abilities of FastMap.Notice that the 7 classes are separated well, in only k=3 dimensions. Additionalexperiments, involving real and synthetic datasets, are in [FL95].
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Wor(a) (b)Figure 11.7 The DOCS dataset, after FastMap in k=3-d space (a) Thewhole collection (b) magni�cation of the dashed box.11.5 CONCLUSIONSFastMap is a linear algorithm that maps N objects into k-d points, with smalldistortion of the distances. Thus it provides an automated way to extractfeatures, for a given dataset O and a given distance function D().Mapping objects into points (while preserving the distances well) is vital for fastsearching using the `GEMINI' approach. Moreover, such a mapping is useful fordata-mining, cluster analysis and visualization of a multimedia dataset. Notice



FastMap 93that FastMap is linear on the number of objects N , while MultidimensionalScaling (MDS) is quadratic, and thus impractical for large databases.ExercisesExercise 11.1 [30] Implement MDS; apply it on some distance matricesExercise 11.2 [30] Implement the string-editing distance function; computethe distance matrix for 100 English words (eg., from /usr/dict/words), andmap them into 2-d points using the MDS package of Exercise 11.1Exercise 11.3 [25] Implement FastMap and compare it against MDS, withrespect to its speed and its stress, on a set of 100, 200, 500 English words from/usr/dict/words. List your observations.





12CONCLUSIONS
We have presented a generic method (the `GEMINI' approach) to acceler-ate queries by content on image databases and, more general, on multimediadatabases. Target queries are, eg., `�nd images with a color distribution of asunset photograph'; or, `�nd companies whose stock-price moves similarly to agiven company's stock'.The method expects a distance function D() (given by domain experts), whichshould measure the dis-similarity between two images or objects OA, OB. Wemainly focus on whole match queries (that is, queries by example, where theuser speci�es the ideal object and asks for all objects that are within distance �from the ideal object). Extensions to other types of queries (nearest neighbors,`all pairs' and sub-pattern match) are brie
y discussed.The `GEMINI' approach combines two ideas:The �rst is to devise a `quick and dirty' test, which will eliminate severalnon-qualifying objects. To achieve that, we should extract k numericalfeatures from each object, which should somehow describe the object (forexample, the �rst few DFT coe�cients for a time sequence, or for a gray-scale image). The key question to ask is `If we are allowed to use only onenumerical feature to describe each data object, what should this feature be?'The second idea is to further accelerate the search, by organizing these k-dimensional points using state of the art spatial access methods (`SAMs')like the R-trees. These methods typically group neighboring points to-gether, thus managing to discard large un-promising portions of the ad-dress space early. 95



96 Chapter 12The above two ideas achieve fast searching. We went further, and we consideredthe condition under which the above method will be not only fast, but alsocorrect, in the sense that it will not miss any qualifying object (false alarms areacceptable, because they can be discarded, with the obvious way). The answeris the lower-bounding lemma, which intuitively states that the mapping F() ofobjects to k-d points should make things look closer.The rest of the chapters describe how to apply the method for a variety of envi-ronments, like 1-d time sequences and 2-d color images. These environments arespeci�cally chosen, because they give rise to the `dimensionality-curse' and the`cross-talk' problems, respectively. The approach of the `quick-and-dirty' �l-ter, together with the lower-bounding lemma, provided solutions to both cases.Experimental results on real or realistic data illustrated the speed-up that the`GEMINI' approach provides.In the last two Chapters focused on two related problems. In Chapter 10we presented a method to handle sub-pattern matching in time sequences,by using again a `quick-and-dirty' �lter and a sliding window, to map eachsequence into a trail in feature space; the trail is represented coarsely by asmall number of minimum bounding (hyper-)rectangles, which are fed into aSpatial Access Method (SAM). Finally, in Chapter 11 we discussed `FastMap',a linear, approximate algorithm which can derive features automatically, givena set of objects O and a distance function D().



PART IIIMATHEMATICAL TOOLBOX





APRELIMINARIES
Before we start, we need some de�nitions from complex algebra and from linearalgebra. Consider a complex numberc = a+ jb = A exp(j�)where j = p�1 is the imaginary unit. Then, we have the following:De�nition A.1 The amplitude jcj is de�ned as A � jcj = pa2 + b2De�nition A.2 The phase � of the number c = a+ jb is de�ned as� = arctan(b=a)De�nition A.3 The conjugate c� of c is de�ned as a� jb.De�nition A.4 The energy E(c) of c is de�ned as the square of the amplitude(E(c) � jcj2 � c c�).From matrix algebra, we use the following notation and concepts. ~x will beconsidered as a column vector. Eg.,~x = 24 213 35 (A.1)In general, lower-case letters with an arrow will denote column vectors. Capital,bold letters (eg., A) will denote matrices: Eg., A = [ai;j] where i, j span therows and columns, respectively. 99



100 Appendix ADe�nition A.5 At denotes the transpose of a matrix: At = [aj;i] (notice thereversal of i and j). If the matrix A has complex entries, then we want theso-called hermitian matrix A� = [a�j;i].Clearly, for real-valued matrices, the transpose matrix is the hermitian matrix.De�nition A.6 The norm k ~x k of a vector ~x is its Euclidean norm (root ofsum of squares).De�nition A.7 The energy E(~x) of a sequence (or vector) ~x is de�ned as thesum of energies at every point of the sequence:E(~x) �k ~x k2� n�1Xi=0 jxij2 (A.2)Obviously, the energy of a signal is the square of the Euclidean norm (� length)k ~x k of the vector ~x.De�nition A.8 The inner or `dot' product ~x�~y of two vectors ~x and ~y is de-�ned as ~x�~y =Xi (xi � yi) = (~x)t�~y (A.3)where `*' denotes scalar multiplication and `�' denotes matrix multiplicationObviously, k ~x k2= ~x�~x. For complex-valued vectors, we use the hermitianinstead of the transpose.De�nition A.9 Orthogonality: Two vectors ~x and ~y are orthogonal ( ~x ? ~y )i� ~x�~y = 0De�nition A.10 A matrix A = [ ~a1; ~a2; : : :] is column-orthonormal i� its col-umn vectors ~ai are unit vectors and mutually orthogonal, that is~ai�~aj = � 0 if i 6= j1 otherwise (A.4)



Preliminaries 101The de�nition for row-orthonormal is symmetric. From the above de�nition, ifA is a column-orthonormal matrix, thenAt�A = I (A.5)where I is the identity matrix of the appropriate dimensions. Again, forcomplex-valued matrices, we use the hermitian instead of the transpose.





BFOURIER ANALYSIS
B.1 DEFINITIONSThe intuition behind the Fourier Transform (as well as the Discrete TimeFourier transform that we are examining) is based on Fourier's theorem, thatevery continuous function can be considered as a sum of sinusoidal functions.For the discrete case, which is the one of interest to us, the n-point DiscreteFourier Transform [OS75] of a signal ~x = [xi], i = 0; : : : ; n� 1 is de�ned to bea sequence ~X of n complex numbers Xf , f = 0; : : : ; n� 1, given byXf = 1=pn n�1Xi=0 xi exp (�j2�fi=n) f = 0; 1; : : : ; n� 1 (B.1)where j is the imaginary unit (j � p�1).Compactly, ~x() ~X (B.2)will denote a DFT pair. The signal ~x can be recovered by the inverse transform:xi = 1=pn n�1Xf=0Xf exp (j2�fi=n) i = 0; 1; : : : ; n� 1 (B.3)Xf is a complex number, with the exception of X0, which is a real if thesignal ~x is real. There are some minor discrepancies among books: some de�neXf = 1=nPn�1i=0 : : : or Xf = Pn�1i=0 : : :. We have followed the de�nition in(Eq B.1), for it simpli�es the upcoming Parseval's theorem (Eq B.5).Recall that exp(j�) � cos(�) + j sin(�). The intuition behind DFT is to de-compose a signal into sine and cosine functions of several frequencies, multiples103



104 Appendix Bof the basic frequency 1=n. The reasons of its success is that certain opera-tions, like �ltering, noise removal, convolution and correlation, can be executedmore conveniently in the frequency domain. Moreover, the frequency domainhighlights some properties of the signals, such as periodicity.It is instructive to envision the DFT as a matrix operation:Observation B.1 Eq. B.1 can be re-written as~X = A � ~x (B.4)where A = [ai;f ] is an n� n matrix withai;f = 1=pn exp (�j2�fi=n) i; f = 0; : : : ; n� 1Observation B.2 Notice that A is column-orthonormal, that is, its columnvectors are unit vectors, mutually orthogonal. It is also true that A is row-orthonormal, since it is a square matrix [PTVF92, p. 60].That is, A��A = A�A� = Iwhere I is the (n�n) identity matrix and A� is the conjugate-transpose (`her-mitian') of A, that is A� = [a�f;i]The above observation has a very useful, geometric interpretation: since theDFT corresponds to a matrix multiplication with A of Eq. B.4, and since thematrix A is orthonormal, the matrix A e�ectively does a rotation (but noscaling) of the vector ~x in n-dimensional complex space; as a rotation, it doesnot a�ect the length of the original vector, nor the Euclidean distance betweenany pair of points.B.2 PROPERTIES OF DFTNext we list the properties of DFT that are most useful for our applications.



Fourier Analysis 105Theorem 1 (Parseval) Let ~X be the Discrete Fourier Transform of the se-quence ~x. Then we have n�1Xi=0 jxij2 = n�1Xf=0 jXf j2 (B.5)Proof: See, eg., [OS75]. 2An easier proof is based on Observation B.2 above. Intuitively, Parsevals'theorem states that the DFT preserves the energy (= square of the length) ofthe signal.Property B.1 The DFT also preserves the Euclidean distance.Proof: Using the fact that the DFT is equivalent to matrix multiplication(Eq. B.4), and that the matrix A is column-orthonormal, we can prove thatthe DFT also preserves the distance between two signals ~x and ~y. Let ~X and~Y denote their Fourier transforms. Then, we have:k ~X � ~Y k2 = k A�~x�A�~y k2= (A�~x�A�~y)��(A�~x�A�~y)= (~x� ~y)��A��A�(~x� ~y)= (~x� ~y)��I�(~x� ~y)= k ~x� ~y k2 (B.6)That is, the DFT maintains the Euclidean distance between the two signals ~xand ~y. 2Observation B.2 gives a strong intuitive `proof' for the above two properties.The geometric point of view of Observation B.2 is important: any transforma-tion that corresponds to an orthonormal matrix A will also enjoy a theoremsimilar to Parseval's theorem for the DFT. Such transformations are the DCTand the DWT, that we examine later.Property B.2 A shift in the time domain changes only the phase of the DFTcoe�cients, but not the amplitude:[xi�i0]()[Xf exp (�2�fi0j=n)] (B.7)



106 Appendix Bwhere `()' denotes a DFT pair. This is a useful property, if we are lookingfor, eg., matching stock prices with time-lags.Property B.3 For real signals, we have Xf = X�n�f , for f = 1; 2; : : : ; n� 1.Proof: See [PTVF92, p. 511]. 2Using the above property, we only need to plot the amplitudes up to the middle,and speci�cally, up to q, if n = 2q + 1, or q + 1, if the duration is n = 2q.De�nition B.1 The resulting plot of jXf j versus f will be called the amplitudespectrum or plain spectrum of the given time sequence; its square will be theenergy spectrum or power spectrum.The phase spectrum is de�ned similarly, but it is not used as much as theamplitude and energy spectra.Property B.4 The DFT requires O(n logn) computation time.Although a straightforward computation of the DFT coe�cients requires O(n2)time, the celebrated Fast Fourier Transform (FFT) exploits regularities of theej2�fi=n function, and achieves O(n logn) time (eg., see [PTVF92]).B.3 EXAMPLESThe main point we want to illustrate is the ability of the DFT to highlightthe periodicities of the input signal ~x. This is achieved through the amplitudespectrum that we de�ned before. Next, we give some carefully selected signalsand their spectra.Example B.1 A composite tone:xi = 6 sin(2�4i=n+ 0:5) + 3 sin(2�8i=n) i = 0; : : : ; 31 (B.8)
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"composite.tone.spectrum"(a) time domain (b) amplitude spectrumFigure B.1 A composite tone and its amplitude spectrum. Notice the spikesfor the two component frequencies at f=4 and 8.This is a sum of sinusoidal functions of frequencies 4 and 8. Digitized voice andmusical sounds are sums of a few sinusoidal functions. Figure B.1 shows thesignal in the time domain, and its amplitude spectrum. In the latter, noticethe two clear peaks, at frequencies 4 and 8, with amplitudes proportional to 6and 3, respectively, with a constant of proportionality: pn=2.
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"impulse.spectrum"(a) time domain (b) amplitude spectrumFigure B.2 A (shifted) impulse function, and its amplitude spectrum. Noticethe `frequency leak' in all the frequencies.Example B.2 The `impulse function', or `Dirac delta' function: x0 =1; xi=0for i > 0.



108 Appendix BFigure B.2 shows an impulse function (shifted to the right, for better plotting),along with its spectrum. Notice that there is no dominating frequency in theamplitude spectrum. This is expected, since the original signal has no periodic-ities. This phenomenon is informally called frequency leak: the given signal hasstrong components on every frequency, and thus it can not be approximated(compressed) well by using few DFT coe�cients.In general, spikes and discontinuities require all the frequencies. Since the DFTe�ectively assumes that the signal is repeated in�nite times, periodically (withperiod n), a high di�erence between x0 and xn�1 also leads to frequency leak.This is illustrated with the next example:
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"ramp.spectrum"(a) time domain (b) amplitude spectrumFigure B.3 The ramp function, and its amplitude spectrum. Notice thefrequency leak, again.Example B.3 The `ramp' function:xi = iFigure B.3 shows the the ramp function and its DFT. Notice that it also has a`frequency leak', having non-zero amplitudes for all its DFT coe�cients. How-ever, the amplitudes are decreasing, compared to the impulse function.This is an important observation: in general, if the input signal has a trend, theDFT has a frequency leak. Notice that the upcoming DCT avoids this speci�cproblem.Example B.4 Number of trappings for Canadian lynx (animals per year, 1821-1934).



Fourier Analysis 109See Figure B.4. This is a well-known dataset in population ecology [Sig93,p. 45], as well as time-sequence analysis [Ton90, BJR94]. It has a strong peri-odical nature, which is highlighted by the spike in the spectrum. It is interestingto notice that the population of hares (not shown here) also follows a similarperiodic pattern, with the same period, but with some phase lead, becausehares are a major food source for the Canadian lynx.
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"lynx.spectrum"(a) time domain (b) amplitude spectrumFigure B.4 Canadian lynx trappings (1821-1934), and its amplitude spec-trum. Notice the spike at f=12, corresponding to a period of 9.5 years.Figure B.5 highlights the ability of the DFT to concentrate the energy. Considerthe spectrum of Figure B.4(b) and set to zero all the amplitudes, except forthe two strongest ones (for f=0 and 12); this is the spectrum illustrated inFigure B.5(b). Figure B.5(a) shows the corresponding sequence in the timedomain (by doing the inverse DFT), as well as the original `lynx' dataset.Notice how well the approximate sequence matches the original, despite thetiny number of coe�cients kept.B.4 DISCRETE COSINE TRANSFORM(DCT)For our purposes, the ideal transform should concentrate the energy into asfew coe�cients as possible, for most of the signals of interest. For severalreal signals, successive values are correlated: eg., in images, if a pixel is dark,chances are that its neighbors will also be dark. In these cases, the DiscreteCosine Transform (DCT) achieves better energy concentration than the DFT,and very close to optimal [Gal91, p. 54].
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"lynx.app.spectrum"(a) (b)Figure B.5 (a) The original lynx dataset (with `diamonds') and its approx-imation (with `crosses') (b) the spectrum of the approximation.Moreover, the DCT avoids `frequency leak' problems that plague the DFTwhen the input signal has a `trend' (see Example B.3). The DCT solves thisproblem cleverly, by conceptually re
ecting the original sequence in the timeaxis around the last point and taking the DFT on the resulting, twice-as-long sequence. Exactly because the (twice-as-long) signal is symmetric, all thecoe�cients will be real numbers. Moreover, from the property B.3 of the DFT,their amplitudes will be symmetric along the middle (Xf = X2n�f ). Thus, weneed to keep only the �rst n of them.The formulas for the DCT areXf = 1=pnn�1Xi=0 xi cos �f(i + 0:5)n f = 0; : : : ; n� 1 (B.9)and for the inverse:xi = 1=pnX0 + 2=pn n�1Xf=1Xf cos �f(i + 0:5)n i = 0; : : : ; n� 1 (B.10)As with the DFT, the complexity of the DCT is also O(n log(n)).B.5 m-DIMENSIONAL DFT/DCT (JPEG)All the above transforms can be extended tom-dimensional signals: form=2 wehave gray-scale images, for m=3 we have 3-d MRI brain scans etc. Informally,



Fourier Analysis 111we have to do the transformation along each dimension: for example, for theDFT for a 1024x1024 matrix (eg., image), we have to do the DFT on each row,and then do the DFT on each column. Formally, for an n1 � n2 array [xi1;i2 ]these operations are expressed as follows:Xf1 ;f2 = 1pn1 1pn2 n1Xi1=0 n2Xi2=0xi1;i2 exp (�2�ji1f1=n1) exp (�2�ji2f2=n2)where xi1;i2 is the value (eg., gray scale) of the position (i1; i2) of the array,and f1, f2 are the spatial frequencies, ranging from 0 to (n1-1) and (n2-1)respectively.The formulas for higher dimensionalities m are straightforward. The formulasfor the m-d inverse DFT and DCT are analogous. Notice that the 2-dimensionalDCT is used in the JPEG standard [Wal91, Jur92] for image and video com-pression.B.6 CONCLUSIONSWe have discussed some powerful, classic tools from signal processing, namelythe DFT and DCT. The DFT is helpful in highlighting periodicities in theinput signal, through its amplitude spectrum. The DCT is closely related tothe DFT, and it has some additional desirable properties: its coe�cients arealways real (as opposed to complex), it handles well signals with trends, andit is very close to the optimal for signals whose successive values are highlycorrelated.





CWAVELETS
C.1 MOTIVATIONThe wavelet transform is believed to avoid the `frequency leak' problem evenbetter. Consider the case of an impulse function (Example B.2): both in theDFT and the DCT transform, it has non-zero amplitudes in all frequencies.Thus, what would take a single number to describe in the time domain, willrequire several numbers in the frequency domain. The problem is that the DFThas no temporal locality: each of its coe�cients provide information about allthe time instants. A partial remedy would be the so-called `Short WindowFourier Transform' (SWFT) [RV91]: We can divide the time sequence intoframes of, say, w consecutive (non-overlapping) samples, and do the w-pointDFT in each of these windows. Thus, an impulse function in the time domainwill have a restricted `frequency leak'. Figure C.1 shows intuitively what hap-pens: In the time domain, each value gives the full information about thatinstant (but no information about frequencies). The DFT has coe�cients thatgive full information about a given frequency, but it needs all the frequenciesto recover the value at a given instant in time. The SWFT is somewhere inbetween.The only non-elegant point of the SWFT is the choice of the width w of thewindow: How large should it be, and why? The solution to this problem is veryclever: let the width w be variable! This is the basis for the Discrete WaveletTransform (DWT). Figure C.1 illustrates how the DWT coe�cients tile thefrequence-time plane. 113
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time time time time

DFT SWFT DWTtime rep.

fr
eq

ue
nc

yFigure C.1 Tilings of the time-frequencyplane: (a) Time-domainrepresenta-tion (b) Discrete Fourier transform (DFT) (c) Short-Window Fourier transform(SWFT) (d) Discrete Wavelet transform (DWT).C.2 DESCRIPTIONSeveral Discrete Wavelet transforms that have been proposed. The simplest todescribe and code is the Haar transform. Ignoring temporarily some propor-tionality constants, the Haar transform operates on the whole signal, givingthe sum and the di�erence of the left and right part; then it focuses recursivelyon each of the halves, and computes the di�erence of their two sub-halves, etc,until it reaches an interval with one only sample in it.It is instructive to consider the equivalent, bottom-up procedure. The inputsignal ~x must have a length n that is a power of 2, by appropriate zero-paddingif necessary.1. Level 0: take the �rst two sample points x0 and x1, and compute theirsum s0;0 and di�erence d0;0; do the same for all the other pairs of points(x2i, x2i+1). Thus, s0;i = C � (x2i + x2i+1) and d0;i = C � (x2i � x2i+1),where C is a proportionality constant, to be discussed soon. The valuess0;i (0 � i � n=2) constitute a `smooth' (=low frequency) version of thesignal, while the values d0;i represent the high-frequency content of it.2. Level 1: consider the `smooth' s0;i values; repeat the previous step forthem, giving the even-smoother version of the signal s1;i and the smooth-di�erences d1;i (0 � i � n=4)3. : : : and so on recursively, until we have a smooth signal of length 2.The Haar transform of the original signal ~x is the collection of all the `di�erence'values dl;i at every level l and o�set i, plus the smooth component sL;0 at thelast level L (L = log2(n) � 1).



Wavelets 115Following the literature, the appropriate value for the constant C is 1=p2, be-cause it makes the transformation matrix to be orthonormal (eg., see Eq. C.4).Adapting the notation (eg., from [Cra94] [VM]), the Haar transform is de�nedas follows:dl;i = 1=p2 (sl�1;2i � sl�1;2i+1) l = 0; : : : ; L; i = 0; : : : ; n=2l+1 � 1 (C.1)withsl;i = 1=p2 (sl�1;2i + sl�1;2i+1) l = 0; : : : ; L; i = 0; : : : ; n=2l+1 � 1 (C.2)with the initial condition: s�1;i = xi (C.3)For example, the 4-point Haar transform is as follows. Envisioning the inputsignal ~x as a column vector, and its Haar transform ~w as another columnvector (~w = [s1;0; d1;0; d0;0; d0;1]t), the Haar transform is equivalent to a matrixmultiplication, as follows:2664 s1;0d1;0d0;0d0;1 3775 = 2664 1=2 1=2 1=2 1=21=2 1=2 �1=2 �1=21=p2 �1=p2 0 00 0 1=p2 �1=p2 3775�2664 x0x1x2x3 3775 (C.4)The above procedure is shared among all the wavelet transforms: We start atthe lowest level, applying two functions at successive windows of the signal: the�rst function does some smoothing, like a weighted average, while the secondfunction does a weighted di�erencing; the smooth (and shortened) version ofthe signal is recursively fed back into the loop, until the resulting signal is tooshort.The Haar transform is still criticized for `frequency leak' problems [Dau92,p. 10]. One of the most popular wavelet transforms is the so-called Daubechies-4 [Dau92]. We describe the derivation of the 0-th level of coe�cients only,because the rest of the levels are derived recursively, as explained above. Ateach step, the Daubechies-4 DWT operates on 4 consecutive sample points; the`smooth' component is given bys0;i = h0x2i + h1x2i+1 + h2x2i+2 + h3x2i+3 i = 0; : : : ; n=2 (C.5)and the `di�erence' component is given byd0;i = h3x2i � h2x2i+1 + h1x2i+2 � h0x2i+3 i = 0; : : : ; n=2 (C.6)



116 Appendix Cwhere h0 = 1 +p34p2 h1 = 3 +p34p2 h2 = 3�p34p2 h3 = 1�p34p2 (C.7)Notice that the signal is supposed to `wrap-around' (ie., xn+i = xi whenever theindex i exceeds n). More details are in [PTVF92]. The code in nawk [AKW88]and Bourne `shell' is attached in the next section.Figure C.2 shows the basis functions of the Daubechies-4 DWT for n=32 points.The top left gives the basis function #5: it is the level-2 wavelet, starting atposition 0. Notice that it mainly concentrates on the �rst half of the signal,giving a weighted di�erence. The top right gives the basis function #9: it is thelevel-1 wavelet starting at position 0. Notice that it has a shorter time-spanthan the previous (#5), but more violent oscillation (thus, higher frequencycontent). The bottom row shows the basis functions #17 and #18. Theycorrespond to level-0 wavelets starting at o�sets t=0 and t=2, respectively. Asexpected, the basis functions of this level have the shortest time-span and thehighest frequency content. Also as expected, these two basis functions haveidentical shape and only di�er by a horizontal shift.C.3 DISCUSSIONThe computational complexity of the above transforms is O(n), as it can beveri�ed from Eq. C.1-C.3. Notice that this is faster than the O(n log(n)) ofFFT, without even the need to resort to any of the FFT-like techniques.In addition to their computational speed, there is a fascinating relationship be-tween wavelets, multiresolution methods (like quadtrees or the pyramid struc-tures inmachine vision), and fractals. The reason is that wavelets, like quadtrees,will need only a few non-zero coe�cients for regions of the image (or the timesequence) that are smooth/homogeneous, while they will spend more e�ort onthe `high activity' areas. It is believed [Fie93] that the mammalian retina con-sists of neurons which are tuned each to a di�erent wavelet. Naturally occurringscenes tend to excite only few of the neurons, implying that a wavelet transformwill achieve excellent compression for such images. Similarly, the human earseems to use a wavelet transform to analyze a sound, at least in the very �rststage [Dau92, p. 6] [WS93].
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Figure C.2 Basis functions #5, 9, 17, 18, for the Daubechies-4 DWT.C.4 CODE FOR DAUBECHIES-4 DWTNext we give the source code for the Daubechies-4 DWT. We have chosennawk [AKW88] because (a) it is a language on a higher level than `C' and (b)it is more widely available than the even higher level languages, of mathemat-ical packages (like `Mathematica', `Maple', `MatLab' etc). See [PTVF92, VM]for wavelet code in some of the above languages. Object code for several wavelettransforms is available in the `xwpl' package (http: //www.math.yale.edu:80/wavelets/) from Yale.#! /bin/sh -fnawk '# implements the Daubechies-4 wavelet -# Following "Numerical Recipes in C", p. 593.



118 Appendix C# Author: Christos Faloutsos, 1996# Notice: the input signal MUST HAVE a length that is# a power of 2 (and greater or equal to 4)# Expected input format: a sequence of numbers,# separated by white space (tabs, blanks, newlines)BEGIN{ c[0] = (1+sqrt(3))/(4*sqrt(2));c[1] = (3+sqrt(3))/(4*sqrt(2));c[2] = (3-sqrt(3))/(4*sqrt(2));c[3] = (1-sqrt(3))/(4*sqrt(2));TOL = 10^(-6);count = 0 ;} function abs(xx) {res = xxif( xx < 0 ){ res = -xx}return res}# chopArrayfunction chopArray( xarg, Narg){for(ii=1; ii<=Narg; ii++){if( abs(xarg[ii]) < TOL) {xarg[ii] =0}}}# print arrayfunction printArray ( x, N){for(i=1; i<=N; i++){ printf "%g\n", x[i] }}#################################################### wraps the ivalue in the 1-Nval interval###################################################function wrap ( ival, Nval) {resval = ival-1;resval = resval % Nvalresval ++return resval}####################################################



Wavelets 119#################################################### performs one step of the DWT transform# on array xarg[1:Narg]# Narg: should be a power of 2, and > 4# It does the changes IN PLACE###################################################function oneStepDWT ( xarg, Narg ) {jj = 0;for( ii=1; ii<Narg; ii +=2 ){jj ++;sres[jj] = c[0]*xarg[wrap(ii,Narg)] + \c[1]*xarg[wrap(ii+1,Narg)] + \c[2]*xarg[wrap(ii+2,Narg)]+ \c[3]*xarg[wrap(ii+3,Narg)];dres[jj] = c[3]*xarg[wrap(ii,Narg)] - \c[2]*xarg[wrap(ii+1,Narg)] + \c[1]*xarg[wrap(ii+2,Narg)] - \c[0]*xarg[wrap(ii+3,Narg)];}for( ii=1; ii<= Narg/2; ii++ ){xarg[ii] = sres[ii];xarg[ii + Narg/2 ] = dres[ii]}return}####################################################################################################### Does the full wavelet transform -# it calls repeatedly the oneStepDWT()# The array xarg[1,N] is changed IN PLACE###################################################function DWT(xarg, Narg){# assert that Narg >= 4 and Narg: power of 2# WILL NOT WORK OTHERWISEfor( len=Narg; len>=4; len = len/2){oneStepDWT(xarg, len)}}#################################################### read in the elements of the array



120 Appendix C{ for( j = 1; j<= NF; j++) { count++; x[count] = $j } }END {N =count; # array lengthDWT(x,N)chopArray(x,N)printArray(x,N)}' $*C.5 CONCLUSIONSThe Discrete Wavelet Transform (DWT) achieves even better energy concentra-tion than the DFT and DCT transforms, for natural signals [PTVF92, p. 604].It uses multiresolution analysis, and it models well the early signal processingoperations of the human eye and human ear.



DK-L AND SVD
D.1 THE KARHUNEN-LOEVE (K-L)TRANSFORMBefore we examine the K-L transform, we should give the de�nition of eigen-values and eigenvectors of a square matrix S. (We use the letter `S' to stressthe fact that the matrix is square).De�nition D.1 For a square n�n matrix S, the unit vector ~x and the scalar� that satisfy S�~x = ��~x (D.1)are called an eigenvector and its corresponding eigenvalue of the matrix S.The eigenvectors of a symmetric matrix are mutually orthogonal and its eigen-values are real. See [PTVF92, p. 457] for more details.The intuitive meaning of these concepts is the following: A matrix S de�nesan a�ne transformation ~y = S�~x, that involves rotation and/or scaling; theeigenvectors are the unit vectors along the directions that are not rotated byS; the corresponding eigenvalues show the scaling. For example, the matrixS = � 2 11 3 � (D.2)gives the ellipse of Figure D.1, when applied to the periphery of the unit circle.The major and minor axes of the ellipse correspond to the directions of the121



122 Appendix Dtwo eigenvectors of S. Speci�cally, the strongest eigenvalue corresponds to theeigenvector of the major axis:�1 = 3:62 ~u1 = � 0:520:85 � ; �2 = 1:38 ~u2 = � 0:85�0:52 � (D.3)
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Figure D.1 The matrix S as a transformation: the unit circle becomes anellipse, with major axis along the �rst eigenvectorThe following observation will be used later, to show the strong connection be-tween the eigenvalue analysis and the upcoming Singular Value Decomposition(Theorem 2).Observation D.1 If S is a real and symmetric matrix (ie., S = St), then itcan be written in the form S = U���Ut (D.4)where the columns of U are the eigenvectors of S and � is a diagonal matrix,with values the corresponding eigenvalues of S.Notice that the above observation is a direct consequence of the de�nition of theeigenvalues and eigenvectors (De�nition D.1) and the fact that the eigenvectorsare mutually orthogonal, or, equivalently, that U is column-orthonormal.



K-L and SVD 123As an arithmetic example, for the matrix S that we used in the example (seeEq. D.2), we haveS = � 2 11 3 � = � 0:52 0:850:85 �0:52 �� � 3:62 00 1:38 �� � 0:52 0:850:85 �0:52 �D.1.1 K-L: Problem de�nitionConsider the following problem: Given a collection of n-d points, project themon a k-d sub-space (k � n), minimizing the error of the projections (sumof squared di�erences). The problem has been studied extensively in statis-tical pattern recognition and matrix algebra. The optimal way to project n-dimensional points onto k-dimensional points (k � n) is the Karhunen-Lo�eve(`K-L') transform (eg., see [DH73b], [Fuk90]). In other words, the K-L trans-forms gives linear combination of axis (=`attributes' = `features'), sorted in`goodness' order.Figure D.2 gives an illustration of the problem and the solution: it shows aset of 2-d points, and the corresponding 2 directions (x0 and y0) that the K-Ltransform suggests: If we are allowed only k=1, the best direction to projecton is the direction of x0; the next best is y0 etc.
x

x’

y

y’Figure D.2 Illustration of the Karhunen-Lo�eve transformation - the `best'axis to project is x0 .Next we give the detailed steps of the K-L, as well as the code in `mathematica'.The K-L computes the eigenvectors of the covariance matrix (see Eq. D.7), sortsthem in decreasing eigenvalue order, and approximates each data vector with itsprojections on the �rst k eigenvectors. The n�n covariance matrixC is de�nedas follows. Consider the N � n data matrix A, where rows correspond to datavectors and columns correspond to attributes. That is, A = [aij] (i = 1; :::Nand j = 1; :::n). The covariance matrixC = [cpq] roughly gives the attribute-to-attribute similarity, by computing the un-normalized correlation between the



124 Appendix Dtwo attributes p and q. Let a:;p be the average of the p-th column/attribute:a:;p = 1=N NXi=1 aip p = 1; 2; :::n (D.5)Then, the entry cp;q of the covariance matrix C iscp;q = NXi=1(ai;p � a:;p)(ai;q � a:;q) (D.6)Intuitively, we move the origin to the center of gravity of the given vectors,obtaining the matrix B = [bij] = [aij � a:;j]. We shall refer to the matrix Bas the `zero-mean' matrix, exactly because its column averages are zero, byconstruction. Then, we compute the covariance matrix C as follows:C = Bt�B (D.7)Example D.1 Consider the data vectors ~a1 = [1; 2]t, ~a2 = [1; 1]t and ~a3 =[0; 0]t. Then we have for the data matrix A:A = 24 1 21 10 0 35The column averages are the coordinates of the center of gravity:a:;1 = 2=3 a:;2 = 1The `zero-mean' matrix B isB = 24 1=3 11=3 0�2=3 �1 35and the covariance matrix C isC = � 2=3 11 2 �with eigenvalues and eigenvectors:�1 = 2:53 ( ~u1)t = [0:47; 0:88]�2 = 0:13 ( ~u2)t = [�0:88; 0:47]



K-L and SVD 125Figure D.3 plots the 3 given points in 2-d space as `diamonds', as well as theircenter of gravity (2/3, 1) and the corresponding K-L directions. It uses `crosses'and `squares' for the major and minor eigenvector, respectively.
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Figure D.3 Example of the Karhunen-Lo�eve transformation, with the 3points of the Example.Next we give an implementation of the K-L transform in Mathematica [Wol91].The major step is to compute the covariance matrix C; then, the eigenvalueroutine Eigensystem does the rest (and hardest!) of the job.(* given a matrix mat_ with $n$ vectors (rows) of $m$ attributes (columns),it creates a matrix with $n$ vectors and theirfirst $k$ most 'important' attributes(ie., the K-L expansions of these $n$ vectors) *)KLexpansion[ mat_, k_:2] := mat . Transpose[ KL[mat, k] ];(* given a matrix with $n$ vectors of $m$ dimensions,computes the first $k$ singular vectors,ie., the axes of the first $k$ Karhunen-Lo\`{e}ve expansion *)KL[ mat_ , k_:2 ]:= Module[{n,m, avgvec, newmat,i, val, vec },{n,m} = Dimensions[mat];avgvec = Apply[ Plus, mat] / n //N;



126 Appendix D(* translate vectors, so the mean is zero *)newmat = Table[ mat[[i]] - avgvec , {i,1,n} ];{val, vec} = Eigensystem[ Transpose[newmat] . newmat ];vec[[ Range[1,k] ]]]D.2 SVDAs we saw, the eigenvalues and eigenvectors are de�ned for square matrices.For rectangular matrices, a closely related concept is the Singular Value Decom-position (SVD) [Str80, PFTV88, GVL89]: Consider a set of points as before,represented as a N � n matrix A, as in Table D.2.term data information retrieval brain lungdocumentCS-TR1 1 1 1 0 0CS-TR2 2 2 2 0 0CS-TR3 1 1 1 0 0CS-TR4 5 5 5 0 0MED-TR1 0 0 0 2 2MED-TR2 0 0 0 3 3MED-TR3 0 0 0 1 1Table D.1 Example of a (document-term) matrixSuch a matrix could represent, eg., N patients with n numerical symptomseach (blood pressure, cholesterol level etc), or N sales with n products in adata mining application [AS94], with the dollar amount spent on each product,by the given sale, etc. For concreteness, we shall assume that it representsN documents (rows) with n terms (columns) each, as happens in Informa-tion Retrieval (IR) [SFW83], [Dum94]. It would be desirable to group similardocuments together, as well as similar terms together. This is exactly whatSVD does, automatically! The only `catch' is that SVD creates a linear com-bination of terms, as opposed to non-linear ones that, eg., Kohonen's neuralnetworks could provide [LSM91, RMS92]. Nevertheless, these groups of termsare valuable: in Information Retrieval terminology, each would correspond to



K-L and SVD 127a `concept'; in the Karhunen-Loeve terminology, each group of terms wouldcorrespond to an important `axes'. The formal de�nition for SVD follows:Theorem 2 (SVD) Given an N � n real matrix A we can express it asA = U���Vt (D.8)where U is a column-orthonormal N � r matrix, r is the rank of the matrix A,� is a diagonal r � r matrix and V is a column-orthonormal k � r matrix.Proof: See [PTVF92, p. 59]. 2The entries of � are non-negative. If we insist that the diagonal matrix � hasits elements sorted in descending order, then the decomposition is unique1.Recall that a matrix U is column-orthonormal i� its column vectors are mu-tually orthogonal and of unit length. Equivalently: Ut�U = I, where I is theidentity matrix. Schematically, see Figure D.4.
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Figure D.4 Illustration of SVDEq. D.8 equivalently states that a matrix A can be brought in the formA = �1 ~u1�(~v1)t + �2 ~u2�(~v2)t + : : :+ �r ~ur�(~vr)t (D.9)1Except when there are equal entries in �, in which case they and their correspondingcolumns of U and V can be permuted.



128 Appendix Dwhere ~ui, and ~vi are column vectors of the U and V matrices respectively,and �i the diagonal elements of the matrix �. Intuitively, the SVD identi�es`rectangular blobs' of related values in the A matrix. For example, for theabove `toy' matrix of Table D.2, we have two `blobs' of values, while the restof the entries are zero. This is con�rmed by the SVD, which identi�es themboth: A = 9:64�2666666664 0:180:360:180:90000 3777777775�[0:58; 0:58; 0:58; 0; 0] +5:29�2666666664 00000:530:800:27 3777777775�[0; 0; 0; 0:71; 0:71]orA = 2666666664 0:18 00:36 00:18 00:90 00: 0:530: 0:800: 0:27 3777777775� � 9:64 00 5:29 �� � 0:58 0:58 0:58 0 00 0 0 0:71 0:71 �Notice that the rank of the matrix is r=2: there are e�ectively 2 types ofdocuments (CS and Medical documents) and 2 `concepts', ie., groups-of-terms:the `CS concept' (that is, the group f`data', `information', `retrieval'g), and the`medical concept' (that is, the group f`lung', `brain'g). The intuitive meaningof the U and V matrices is as follows: U can be thought of as the document-to-concept similarity matrix, while V, symmetrically, is the term-to-conceptsimilarity matrix. For example, v1;2 = 0 means that the �rst term (`data') haszero similarity with the 2nd concept (the `lung-brain' concept).The SVD is a powerful operation, with several applications. We list some ob-servations, which are useful for multimedia indexing and Information Retrieval:



K-L and SVD 129Observation D.2 The N � N matrix D = A�At will intuitively give thedocument-to-document similarities - in our case, it isD = A�At = 2666666664 3 6 3 15 0 0 06 12 6 30 0 0 03 6 3 15 0 0 015 30 15 75 0 0 00 0 0 0 8 12 40 0 0 0 12 18 60 0 0 0 4 6 2 3777777775Observation D.3 The eigenvectors of the D matrix will be the columns of theU matrix of the SVD of A.Observation D.4 Symmetrically, the n � n matrix T = At�A will give theterm-to-term similarities - in our example, it is:T = At�A266664 31 31 31 0 031 31 31 0 031 31 31 0 00 0 0 14 140 0 0 14 14 377775Observation D.5 Similarly, the eigenvectors of the T matrix are the columnsof the V matrix of the SVD of A.Observation D.6 Both D and T have the same eigenvalues, who are thesquares of the �i elements of the � matrix of the SVD of A.All the above observations can be proved from Theorem 2 and from the factthat U and V are column-orthonormal:A�At = U���Vt�V���Ut =U���I���Ut = U��2�Ut (D.10)and similarly for At�A. According to (Eq. D.4), the columns of U are theeigenvectors of A�At, and its eigenvalues are the diagonal elements of �2(that is, �21; :::�2r).



130 Appendix DThe above observations illustrate the close relationship between the eigenvec-tors analysis of a matrix, the SVD and the K-L transform, which uses theeigenvectors of the covariance matrix C (Eq. D.7).It should be noted that the SVD is extremely useful for several settings thatinvolve least-squares optimization, such as in regression, in under-constraintand over-constraint linear problems, etc. See [PTVF92] or [Str80] for moredetails. Next, we show how it has been applied for Information Retrieval and�ltering, under the name of Latent Semantic Indexing (LSI).D.3 SVD AND LSIHere we discuss SVD in more detail, in the context of Information Filtering.There, SVD has lead to the method of `Latent Semantic Indexing' (LSI) [FD92b].The idea is to try to group similar terms together, to form a few (� 100� 300)`concepts', and then map the documents into vectors in `concept'-space, as op-posed to vectors in n-dimensional space, where n is the vocabulary size of thedocument collection. This approach is a clever, automated way, to take intoaccount term co-occurrences, building e�ectively a `thesaurus without seman-tics': terms that often occur together, are grouped into `concepts'; every timethe user asks for a term, the system determines the relevant `concepts' andsearches for them.In order to map document or query vectors into to concept space, we need theterm-to-concept similarity matrixV. For example, in the setting of Table D.2,consider the query `�nd documents containing the term `data''. In this setting,this query ~q is the vector ~q = 266664 10000 377775 (D.11)because the �rst entry corresponds to the term `data' and the rest to the 4 otherterms of our document collection (namely, `information', `retrieval', `brain',`lung'). To translate ~q to a vector ~qc in concept space, we need the term-to-concept similarity matrix V. The `translation' is done if we multiply the queryvector by Vt:~qc = Vt�~q



K-L and SVD 131= � 0:58 0:58 0:58 0 00 0 0 0:71 0:71 ��266664 10000 377775= � 0:580 �which correctly corresponds to the fact that the query ~q is rather closely relatedto the CS group of terms (with `strength' = 0.58), and unrelated to the medicalgroup of terms (`strength' = 0). What is even more important is that thequery ~qc implicitly involves the terms `information' and `retrieval'; thus, anLSI-based system may return documents that do not necessarily contain therequested term `data', but they are deemed relevant anyway. Eg., according tothe running example, the document with the single word `retrieval' will havethe document vector ~d ~d = 266664 00100 377775 (D.12)which will be mapped to the concept vector ~dc:~dc = Vt�~dc = � 0:580 � = ~qc (D.13)That is, the above document will be a perfect match for the query (`data'),although it does not contain the query word.Thanks to its ability to create a thesaurus of co-occurring terms, the LSImethod has shown good performance. Experiments in [FD92b] report thatLSI has equaled or outperformed standard vector methods and other variants,with improvement of as much as 30% in terms of precision and recall.D.4 CONCLUSIONSWe have seen some powerful tools, based on eigenvalue analysis. Speci�cally:



132 Appendix Dthe `K-L' transform is the optimal way to do dimensionality reduction:given N vectors with n dimensions, it provides the k most important di-rections on which to project (k is user de�ned).the SVD (singular value decomposition) operates on an N �n matrix andgroups its rows and columns into r `similar' groups, sorted in `strength'order.Both tools are closely related to the eigenvalue analysis (Eq. D.1): the K-Ltransform uses the eigenvalues of the covariance matrix; the SVD of a symmetricmatrix is identical to its eigenvalue decomposition.
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