PART 11

INDEXING SIGNALS

PROBLEM - INTUITION

7.1 INTRODUCTION

The problem we focus on is the design of fast searching methods that will
search a database of multimedia objects, to locate objects that match a query
object, exactly or approximately. Objects can be 2-dimensional color images,
gray-scale medical images in 2-d or 3-d (eg., MRI brain scans), 1-dimensional
time sequences, digitized voice or music, video clips etc. A typical query by
content would be, eg., “in a collection of color photographs, find ones with a
same color distribution as a sunset photograph’.

Specific applications include image databases; financial, marketing and pro-
duction time sequences; scientific databases with vector fields; audio and video
databases, DNA/genome databases, etc. In such databases, typical queries
would be ‘find companies whose stock prices move similarly’, or ‘find images
that look like a sunset’, or ‘find medical X-rays that contain something that has
the texture of a tumor’.

Searching for similar patterns in such databases as the above is essential,
because i1t helps in predictions,; decision making, computer-aided medical di-
agnosis and teaching, hypothesis testing and, in general, in ‘data mining’

[AGIT92, AIS93b] [AIS93a, AS94, HS95] and rule discovery.

The first important step is to provide a measure for the distance between two
objects. We rely on a domain expert to supply such a distance function D():

57

58 CHAPTER 7

Definition 7.1 Given two objects, O, and Op, the distance (= dis-similarity)
of the two objects 1s denoted by

D(04,0p) (7.1)

For example, if the objects are two (equal-length) time sequences, the distance
D() could be their Euclidean distance (sum of squared differences, see Eq. 7.2).

Similarity queries can been classified into two categories:

Whole Match: Given a collection of N objects O4,0p,...,0On and a query
object), we want to find those data objects that are within distance ¢
from (). Notice that the query and the objects are of the same type: for
example, if the objects are 512x512 gray-scale images, so is the query.

Sub-pattern Match: Here the query is allowed to specify only part of the
object. Specifically, given N data objects (eg., images) O4,0p,...,On,
a query (sub-)object @ and a tolerance ¢, we want to identify the parts of
the data objects that match the query. If the objects are, eg., 512x512
gray-scale images (like medical X-rays), in this case the query could be,
eg., a 16x16 sub-pattern (eg., a typical X-ray of a tumor).

Additional types of queries include the ‘nearest neighbors’ queries (eg., ‘find
the 5 most similar stocks to IBM’s stock’) and the ‘all pairs’ queries or ‘spatial
joins’ (eg., ‘report all the pairs of stocks that are within distance € from each
other’). Both the above types of queries can be supported by our approach: As
we shall see, we reduce the problem into searching for multi-dimensional points,
which will be organized in R-trees; in this case, we know of algorithms for both
nearest-neighbor search as well as spatial joins, as discussed in Chapter 5. Thus,
we do not focus on nearest-neighbor and ‘all-pairs’ queries.

For all the above types of queries, the ideal method should fulfill the following
requirements:

m [t should be fast. Sequential scanning and distance calculation with each
and every object will be too slow for large databases.

m [t should be ‘correct’. In other words, it should return all the qualifying
objects, without missing any (i.e., no ‘false dismissals’). Notice that ‘false
alarms’ are acceptable, since they can be discarded easily through a post-
processing step. Of course, as we see, eg., in Figure 8.2, we try to keep
their number low, so that the total response time is minimized.

Problem - Intuition 59

m The proposed method should require a small space overhead.

m The method should be dynamic. It should be easy to insert, delete and
update objects.

As we see next, the heart of the proposed approach is to use k feature extraction
functions, to map objects into points in k-dimensional space; thus, we can use
highly fine-tuned database spatial access methods to accelerate the search. In
the next Chapter we describe the details of the main idea. In Chapters 8 and 9
we describe how this idea has been applied for time sequences and color images.
Chapter 10 discusses how to extend the ideas to handle sub-pattern matchingin
time sequences. Chapter 11 discusses a fast, approximate method of extracting
features from objects, so that the distance is preserved. Chapter 12 lists the
conclusions for this Part.

7.2 BASIC IDEA

To illustrate the basic idea, we shall focus on ‘whole match’ queries. There, the
problem is defined as follows:

m we have a collection of N objects: Oy4, Op, ..., On

m the distance/dis-similarity between two objects (0;,0;) is given by the
function P(O;, O;), which can be implemented as a (possibly, slow) pro-
gram

m the user specifies a query object (), and a tolerance ¢

Our goal 1s to find the objects in the collection that are within distance e from
the query object. An obvious solution is to apply sequential scanning: For
each and every object O; (1 < ¢ < N), we can compute its distance from Q
and report the objects with distance D(Q,0;) < e.

However, sequential scanning may be slow, for two reasons:

1. the distance computation might be expensive. For example, the editing
distance [HD80] in DNA strings requires a dynamic-programming algo-
rithm, which grows like the product of the string lengths (typically, in the
hundreds or thousands, for DNA databases).

60 CHAPTER 7

2. the database size N might be huge.

Thus, we are looking for a faster alternative. The proposed approach is based
on two ideas, each of which tries to avoid each of the two disadvantages of
sequential scanning:

m a‘quick-and-dirty’ test, to discard quickly the vast majority of non-qualifying
objects (possibly, allowing some false-alarms)

m the use of Spatial Access Methods (SAMs), to achieve faster-than-sequential
searching, as suggested by Jagadish [Jag91].

The case 1s best illustrated with an example. Consider a database of time se-
quences, such as yearly stock price movements, with one price per day. Assume
that the distance function between two such sequences S and @ is the Euclidean
distance

1/2

D(S,Q) = (Z(Sm - Q[i])z) (7:2)
i=1

where S[i] stands for the value of stock S on the i-th day. Clearly, computing

the distance of two stocks will take 365 subtractions and 365 squarings in our

example.

The idea behind the ‘quick-and-dirty’ test is to characterize a sequence with
a single number, which will help us discard many non-qualifying sequences.
Such a number could be, eg., the average stock price over the year: Clearly, if
two stocks differ in their averages by a large margin, it 1s impossible that they
will be similar. The converse is not true, which is exactly the reason we may
have false alarms. Numbers that contain some information about a sequence
(or a multimedia object, in general), will be referred to as ‘features’ for the
rest of this paper. Using a good feature (like the ‘average’, in the stock-prices
example), we can have a quick test, which will discard many stocks with a single
numerical comparison for each sequence, a big gain over the 365 subtractions
and squarings that the original distance function requires.

If using one feature is good, using two or more features might be even better,
because they may reduce the number of false alarms (at the cost of making the
‘quick-and-dirty’ test a bit more elaborate and expensive). In our stock-prices
example, additional features might be, eg., the standard deviation, or, even
better, some of the discrete Fourier transform (DFT) coefficients, as we shall
see in Chapter 8.

Problem - Intuition 61

The end result of using k features for each of our objects is that we can map
each object into a point in k-dimensional space. We shall refer to this mapping

as F() (for ‘F’eature):

Definition 7.2 Let F() be the mapping of objects to k-d points, that is F(O)
will be the k-d point that corresponds to object O.

This mapping provides the key to improve on the second drawback of sequential
scanning: by organizing these k-d points into a spatial access method, we can
cluster them in a hierarchical structure, like the R-trees. Upon a query, we
can exploit the R-tree, to prune out large portions of the database that are not
promising. Thus, we do not even have to do the quick-and-dirty test on all of
the k-d points!

S1
Feature2
1 365
Sn
Featurel
1 365
Figure 7.1 TIllustration of basic idea: a database of sequences S1, ... Sn;

each sequence is mapped to a point in feature space; a query with tolerance ¢
becomes a sphere of radius e.

Figure 7.1 illustrates the basic idea: Objects (eg., time sequences that are
365-points long) are mapped into 2-d points (eg., using the average and the
standard-deviation as features). Consider the ‘whole match’ query that requires
all the objects that are similar to S,, within tolerance e: this query becomes an
k-d sphere in feature space, centered on the image F(Sy,) of S,. Such queries on
multidimensional points is exactly what R-trees and other SAMs are designed
to answer efficiently. More specifically, the search algorithm for a whole match
query is illustrated in Figure 7.2.

62 CHAPTER 7

Algorithm 7.1 Search for whole-match queries:
1. map the query object @ into a point F()) in feature space
2. using the SAM, retrieve all points within the desired tolerance ¢
from F(Q).
3. retrieve the corresponding objects, compute their actual distance

from @) and discard the false alarms.
Figure 7.2 Pseudo-code for the search algorithm.

Intuitively, this approach has the potential to relieve both problems of the se-
quential scan, presumably resulting into much faster searches. The only step
that we have to be careful with is that the mapping F() from objects to k-d
points does not distort the distances. Let D() be the distance function of two
objects, and Dfearure() be the (say, Euclidean) distance of the corresponding
feature vectors. Ideally, the mapping should preserve the distances exactly, in
which case the SAM will have neither false alarms nor false dismissals. How-
ever, requiring perfect distance preservation might be difficult: For example,
it is not obvious which features we have to use to match the editing distance
between two DNA strings. Even if the features are obvious, there might be
practical problems: for example, in the stock-price example, we could treat
every sequence as a 365-dimensional vector; although in theory a SAM can
support an arbitrary number of dimensions, in practice all SAMs suffer from
the ‘dimensionality curse’; as discussed in Chapter 5.

The crucial observation is that we can guarantee that the proposed method will
not result in any false dismissals, if the distance in feature space matches or
underestimates the distance between two objects. Intuitively, this means that
our mapping F() from objects to points should make things look closer, ie., it
should be a contractive mapping.

Mathematically, let O4 and Op be two objects (e.g., same-length sequences)
with distance function D() (e.g., the Euclidean distance) and F(0;), F(O2)
be their feature vectors (e.g., their first few Fourier coefficients), with distance
function Dyeqture() (e.g., the Euclidean distance, again). Then we have:

Lemma 1 (Lower-bounding) To guarantee no false dismissals for whole-
match queries, the feature extraction function F() should satisfy the following
formula:

Problem - Intuition 63

Dfeature(f(ol)a ~¢'(02)) S D(Ola 02) (73)
for every pair of objects Oy, Os.

Proof: Let @@ be the query object, O be a qualifying object, and ¢ be the
tolerance. We want to prove that if the object O qualifies for the query, then
it will be retrieved when we issue a range query on the feature space. That is,
we want to prove that

D(Q,0) < €= Dyeature(F(Q), F(O)) < €
However, this is obvious, since

Dearure(F(Q), F(0)) < D(Q,0) < ¢

Thus, the proof is complete. a

We have just proved that lower-bounding the distance works correctly for range
queries. Will it work for the other queries of interest, like ‘all-pairs’ and
‘nearest neighbor’ ones? The answer is affirmative in both cases: An ‘all-pairs’
query can easily be handled by a ‘spatial join’ on the points of the feature
space: using a similar reasoning as before, we see that the resulting set of pairs
will be a superset of the qualifying pairs. For the nearest-neighbor query, the
following algorithm guarantees no false dismissals: (a) find the point F(P) that
is the nearest neighbor to the query point F(Q) (b) issue a range query, with
query object @ and radius € = D(Q, P) (ie, the actual distance between the
query object () and data object P. For more details and for an application of
this algorithm on tumor-like shapes, see [KSF196].

In conclusion, the proposed generic approach to indexing multimedia objects
for fast similarity searching shown in Figure 7.3 (named ‘GEMINT for GEneric
Multimedia object INdezIng):

The first two steps of GEMINI deserve some more discussion: The first step
involves a domain expert. The methodology focuses on the speed of search only;
the quality of the results is completely relying on the distance function that the
expert will provide. Thus, GEMINI will return ezactly the same response-set
(and therefore, the same quality of output) with what the sequential scanning
of the database would provide; the only difference is that GEMINI will be
faster.

The second step of GEMINI requires intuition and imagination. It starts by
trying to answer the question (referred to as the ‘feature-extracting’ question
for the rest of this work):

64 CHAPTER 7

Algorithm 7.2 (‘GEMINTI’) (GEneric Multimedia INdexIng approach):

1. determine the distance function D() between two objects

2. find one or more numerical feature-extraction functions,
to provide a ‘quick and dirty’ test

3. prove that the distance in feature space lower-bounds the actual
distance D(), to guarantee correctness

4. use a SAM (eg., an R-tree), to store and retrieve the k-d feature

vectors
Figure 7.3 Pseudo-code for the GEMINT algorithm.

‘Feature-extracting’ question: If we are allowed to use only one
numertcal feature to describe each data object, what should this feature
be?

The successful answers to the above question should meet two goals: (a) they
should facilitate step 3 (the distance lower-bounding) and (b) they should cap-
ture most of the characteristics of the objects.

We give case-studies of the GEMINI algorithm in the next two Chapters. The
first involves 1-d time sequences, and the second focuses on 2-d color images.
We shall see that the approach of the ‘quick-and-dirty’ filter, in conjunction
with the lower-bounding lemma (Lemma 1), can lead to solutions to two prob-
lems:

m The dimensionality curse (time sequences).

m The ‘cross-talk’ of features (color images).

For each case study we (a) describe the objects and the distance function (b)
show how to apply the lower-bounding lemma and (c¢) give experimental results,
on real or realistic data. In Chapter 10 we show how to extend the idea of a
‘quick-and-dirty’ filter to handle sub-pattern matching in time sequences. In
Chapter 11 we present ‘FastMap’, an automated method of extracting features,
for a given set of objects O and for a given distance function D().

8

1-D TIME SEQUENCES

Here the goal is to search a collection of (equal-length) time sequences, to find
the ones that are similar to a desirable sequence. For example, ‘in a collection
of yearly stock-price movements, find the ones that are sitmilar to IBM’.

8.1 DISTANCE FUNCTION

According to GEMINT (Algorithm 7.2), the first step is to determine the dis-
tance measure between two time sequences. As in [AFS93], we chose the Eu-
clidean distance (Eq. 7.2), because it is the distance of choice in financial and
forecasting applications (e.g., [LeB92]). Fast indexing for additional, more elab-
orate distance functions that include time-warping [SK83] [WTKS86] [RJ93] is
the topic of ongoing research (eg., [GK95, JMM95]).

8.2 FEATURE EXTRACTION AND
LOWER-BOUNDING

Having decided on the Euclidean distance as the dis-similarity measure, the
next step of the GEMINI algorithm is to find some features that can lower-
bound it. We would like a set of features that (a) preserve/lower-bound the
distance and (b) carry much information about the corresponding time se-
quence, so that the false alarms are few. The second requirement suggests that
we use ‘good’ features, that have much discriminatory power. In the stock-price
example, a ‘bad’ feature would be, eg., the first-day’s value: the reason is that

65

66 CHAPTER 8

two stocks might have similar first-day values, yet they may differ significantly
from then on. Conversely, two otherwise similar sequences, may agree every-
where, except for the first day’s values. At the other extreme, we could use
the values of all 365 days as features. However, although this would perfectly
match the actual distance, it would lead to the ‘dimensionality curse’ problem.

Clearly, we need some better features. Applying the second step of the GEMINI
algorithm, we ask the ‘feature-extracting’ question: «f we are allowed to use only
one feature from each sequence, what would this feature be? A natural answer is
the average. By the same token, additional features could be the average of the
first half, of the second half, of the first quarter, etc. Or, in a more systematic
way, we could use the coefficients of the Fourier transform, and, for our case,
the Discrete Fourier Transform (DFT) (see, eg., [OST5], or Appendix B). For
asignal & = [2;], ¢ =0,...,n— 1, let X denote the n-point DFT coefficient
at the f-th frequency (f = 0,...,n —1). Also, let X = [X;] be the n-point
DFT transform of #. Appendix B provides a quick introduction to the basic
concepts of the DFT.

The third step of the GEMINI methodology is to show that the distance in
feature space lower-bounds the actual distance. The solution i1s provided by
Parseval’s theorem [OS75], which states that the DFT preserves the energy of
a signal, as well as the distances between two signals:

D(7,7) = D(£, ¥) (8.1)
where X and Y are Fourier transforms of # and i respectively.

Thus, if we keep the first k(< n) coefficients of the DFT as the features, we
lower-bound the actual distance:

k—1
Dfeature(f(f)af(g)) = Z |Xf - Yf|2
=0

n—1 n—1
< DX =Y = D lm—wl’ = DE D
f=0 i=0

because we ignore positive terms from the above Equation. Thus, there will be
no false dismissals, according to Lemma 1.

Notice that our GEMINI approach can be applied with any orthonormal trans-
form, such as, the Discrete Cosine transform (DCT) (see [Wal91] or Appendix B.4),
the wavelet transform (see [RBCT92], [PTVF92], or Appendix C) etc., because

1-d time sequences 67

they all preserve the distance between the original and the transformed space.
In fact, our response time will improve with the ability of the transform to
concentrate the energy: the fewer the coefficients that contain most of the en-
ergy, the more accurate our estimate for the actual distance, the fewer the false
alarms, and the faster our response time. The energy of a signal is the sum of
squares of its elements (see Definition A.7 in the Appendix). Thus, the per-
formance results presented next are just pessimistic bounds; better transforms
will achieve even better response times.

In addition to being readily available, (eg., in mathematical symbolic manipula-
tion packages, like ‘Mathematica’, ‘S’, ‘maple’ etc.), the DFT concentrates the
energy in the first few coefficients, for a large class of signals, the colored noses.
These signals have a skewed energy spectrum that drops as O(f~%). The energy
spectrum or power spectrum of a signal is the square of the amplitude | X¢|, as
a function of the the frequency f (see Appendix B).

m For b=2, we have the so-called random walks or brown noise, which model
successfully stock movements and exchange rates (e.g., [Man77]). Our
mathematical argument for keeping the first few Fourier coefficients agrees
with the intuitive argument of the Dow Jones theory for stock price move-
ment (see, for example, [EM66]). This theory tries to detect primary and
secondary trends in the stock market movement, and ignores minor trends.
Primary trends are defined as changes that are larger than 20%, typically
lasting more than a year; secondary trends show 1/3-2/3 relative change
over primary trends, with a typical duration of a few months; minor trends
last roughly a week. From the above definitions, we conclude that primary
and secondary trends correspond to strong, low frequency signals while mi-
nor trends correspond to weak, high frequency signals. Thus, the primary
and secondary trends are exactly the ones that our method will automat-
ically choose for indexing.

B With even more skewed spectrum (b > 2), we have the black noises [Sch91].
Such signals model successfully, for example, the water level of rivers and
the rainfall patterns as they vary over time [Man77].

B with b=1, we have the pink noise. Birkhoff’s theory [Sch91] claims that
‘interesting’ signals, such as musical scores and other works of art, consist
of ‘pink noise’; whose energy spectrum follows O(f~1). The argument of
the theory is that white noise with O(f") energy spectrum is completely
unpredictable, while brown noise with O(f~%) energy spectrum is too pre-
dictable and therefore ‘boring’. The energy spectrum of pink noise lies
in-between.

68 CHAPTER 8

As an illustration of a ‘colored noise’; Figure 8.1 plots the closing prices of the
IBM stock, 8/30/93 - 4/20/94, along with the amplitude spectrum in linear and
logarithmic scales. Notice how skewed the spectrum is, as well as how closely
it is approximated by the theoretically expected 1/f line.

o
amplitude
8
log amplitude

IBM" —~— “IBM.spectrum” —— S “IBM.spectrum” o
- UF

TR e e % R TR : o
(a) IBM stock (b) spectrum (¢) spectrum
(linear scales) (log scales)

Figure 8.1 (a) Closing prices of IBM stock, 8/30/93 - 4/20/94, (b) its DFT
amplitude spectrum in linear scales and (c) in logarithmic scales, along with
the theoretically expected 1/ f line.

Additional financial data sets with similar behavior are available from ftp:
//sfi. santafe. edu/ pub/ Time-Series/ competition (Dataset ‘C’
with the Swiss franc - U.S. dollar exchange rate), or from http: //www.
ai.mit. edu/ stocks.html, where there are stock prices for several com-
panies.

In addition to 1-d signals (stock-price movements and exchange rates), it is
believed that several families of higher dimensionality signals belong to the
family of ‘colored noises’, with skewed spectrum. For example, 2-d signals,
like photographs, typically exhibit a few strong coefficients in the lower spatial
frequencies. The JPEG image compression standard [Wal91] exactly exploits
this phenomenon, effectively ignoring the high-frequency components of the
Discrete Cosine Transform, which is closely related to the Fourier transform
(see Appendix B.4).

8.3 EXPERIMENTS

The above indexing method was implemented and compared against sequential
scanning, on a collection of synthetic random walks. See [AFS93] for more
details. As expected, the sequential scanning was outperformed.

100

1-d time sequences 69

"total" +—
80 F-. “cleanup" -&

time

25
number of DFT coeff.

Figure 8.2 Breakup of the execution time, for range queries: response time
versus number of DFT coefficients.

An interesting point is how to determine the number k& of DFT coefficients to
retain. Figure 8.2 shows the break-up of the response time versus the number
k of DFT coefficients retained. The diamonds, squares and crosses indicate
total time, post-processing time and R-tree time, respectively. Notice that,
as we keep more coefficients, the R-tree becomes bigger and slower, but more
accurate (fewer false alarms, and therefore shorter post-processing time). This
trade-off reaches an equilibrium for k=2 or 3.

The major conclusions from the application of the GEMINI method on time
sequences are the following:

1. GEMINI can be successfully applied to time sequences, and specifically to
the ones that behave like ‘colored noises’ (stock prices movements, currency
exchange rates, water-level in rivers etc.)

2. For signals with skewed spectrum like the above ones, the minimum in the
response time is achieved for a small number of Fourier coefficients (k = 1—
3). Moreover, the minimum is rather flat, which implies that a sub-optimal
choice for k£ will give search time that is close to the minimum. Thus,
with the help of the lower-bounding lemma and the energy-concentrating
properties of the DFT, we managed to avoid the ‘dimensionality curse’.

70 CHAPTER 8

3. The success in 1-d sequences suggests that the proposed GEMINI method
is promising for 2-d or higher-dimensionality signals, if those signals also
have skewed spectrum. The success of JPEG (that uses DCT) indicates
that real images indeed have a skewed spectrum.

Exercises

Exercise 8.1 [10] Write a program to generate a random walk. Let each step
be the output of a fair coin tossing: +1 or -1, with probability 50% each.

Exercise 8.2 [10] Compute and plot the spectrum of the above random walk,
using some existing DFT package; also plot the 1/f line.

Exercise 8.3 [15] Use some time sequences from, eg., [Ton90, BJRI4], and
compute their DFT spectrum. List your observations.

Exercise 8.4 [25] Ezperiment with the ‘energy concenlrating’ properties of
DFT wversus the DCT, for the sequences of the previous exercise: For each
sequence, keep the k strongest coefficients of the DFT and the DCT transform;
plot the squared error (sum of squares of omitied coefficients), as a function of
k, for each of the two transforms. List your observations.

Exercise 8.5 [20] Write a program thal will generate ‘pink noise’, that is, a
signal with 1/f amplitude spectrum. (Hint: use the random walk above from
Ezercise 8.1, compute its DFT spectrum, divide each Fourier coefficient appro-
priately, and invert).

2-D COLOR IMAGES

Retrieving images by content attracts high and increasing interest [JN92, 0S95,
FSNt95]. Queries on content may focus on color, texture, shape, position,
etc. Potential applications include medical image databases (‘Give me other
images that contain a tumor with a texture like this one’), photo-journalism
(‘Find images that have blue at the top and red at the bottom’), art, fashion,
cataloging, retailing etc..

In this chapter we present a color indexing algorithm and specifically the dis-
tance functions and the application of the GEMINI approach. We focus on
‘whole-match’ queries, or, equivalently, ‘queries by example’, where the user
chooses an existing image (or draws one with a sketch-pad) and asks for similar
color images. This color indexing algorithm was developed within the QBIC
system of IBM [FBF194]; see [NBET93, Equ93, FSNT95] for more details on
the shape and texture indexing algorithms of QBIC and their precision-recall
performance evaluation.

Past work on image retrieval has resulted in many systems and methods to
match images according to color, shape, texture and relative position. For
color, a typical choice is the color histograms which we describe next; for
shape-matching, the turning angle [Hor86], the moments of inertia [FBFT94]
or the pattern spectrum [KSF196] are among the choices; for texture, the
directionality, granularity and contrast [Equ93] are a good set of features;
for the relative position, the 2-D strings method and its variants have been
used [CSY87, PO95]. However, although there is a lot of work on image match-
ing in the Machine Vision community and on fast searching in the database
community, the former typically focuses on the quality of the matching, while
the latter focuses on the speed of the search; it is only recently that the two

71

72 CHAPTER 9

communities have started collaborating [JN92, NBEt93], in an attempt to pro-
vide fast and effective image retrieval by content.

Recent surveys on image matching are in [FBFT94, PF96]. A presentation of
image retrieval systems is in the special issue of the IEEE Computer (Sept.

1995) [GRO5].

9.1 DISTANCE FUNCTION

We mainly focus on the color features, because color presents an interesting
problem (namely, the ‘cross-talk’ of features), which can be resolved by the
proposed ‘GEMINT’ approach (algorithm 7.2). Features for shape and texture
are described in [FSNT95], and can be easily mapped into k-d points.

Each object is a color image, that 1s, a 2-d array of pixels; every pixel has 3
color components (eg., 1 byte for ‘red’, 1 byte for ‘green’ and 1 byte for ‘blue’).
For each image, we compute an h-element color histogram using h colors. Con-
ceptually, h can be as high as 22* colors, with each color being denoted by
a point in a 3-dimensional color space. In practice, we cluster similar colors
together using an agglomerative clustering technique [DH73al, and choose one
representative color for each bucket (= ‘color bin’). Typical numbers of color
bins are i = 256 and h = 64. Each component in the color histogram is the
percentage of pixels that are most similar to that color. Figure 9.1 gives an
example of such a histogram of a fictitious photograph of a sunset: there are
many red, pink, orange and purple pixels, but only few white and green ones.

pixel

- M
HEN [TTT T «
i lorange . dark
: pink ! blue
bright light
red blue

Figure 9.1 An example of a color histogram of a fictitious sunset photograph:
Many red, pink, orange, purple and blue-ish pixels; few yellow, white and green-
ish ones

2-d color images 73

Once these histograms are computed, one method to measure the distance
between two histograms (h x 1 vectors) & and ¥ is given by

diisil @ 9) = (F =) < Ax(@ =) = 3 Y aijwi =)oy —y5) (9-1)

’ indicates matrix

where the superscript ‘¢’ indicates matrix transposition, ‘x
multiplication, and the color-to-color similarity matrix A has entries a;; which

describe the similarity between color ¢ and color j, with a;; = 1 for every 1.

9.2 LOWER-BOUNDING

If we try to use the color-histograms as feature vectors in the GEMINT approach,
there are two obstacles: (a) The ‘dimensionality curse’ (h may be large, e.g. 64
or 256 for color features) and, most importantly, (b) the quadratic nature of the
distance function: The distance function in the feature space involves ‘cross-
talk’ among the features (see Eq. 9.1), and it is thus a full quadratic form
involving all cross terms. Not only is such a function much more expensive to
compute than the Euclidean and any L, distance, but it also precludes the use
of spatial access methods (‘SAMs’), because SAMs implicitly assume that there
i1s no cross-talk. Figure 9.2 illustrates the situation: to compute the distance
between the two color histograms & and , the, eg., bright-red component of #
has to be compared not only to the bright-red component of ¢, but also to the
pink, orange etc. components of §.

bright red
pink

iorange

eg, 64 colors

Figure 9.2 [Illustration of the ‘cross-talk’ between two color histograms

To resolve the cross-talk problem, we resort to the ‘GEMINT approach (algo-
rithm 7.2). The first step of the algorithm has been done: the distance function

74 CHAPTER 9

between two color images is given by Eq. 9.1: D() = dp;5¢(). The second step
is to find one or more numerical features, whose Euclidean distance would
lower-bound dp;s¢(). Thus, we ask the ‘feature-extracting’ question again: If
we are allowed to use only one numerical feature to describe each color image,
what should this feature be? According to the previous chapter on time se-
quences, we can consider some average value, or the first few coefficients of
the 2-dimensional DFT transform. Since we have three color components, (eg.,
Red, Green and Blue), we could consider the average amount of red, green and
blue in a given color image.

Notice that different color spaces can be used, with absolutely no change in
the indexing algorithms. Thus, we continue the discussion with the RGB color
space. This means that the color of an individual pixel is described by the
triplet (R,G,B) (for ‘R’ed, ‘G’reen, ‘B’lue). The average color of an image
T = (Ravg, Gavg, Bavg)?, is defined in the obvious way, with

]~

Ravg = (1/P) R(p)
Gavg = (1/P)ZG(]))
Bavg = (1/P)ZB(]))

where P is the number of pixels in the image, and R(p), G(p), and B(p) are
the red, green and blue components (intensities, typically in the range 0-255)
respectively of the p-th pixel. Given the average color vectors z and y of two
images, we define dgy4() as the Euclidean distance between the 3-dimensional
average color vectors,

dayg(2,9) = (2 = 9)' (1 — §) = Z(l‘ —)’ (9:2)

The third step of the GEMINI algorithm is to prove that our feature distance
Dicature() = davg() lower-bounds the actual distance D() = dpss4(). Indeed,

this 1s true, as an application of the so-called @D B- ‘Quadratic Distance Bound-
ing’ Theorem [FBF*94].

The result is that, given a color query, our retrieval proceeds by first filtering
the set of images based on their average (R, G, B) color, then doing a final,

2-d color images 75

more accurate matching using their full h-element histogram. The resulting
speedup 1s discussed next.

9.3 EXPERIMENTS

Experiments are reported in [FBFT94], on a database of N=924 color image
histograms, each of h=256 colors, of assorted natural images. The proposed
method requires from a fraction of a second up to a2 4 seconds, while sequential
scanning with the color-histogram distance (Eq. 9.1) requires & 10 seconds.
The performance gap is expected to increase for larger databases.

Thus, the conclusions are the following:

m The ‘GEMINT approach (ie., the idea to extract some features for a quick-
and-dirty test) motivated a fast method, using the average RGB distance
(davg()); it also motivated a strong theorem (the so-called QD B- ‘Quadratic
Distance Bounding’ Theorem [FBF*94]) which guarantees the correctness
in our case.

m [n addition to resolving the cross-talk problem, ‘GEMINI’ solved the ‘di-
mensionality curse’ problem at no extra cost, requiring only k=3 features,
as opposed to h=64 or 256 that dp;s:() required.

10

SUB-PATTERN MATCHING

10.1 INTRODUCTION

Up to now, we have examined the ‘whole-match’ case. The goal in this chapter
is to extend the ‘GEMINI approach of the ‘quick-and-dirty’ test, so that we can
handle sub-pattern matching queries. We focus on 1-d time series, to illustrate
the problem and the solution more clearly. Then, the problem is defined as
follows:

m We are given a collection of N sequences of real numbers 57, S, Sy, each
one of potentially different length.

m The user specifies query subsequence @ of length Len(Q) (which may vary)
and the tolerance ¢, that is, the maximum acceptable dis-similarity (=
distance).

B We want to find quickly all the sequences S; (1 < i < N), along with the
correct offsets p, such that the subsequence S;[p : p+ Len(Q) — 1] matches
the query sequence: D(Q, S;[p:p+ Len(Q) —1]) <e.

As in Chapter 8, we use the Euclidean distance as the dis-similarity measure
D(). The brute-force solution is to examine sequentially every possible subse-
quence of the data sequences for a match. We shall refer to this method by
‘SequentialScan’ method. Next, we describe a method that uses a small space
overhead, to achieve up to 2 orders of magnitudes savings over the ‘Sequen-

tialScan’ method [FRM94].

77

78 CHAPTER 10

10.2 SKETCH OF THE APPROACH -
‘ST-index’

Without loss of generality, we assume that the minimum query length 1s w,
where w (> 1) depends on the application. For example, in stock price databases,
analysts are interested in weekly or monthly patterns because shorter patterns
are susceptible to noise [EM66]. Notice that we never lose the ability to answer
shorter than w queries, because we can always resort to sequential scanning.

Feature2
S1
1 200
offsett=1___
Featurel
t=2 (first coefficient

of w-point DFT)

Figure 10.1 TIllustration of the way that trails are created in feature space

Generalizing the reasoning of the method for ‘whole matching’, we use a sliding
window of size w and place it at every possible position (offset), on every data
sequence. For each such placement of the window, we extract the features of
the subsequence inside the window. Thus, a data sequence of length Len(S) is
mapped to a trail in feature space, consisting of (Len(S) -w+1) points: one
point for each possible offset of the sliding window. Figure 10.1 gives an
example of a trail: Consider the sequence S7, and assume that we keep the
first k=2 features (eg, the amplitude of the first and second coefficient of the
w-point DFT). When the window of length w is placed at offset=0 on Sy, we
obtain the first point of the trail; as the window slides over S, we obtain the
rest of the points of the trail.

The straightforward way to index these trails would be to keep track of the
individual points of each trail, storing them in a spatial access method. We
call this method ‘I-naive’ method, where ‘T’ stands for ‘Index’ (as opposed to
sequential scanning). However, storing the individual points of the trail in an
R-tree is inefficient, both in terms of space as well as search speed. The reason
is that, almost every point in a data sequence will correspond to a point in the
k-dimensional feature space, leading to an index with a 1:k increase in storage
requirements. Moreover, the search performance will also suffer because the
R-tree will become tall and slow. As shown in [FRM94], the ‘I-naive’ method

Sub-pattern matching 79

MBR1

D MBR2

F2 F2

c2

F1 F1

Figure 10.2 Example of (a) dividing trails into sub-trails and MBRs, and
(b) grouping of MBRs in larger ones.

ended up being almost twice as slow as the ‘SequentialScan’! Thus, we want to
improve the ‘I-naive’ method, by making the representation of the trails more
compact.

Here is where the idea of a ‘quick-and-dirty’ test leads to a solution: Instead
of laboriously keeping track of each and every point of a trail in feature space,
we propose to exploit the fact that successive points of the trail will probably
be similar, because the contents of the sliding window in nearby offsets will
be similar. We propose to divide the trail of a given data sequence into sub-
trails and represent each of them with its minimum bounding (hyper)-rectangle
(MBR). Thus, instead of storing thousands of points of a given trail, we shall
store only a few MBRs. More importantly, at the same time we still guarantee
‘no false dismissals’: when a query arrives, we shall retrieve all the MBRs that
intersect the query region; thus, we shall retrieve all the qualifying sub-trails,
plus some false alarms (sub-trails that do not intersect the query region, while

their MBR does).

Figure 10.2(a) gives an illustration of the proposed approach. Two trails are
drawn; the first curve, labeled C'1 (in the north-west side), has been divided
into three sub-trails (and MBRs), whereas the second one, labeled C2 (in the
south-east side), has been divided in five sub-trails. Notice that it is possible
that MBRs belonging to the same trail may overlap, as C2 illustrates.

Thus, the 1dea is to map a data sequence into a set of rectangles in feature
space. This yields significant improvements with respect to space, as well as

30 CHAPTER 10

with respect to response time, as we shall see in section 10.3. Each MBR
corresponds to a whole sub-trail, that is, points in feature space that correspond
to successive positionings of the sliding window on the data sequences.

These MBRs can be subsequently stored in a spatial access method, such as
an R-tree (see Chapter 5). Figure 10.2(b) shows how the eight leaf-level MBRs
of Figure 10.2(a) will be grouped to form two MBRs at the next higher level,
assuming a fanout of 4 (i.e. at most 4 items per non-leaf node). Note that the
higher-level MBRs may contain leaf-level MBRs from different data sequences.
For example, in Figure 10.2(b) notice that the left-side MBR1 contains a part
of the C2 curve.

This completes the sketch of the proposed index structure. We shall refer to it
by ‘ST-indez’ , for ‘Sub-Trail index’. There are two questions that we have to
answer, to complete the description of the method:

m [Insertions: When a new data sequence is inserted, what is a good way to
divide its trail in feature space into sub-trails? The idea [FRM94] is to
use an adaptive, heuristic algorithm, which will break the trail into sub-
trails, so that the resulting MBRs of the sub-trails have small volume (and,
therefore, result in few disk accesses on search).

m Queries: How to handle queries, and especially the ones that are longer
than w? Figure 10.3 shows how to handle queries of length w: the query
sub-sequence is translated into a point) in feature space; all the MBRs
that are within radius € from @) are retrieved. Searching for longer queries
is handled by breaking the query pattern into pieces of length w, searching
the R-tree for each piece, and then merging the results. Figure 10.4 illus-
trates the algorithm: the query sequence is broken into p=2 pieces, each
of length w; each piece gives rise to a range query in feature space.

More details and the correctness proofs for the above algorithms are in [FRM94].

10.3 EXPERIMENTS

The above method was implemented and tested on real stock-price time se-
quences totaling 329,000 points [FRM94]. The proposed method achieved up
to 100 times better response time, compared to the sequential scanning.

Sub-pattern matching 81

"short’ query:

F2

w time

F1

Figure 10.3 Illustration of the search algorithm for minimum-length queries.
The query becomes a sphere of radius ¢ in feature space.

F2 value

oo, efsant(p)
S N
4o
|]
c ‘ !
w w time
Part 1 Part 2

F1

Figure 10.4 [Illustration of the search algorithm for a longer query. The
query is divided in p=2 pieces of length w each, giving rise to p range queries
in feature space

The conclusion is that the idea of using a ‘quick-and-dirty’ filter pays off again.
Every sequence is represented coarsely by a set of MBRs in feature space;
despite the loss of information, these MBRs provide the basis for quick filtering,
which eventually achieves large savings over the sequential scanning.

Exercises

Exercise 10.1 [40] Implement a system which can search a collection of stock-
prices for user-specified patterns. Assume that the minimum length is one week;
Use artificially generated random walks (exercise 8.1), or real data, from http:
//www.ai.mit.edu/ stocks.html.

11

FASTMAP

11.1 INTRODUCTION

In the previous chapters we saw the ‘GEMINI approach, which suggests that we
rely on domain experts to derive k feature-extraction functions, thus mapping
each object into a point in k-dimensional space. Then the problem is reduced
to storing, retrieving and displaying k-dimensional points, for which there is a
plethora of algorithms available.

However, it is not always easy to derive the above feature-extraction functions.
Consider the case, eg., of typed English words, where the distance function is
the editing distance (minimum number of insertion, deletions and substitutions
to transform one string to the other). Tt is not clear which the features should be
in this case. Similarly, in matching digitized voice excerpts, we typically have
to do some time-warping [SK83], which makes it difficult to design feature-
extraction functions.

Overcoming these difficulties is exactly the motivation behind this chapter.
Automatically mapping the objects into points in some k-d space provides two
major benefits:

1. It can accelerate the search time for queries. The reason i1s that we can
employ highly fine-tuned Spatial Access Methods (SAMs), like the R*-
trees [BKSS90] and the z-ordering [Ore86]. These methods provide fast
searching for range queries as well as spatial joins [BKSS94].

2. Tt can help with visualization, clustering and data-mining: Plotting objects
as points in k=2 or 3 dimensions can reveal much of the structure of

83

34 CHAPTER 11

the dataset, such as the existence of major clusters, the general shape of
the distribution (linear versus curvilinear versus Gaussian) etc.. These
observations can provide powerful insights in formulating hypotheses and
discovering rules.

Next, we shall use the following terminology:

Definition 11.1 The k-dimensional point P; that corresponds to the object
O;, will be called ‘the image’ of object O;. That is, P; = (21,452, ..., &5 k)

Definition 11.2 The k-dimensional space containing the ‘images’ will be called
targel space.

Given the above, the problem is defined as follows (see Figure 11.1 for an
illustration):

Problem

Given N objects and distance information about them (eg., an N x N
distance matrix, or simply the distance function D(x,*) between two
objects)

find N points in a k-dimensional space,

such that the distances are maintained as well as possible.

A special case is the situation where the N objects are n-d vectors. Then, goal
is to do dimensionality reduction, mapping them into points in k-d space, pre-
serving the (Euclidean) distances as well as possible. In this case, the optimal
solution is given by the Karhunen-Loeve (‘K-L’°) transform, which is described
in detail in Appendix D.1.

For the general case, we expect that the distance function D() is non-negative,
symmetric and obeys the triangular inequality. In the ‘target’ (k-d) space, we
typically use the Euclidean distance, because it is invariant under rotations.
Alternative distance metrics could be any of the L, metrics, like the Ly (‘city-
block’ or ‘Manhattan’ distance).

The ideal mapping should fulfill the following requirements:

FastMap 85

A B C D E F
A0 8 7 7 9 5
B |- 0 2 4 4 2
Cl- - 0 15 1 2 —, A
D|- - - 0 1 3
E|l- - - - 0 3
Fl- - - - -0

(a) input (b) desired output

Figure 11.1 (a) Six objects and their pair-wise distance information; (b) 3-d
points that try to approximate the given distance information.

1. It should be fast to compute: O(N) or O(N log N), but not O(N?) or
higher, because the cost will be prohibitive for large databases.

2. Tt should preserve distances, leading to small discrepancies (low ‘stress’ -

see (Eq. 11.1)).

3. Tt should provide a very fast algorithm to map a new object (eg., a query
object) to its image. The algorithm should be O(1) or O(log N). This

requirement 1s vital for ‘queries-by-example’.

The outline of this chapter is as follows. In section 11.2 we present a brief survey
of Multi-Dimensional Scaling (MDS). In section 11.3 we describe ‘FastMap’, a
linear; approximate solution [FL95]. In section 11.4 we show the results of
FastMap on some real data (document vectors). Finally, section 11.5 lists the
conclusions.

11.2 MULTI-DIMENSIONAL SCALING
(MDS)

Multi-dimensional scaling (MDS) is used to discover the underlying (spatial)
structure of a set of data items from the (dis)similarity information among
them. There are several variations, but the basic method (eg., see [KW78]) is
described next. The method expects (a) a set of N items, (b) their pair-wise
(dis)similarities and (¢) the desirable dimensionality k. Then, the algorithm

36 CHAPTER 11

will map each object to a point in a k& dimensional space, to minimize the stress
function:

2
>ij (dij — dij)
Zi,j dij2

where d;; is the dissimilarity measure between object O; and object O; and

stress =

(11.1)

d;; is the (Euclidean) distance between their ‘images’: points P; and P;. The
‘stress’ function gives the relative error that the distances in k-d space suffer
from, on the average.

To achieve its goal, MDS starts with a guess and iteratively improves it, until no
further improvement is possible. In its simplest version, the algorithm works
roughly as follows: Tt originally assigns each item to a k-d point (eg., using
some heuristic, or even at random). Then, it examines every point, computes
the distances from the other N — 1 points and moves the point to minimize
the discrepancy between the actual dissimilarities and the estimated k-d dis-
tances. Technically, MDS employs the method of ‘steepest descent’ to update
the positions of the k-d points. Intuitively, it treats each pair-wise distance as
a ‘spring’ between the two points; then, the algorithm tries to re-arrange the
positions of the k-d points to minimize the ‘stress’ of the springs.

MDS has been used in numerous, diverse applications, to help visualize a set of
objects, given their pair-wise similarities. However, for our applications, MDS
suffers from two drawbacks:

m [t requires O(N?) time, where N is the number of items. Thus, it is
impractical for large datasets. In the applications that MDS has been
used, the number of items was small (typically, N=10-100).

m [ts use for fast retrieval is questionable: In the ‘query-by-example’ setting,
the query item has to be mapped to a point in k-d space. MDS is not
prepared for this operation: Given that the MDS algorithm is O(N?), an
incremental algorithm to search/add a new item in the database would be
O(N) at best. Thus, the complexity of answering a query would be as bad
as sequential scanning.

The above two drawbacks are the motivation behind the next section.

FastMap 87

Symbols | Definitions.
N Number of objects in database
k dimensionality of ‘target space’
D(*,*) | the distance function between two objects
[| | the length (= Lz norm) of vector ¥
(AB) the length of the line segment AB

Table 11.1 Summary of Symbols and Definitions

11.3 A FAST, APPROXIMATE
ALTERNATIVE: FASTMAP

The goal is to find N points in k-d space, whose Fuclidean distances will match
the distances of a given N x N distance matrix. Table 11.1 lists the symbols
and their definitions. The key idea is to pretend that objects are indeed points
in some unknown, n-dimensional space, and to try to project these points on k
mutually orthogonal directions. The challenge is to compute these projections
from the distance matrix only, since it is the only input we have. For the rest
of this discussion, an object will be treated as if it were a point in an n-d space,
with unknown n.

The heart of the ‘FastMap’ method is to project the objects on a carefully
selected ‘line’. To do that, we choose two objects O4 and Op (referred to as
‘pivot objects’ from now on), and consider the ‘line’ that passes through them
in n-d space. The algorithm to choose pivot objects uses a linear, approximate
heuristic, and is discussed later (see Figure 11.4).

The projections of the objects on that line are computed using the cosine law:
dpi® = dai® +day® — 2widyy (11.2)

See Figure 11.2 for an illustration. Eq. 11.2 can be solved for z;, the first
coordinate of object O;:

do i+ dap® —dy°
2dgp

xr; = (11.3)
In the above equations, d;; is a shorthand for the distance DP(O;, 0;) (for 4, j =
1,..., N). Notice that the computation of #; only needs the distances between
objects, which are given.

38 CHAPTER 11

Ob

dab

Figure 11.2 Tllustration of the ‘cosine law’ - projection on the line O 4O p.

Observe that, thanks to Eq. 11.3, we can map objects into points on a line,
preserving some of the distance information: For example, if O; is close to the
pivot O4, then z; will be small. Thus, we have the solution to our original
problem, for k=1.

Ob
E
Oi
D
Xi -Xj ! Oj
l
| 1
Cc ., Oa 1
| 1 !
1 1 !
I 1 !
1 l !
T T +
1 | !
1 O~ I
!
l

Figure 11.3 Projection on a hyper-plane H, perpendicular to the line O 4O p
of the previous figure.

To extend this method for 2-d and k-d target spaces, we keep on pretending
that the objects are indeed points in n-d space: We consider a (n —1)-d hyper-
plane H that is perpendicular to the line (04, Op); then, project our objects
on this hyper-plane. Let O;" stand for the projection of O; (fori = 1,..., N).

FastMap 89

Algorithm 11.1 FastMap (&, D(), O)

k: number of dimensions;

D(): the distance function;

O: the set of objects.
1. Pick-pivots O4 and Op from O.
2. Project all objects O; along the line O4 - Op.
3. Call FastMap(k — 1, D'(), O), unless k = 0.

Figure 11.4 Pseudo-code for the FastMap algorithm.

The problem is the same as the original problem, with n and k decreased by
one.

The only missing part is to determine the distance function D’() between two of
the projections on the hyper-plane H, such as, O;" and O;'. Once this is done,
we can recursively apply the previous steps. Figure 11.3 depicts two objects
O;, O;, and their projections O;’, O;' on the H hyper-plane.

The distance function D’() is given by:
(D'(0/,0;))* = (D(0;,07))* — (zi —x;)* 4,j=1,...,N (11.4)
using the Pythagorean theorem on the triangle O;CO; (see Figure 11.3).

Ability to compute the distance D'() allows us to project on a second line, lying
on the hyper-plane H, and, therefore, orthogonal to the first line (O4, Op) by
construction. Thus, we can solve the problem for a 2-d ‘target’ space. More
importantly, we can apply the same steps recursively, & times, thus solving the
problem for any k.

Figure 11.4 gives the pseudo-code for FastMap.

To pick the pivot objects, we use a linear-time heuristic, to choose a pair of
objects that are far-away from each other. Notice that finding the exact solution
requires a quadratic number of steps (O(N?)), because we have to examine
every possible pair at least once.

90 CHAPTER 11

Algorithm 11.2 Pick-pivots (O, D())

. Chose arbitrarily an object; let it be the second pivot object Op
. Set O4 = (the object that is farthest apart from Op)
. Set Op = (the object that is farthest apart from Oy4)

. Repeat the last two steps a fixed number of times

QU o W N =

. Report the objects O4 and Op as the pivot objects

Figure 11.5 Heuristic to choose two distant objects for pivots.

11.4 CASE STUDY: DOCUMENT
VECTORS AND INFORMATION
RETRIEVAL.

Here we use the algorithm on an information retrieval application [SM83]. As
we mentioned in section 6.5, in the vector space model, documents are repre-
sented as vectors in V-dimensional space, where V is the size of the vocabulary
of the collection. For the English language, we can expect V to range from
2,000 up to and exceeding 100,000 (the vocabulary of every-day English, and
the size of a very detailed dictionary, respectively [Pet80]). The coordinates
of such vectors are called term weights and can be binary (‘1” if the term ap-
pears in the document; ‘0’ if not) or real-valued, with values increasing with
the importance (eg., occurrence frequency) of the term in the document.

Consider two documents d; and ds, with vectors uj, uy respectively. As we
mentioned, the similarity between two documents is typically measured by the
cosine similarity of their vectors [SM83]:

stmilarity(dy, ds) = %

[l (1] e]

where ‘o’ stands for the inner product of two vectors and || # || stands for the
length (=Euclidean norm) of the vector. Clearly the cosine similarity takes val-
ues between -1 and 1. Figure 11.6 gives an example. There, cos(f) is considered
as the similarity of the two vectors 4] and u3. Intuitively, the cosine similarity
projects all the document vectors on the unit hyper-sphere (see vectors ui
and w3 o in the Figure) and measures the cosine of the angle of the projections.

In order to apply FastMap, we first need to define a distance function that
decreases with increasing similarity. From Figure 11.6 it would make sense

FastMap 91

u2
(01)
B u2,0
C
erz .°
G ul
N Al u1,0
(@]
(010) (1,0)

Figure 11.6 Two vectors 4}, ub, their angle § and the cosine similarity
function cos(8)

to use the length of the line segment AB: (AB) =|| u1o— 3o ||. After
trigonometric manipulations, the result is

D(dy,d2) = 2xsin(6/2)
= 2% (1 — cos(9))
= \/2 * (1 — similarity(dy, d2)) (11.5)

Notice that Eq. 11.5 defines a distance function (non-negative, symmetric, satis-
fying the triangular inequality) and that it decreases with increasing similarity.

Also notice that 1t allows us to respond to range queries: Suppose that the user
wants all the documents d that are similar to the query document g¢:

stmilarity(d, q) > 6
Thanks to Eq. 11.5, the requirement becomes
D(d,q) < /2% (1—10) (11.6)

which eventually becomes a range query in our ‘target’ space and can be han-

dled efficiently by any SAM.

In [FL95], one of the testbeds we used was a collection of 35 text documents in
7 groups, with 5 documents per group: Abstracts of computer science technical

92 CHAPTER 11

reports (labeled as ‘Abs’), reports about basketball games (‘Bbr’), ‘call for
papers’ for technical conferences (‘Cal’), portions of the Bible (from the Gospel
of Matthew) (‘Mat’), cooking recipes (‘Rec’), ‘world news’ (documents about
the Middle East - October 1994) (‘Wor’), and sale advertisements for computers
and software (‘Sal’)

Figure 11.7 shows the results of FastMap on the above dataset, with k=3
dimensions. The Figure shows the 3-d scatter-plot, (a) in its entirety and (b)
after zooming into the center, to highlight the clustering abilities of FastMap.
Notice that the 7 classes are separated well, in only =3 dimensions. Additional
experiments, involving real and synthetic datasets, are in [FL95].

Figure 11.7 The DOCS dataset, after FastMap in k=3-d space (a) The
whole collection (b) magnification of the dashed box.

11.5 CONCLUSIONS

FastMap 1s a linear algorithm that maps N objects into k-d points, with small
distortion of the distances. Thus it provides an automated way to extract
features, for a given dataset @ and a given distance function D().

Mapping objects into points (while preserving the distances well) is vital for fast
searching using the ‘GEMINI’ approach. Moreover, such a mapping is useful for
data-mining, cluster analysis and visualization of a multimedia dataset. Notice

FastMap 93

that FastMap is linear on the number of objects N, while Multidimensional
Scaling (MDS) is quadratic, and thus impractical for large databases.

Exercises

Exercise 11.1 [30] Implement MDS; apply it on some distance malrices

Exercise 11.2 [30] Implement the siring-editing distance function; compute
the distance matriz for 100 English words (eg., from /usr/dict/words), and
map them into 2-d points using the MDS package of Ezercise 11.1

Exercise 11.3 [25] Implement FastMap and compare il against MDS, wilh
respect to its speed and its stress, on a set of 100, 200, 500 English words from
/usr/dict/words. List your observations.

12

CONCLUSIONS

We have presented a generic method (the ‘GEMINT approach) to acceler-
ate queries by content on image databases and, more general, on multimedia
databases. Target queries are, eg., ‘find itmages with a color distribution of a
sunset photograph’; or, ‘find companies whose stock-price moves similarly to a
given company’s stock’.

The method expects a distance function D() (given by domain experts), which
should measure the dis-similarity between two images or objects Oy, Op. We
mainly focus on whole match queries (that is, queries by example, where the
user specifies the ideal object and asks for all objects that are within distance ¢
from the ideal object). Extensions to other types of queries (nearest neighbors,
‘all pairs” and sub-pattern match) are briefly discussed.

The ‘GEMINT approach combines two 1deas:

m The first 1s to devise a ‘quick and dirty test, which will eliminate several
non-qualifying objects. To achieve that, we should extract & numerical
features from each object, which should somehow describe the object (for
example, the first few DFT coefficients for a time sequence, or for a gray-
scale image). The key question to ask is ‘If we are allowed to use only one
numerical feature to describe each data object, what should this feature be?’

m The second idea is to further accelerate the search, by organizing these k-
dimensional points using state of the art spatial access methods (‘SAMs’)
like the R-trees. These methods typically group neighboring points to-
gether, thus managing to discard large un-promising portions of the ad-
dress space early.

95

96 CHAPTER 12

The above two ideas achieve fast searching. We went further, and we considered
the condition under which the above method will be not only fast, but also
correct, in the sense that it will not miss any qualifying object (false alarms are
acceptable, because they can be discarded, with the obvious way). The answer
is the lower-bounding lemma, which intuitively states that the mapping F() of
objects to k-d points should make things look closer.

The rest of the chapters describe how to apply the method for a variety of envi-
ronments, like 1-d time sequences and 2-d color images. These environments are
specifically chosen, because they give rise to the ‘dimensionality-curse’ and the
‘cross-talk’ problems, respectively. The approach of the ‘quick-and-dirty’ fil-
ter, together with the lower-bounding lemma, provided solutions to both cases.
Experimental results on real or realistic data illustrated the speed-up that the
‘GEMINTI’ approach provides.

In the last two Chapters focused on two related problems. In Chapter 10
we presented a method to handle sub-pattern matching in time sequences,
by using again a ‘quick-and-dirty’ filter and a sliding window, to map each
sequence into a trail in feature space; the trail is represented coarsely by a
small number of minimum bounding (hyper-)rectangles, which are fed into a
Spatial Access Method (SAM). Finally, in Chapter 11 we discussed ‘FastMap’,
a linear, approximate algorithm which can derive features automatically, given
a set of objects @ and a distance function D().

PART II11

MATHEMATICAL TOOLBOX

PRELIMINARIES

Before we start, we need some definitions from complex algebra and from linear
algebra. Consider a complex number

c=a+jb= Aexp(jo)
where j = v/—1 is the imaginary unit. Then, we have the following:

Definition A.1 The amplitude |c| is defined as A = |¢| = Va? + b?

Definition A.2 The phase ¢ of the number ¢ = a + jb is defined as
¢ = arctan(b/a)

Definition A.3 The conjugate ¢* of ¢ is defined as a — jb.

Definition A.4 The energy FE(c) of ¢ is defined as the square of the amplitude
(E(e)=le|*=cc*).

From matrix algebra, we use the following notation and concepts. & will be
considered as a column vector. Eg.,

2
7=|1 (A1)
3

In general, lower-case letters with an arrow will denote column vectors. Capital,
bold letters (eg., A) will denote matrices: Eg., A = [a; ;] where 4, j span the
rows and columns, respectively.

99

100 APPENDIX A

Definition A.5 A’ denotes the transpose of a matriz: A* = [a; ;] (notice the
reversal of ¢ and j). If the matriz A has complex eniries, then we want the

so-called hermitian matriz A = [a}‘yi].

Clearly, for real-valued matrices, the transpose matrix is the hermitian matrix.

Definition A.6 The norm || £ || of a vector @ is its Euclidean norm (root of
sum of squares).

Definition A.7 The energy E(¥) of a sequence (or vector) @ is defined as the
sum of energies at every point of the sequence:

n—1
E@E) = Z 1P) |ul (A.2)
i=0

Obviously, the energy of a signal is the square of the Euclidean norm (= length)
[| #] of the vector Z.

Definition A.8 The inner or ‘dot’ product Foy of two vectors ¥ and § is de-

fined as
Foj =3 (wi+y) = (B xy (A.3)

72

where denotes scalar multiplication and ‘<’ denotes matriz multiplication

Obviously, || ||?= FoZ. For complex-valued vectors, we use the hermitian
instead of the transpose.

Definition A.9 Orthogonality: Two vectors ¥ and § are orthogonal (¥ —§)
iff o =0

Definition A.10 A mairiz A = [d1, d», ..] is column-orthonormal iff its col-
umn vectors a; are unit vectors and mutually orthogonal, that is

diod; = { 0 Wif (A.4)

1 otherwise

Preliminaries 101

The definition for row-orthonormal 1s symmetric. From the above definition, if
A is a column-orthonormal matrix, then

A'xA =1 (A.5)

where I is the identity matrix of the appropriate dimensions. Again, for
complex-valued matrices, we use the hermitian instead of the transpose.

B

FOURIER ANALYSIS

B.1 DEFINITIONS

The intuition behind the Fourier Transform (as well as the Discrete Time
Fourier transform that we are examining) is based on Fourier’s theorem, that
every continuous function can be considered as a sum of sinusoidal functions.
For the discrete case, which is the one of interest to us, the n-point Discrete
Fourier Transform [OS75] of a signal # = [#;],i=0,...,n — 1 is defined to be
a sequence X ofn complex numbers X;, f=0,...,n—1, given by

n—1
X;=1/v/n) wiexp(=j2nfifn) f=0,1,... n-1 (B.1)
i=0
where j is the imaginary unit (j = +/—1).
Compactly,

Fe=X (B.2)

will denote a DFT pair. The signal & can be recovered by the inverse transform:
n—1
vi=1/yn Y Xjexp (j2nfifn) i=0,1,...,n—1 (B.3)
F=0

Xy is a complex number, with the exception of Xy, which is a real if the
signal # is real. There are some minor discrepancies among books: some define

Xy =1/n Z?:_ol ..oor Xy o= Z?:_ol ... We have followed the definition in
(Eq B.1), for it simplifies the upcoming Parseval’s theorem (Eq B.5).

Recall that exp(j¢) = cos(¢) + jsin(¢). The intuition behind DFT is to de-
compose a signal into sine and cosine functions of several frequencies, multiples

103

104 APPENDIX B

of the basic frequency 1/n. The reasons of its success is that certain opera-
tions, like filtering, noise removal, convolution and correlation, can be executed
more conveniently in the frequency domain. Moreover, the frequency domain
highlights some properties of the signals, such as periodicity.

It is instructive to envision the DFT as a matrix operation:

Observation B.1 Fq. B.1 can be re-written as
X = Ax& (B.4)
where A = [a; ¢] s an n x n matriz with

aif = 1/v/nexp(—j2afi/n) i, f=0,...,n—1

Observation B.2 Notice that A is column-orthonormal, that is, its column
vectors are unit vectors, mutually orthogonal. It is also true that A is row-
orthonormal, since il is a square matriz [PTVF92, p. 60].

That is,
A"xA=AxA" =1

where I is the (n X n) identity matrix and A" is the conjugate-transpose (‘her-
mitian’) of A, that is A" = [a}]

The above observation has a very useful, geometric interpretation: since the
DFT corresponds to a matrix multiplication with A of Eq. B.4, and since the
matrix A is orthonormal, the matrix A effectively does a rotation (but no
scaling) of the vector # in n-dimensional complex space; as a rotation, it does
not affect the length of the original vector, nor the Euclidean distance between
any pair of points.

B.2 PROPERTIES OF DFT

Next we list the properties of DFT that are most useful for our applications.

Fourier Analysis 105

Theorem 1 (Parseval) Let X be the Discrete Fourier Transform of the se-
quence £. Then we have

n—1 n—1
Dolal =) 1X) (B.5)
i=0 f=0

Proof: See, eg., [OST5]. O

An easier proof is based on Observation B.2 above. Intuitively, Parsevals’
theorem states that the DFT preserves the energy (= square of the length) of
the signal.

Property B.1 The DFT also preserves the Fuclidean distance.

Proof: Using the fact that the DFT is equivalent to matrix multiplication
(Eq. B.4), and that the matrix A is column-orthonormal, we can prove that

the DFT also preserves the distance between two signals # and ¢. Let X and
Y denote their Fourier transforms. Then, we have:

| X -7 |7 | Ax#— Axg|?

(AXZ — Axy)" x(AXT — AxY)

(Z— P x A" X AX(Z —¥)

(& — §)" xIx(Z& —)

= &7 (B.6)

That is, the DFT maintains the Euclidean distance between the two signals #
and ¥. O

Observation B.2 gives a strong intuitive ‘proof’ for the above two properties.
The geometric point of view of Observation B.2 is important: any transforma-
tion that corresponds to an orthonormal matrix A will also enjoy a theorem
similar to Parseval’s theorem for the DFT. Such transformations are the DCT
and the DWT| that we examine later.

Property B.2 A shift in the time domain changes only the phase of the DFT
coefficients, but not the amplitude:

[wizi =X} exp (=27 fioj/n)] (B.7)

106 APPENDIX B

where ‘<—=" denotes a DFT pair. This is a useful property, if we are looking
for, eg., matching stock prices with time-lags.

Property B.3 For real signals, we have Xy = X;’;_f, for f=1,2,...,n—1.

Proof: See [PTVF92, p. 511]. O

Using the above property, we only need to plot the amplitudes up to the middle,
and specifically, up to ¢, if n = 2¢ + 1, or ¢ + 1, if the duration is n = 2q.

Definition B.1 The resulting plot of |X;| versus f will be called the amplitude
spectrum or plain spectrum of the given time sequence; its square will be the
energy spectrum or power spectrum.

The phase spectrum is defined similarly, but it is not used as much as the
amplitude and energy spectra.

Property B.4 The DFT requires O(nlogn) computation time.

Although a straightforward computation of the DFT coefficients requires O(n?)
time, the celebrated Fast Fourier Transform (FFT) exploits regularities of the
el 27fil7 function, and achieves O(nlogn) time (eg., see [PTVF92]).

B.3 EXAMPLES

The main point we want to illustrate is the ability of the DFT to highlight
the periodicities of the input signal Z. This is achieved through the amplitude
spectrum that we defined before. Next, we give some carefully selected signals
and their spectra.

Example B.1 A composite tone:

z; = 6sin(274i/n + 0.5) 4+ 3sin(278i/n) i=0,...,31 (B.8)

Fourier Analysis 107

“composite.tone” —— “composite.tone.spectrum” —

amplitude
amplitude

0 5 10 15 20 2 30 35 0 2 4 6 8
time frequency

(a) time domain (b) amplitude spectrum

12 14 16

Figure B.1 A composite tone and its amplitude spectrum. Notice the spikes
for the two component frequencies at f=4 and 8.

This is a sum of sinusoidal functions of frequencies 4 and 8. Digitized voice and
musical sounds are sums of a few sinusoidal functions. Figure B.1 shows the
signal in the time domain, and its amplitude spectrum. In the latter, notice
the two clear peaks, at frequencies 4 and 8, with amplitudes proportional to 6
and 3, respectively, with a constant of proportionality: \/n/2.

“impulse.signal” — “impulse.spectrum” —

amplitude
amplitude

08 08
0.6 0.6
04 04
02 02
, JITTT I T T
0 5 10 15 20 25 30 35 0 2 4 6 8 12 14 16
time frequency
(a) time domain (b) amplitude spectrum

Figure B.2 A (shifted) impulse function, and its amplitude spectrum. Notice
the ‘frequency leak’ in all the frequencies.

Example B.2 The “mpulse function’, or ‘Dirac delta’ function: oy =1; x;=0
fore>0.

108 APPENDIX B

Figure B.2 shows an impulse function (shifted to the right, for better plotting),
along with its spectrum. Notice that there is no dominating frequency in the
amplitude spectrum. This is expected, since the original signal has no periodic-
ities. This phenomenon is informally called frequency leak: the given signal has
strong components on every frequency, and thus it can not be approximated
(compressed) well by using few DFT coefficients.

In general, spikes and discontinuities require all the frequencies. Since the DFT
effectively assumes that the signal is repeated infinite times, periodically (with
period n), a high difference between ¢ and z,_; also leads to frequency leak.
This is 1llustrated with the next example:

35 90
"ramp.signal” —— “ramp.spectrum” —

30

10
20

5
10
0

0 5 10 15 20 25 30 35 0 2 4 6 8 10 12 14 16
time frequency

(a) time domain (b) amplitude spectrum

amplitude
amplitude

Figure B.3 The ramp function, and its amplitude spectrum. Notice the
frequency leak, again.

Example B.3 The ‘ramp’ function:

l‘iIi

Figure B.3 shows the the ramp function and its DFT. Notice that it also has a
‘frequency leak’, having non-zero amplitudes for all its DFT coefficients. How-
ever, the amplitudes are decreasing, compared to the impulse function.

This is an important observation: in general, if the input signal has a trend, the
DFT has a frequency leak. Notice that the upcoming DCT avoids this specific
problem.

Example B.4 Number of trappings for Canadian lynz (animals per year, 1821-
1934).

Fourier Analysis 109

See Figure B.4. This is a well-known dataset in population ecology [Sig93,
p. 45], as well as time-sequence analysis [Ton90, BJR94]. It has a strong peri-
odical nature, which is highlighted by the spike in the spectrum. It is interesting
to notice that the population of hares (not shown here) also follows a similar
periodic pattern, with the same period, but with some phase lead, because
hares are a major food source for the Canadian lynx.

7000 18000
“lynx trappings” —— “lynx.spectrum” —
16000

6000
14000
5000
12000

4000 10000

amplitude
amplitude

3000 8000

6000
2000
4000

1000
2000

0 20 40 60 80 100 120 0 10 20

30 40 50 60
time frequency

(a) time domain (b) amplitude spectrum

Figure B.4 Canadian lynx trappings (1821-1934), and its amplitude spec-
trum. Notice the spike at f=12, corresponding to a period of 9.5 years.

Figure B.5 highlights the ability of the DFT to concentrate the energy. Consider
the spectrum of Figure B.4(b) and set to zero all the amplitudes, except for
the two strongest ones (for f=0 and 12); this is the spectrum illustrated in
Figure B.5(b). Figure B.5(a) shows the corresponding sequence in the time
domain (by doing the inverse DFT), as well as the original ‘lynx’ dataset.
Notice how well the approximate sequence matches the original, despite the
tiny number of coefficients kept.

B.4 DISCRETE COSINE TRANSFORM
(DCT)

For our purposes, the ideal transform should concentrate the energy into as
few coefficients as possible, for most of the signals of interest. For several
real signals, successive values are correlated: eg., in images, if a pixel is dark,
chances are that its neighbors will also be dark. In these cases, the Discrete
Cosine Transform (DCT) achieves better energy concentration than the DFT,
and very close to optimal [Gal91, p. 54].

110 APPENDIX B

7000

18000

“lynx.app.spectrum’ —
6000 16000

14000
5000
12000
4000
10000

3000
8000

amplitude

2000 i 6000

1000 | /! 4000
i

2000

-1000 0 10 20 30 40 50 60
0 requency

Figure B.5 (a) The original lynx dataset (with ‘diamonds’) and its approx-
imation (with ‘crosses’) (b) the spectrum of the approximation.

Moreover, the DCT avoids ‘frequency leak’ problems that plague the DFT
when the input signal has a ‘trend’ (see Example B.3). The DCT solves this
problem cleverly, by conceptually reflecting the original sequence in the time
axis around the last point and taking the DFT on the resulting, twice-as-
long sequence. Exactly because the (twice-as-long) signal is symmetric, all the
coefficients will be real numbers. Moreover, from the property B.3 of the DFT,
their amplitudes will be symmetric along the middle (X; = Xo,_¢). Thus, we
need to keep only the first n of them.

The formulas for the DCT are

n—1 .
7 f(i+0.5)
X: =1 i _ =0,....,n—1 B.9
[/\/ﬁ;x cos " f n (B.9)
and for the inverse:
n—1 .
xizl/\/ﬁXo—I—Q/\/ﬁZXfcosM i=0,...,n—1 (B.10)
n

f=1

As with the DFT, the complexity of the DCT is also O(nlog(n)).

B.5 m-DIMENSIONAL DFT/DCT (JPEG)

All the above transforms can be extended to m-dimensional signals: for m=2 we
have gray-scale images, for m=3 we have 3-d MRI brain scans etc. Informally,

Fourier Analysis 111

we have to do the transformation along each dimension: for example, for the
DFT for a 1024x1024 matrix (eg., image), we have to do the DFT on each row,
and then do the DFT on each column. Formally, for an ny x ng array [u;, ;,]
these operations are expressed as follows:

1 1 & &
v, L 1 Ny o o
e iV “Z::OZ;@‘ 1o €Xp (=27ji1 f1/m1) exp (=27 jiz f2/n2)

where z;, ;, is the value (eg., gray scale) of the position (i1,4s) of the array,
and fi, fa are the spatial frequencies, ranging from 0 to (ni-1) and (ne-1)
respectively.

The formulas for higher dimensionalities m are straightforward. The formulas
for the m-d inverse DFT and DCT are analogous. Notice that the 2-dimensional
DCT is used in the JPEG standard [Wal91, Jur92] for image and video com-
pression.

B.6 CONCLUSIONS

We have discussed some powerful, classic tools from signal processing, namely
the DFT and DCT. The DFT is helpful in highlighting periodicities in the
input signal, through its amplitude spectrum. The DCT is closely related to
the DFT, and it has some additional desirable properties: its coefficients are
always real (as opposed to complex), it handles well signals with trends, and
it 1s very close to the optimal for signals whose successive values are highly
correlated.

WAVELETS

C.1 MOTIVATION

The wavelet transform is believed to avoid the ‘frequency leak’ problem even
better. Consider the case of an impulse function (Example B.2): both in the
DFT and the DCT transform, it has non-zero amplitudes in all frequencies.
Thus, what would take a single number to describe in the time domain, will
require several numbers in the frequency domain. The problem is that the DFT
has no temporal locality: each of its coefficients provide information about all
the time instants. A partial remedy would be the so-called ‘Short Window
Fourier Transform’ (SWFT) [RV91]: We can divide the time sequence into
frames of, say, w consecutive (non-overlapping) samples, and do the w-point
DFT in each of these windows. Thus, an impulse function in the time domain
will have a restricted ‘frequency leak’. Figure C.1 shows intuitively what hap-
pens: In the time domain, each value gives the full information about that
instant (but no information about frequencies). The DFT has coefficients that
give full information about a given frequency, but it needs all the frequencies
to recover the value at a given instant in time. The SWFT is somewhere in
between.

The only non-elegant point of the SWFT is the choice of the width w of the
window: How large should it be, and why? The solution to this problem is very
clever: let the width w be variable! This is the basis for the Discrete Wavelet
Transform (DWT). Figure C.1 illustrates how the DWT coefficients tile the
frequence-time plane.

113

114 AprpPENDIX C

time rep. DFT SWFT DWT

frequency

time time time time

Figure C.1 Tilings of the time-frequency plane: (a) Time-domainrepresenta-
tion (b) Discrete Fourier transform (DFT) (c) Short-Window Fourier transform
(SWFT) (d) Discrete Wavelet transform (DWT).

C.2 DESCRIPTION

Several Discrete Wavelet transforms that have been proposed. The simplest to
describe and code is the Haar transform. Ignoring temporarily some propor-
tionality constants, the Haar transform operates on the whole signal, giving
the sum and the difference of the left and right part; then it focuses recursively
on each of the halves, and computes the difference of their two sub-halves, etc,
until it reaches an interval with one only sample in it.

It is instructive to consider the equivalent, bottom-up procedure. The input
signal & must have a length n that is a power of 2, by appropriate zero-padding
if necessary.

1. Level 0: take the first two sample points zy and z;, and compute their
sum sg,0 and difference dy; do the same for all the other pairs of points
(22:, @2i41). Thus, sg; = C * (22 + 22i41) and do; = C * (29 — Z2i41),
where C' is a proportionality constant, to be discussed soon. The values
s0,; (0 < ¢ < n/2) constitute a ‘smooth’ (=low frequency) version of the
signal, while the values dg; represent the high-frequency content of it.

2. Level 1: consider the ‘smooth’ sp; values; repeat the previous step for
them, giving the even-smoother version of the signal s; ; and the smooth-
differences dq; (0 < i < n/4)

3. ... and so on recursively, until we have a smooth signal of length 2.

The Haar transform of the original signal # is the collection of all the ‘difference’
values d;; at every level [and offset ¢, plus the smooth component sz g at the
last level L (L = logy(n) —1).

Wavelets 115

Following the literature, the appropriate value for the constant C' is 1/\/5, be-
cause it makes the transformation matrix to be orthonormal (eg., see Eq. C.4).
Adapting the notation (eg., from [Cra94] [VM]), the Haar transform is defined
as follows:

du: 1/\/5 (51_1722'—51_1722'4_1) lIO,...,L, i:O,...,n/Q""l—l (Cl)
with
81 = 1/\/5 (51_1722' + 51_172“_1) l=0,...,L, i=0,.. .,n/21+1 -1 (CQ)

with the initial condition:

S_14 =4 (03)

For example, the 4-point Haar transform is as follows. Envisioning the input
signal # as a column vector, and its Haar transform @ as another column
vector (W = [s1 0, d1,0,do,0,do 1]"), the Haar transform is equivalent to a matrix
multiplication, as follows:

s1.0 12 1/2 1/2 12 2o
dl,O _ 1/2 1/2 —1/2 —1/2 sl
doo | ~ | V2 -1/V2 0 0 ol (C4)
do1 0 0 1/\/5 —1/\/5 T3

The above procedure is shared among all the wavelet transforms: We start at
the lowest level, applying two functions at successive windows of the signal: the
first function does some smoothing, like a weighted average, while the second
function does a weighted differencing; the smooth (and shortened) version of
the signal is recursively fed back into the loop, until the resulting signal is too
short.

The Haar transform is still criticized for ‘frequency leak’ problems [Dau92,
p. 10]. One of the most popular wavelet transforms is the so-called Daubechies-
4 [Dau92]. We describe the derivation of the 0-th level of coefficients only,
because the rest of the levels are derived recursively, as explained above. At
each step, the Daubechies-4 DWT operates on 4 consecutive sample points; the
‘smooth’ component is given by

Spi = hoxo; + h1$2i+1 + h2$2i+2 =+ h3l‘2i+3 1=0,..., 77,/2 (05)
and the ‘difference’ component is given by

do; = haa; — howaip1 + hi®sips — hoxaigs 1=0,...,n/2 (C.6)

116 AprpPENDIX C

where

1+V3 , _34vE 3=\ 13

ho = hi = ho = =
0 3 1 3 2 NG 3 NG

(C.7)

Notice that the signal is supposed to ‘wrap-around’ (ie., #,4; = ; whenever the
index i exceeds n). More details are in [PTVF92]. The code in nawk [AKW8§]
and Bourne ‘shell’ is attached in the next section.

Figure C.2 shows the basis functions of the Daubechies-4 DWT for n=32 points.
The top left gives the basis function #5: 1t is the level-2 wavelet, starting at
position 0. Notice that it mainly concentrates on the first half of the signal,
giving a weighted difference. The top right gives the basis function #9: it is the
level-1 wavelet starting at position 0. Notice that it has a shorter time-span
than the previous (#5), but more violent oscillation (thus, higher frequency
content). The bottom row shows the basis functions #17 and #18. They
correspond to level-0 wavelets starting at offsets {=0 and t=2, respectively. As
expected, the basis functions of this level have the shortest time-span and the
highest frequency content. Also as expected, these two basis functions have
identical shape and only differ by a horizontal shift.

C.3 DISCUSSION

The computational complexity of the above transforms is O(n), as it can be
verified from Eq. C.1-C.3. Notice that this is faster than the O(nlog(n)) of
FFT, without even the need to resort to any of the FFT-like techniques.

In addition to their computational speed, there is a fascinating relationship be-
tween wavelets, multiresolution methods (like quadtrees or the pyramid struc-
tures in machine vision), and fractals. The reason is that wavelets, like quadtrees,
will need only a few non-zero coefficients for regions of the image (or the time
sequence) that are smooth/homogeneous, while they will spend more effort on
the ‘high activity’ areas. It is believed [Fie93] that the mammalian retina con-
sists of neurons which are tuned each to a different wavelet. Naturally occurring
scenes tend to excite only few of the neurons, implying that a wavelet transform
will achieve excellent compression for such images. Similarly, the human ear
seems to use a wavelet transform to analyze a sound, at least in the very first

stage [Dau92, p. 6] [WS93].

Wavelets

0.6

0.5 -
0.4 -
03 -
0.2

Amplitude

01t
02|
03t
04
05
0

0.8 -
0.6 -

0.4

Amplitude

0.2 P

04

-0.6

DWT basis function 5
T T

0.1 -

T T
"dwbasis.5" —~—

. .
15 20
time

DWT basis function 17
T T

L L
25 30 35

02 -

T T
"dwbasis.17" ——

. .
15 20
time

L L
25 30 35

Amplitude

Amplitude

0.8

0.6

0.4 -

02

-0.2 -

04

-0.6

0.8 -

0.6 -

0.4

02 -

-0.2

04

-0.6

DWT basis function 9
T T

117

T T
"dwbasis.9" ——

.

. .
15 20
time

DWT basis function 18
T T

L L
25 30

T T
"dwbasis.18" ——

N

. .
15 20
time

Figure C.2 Basis functions #5, 9, 17, 18, for the Daubechies-4 DWT.

C.4 CODE FOR DAUBECHIES-4 DWT

L L
25 30

Next we give the source code for the Daubechies-4 DWT. We have chosen
nawk [AKWS88] because (a) it is a language on a higher level than ‘C’ and (b)
it 1s more widely available than the even higher level languages; of mathemat-
ical packages (like ‘Mathematica’, ‘Maple’, ‘MatLab’ etc). See [PTVF92, VM]
for wavelet code in some of the above languages. Object code for several wavelet
transforms is available in the ‘xwpl’ package (http:
/wavelets/) from Yale.

#! /bin/sh -f

nawk ’

implements the Daubechies-4 wavelet -

//wuw.math.yale.edu:80

Following '"Numerical Recipes in C", p. 593.

118 AprpPENDIX C

Author: Christos Faloutsos, 1996

Notice: the input signal MUST HAVE a length that is
a power of 2 (and greater or equal to 4)

Expected input format: a sequence of numbers,

separated by white space (tabs, blanks, newlines)

BEGIN{ c[0]

(1+sqrt(3))/(4*sqrt(2));

c[1] = (3+sqrt(3))/(4*sqrt(2));
cl[2] = (3-sqrt(3))/(4*sqrt(2));
c[3] = (1-sqrt(3))/(4*sqrt(2));

TOL = 10°(-86);
count = 0 ;

function abs(xx) {
res = XX
if(xx < 0){ res = -xx7}
return res

chopArray
function chopArray(xarg, Narg){
for(ii=1; ii<=Narg; ii++){
if(abs(xargl[ii]) < TOL) {xargl[ii] =0}
}

print array
function printArray (x, N){

for(i=1; i<=N; i++){ printf "Yg\n", x[i] }
}

B e e e
wraps the ivalue in the 1-Nval interval
B e e e
function wrap (ival, Nval) {

resval = ival-1;

resval = resval % Nval

resval ++

return resval
}
B e R R R R R R R R

Wavelets 119

AR BRI R i
performs one step of the DWT transform

on array xargl[i:Narg]

Narg: should be a power of 2, and > 4

It does the changes IN PLACE

AR BRI R i
function oneStepDWT (xarg, Narg) {

ij =05
for(ii=1; ii<Narg; ii +=2){
Jji ot
sres[jjl = cl[0]l*xarglwrap(ii,Narg)] + \
c[1]l#xarglwrap(ii+1l,Narg)] + \
c[2]*#xarglwrap(ii+2,Narg)]+ \
c[3]*xarglwrap(ii+3,Narg)];
dres[jjl = c[3]*xarglwrap(ii,Narg)] - \
c[2]*#xarglwrap(ii+l,Narg)] + \
c[1]*xarglwrap(ii+2,Narg)] - \
c[0]*xarglwrap(ii+3,Narg)];
}

for(ii=1; ii<= Narg/2; ii++){
xargl[ii] = sres[iil;
xarg[ii + Narg/2] = dres[ii]
}
return
}
B R R R S i S i 2

B R R R S i S i 2
Does the full wavelet transform -
it calls repeatedly the oneStepDWT()
The array xargl[1,N] is changed IN PLACE
B R R R S i S i 2
function DWT(xarg, Narg){

assert that Narg >= 4 and Narg: power of 2

WILL NOT WORK OTHERWISE

for(len=Narg; len>=4; len = len/2){

oneStepDWT (xarg, len)

}
}
B R R R S i S i 2

read in the elements of the array

120 AprpPENDIX C

{ for(j = 1; j<= NF; j++) { count++; x[count] = $j } }

END {
N =count; # array length
DWT(x,N)

chopArray(x,N)
printArray(x,N)

)$*

C.5 CONCLUSIONS

The Discrete Wavelet Transform (DWT) achieves even better energy concentra-
tion than the DFT and DCT transforms, for natural signals [PTVF92, p. 604].
It uses multiresolution analysis, and it models well the early signal processing
operations of the human eye and human ear.

K-LL AND SVD

D.1 THE KARHUNEN-LOEVE (K-L)
TRANSFORM

Before we examine the K-L transform, we should give the definition of eigen-
values and eigenvectors of a square matrix S. (We use the letter ‘S’ to stress
the fact that the matrix is square).

Definition D.1 For a square n x n matriz S, the unit vector ¥ and the scalar
A that satisfy
Sx# = Ax¥ (D.1)

are called an eigenvector and its corresponding eigenvalue of the matriz S.

The eigenvectors of a symmetric matrix are mutually orthogonal and its eigen-
values are real. See [PTVF92, p. 457] for more details.

The intuitive meaning of these concepts is the following: A matrix S defines
an affine transformation § = Sx&, that involves rotation and/or scaling; the

eigenvectors are the unit vectors along the directions that are not rotated by
S; the corresponding eigenvalues show the scaling. For example, the matrix

s:[fé] (D.2)

gives the ellipse of Figure D.1, when applied to the periphery of the unit circle.
The major and minor axes of the ellipse correspond to the directions of the

121

122 ApPPENDIX D

two eigenvectors of S. Specifically, the strongest eigenvalue corresponds to the
eigenvector of the major axis:

(D.3)

A =362 u= [0.52]

. [08p
0 | Xo=1.38 wh= []

—0.52

4 T T
"unit.circle" ——

&

O

Figure D.1 The matrix S as a transformation: the unit circle becomes an
ellipse, with major axis along the first eigenvector

The following observation will be used later, to show the strong connection be-

tween the eigenvalue analysis and the upcoming Singular Value Decomposition
(Theorem 2).

Observation D.1 If S is a real and symmetric matriz (ie., S = S'), then it
can be written in the form
S =UxAxU"’ (D.4)

where the columns of U are the eigenvectors of S and A is a diagonal matriz,
with values the corresponding eigenvalues of S.

Notice that the above observation is a direct consequence of the definition of the
eigenvalues and eigenvectors (Definition D.1) and the fact that the eigenvectors
are mutually orthogonal, or, equivalently, that U is column-orthonormal.

K-L and SVD 123

As an arithmetic example, for the matrix S that we used in the example (see
Eq. D.2), we have

g_[2 L] _[os2 08] [362 0] [052 08
Tt 3] T |08 —052 0 1.38 0.85 —0.52

D.1.1 K-L: Problem definition

Consider the following problem: Given a collection of n-d points, project them
on a k-d sub-space (k < n), minimizing the error of the projections (sum
of squared differences). The problem has been studied extensively in statis-
tical pattern recognition and matrix algebra. The optimal way to project n-
dimensional points onto k-dimensional points (k < n) is the Karhunen-Loéve
(‘K-L”) transform (eg., see [DH73b], [Fuk90]). In other words, the K-L trans-
forms gives linear combination of axis (=‘attributes’ = ‘features’), sorted in
‘goodness’ order.

Figure D.2 gives an illustration of the problem and the solution: it shows a
set of 2-d points, and the corresponding 2 directions (2’ and y’) that the K-L
transform suggests: If we are allowed only k=1, the best direction to project
on is the direction of z’; the next best is y etc.

Figure D.2 Tllustration of the Karhunen-Loéve transformation - the ‘best’
axis to project is z’.

Next we give the detailed steps of the K-L, as well as the code in ‘mathematica’.
The K-L computes the eigenvectors of the covariance matrix (see Eq. D.7), sorts
them in decreasing eigenvalue order, and approximates each data vector with its
projections on the first k eigenvectors. The n x n covariance matrix C is defined
as follows. Consider the N x n data matrix A, where rows correspond to data
vectors and columns correspond to attributes. That is, A = [a;;] (i = 1,..N
and j = 1,...n). The covariance matrix C = [¢p,] roughly gives the attribute-to-
attribute similarity, by computing the un-normalized correlation between the

124 ApPPENDIX D

two attributes p and ¢. Let @ , be the average of the p-th column/attribute:

N
Wzl/NZaip p=1,2,..n (D.5)

i=1
Then, the entry ¢, , of the covariance matrix C is

N

Cp,g = Z(ai,p —a) aiq — @) (D.6)

i=1

Intuitively, we move the origin to the center of gravity of the given vectors,
obtaining the matrix B = [b;;] = [a;; — @ ;]. We shall refer to the matrix B
as the ‘zero-mean’ matrix, exactly because its column averages are zero, by
construction. Then, we compute the covariance matrix C as follows:

C=B'xB (D.7)

Example D.1 Consider the data vectors a; = [1,2]', a3 = [1,1]" and a3 =
[0,0]t. Then we have for the data malriz A:

1 2
A=|11
0 0

The column averages are the coordinates of the center of gravity:
a1=2/3 az=1

The ‘zero-mean’ matriz B s

1/3 1
B=| 1/3 0
—2/3 —1

and the covariance matriz C 1is

with eigenvalues and eigenvectors:
A =253 (uy)' =1[0.47,0.88]
Ay =0.13 (u3)" =[—0.88,0.47]

K-L and SVD 125

Figure D.3 plots the 3 given points in 2-d space as ‘diamonds’, as well as their
center of gravity (2/3, 1) and the corresponding K-L directions. Tt uses ‘crosses’
and ‘squares’ for the major and minor eigenvector, respectively.

3 ‘ ‘

"data" °
251 "major.eigenvector’ -+ |
"minor.eigenvector” e

2t o
15+ B
1t m o
05

0

05+

1 I I I I I I
105 0 0.5 1 15 2 25 3

Figure D.3 Example of the Karhunen-Lo¢ve transformation, with the 3
points of the Example.

Next we give an implementation of the K-L transform in Mathematica [Wol91].
The major step is to compute the covariance matrix C; then, the eigenvalue
routine Eigensystem does the rest (and hardest!) of the job.

(* given a matrix mat_ with n vectors (rows) of m attributes (columns),
it creates a matrix with n vectors and their
first k most ’important’ attributes
(ie., the K-L expansions of these n vectors) *)

KLexpansion[mat_, k_:2] := mat . Transpose[KL[mat, k]];

(* given a matrix with n vectors of m dimensions,

computes the first k singular vectors,

ie., the axes of the first k Karhunen-Lo\‘{e}ve expansion *)
KL[mat_ , k_:2 J]:= Module[

{n,m, avgvec, newmat,i, val, vec 1},

{n,m} = Dimensions[mat];
avgvec = Apply[Plus, mat] / n //N;

126 ApPPENDIX D

(* translate vectors, so the mean is zero *)
newmat = Table[mat[[i]] - avgvec , {i,1,n}];

{val, vec} = Eigensystem[Transpose[newmat] . newmat];
vec[[Rangel1,k] 1]

D.2 SVD

As we saw, the eigenvalues and eigenvectors are defined for square matrices.
For rectangular matrices, a closely related concept is the Singular Value Decom-
position (SVD) [Str80, PFTV88, GVL89]: Consider a set of points as before,
represented as a N x n matrix A, as in Table D.2.

term | data information retrieval brain lung

document

CS-TR1 1 1 1 0 0
CS-TR2 2 2 2 0 0
CS-TR3 1 1 1 0 0
CS-TR4 5 5 5 0 0
MED-TR1 0 0 0 2 2
MED-TR2 0 0 0 3 3
MED-TR3 0 0 0 1 1

Table D.1 Example of a (document-term) matrix

Such a matrix could represent, eg., N patients with n numerical symptoms
each (blood pressure, cholesterol level etc), or N sales with n products in a
data mining application [AS94], with the dollar amount spent on each product,
by the given sale, etc. For concreteness, we shall assume that it represents
N documents (rows) with n terms (columns) each, as happens in Informa-
tion Retrieval (IR) [SFW83], [Dum94]. It would be desirable to group similar
documents together, as well as similar terms together. This is exactly what
SVD does, automatically! The only ‘catch’ is that SVD creates a linear com-
bination of terms, as opposed to non-linear ones that, eg., Kohonen’s neural
networks could provide [LSM91, RMS92]. Nevertheless, these groups of terms
are valuable: in Information Retrieval terminology, each would correspond to

K-L and SVD 127

a ‘concept’; in the Karhunen-Loeve terminology, each group of terms would
correspond to an important ‘axes’. The formal definition for SVD follows:

Theorem 2 (SVD) Given an N x n real matriz A we can express it as
A = UxAxV! (D.8)

where U is a column-orthonormal N x r matriz, v is the rank of the matriz A,
A is a diagonal r X r matriz and 'V is a column-orthonormal k x r matriz.

Proof: See [PTVF92, p. 59]. O

The entries of A are non-negative. If we insist that the diagonal matrix A has

its elements sorted in descending order, then the decomposition is unique!.

Recall that a matrix U is column-orthonormal iff its column vectors are mu-
tually orthogonal and of unit length. Equivalently: U‘x U = I, where I is the
identity matrix. Schematically, see Figure D.4.

A U Lambda Vit

Nxn Nxr rxr rxn

| |rO-C

Figure D.4 Tllustration of SVD

Eq. D.8 equivalently states that a matrix A can be brought in the form

A = M x(07)" 4 A x (03) 4 .4 Ay x (07’ (D.9)

1Except when there are equal entries in A, in which case they and their corresponding
columns of U and V can be permuted.

128 ApPPENDIX D

where u;, and v; are column vectors of the U and V matrices respectively,
and A; the diagonal elements of the matrix A. Intuitively, the SVD identifies
‘rectangular blobs’ of related values in the A matrix. For example, for the
above ‘toy’ matrix of Table D.2, we have two ‘blobs’ of values, while the rest
of the entries are zero. This is confirmed by the SVD, which identifies them
both:

[0.18
0.36
0.18
A = 9.64x | 0.90 | x[0.58, 0.58, 0.58, 0, 0] +
0
0
L 0 -
]
0
0
529% | 0 | x[0, 0, 0, 0.71, 0.71]
0.53
0.80
| 0.27 |
or
(018 0]
0.36 0
A - 8;3 8 ><[9.64 0]X[0.58 058 058 0 0
0 03 0 5.29 0O 0 0 071 071
0. 0.80
0. 027 |

Notice that the rank of the matrix 18 r=2: there are effectively 2 types of
documents (CS and Medical documents) and 2 ‘concepts’, ie., groups-of-terms:
the ‘CS concept’ (that is, the group {‘data’, ‘information’, ‘retrieval’}), and the
‘medical concept’ (that is, the group {‘lung’, ‘brain’}). The intuitive meaning
of the U and V matrices is as follows: U can be thought of as the document-
to-concept similarity matrix, while V, symmetrically, 1s the term-to-concept
similarity matrix. For example, v1 » = 0 means that the first term (‘data’) has
zero similarity with the 2nd concept (the ‘lung-brain’ concept).

The SVD is a powerful operation, with several applications. We list some ob-
servations, which are useful for multimedia indexing and Information Retrieval:

K-L and SVD

129

Observation D.2 The N x N matriz D = AxA" will intuitively give the
document-to-document similarities - in our case, it is

W oy W

D= AxA'=

o OO

—_
[S2}

L —
OOOOQMQ
—

[S2}

W oy W

o OO

15
30
15
75
0
0
0

0 0 0
0 0 0
0 0 0
0 0 0
8 12 4
12 18 6
4 6 2

Observation D.3 The eigenvectors of the D matriz will be the columns of the

U matriz of the SVD of A.

Observation D.4 Symmetrically, the n x n matriz T = A'xA will give the

term-to-term stmilarities - in our example, it is:

31 31
31 31
T=A'%xA | 31 31
0 0
0 0

31
31
31
0
0

0 0
0 0
0 0
14 14
14 14

Observation D.5 Similarly, the eigenvectors of the T matriz are the columns

of the V. matriz of the SVD of A.

Observation D.6 Both D and T have the same eigenvalues, who are the
squares of the A; elements of the A matriz of the SVD of A.

All the above observations can be proved from Theorem 2 and from the fact

that U and V are column-orthonormal:

AXA' = UxAxV'xVxAxU' = UxAxIxAxU' = UxA?xU" (D.10)

and similarly for A’xA. According to (Eq. D.4), the columns of U are the
eigenvectors of Ax A’ and its eigenvalues are the diagonal elements of A2

that is, A?,...A%).
1 r

130 ApPPENDIX D

The above observations illustrate the close relationship between the eigenvec-
tors analysis of a matrix, the SVD and the K-L transform, which uses the
eigenvectors of the covariance matrix C (Eq. D.7).

It should be noted that the SVD is extremely useful for several settings that
involve least-squares optimization, such as in regression, in under-constraint
and over-constraint linear problems, etc. See [PTVF92] or [Str80] for more
details. Next, we show how it has been applied for Information Retrieval and
filtering, under the name of Latent Semantic Indexing (LSI).

D.3 SVD AND LSI

Here we discuss SVD in more detail, in the context of Information Filtering.
There, SVD has lead to the method of ‘Latent Semantic Indexing’ (LST) [FD92b].
The idea is to try to group similar terms together, to form a few (a2 100 — 300)
‘concepts’, and then map the documents into vectors in ‘concept’-space, as op-
posed to vectors in n-dimensional space, where n is the vocabulary size of the
document collection. This approach 1s a clever, automated way, to take into
account term co-occurrences, building effectively a ‘thesaurus without seman-
tics”: terms that often occur together, are grouped into ‘concepts’; every time
the user asks for a term, the system determines the relevant ‘concepts’ and
searches for them.

In order to map document or query vectors into to concept space, we need the
term-to-concept similarity matrix V. For example, in the setting of Table D.2,
consider the query ‘find documents containing the term ‘data”. In this setting,
this query ¢ is the vector

(D.11)

=y
[l
OO O =

0

because the first entry corresponds to the term ‘data’ and the rest to the 4 other
terms of our document collection (namely, ‘information’, ‘retrieval’; ‘brain’,
‘lung’). To translate § to a vector ¢; in concept space, we need the term-to-
concept similarity matrix V. The ‘translation’ is done if we multiply the query
vector by V:

—

qdc = VtX(T

K-L and SVD 131

0.58 058 058 0 0 y
0 0 0 071 071

_ 0.58

- [
which correctly corresponds to the fact that the query ¢is rather closely related
to the CS group of terms (with ‘strength’ = 0.58), and unrelated to the medical
group of terms (‘strength’ = 0). What is even more important is that the
query ¢. implicitly involves the terms ‘information’ and ‘retrieval’; thus, an
LSI-based system may return documents that do not necessarily contain the
requested term ‘data’, but they are deemed relevant anyway. Eg., according to
the running example, the document with the single word ‘retrieval’ will have
the document vector d

O OO O =

0
. 0
d=1|1 (D.12)
0
0
which will be mapped to the concept vector d_;:
d_; = Vtxd_; = [0058 :| = q_é (D13)

That is, the above document will be a perfect match for the query (‘data’),
although it does not contain the query word.

Thanks to its ability to create a thesaurus of co-occurring terms, the LSI
method has shown good performance. Experiments in [FD92b] report that

LST has equaled or outperformed standard vector methods and other variants,
with improvement of as much as 30% in terms of precision and recall.

D.4 CONCLUSIONS

We have seen some powerful tools, based on eigenvalue analysis. Specifically:

132 ApPPENDIX D

m the ‘K-L’ transform is the optimal way to do dimensionality reduction:
given N vectors with n dimensions, it provides the & most important di-
rections on which to project (k is user defined).

m the SVD (singular value decomposition) operates on an N x n matrix and
groups its rows and columns into 7 ‘similar’ groups, sorted in ‘strength’
order.

Both tools are closely related to the eigenvalue analysis (Eq. D.1): the K-L
transform uses the eigenvalues of the covariance matrix; the SVD of a symmetric
matrix is identical to its eigenvalue decomposition.

[ACT5)]

[ACF+93]

[ACF+94]

[AFS93]

[AGIT92]

[AGM+90]

[ATS93a]

[ATS93b)

[AKWSS]

REFERENCES

A.V. Aho and M.J. Corasick. Fast pattern matching: an aid to
bibliographic search. CACM, 18(6):333-340, June 1975.

Manish Arya, William Cody, Christos Faloutsos, Joel Richardson,
and Arthur Toga. Qbism: a prototype 3-d medical image database
system. IEEE Data Engineering Bulletin, 16(1):38-42, March 1993.

Manish Arya, William Cody, Christos Faloutsos, Joel Richardson,
and Arthur Toga. Qbism: Extending a dbms to support 3d medical
images. Tenth Int. Conf. on Data Engineering (ICDE), pages 314—
325, February 1994.

Rakesh Agrawal, Christos Faloutsos, and Arun Swami. Efficient
similarity search in sequence databases. In Foundations of Data
Organization and Algorithms (FODO) Conference, Evanston, Illi-
nois, October 1993. also available through anonymous ftp, from
olympos.cs.umd.edu: ftp/pub/TechReports/fodo.ps.

Rakesh Agrawal, Sakti Ghosh, Tomasz Imielinski, Bala Iyer, and
Arun Swami. An interval classifier for database mining applications.

VLDB Conf. Proc., pages 560-573, August 1992.
S.F. Altschul, W. Gish, W. Miller, E.-W. Myers, and D.J. Lipman.

A basic local alignment search tool. Journal of Molecular Biology,

215(3):403-410, 1990.

Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Database
mining: a performance perspective. [EFEE Trans. on Knowledge

and Data Engineering, 5(6):914-925, 1993.

Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining as-
sociation rules between sets of items in large databases. Proc. ACM

SIGMOD, pages 207-216, May 1993.

Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger. The
AWK Programming Language. Addison Wesley, 1988.

133

134

[AS94]

[BB82]
[BCC94]

[Ben75]

[Ben79]

[BF95]

[Bia69]

[BIR94]

[BKS93]

[BKSS90]

[BKSS94]

[BM72]

[BM77]

SEARCHING MULTIMEDIA DATABASES BY CONTENT

Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for
mining association rules in large databases. Proc. of VLDB Conf.,

pages 487-499, September 1994.
D. Ballard and C. Brown. Computer Vision. Prentice Hall, 1982.

Eric W. Brown, James P. Callan, and W. Bruce Croft. Fast incre-
mental indexing for full-text information retrieval. Proc. of VLDB
Conf., pages 192-202, September 1994.

J.L. Bentley. Multidimensional Binary Search Trees Used for As-
sociative Searching. CACM, 18(9):509-517, September 1975.

Jon L. Bentley. Multidimensional binary search trees in database
applications. IEEE Trans. on Software Engineering (TSE), SE-
5(4):333-340, July 1979.

Alberto Belussi and Christos Faloutsos. Estimating the selectivity
of spatial queries using the ‘correlation’ fractal dimension. Proc. of

VLDB, pages 299-310, September 1995.

T. Bially. Space-filling curves: Their generation and their applica-
tion to bandwidth reduction. IFEE Trans. on Information Theory,
IT-15(6):658-664, November 1969.

George E.P. Box, Gwilym M. Jenkins, and Gregory C. Reinsel.
Time Series Analysis: Forecasting and Control. Prentice Hall, En-

glewood Cliffs, NJ, 1994. 3rd Edition.

Thomas Brinkhoff, Hans-Peter Kriegel, and Bernhard Seeger. Effi-
cient processing of spatial joins using r-trees. Proc. of ACM SIG-
MOD, pages 237-246, May 1993.

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The
r*-tree: an efficient and robust access method for points and rect-

angles. ACM SIGMOD, pages 322-331, May 1990.

Thomas Brinkhoff, Hans-Peter Kriegel, Ralf Schneider, and Bern-
hard Seeger. Multi-step processing of spatial joins. ACM SIGMOD,
pages 197-208, May 1994.

R. Bayer and E. McCreight. Organization and maintenance of large

ordered indexes. Acta Informatica, 1(3):173-189, 1972.

R.S. Boyer and J.S. Moore. A fast string searching algorithm.
CACM, 20(10):762-772, October 1977.

References 135

[But71]

[BYG92]

[CE92]

[CF84]

[Cod70]

[CooT70]

[CoPES92]

[CPIO]

[Cra94]

[CS89]

[CSY87]

[CTH*86]

[Dat86]

Arthur R. Butz. Alternative algorithm for hilbert’s space-filling
curve. [EEE Trans. on Computers, C-20(4):424-426, April 1971.

Ricardo Baeza-Yates and Gaston H. Gonnet. A new approach to
text searching. Comm. of ACM (CACM), 35(10):74-82, October
1992.

M. Castagli and S. Eubank. Nonlinear Modeling and Forecasting.
Addison Wesley, 1992. Proc. Vol. XII.

S. Christodoulakis and C. Faloutsos. Design considerations for a
message file server. [TEFEE Trans. on Software Engineering, SE-
10(2):201-210, March 1984.

E. F. Codd. A relational model of data for large shared data banks.
Comm. of ACM, 13(6):377-387, 1970.

W.S. Cooper. On deriving design equations for information retrieval

systems. JASIS, pages 385-395, November 1970.

Mathematical Committee on Physical and NSF Engineering Sci-
ences. Grand Challenges: High Performance Computing and Com-
munications. National Science Foundation, 1992. The FY 1992
U.S. Research and Development Program.

Doug Cutting and Jan Pedersen. Optimizations for dynamic in-
verted index maintenance. Proc. SIGIR, pages 405-411, 1990.

Richard E. Crandall. Projects in Scientific Computation. Springer-
Verlag New York, Inc., 1994.

W.W. Chang and H.J. Schek. A signature access method for the
starbust database system. In Proc. VLDB Conference, pages 145—
153, Amsterdam, Netherlands, August 1989.

Shi-Kuo Chang, Qing-Yun Shi, and Cheng-Wen Yan. Iconic Index-
ing by 2-D Strings. IEFEFE Transactions on Pattern Analysis and
Machine Intelligence, 9(3):413-428, May 1987.

S. Christodoulakis, M. Theodoridou, F. Ho, M. Papa, and
A. Pathria. Multimedia document presentation, information ex-
traction and document formation in minos: a model and a system.

ACM TOOIS, 4(4), October 1986.

Chris J. Date. An Introduction to Database Systems. Addison-
Wesley, 1986. Vol. I; 4th ed.

136

[Dau92]

[DDF+90]

[DHT73a]

[DHT73b]

[Dum94]

[Dye82]

[Eli75]

[EM66]

[EMS+86]

[Equ93]

[Fal85]

[Fal8g]

SEARCHING MULTIMEDIA DATABASES BY CONTENT

Ingrid Daubechies. Ten Lectures on Wavelets. Capital City Press,
Montpelier, Vermont, 1992. Society for Industrial and Applied
Mathematics (STAM), Philadelphia, PA.

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman. Indexing by latent semantic analysis. Journal of the
American Society for Information Science, 41(6):391-407, Septem-
ber 1990.

R. Duda and P Hart. Pattern Classification and Scene Analysis.
Wiley, New York, 1973.

R.O. Duda and P.E. Hart. Pattern Classification and Scene Anal-
ysis. Wiley, New York, 1973.

Susan T. Dumais. Latent semantic indexing (lsi) and trec-2.
In D. K. Harman, editor, The Second Text Retrieval Conference
(TREC-2), pages 105-115, Gaithersburg, MD, March 1994. NIST.
Special publication 500-215.

C.R. Dyer. The space efficiency of quadtrees. Computer Graphics
and Image Processing, 19(4):335-348, August 1982.

P. Elias. Universal codeword sets and representations of integers.
IEEE Trans. on Information Theory, 1T-21:194-203, 1975.

Robert D. Edwards and John Magee. Technical Analysis of Stock
Trends. John Magee, Springfield, Massachusetts, 1966. 5th Edition,
second printing.

J. Ewing, S. Mehrabanzad, S. Sheck, D. Ostroff, and B. Shnei-
derman. An experimental comparison of a mouse and arrow-jump
keys for an interactive encyclopedia. Int. Journal of Man-Machine

Studies, 24(1):29-45, January 1986.

W. Equitz. Retrieving images from a database using texture —
algorithms from the QBIC system. Research report, IBM Almaden
Research Center, San Jose, CA, 1993.

C. Faloutsos. Access methods for text. ACM Computing Surveys,
17(1):49-74, March 1985.

C. Faloutsos. Gray codes for partial match and range queries. IEFE
Trans. on Software Engineering, 14(10):1381-1393, October 1988.
early version available as UMITACS-TR-87-4, also CS-TR-1796.

References 137

[Fal92a]

[Fal92b]

[FBF+94]

[FBY92]

[FC87]

[FD92a]

[FD92b]

[FG96]

[FH69]

[Fie93]

[FIM94]

C. Faloutsos. Analytical results on the quadtree decomposition
of arbitrary rectangles. Pattern Recognition Letters, 13(1):31-40,
January 1992.

Christos Faloutsos. Signature files. In William Bruce Frakes and Ri-
cardo Baeza-Yates, editors, Information Retrieval: Data Structures
and Algorithms. Prentice Hall, Englewood Cliffs; NJ, 1992.

C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack,
D. Petkovic, and W. Equitz. Efficient and effective querying by im-
age content. Journal of Intell. Inf. Systems, 3(3/4):231-262, July
1994.

W. Frakes and R. Baeza-Yates. Information Retrieval: Data Struc-
tures and Algorithms. Prentice-Hall, 1992.

C. Faloutsos and S. Christodoulakis. Optimal signature extraction

and information loss. ACM TODS, 12(3):395-428, September 1987.

Peter W. Foltz and Susan T. Dumais. Personalized information
delivery: An analysis of information filtering methods. Communi-

cations of the ACM, 35(12):51-60, December 1992.

Peter W. Foltz and Susan T. Dumais. Personalized information
delivery: an analysis of information filtering methods. Comm. of

ACM (CACM), 35(12):51-60, December 1992.

Christos Faloutsos and Volker Gaede. Analysis of the z-ordering
method using the hausdorff fractal dimension. VLDB, September
1996.

J.R. Files and H.D. Huskey. An information retrieval system based
on superimposed coding. Proc. AFIPS FJCC, 35:423-432, 1969.

D.J. Field. Scale-invariance and self-similar ‘wavelet’ transforms:
an analysis fo natural scenes and mammalian visual systems. In
M. Farge, J.C.R. Hunt, and J.C. Vassilicos, editors, Wavelets, Frac-
tals, and Fourier Transforms, pages 151-193. Clarendon Press, Ox-
ford, 1993.

Christos Faloutsos, H.V. Jagadish, and Yannis Manolopoulos.
Analysis of the n-dimensional quadtree decomposition for arbi-
trary hyper-rectangles. CS-TR-3381, UMIACS-TR-94-130, Dept.
of Computer Science, Univ. of Maryland, College Park, MD, De-
cember 1994. to appear in IEEE TKDE.

138

[FK94]

[FL95]

[FN75]

[FNPST79]

[FR89a]

[FR89b)

[FRO1]

[Fre60]
[FRMO4]

[FSN+95]

SEARCHING MULTIMEDIA DATABASES BY CONTENT

Christos Faloutsos and Ibrahim Kamel. Beyond Uniformity and
Irndependence: Analysis of R-trees Using the Concept of Fractal
Dimension. Proc. ACM SIGACT-SIGMOD-SIGART PODS, pages
4-13, May 1994. Also available as CS-TR-3198, UMIACS-TR-93-
130.

Christos Faloutsos and King-Ip (David) Lin. Fastmap: a fast al-
gorithm for indexing, data-mining and visualization of traditional
and multimedia datasets. Proc. of ACM-SIGMOD, pages 163-174,
May 1995.

Keinosuke Fukunaga and Patrenahalli M. Narendra. A branch and
bound algorithm for computing k-nearest neighbors. IFEE Trans.
on Computers (TOC), C-24(7):750-753, July 1975.

R. Fagin, J. Nievergelt, N. Pippenger, and H.R. Strong. Extendible
hashing - a fast access method for dynamic files. ACM TODS,
4(3):315-344, September 1979.

C. Faloutsos and W. Rego. Tri-cell: a data structure for spatial
objects. Information Systems, 14(2):131-139, 1989. early version
available as UMIACS-TR-87-15, CS-TR-1829.

C. Faloutsos and S. Roseman. Fractals for secondary key retrieval.
FEighth ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems (PODS), pages 247-252, March 1989. also
available as UMTACS-TR-89-47 and CS-TR-2242.

C. Faloutsos and Y. Rong. Dot: a spatial access method using
fractals. In IEEE Data Engineering Conference, pages 152-159,
Kobe, Japan, April 1991. early version available as UMTACS-TR-
89-31, CS-TR-2214.

E. Fredkin. Trie memory. CACM, 3(9):490-500, September 1960.

Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos.
Fast subsequence matching in time-series databases. Proc. ACM
SIGMOD, pages 419-429, May 1994. ‘Best Paper’ award; also avail-
able as CS-TR-3190, UMIACS-TR-93-131, ISR TR-93-86.

Myron Flickner, Harpreet Sawhney, Wayne Niblack, Jon Ashley,
Qian Huang, Byron Dom, Monika Gorkani, Jim Hafner, Denis Lee,
Dragutin Petkovic, David Steele, and Peter Yanker. Query by image
and video content: the gbic system. IEEE Computer, 28(9):23-32,
September 1995.

References 139

[FSR87]

[Fuk90]

[Gae95]

[Gal91]

[Gar82]

[GBYS92]

[GGY5]

[GGMTY4]

[GK95]

[GR94]

[GR95]

C. Faloutsos, T. Sellis, and N. Roussopoulos. Analysis of object
oriented spatial access methods. Proc. ACM SIGMOD, pages 426—
439 426-439, May 1987. also available as SRC-TR-87-30, UMTACS-
TR-86-27, CS-TR-1781.

Keinosuke Fukunaga. Introduction to Statistical Paltern Recogni-
tion. Academic Press, 1990. 2nd Edition.

V. Gaede. Optimal redundancy in spatial database systems. In
Proc. Jth Int. Symp. on Spatial Databases (SSD’95), pages 96-116,
1995.

D. Le Gall. Mpeg: a video compression standard for multimedia

applications. Comm. of ACM (CACM), 34(4):46-58, April 1991.

I. Gargantini. An effective way to represent quadtrees. Comm. of

ACM (CACM), 25(12):905-910, December 1982.

Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim Snider. New
indices for text: Pat trees and pat arrays. In William B. Frakes
and Ricardo Baeza-Yates, editors, Information Retrieval. Prentice

Hall, 1992.

Volker Gaede and Oliver Guenther. Survey on multidimensional ac-
cess methods. Technical Report ISS-16, Institut fuer Wirtschaftsin-
formatik, Humboldt-Universitaet zu Berlin, August 1995.

Louis Gravano, Hector Garcia-Molina, and Anthony Tomasic. The
effectiveness of gloss for the text database discovery problem. ACM
SIGMOD, pages 126-137, May 1994.

Dina Q. Goldin and Paris C. Kanellakis. On similarity queries
for time-series data: Constraint specification and implementation.
Int. Conf. on Principles and Practice of Constraint Programming

(CP95), September 1995.

V. Gaede and W.-F. Riekert. Spatial access methods and query
processing in the object-oriented GIS GODOT. In Proc. of the
AGDM’94 Workshop, pages 40-52, Delft, The Netherlands, 1994.

Netherlands Geodetic Commission.

Venkat N. Gudivada and Vijay V. Raghavan. Content-based image
retrieval systems. IEEE Computer, 28(9):18-22, September 1995.

140

[GT87]

[Gun86]

[Gut84]

[GVL89]

[Har71]

[Har94]

[Has81]

[HDS0]

[HH83]

[HN83]

[Hol79]

[Hor86]
[HS79]

[HS91]

SEARCHING MULTIMEDIA DATABASES BY CONTENT

G.H. Gonnet and F.W. Tompa. Mind your grammar: a new ap-
proach to modelling text. Proc. of the Thirteenth Int. Conf. on
Very Large Data Bases, pages 339-346, September 1987.

O. Gunther. The cell tree: an index for geometric data. Mem-
orandum No. UCB/ERL M86/89, Univ. of California, Berkeley,
December 1986.

A. Guttman. R-trees: a dynamic index structure for spatial search-

ing. Proc. ACM SIGMOD, pages 47-57, June 1984.

G. H. Golub and C. F. Van-Loan. Matriz Computations. The Johns
Hopkins University Press, Baltimore, 1989. 2nd edition.

M.C. Harrison. Implementation of the substring test by hashing.
CACM, 14(12):777-779, December 1971.

D. Harman. The second text retrieval conference (trec-2). Special
Publication 500-215, National Institute of Standards and Technol-
ogy, Gaithersburg, MD. 1994.

R.L. Haskin. Special-purpose processors for text retrieval. Database
Engineering, 4(1):16-29, September 1981.

P.A.V.Hall and G.R. Dowling. Approximate string matching. ACM
Computing Surveys, 12(4):381-402, December 1980.

R.L. Haskin and L.A. Hollaar. Operational characteristics of a
hardware-based pattern matcher. ACM TODS, 8(1):15-40, March
1983.

K. Hinrichs and J. Nievergelt. The grid file: a data structure to
support proximity queries on spatial objects. Proc. of the W(G’83
(Intern. Workshop on Graph Theoretic Concepts in Computer Sei-
ence), pages 100-113, 1983.

L.A. Hollaar. Text retrieval computers. IEEE Computer Magazine,
12(3):40-50, March 1979.

Berthold Horn. Robot Vision. MIT Press, Cambridge, Mass., 1986.

G.M. Hunter and K. Steiglitz. Operations on images using quad
trees. IEEE Trans. on PAMI, PAMI-1(2):145-153, April 1979.

Andrew Hume and Daniel Sunday. Fast string searching. Software
- Practice and Experience, 21(11):1221-1248, November 1991.

References 141

[HS95]

[HSWSS]

[HU7Y]

[Jag90a]

[Jag90b]

[Jagdl]

[TMM95]

[IN92]

[7589]

[Jur92]

[KF93]

[KF94]

[Kim88]

M. Houtsma and A. Swami. Set-oriented mining for association
rules. In Proceedings of IEEE Data Engineering Conference, March
1995. Also appeared as IBM Research Report RJ 9567.

A. Hutflesz, H-W. Six, and P. Widmayer. Twin grid files: Space
optimizing access schemes. Proc. of ACM SIGMOD, pages 183-190,
June 1988.

J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison Wesley, Reading, Mass.,
1979.

H.V. Jagadish. Linear clustering of objects with multiple attributes.
ACM SIGMOD Conf., pages 332-342, May 1990.

H.V. Jagadish. Spatial search with polyhedra. Proc. Sizth IFEE
Int’l Conf. on Data Engineering, February 1990.

H.V. Jagadish. A retrieval technique for similar shapes. Proc. ACM
SIGMOD Conf., pages 208-217, May 1991.

H.V. Jagadish, Alberto O. Mendelzon, and Tova Milo. Similarity-
based queries. Proc. ACM SIGACT-SIGMOD-SIGART PODS,
pages 36—45, May 1995.

Ramesh Jain and Wayne Niblack. NSF Workshop on Visual Infor-
mation Management, February 1992.

Theodore Johnson and Dennis Shasha. Utilization of b-trees with
inserts, deletes and modifies. Proc. of ACM SIGACT-SIGMOD-
SIGART PODS, pages 235-246, March 1989.

Ronald K. Jurgen. Digital video. IEEE Spectrum, 29(3):24-30,
March 1992.

Ibrahim Kamel and Christos Faloutsos. On packing r-trees. Second
Int. Conf. on Information and Knowledge Management (CIKM),
November 1993.

Ibrahim Kamel and Christos Faloutsos. Hilbert R-tree: An Im-
proved R-tree Using Fractals. In Proceedings of VLDB Conference,,
pages 500-509, Santiago, Chile, September 1994.

R.E. Kimbrell. Searching for text? send an n-gram! Byte,
13(5):297-312, May 1988.

142

[KMP77]

[Kno75]

[Knu73]

[KR87]

[KS91]

[KSF+96]

[KTF95]

[KW78]

[Lar78]
[Lar82]

[Lar85]

[Lar88]

[LeB92]

[LesT8]

SEARCHING MULTIMEDIA DATABASES BY CONTENT

D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching
in strings. STAM J. Comput, 6(2):323-350, June 1977.

G.D. Knott. Hashing functions. Computer Journal, 18(3):265-278,
1975.

D.E. Knuth. The Art of Computer Programming, Vol. 3: Sorting
and Searching. Addison-Wesley, Reading, Mass, 1973.

R.M. Karp and M.O. Rabin. Efficient randomized pattern-matching
algorithms. IBM Journal of Research and Development, 31(2):249—
260, March 1987.

Henry F. Korth and Abraham Silberschatz. Database System Con-
cepts. McGraw Hill, 1991.

Flip Korn, Nikolaos Sidiropoulos, Christos Faloutsos, Eliot Siegel,
and Zenon Protopapas. Fast nearest-neighbor search in medical im-
age databases. Conf. on Very Large Data Bases (VL.DB), Septem-
ber 1996. Also available as Univ. of Maryland tech. report: CS-
TR-3613, ISR-TR-96-13.

Anil Kumar, Vassilis J. Tsotras, and Christos Faloutsos. Access
methods for bi-temporal databases. Int. Workshop on Temporal
Databases, September 1995.

Joseph B. Kruskal and Myron Wish. Multidimensional scaling.
SAGE publications, Beverly Hills, 1978.

P. Larson. Dynamic hashing. BIT, 18:184-201, 1978.

P.A. Larson. Performance analysis of linear hashing with partial

expansions. ACM TODS, 7(4):566-587, December 1982.

P.A. Larson. Hash files: Some recent developments. In Proc. of the
First Intern. Conference on Supercomputing Systems, pages 671—
679, St. Petersburg, Florida, December 1985.

P.-A. Larson. Dynamic hash tables. Comm. of ACM (CACM),
31(4):446-457, April 1988.

Blake LeBaron. Nonlinear forecasts for the s\&p stock index. In
M. Castagli and S. Eubank, editors, Nonlinear Modeling and Fore-
casting, pages 381-393. Addison Wesley, 1992. Proc. Vol. XII.

M.E. Lesk. Some Applications of Inverted Indexes on the UNIX
System. Bell Laboratories, Murray Hill, New Jersey, 1978.

References 143

[Lit80]

[LL8Y]

[LR94]

[L.590]

[LSMO1]

[Lum70]

[LW75]

[LW89]

[Man77]

[Mar79]

[McI82]

[MIFS96]

[ML86]

W. Litwin. Linear hashing: a new tool for file and table addressing.
In Proc. 6th International Conference on VLDB, pages 212-223,
Montreal, October 1980.

D.L. Lee and C.-W. Leng. Partitioned signature file: Designs
and performance evaluation. ACM Trans. on Information Systems

(TOIS), 7(2):158-180, April 1989.

Ming-Ling Lo and Chinya V. Ravishankar. Spatial joins using
seeded trees. ACM SIGMOD, pages 209-220, May 1994.

David B. Lomet and Betty Salzberg. The hb-tree: a multiattribute
indexing method with good guaranteed performance. ACM TODS,
15(4):625-658, December 1990.

Xia Lin, Dagobert Soergel, and Gary Marchionini. A self-organizing
semantic map for information retrieval. Proc. of ACM SIGIR, pages
262-269, October 1991.

V.Y. Lum. Multi-attribute retrieval with combined indexes.

CACM, 13(11):660-665, November 1970.

R. Lowerance and R.A. Wagner. An extension of the string-to-
string correction problem. JACM, 22(2):3-14, April 1975.

Carl E. Langenhop and William E. Wright. A model of the dynamic
behavior of b-trees. Acta Informatica, 27:41-59, 1989.

B. Mandelbrot. Fractal Geometry of Nature. W.H. Freeman, New
York, 1977.

G.N.N. Martin. Spiral storage: Incrementally augmentable hash
addressed storage. Theory of Computation, Report No. 27, Univ.
of Warwick, Coventry, England, March 1979.

M.D. Mcllroy. Development of a spelling list. [EEFE Trans. on
Commaunications, COM-30(1):91-99, January 1982.

Bongki Moon, H.V. Jagadish, Christos Faloutsos, and Joel H. Saltz.
Analysis of the clustering properties of hilbert space-filling curve.
Technical Report CS-TR-3611, Dept. of Computer Science, Univ.
of Maryland, College Park, MD, 1996.

Lothar M. Mackert and Guy M. Lohman. R* optimizer validation
and performance evaluation for distributed queries. Proc. of 12th
Int. Conf. on Very Large Data Bases (VLDB), August 1986.

144

[Moo49]

[Mor68]

[MRT91]

[Mur83]

[MWO4]

[NBE+93]

[NC91]

[NHS84]

[Nof36]

[ODL93]

[OM84]

SEARCHING MULTIMEDIA DATABASES BY CONTENT

C. Mooers. Application of random codes to the gathering of statis-
tical information. Bulletin 31, Zator Co, Cambridge, Mass, 1949.
based on M.S. thesis, MIT, January 1948.

Donald R. Morrison. Patricia - practical algorithm to retrieve
information coded in alphanumeric. Journal of ACM (JACM),
15(4):514-534, October 1968.

Carlo Meghini, Fausto Rabitti, and Constantino Thanos. Con-
ceptual modeling of multimedia documents. [TEEE Computer,

24(10):23-30, October 1991.

F. Murtagh. A survey of recent advances in hierarchical clustering

algorithms. The Computer Journal, 26(4):354-359, 1983.

Udi Manber and Sun Wu. Glimpse: a tool to search through entire
file systems. Proc. of USENIX Techn. Conf., 1994. Also available as
TR 93-94, Dept. of Comp. Sc., Univ. of Arizona, Tucson, or through
anonymous ftp (ftp://cs.arizona.edu/glimpse/glimpse.ps.Z).

Wayne Niblack, Ron Barber, Will Equitz, Myron Flickner, Eduardo
Glasman, Dragutin Petkovic, Peter Yanker, Christos Faloutsos, and
Gabriel Taubin. The gbic project: Querying images by content
using color, texture and shape. SPIFE 1993 Intl. Symposium on
Electronic Imaging: Science and Technology, Conf. 1908, Storage
and Retrieval for Image and Video Databases, February 1993. Also
available as IBM Research Report RJ 9203 (81511), Feb. 1, 1993,

Computer Science.

A. Desai Narasimhalu and Stavros Christodoulakis. Multimedia
information systems: the unfolding of a reality. TEEE Computer,
24(10):6-8, October 1991.

J. Nievergelt, H. Hinterberger, and K.C. Sevcik. The grid file: an
adaptable, symmetric multikey file structure. ACM TODS, 9(1):38—
71, March 1984.

P.J. Nofel. 40 million hits on optical disk. Modern Office Technol-
ogy, pages 84-88, March 1986.

Katia Obraczka, Peter B. Danzig, and Shih-Hao Li. Internet re-
sourse discovery services. IEEFE Computer, September 1993.

J.A. Orenstein and T.H. Merrett. A class of data structures for
associative searching. Proc. of SIGACT-SIGMOD, pages 181-190,
April 1984.

References 145

[OM3S3]

[Ore86]

[Ore89]

[Ore90]

[0S75]

[0S95]

[Pet80]

[PF94]

[PF96]

[PFTVSS]

[PO95]

J.A. Orenstein and F.A. Manola. Probe spatial data modeling and
query processing in an image database application. [TEEE Trans.
on Software Engineering, 14(5):611-629, May 1988.

J. Orenstein. Spatial query processing in an object-oriented

database system. Proc. ACM SIGMOD, pages 326-336, May 1986.

J.A. Orenstein. Redundancy in spatial databases. Proc. of ACM
SIGMOD Conf., May 1989.

J.A. Orenstein. A comparison of spatial query processing techniques
for native and parameter spaces. Proc. of ACM SIGMOD Conf.,
pages 343-352, 1990.

Alan Victor Oppenheim and Ronald W. Schafer. Dugital Signal
Processing. Prentice-Hall, Englewood Cliffs, N.J., 1975.

Virginia E. Ogle and Michael Stonebraker. Chabot: Retrieval from
a relational database of images. IEEE Computer, 28(9):40-48,
September 1995.

J.L. Peterson. Computer programs for detecting and correcting

spelling errors. CACM, 23(12):676-687, December 1980.

Euripides G.M. Petrakis and Christos Faloutsos. Similarity search-
ing in large image databases, 1994. submitted for publication. Also
available as technical report at MUSIC with # TR-01-94.

Euripides G.M. Petrakis and Christos Faloutsos. Similarity search-
ing in medical image databases. IEEE Trans. on Knowledge and
Data Engineering (TDKE), 1996. To appear. Also available as tech-
nical report at MUSIC with # TR-01-94, UMIACS-TR-94-134, CS-
TR-3388.

William H. Press, Brian P. Flannery, Saul A. Teukolsky, and
William T. Vetterling. Numerical Recipes in C. Cambridge Uni-
versity Press, 1988.

E. G.M. Petrakis and S. C. Orphanoudakis. A Generalized Ap-
proach for Image Indexing and Retrieval Based Upon 2-D Strings.
In S-K. Chang, E. Jungert, and G. Tortora, editors, Intelligent
Image Database Systems - Spatial Reasoning, Image Indexing and

Retrieval using Symbolic Projections. World Scientific Pub. Co.,
1995. To be publised. Also available as FORTH-ICS/TR~103.

146

[Pri84]

[PSTW93]

[PTVF92]

[Ras92]

[RBC+92]

[RF1]

[Riv76]

[RJ93]

[RKV95]

[RL85]

[RMS92]

[Rob79]

SEARCHING MULTIMEDIA DATABASES BY CONTENT

Joseph Price. The optical disk pilot project at the library of
congress. Videodisc and Optical Disk, 4(6):424-432, November
1984.

B. Pagel, H. Six, H. Toben, and P. Widmayer. Towards an analysis
of range query performance. Proc. of ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS),
pages 214-221, May 1993.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and
Brian P. Flannery. Numerical Recipes in C. Cambridge University
Press, 1992. 2nd Edition.

Edie Rasmussen. Clustering algorithms. In William B. Frakes and
Ricardo Baeza-Yates, editors, Information Retrieval: Data Struc-
tures and Algorithms, pages 419-442. Prentice Hall, 1992.

Mary Beth Ruskai, Gregory Beylkin, Ronald Coifman, Ingrid
Daubechies, Stephane Mallat, Yves Meyer, and Louise Raphael.
Wavelets and Their Applications. Jones and Bartlett Publishers,
Boston, MA, 1992.

Y1 Rong and Christos Faloutsos. Analysis of the clustering property
of peano curves. Techn. Report CS-TR-2792, UMIACS-TR-91-151,
Univ. of Maryland, December 1991.

R.L. Rivest. Partial match retrieval algorithms. SIAM J. Comput,
5(1):19-50, March 1976.

Lawrence Rabiner and Biing-Hwang Juang. Fundamentals of
Speech Recognition. Prentice Hall, 1993.

Nick Roussopoulos, Steve Kelley, and F. Vincent. Nearest Neighbor
Queries. Proc. of ACM-SIGMOD, pages 7T1-79, May 1995.

N. Roussopoulos and D. Leifker. Direct spatial search on pictorial

databases using packed R-trees. Proc. ACM SIGMOD, May 1985.

Helge Ritter, Thomas Martinetz, and Klaus Schulten. Neural Com-
putation and Self-Organizing Maps. Addison Wesley, Reading, MA|
1992.

C.S. Roberts. Partial-match retrieval via the method of superim-
posed codes. Proc. IEFE, 67(12):1624-1642, December 1979.

References 147

[Rob81]

[Roc71]

[RS92]

[RVO1]

[Sal71a]

[Sal71b]

[Sch91]

[SD76]

[SDKR87]

[SDRS3]

[SFW83]

[Sha8s]

J.T. Robinson. The k-d-b-tree: a search structure for large multi-
dimensional dynamic indexes. Proc. ACM SIGMOD, pages 10-18,
1981.

J.J. Rocchio. Performance indices for document retrieval. In
G. Salton, editor, The SMART Retrieval System - FEzxperiments
. Automatic Document Processing. Prentice-Hall Inc, Englewood

Cliffs, New Jersey, 1971. Chapter 3.

Fausto Rabitti and Pascuale Savino. An information retrieval ap-
proach for image databases. In VLDB Conf. Proceedings, pages
574-584, Vancouver, BC, Canada, August 1992.

Oliver Rioul and Martin Vetterli. Wavelets and signal processing.
IEEE SP Magazine, pages 14-38, October 1991.

G. Salton. Relevance feedback and the optimization of retrieval
effectiveness. In G. Salton, editor, The SMART Retrieval System -
Erperiments tn Automatic Document Processing. Prentice-Hall Inc,
Englewood Cliffs, New Jersey, 1971. Chapter 15.

G. Salton. The SMART Retrieval System - Experiments in Auto-
matic Document Processing. Prentice-Hall Inc, Englewood Cliffs,
New Jersey, 1971.

Manfred Schroeder. Fractals, Chaos, Power Laws: Minutes From
an Infinite Paradise. W.H. Freeman and Company, New York,
1991.

D.G. Severance and R.A. Duhne. A practitioner’s guide to address-
ing algorithms. CACM, 19(6):314-326, 1976.

R. Sacks-Davis, A. Kent, and K. Ramamohanarao. Multikey access
methods based on superimposed coding techniques. ACM Trans.
on Database Systems (TODS), 12(4):655-696, December 1987.

R. Sacks-Davis and K. Ramamohanarao. A two level superimposed
coding scheme for partial match retrieval. Information Systems,

8(4):273-280, 1983.

G. Salton, E.A. Fox, and H. Wu. Extended boolean information
retrieval. CACM, 26(11):1022-1036, November 1983.

C.A. Shaffer. A formula for computing the number of quadtree
node fragments created by a shift. Pattern Recognition Letters,

7(1):45-49, January 1988.

148

[Sig93]

[SK83]

[SK86]

[SK90]

[SL76]

[SM83]

[SOF+92]

[SS88]

[SSTS6]

[SSN87]

[ST84]

[Stag0]

SEARCHING MULTIMEDIA DATABASES BY CONTENT

Karl Sigmund. Games of Life: Fzplorations in Ecology, Fvolution
and Behaviour. Oxford University Press, 1993.

David Sankoff and Joseph B. Kruskal. Time Warps, String Fdits
and Macromolecules: the Theory and Practice of Sequence Compar-
tsons. Addison-Wesley Publishing Company, Inc., Reading, MA,
1983.

C. Stanfill and B. Kahle. Parallel free-text search on the connection
machine system. CACM, 29(12):1229-1239, December 1986.

Bernhard Seeger and Hans-Peter Kriegel. The buddy-tree: an effi-
cient and robust access method for spatial database systems. Proc.

of VLDB, pages 590-601, August 1990.

D.G. Severance and G.M. Lohman. Differential files: Their applica-
tion to the maintenance of large databases. ACM TODS, 1(3):256—
267, September 1976.

G. Salton and M.J. McGill. Introduction to Modern Information
Retrieval. McGraw-Hill, 1983.

G.A. Story, L. O’Gorman, D.S. Fox, L.L. Schaper, and H.V. Ja-
gadish. The rightpages: an electronic library for alerting and brows-
ing. IEEE Computer, 25(9):17-26, September 1992.

R. Stam and Richard Snodgrass. A bibliography on temporal
databases. TEEFE Bulletin on Data Engineering, 11(4), December
1988.

M. Stonebraker, T. Sellis;, and E. Hanson. Rule indexing imple-
mentations in database systems. In Proceedings of the First Inter-
national Conference on Expert Database Systems, Charleston, SC,

April 1986.

C.A. Shaffer, H. Samet, and R.C. Nelson. Quilt: a geographic
information system based on quadtrees. Technical Report CS-TR-
1885.1, Univ. of Maryland, Dept. of Computer Science, July 1987.
to appear in the International Journal of Geographic Information
Systems.

J. Stubbs and F.W. Tompa. Waterloo and the new oxford english
dictionary project. In Proc. of the Twentieth Annual Conference
on Editorial Problems, Toronto, Ontario, November 1984. in press.

T.A. Standish. Data Structure Techniques. Addison Wesley, 1980.

References 149

[Sti60]

[Str80]

[Sun90]

[SW78]

[TC83)]

[TGMS94]

[Ton90]

[TSW+85]

[Vas93]

[VM]

[VRT79]

[Wal91]

[WG94]

S. Stiassny. Mathematical analysis of various superimposed coding
methods. American Documentation, 11(2):155-169, February 1960.

Gilbert Strang. Linear Algebra and its Applications. Academic
Press, 1980. 2nd edition.

D.M. Sunday. A very fast substring search algorithm. Comm. of
ACM (CACM), 33(8):132-142, August 1990.

G. Salton and A. Wong. Generation and search of clustered files.
ACM TODS, 3(4):321-346, December 1978.

D. Tsichritzis and S. Christodoulakis. Message files. ACM Trans.
on Office Information Systems, 1(1):88-98, January 1983.

Anthony Tomasic, Hector Garcia-Molina, and Kurt Shoens. Incre-
mental updates of inverted lists for text document retrieval. ACM

SIGMOD, pages 289-300, May 1994.

Howell Tong. Non-Linear Time Series: a Dynamical System Ap-
proach. Clarendon Press, Oxford, 1990.

G.R. Thoma, S. Suthasinekul, F.A. Walker, J. Cookson, and
M. Rashidian. A prototype system for the electronic storage and
retrieval of document images. ACM TOOIS, 3(3), July 1985.

Dimitris Vassiliadis. The input-state space approach to the pre-
diction of auroral geomagnetic activity from solar wind variables.
Int. Workshop on Applications of Artificial Intelligence in Solar
Terrestrial Physics, September 1993.

Brani Vidakovic and Pe-
ter Mueller. Wavelets for Kids. Duke University, Durham, NC.
ftp://ftp.isds.duke.edu/pub/Users/brani/papers/.

C.J. Van-Rijsbergen. Information Retrieval Butterworths, London,
England, 1979. 2nd edition.

Gregory K. Wallace. The jpeg still picture compression standard.
CACM, 34(4):31-44, April 1991.

Andreas S. Weigend and Neil A. Gerschenfeld. Time Series Predic-
tion: Forecasting the Future and Understanding the Past. Addison
Wesley, 1994.

150

[Whi81]

[WM92]

[Wol91]

[WS93]

[WTKS6]

[WZ96]

[Yao78]

[YGM94]

[YMDS5]

[Zah71]

[ZC77]

[Zip49]

[ZMSD92]

SEARCHING MULTIMEDIA DATABASES BY CONTENT

M. White. N-Trees: Large Ordered Indexes for Multi-Dimensional
Space. Application Mathematics Research Staff, Statistical Re-
search Division, U.S. Bureau of the Census, December 1981.

Sun Wu and Udi Manber. Text searching allowing errors. Comm.

of ACM (CACM), 35(10):83-91, October 1992.

Stephen Wolfram. Mathematica. Addison Wesley, 1991. Second
Edition.

Kuansan Wang and Shihab Shamma. Spectral shape analysis in
the central auditory system. NNSP, September 1993.

A. Witkin, D. Terzopoulos, and M. Kaas. Signal matching through
scale space. Proc. am. Assoc. Artif. Intel | pages 714-719, 1986.

Hugh Williams and Justin Zobel. Indexing nucleotide databases
for fast query evaluation. Proc. of 5-Th Intl. Conf. on Ezxtending
Database Technology (EDBT), pages 275-288, March 1996. Eds. P.
Apers, M. Bouzeghoub, G. Gardarin.

A. C. Yao. On random 2,3 trees. Acta Informatica, 9:159-170,
1978.

Tak W. Yan and Hector Garcia-Molina. Index structures for selec-
tive dissemination of information under the boolean model. ACM

TODS, 19(2):332-364, June 1994.

N. Yankelovich, N. Meyrowitz, and N. Van Dam. Reading and
writing the electronic book. TEEE Computer, pages 15-30, October
1985.

C.T. Zahn. Graph-theoretical methods for detecting and describ-
ing gestalt clusters. IEEE Trans. on Computers, C-20(1):68-86,
January 1971.

A.L. Zobrist and F.R. Carlson. Detection of combined occurrences.

CACM, 20(1):31-35, January 1977.

G.K. Zipf. Human Behavior and Principle of Least Effort: an In-
troduction to Human Ecology. Addison Wesley, Cambridge, Mas-
sachusetts, 1949.

Justin Zobel, Alistair Moffat, and Ron Sacks-Davis. An efficient
indexing technique for full-text database systems. VLDB, pages
352-362, August 1992.

References 151

[ZRT91] P. Zezula, F. Rabitti, and P. Tiberio. Dynamic partitioning of
signature files. ACM TOIS, 9(4):336-369, October 1991.

A

All pairs query, 58
Amplitude spectrum, 106
Amplitude, 99

B

Bit interleaving, 28
Black noises, 67
Blocks, 10

Bloom filters, 47
Boolean query, 19
Brown noise, 67

INDEX

Discrete Fourier Transform, 66
Discrete Wavelet Transform, 113
Distance

editing, 43
Division hashing, 12
DNA, 62
Dot product, 100

C

Cluster hypothesis, 47
Colored noises, 67
Column-orthonormal, 100
Combined indices, 20
Conjugate, 99

Cosine law, 87

Cosine similarity function, 48
Cosine similarity, 90

Cross-talk, 72

E

Editing distance, 43, 59, 62, 83
Eigenvalues, 121

Eigenvectors, 121

Energy spectrum, 67, 106
Energy, 67

Exact match query, 19

D

Data mining, 57
Database management systems, 7
Daubechies-4

Discrete Wavelet Transform, 115
DBMS, 7
Deferred splitting, 15, 35
Differential files, 47
Dimensionality curse, 22, 39, 73
Dimensionality reduction, 84

F

False alarms, 46, 58
False dismissals, 58
False drops, 46
FastMap, 89
Fourier Transform

Short Window, 113
Fractal dimension, 33, 35
Fractals, 116
Frequency leak, 108, 113

G

Geographic Information Systems,
25
GIS, 25

H

Haar transform, 114
Hashing function, 12

154 SEARCHING MULTIMEDIA DATABASES BY CONTENT

Hashing, 11
dynamic, 13
extendible, 13
linear, 13
open addressing, 12
separate chaining, 12
spiral, 13
division, 12
multiplication, 12
Hermitian matrix, 100

brown, 67
colored, 67
pink, 67

0]

Oct-trees, 38
Orthonormal, 100

I

Indices
combined, 20

Inner product, 100

J
JPEG, 111

P

PAMs, 21

Partial match query, 19
Phase, 99

Point Access Methods, 21
Point query, 26

Postings lists, 20

Power spectrum, 67, 106
Precision, 52

K

Karhunen-Loeve, 84, 123
Key-to-address transformation, 11
Keyword queries, 47

L

Latent Semantic Indexing, 48, 130
Linear quadtrees, 27, 30
Lower-bounding lemma, 62

LSI, 48, 130

M

Main memory, 10

MBR, 34

Minimum bounding rectangle, 34
Multi-dimensional scaling, 85
Multiplication hashing, 12
Multiresolution methods, 116

N

Nearest neighbor query, 20, 26, 58
Noise

black, 67

Q

QBIC, 71
Quadtree blocks, 29
Quadtrees, 116
linear, 27, 30
Query by example, 71
Query
Boolean, 19
exact match, 19
nearest neighbor, 20
partial match, 19
range, 19
sub-pattern match, 58
whole match, 58
all pairs, 58
nearest neighbor, 26, 58
point, 26
range, 26
spatial join, 26, 58
whole-match, 71

R

Random walks, 67
Range query, 19, 26

Ranked output, 51
RDBMS, 7

Recall, 52

Regular expression, 42
Relation, 7

Relational model, 7
Relevance feedback, 51

Row-orthonormal, 101

S
SAMs, 60

Secondary store, 10
Semi-joins, 47
Signature files, 45
Similarity function
cosine, 48
document-to-cluster, 48
document-to-document, 48
Singular Value Decomposition, 48,
126
Spatial Access Methods, 25, 60
Spatial join query, 26, 58
Spectrum, 106
SQL, 7
Structured Query Language, 7
Superimposed coding, 46
SVD, 48

T

Text REtrieval Conference, 52
Time-warping, 83
Transpose matrix, 100

TREC, 52

v
Vector Space Model, 47

w

Wavelet transform, 113
Whole-match query, 71
World-wide-web, 41

WWW, 41

155

Z

Z-value, 28
Zipf’s law, 44

