

i

Software
Architecture
in Practice

Second Edition

Bass.book Page i Thursday, March 20, 2003 7:21 PM

Third Edition

The SEI Series in Software Engineering represents is a collaborative
undertaking of the Carnegie Mellon Software Engineering Institute (SEI) and

Addison-Wesley to develop and publish books on software engineering and
related topics. The common goal of the SEI and Addison-Wesley is to provide
the most current information on these topics in a form that is easily usable by
practitioners and students.

Books in the series describe frameworks, tools, methods, and technologies
designed to help organizations, teams, and individuals improve their technical
or management capabilities. Some books describe processes and practices for
developing higher-quality software, acquiring programs for complex systems, or
delivering services more effectively. Other books focus on software and system
architecture and product-line development. Still others, from the SEI’s CERT
Program, describe technologies and practices needed to manage software
and network security risk. These and all books in the series address critical
problems in software engineering for which practical solutions are available.

Visit informit.com/sei for a complete list of available products.

The SEI Series in
Software Engineering

Software
Architecture
in Practice
Third Edition

Len Bass
Paul Clements
Rick Kazman

▼
▲
▼ Addison-Wesley

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

The SEI Series in Software Engineering

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

CMM, CMMI, Capability Maturity Model, Capability Maturity Modeling, Carnegie Mellon, CERT,
and CERT Coordination Center are registered in the U.S. Patent and Trademark Office by Carnegie
Mellon University.

ATAM; Architecture Tradeoff Analysis Method; CMM Integration; COTS Usage-Risk Evaluation;
CURE; EPIC; Evolutionary Process for Integrating COTS Based Systems; Framework for Software
Product Line Practice; IDEAL; Interim Profile; OAR; OCTAVE; Operationally Critical Threat, Asset,
and Vulnerability Evaluation; Options Analysis for Reengineering; Personal Software Process; PLTP;
Product Line Technical Probe; PSP; SCAMPI; SCAMPI Lead Appraiser; SCAMPI Lead Assessor;
SCE; SEI; SEPG; Team Software Process; and TSP are service marks of Carnegie Mellon University.

Special permission to reproduce portions of works copyright by Carnegie Mellon University, as listed
on page 588, is granted by the Software Engineering Institute.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training
goals, marketing focus, or branding interests), please contact our corporate sales department at corp-
sales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Bass, Len.
 Software architecture in practice / Len Bass, Paul Clements, Rick Kazman.—3rd ed.
 p. cm.—(SEI series in software engineering)
 Includes bibliographical references and index.
 ISBN 978-0-321-81573-6 (hardcover : alk. paper) 1. Software architecture. 2. System
design. I. Clements, Paul, 1955– II. Kazman, Rick. III. Title.
 QA76.754.B37 2012
 005.1—dc23
 2012023744

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction, stor-
age in a retrieval system, or transmission in any form or by any means, electronic, mechanical, pho-
tocopying, recording, or likewise. To obtain permission to use material from this work, please submit
a written request to Pearson Education, Inc., Permissions Department, 200 Old Tappan Road, Old
Tappan, New Jersey 07657, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-81573-6
ISBN-10: 0-321-81573-4

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
Fifth printing, September 2015

The SEI Series in Software Engineering

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

CMM, CMMI, Capability Maturity Model, Capability Maturity Modeling, Carnegie Mellon, CERT,
and CERT Coordination Center are registered in the U.S. Patent and Trademark Office by Carnegie
Mellon University.

ATAM; Architecture Tradeoff Analysis Method; CMM Integration; COTS Usage-Risk Evaluation;
CURE; EPIC; Evolutionary Process for Integrating COTS Based Systems; Framework for Software
Product Line Practice; IDEAL; Interim Profile; OAR; OCTAVE; Operationally Critical Threat, Asset,
and Vulnerability Evaluation; Options Analysis for Reengineering; Personal Software Process; PLTP;
Product Line Technical Probe; PSP; SCAMPI; SCAMPI Lead Appraiser; SCAMPI Lead Assessor;
SCE; SEI; SEPG; Team Software Process; and TSP are service marks of Carnegie Mellon University.

Special permission to reproduce portions of works copyright by Carnegie Mellon University, as listed
on page 588, is granted by the Software Engineering Institute.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Bass, Len.
 Software architecture in practice / Len Bass, Paul Clements, Rick Kazman.—3rd ed.
 p. cm.—(SEI series in software engineering)
 Includes bibliographical references and index.
 ISBN 978-0-321-81573-6 (hardcover : alk. paper) 1. Software architecture. 2. System
design. I. Clements, Paul, 1955– II. Kazman, Rick. III. Title.
 QA76.754.B37 2012
 005.1—dc23
 2012023744

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction, stor-
age in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photo-
copying, recording, or likewise. To obtain permission to use material from this work, please submit a
written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle
River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-81573-6
ISBN-10: 0-321-81573-4

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
Second printing, May 2013

The SEI Series in Software Engineering

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with ini-
tial capital letters or in all capitals.

CMM, CMMI, Capability Maturity Model, Capability Maturity Modeling, Carnegie Mellon, CERT, and CERT Coordination Center
are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

ATAM; Architecture Tradeoff Analysis Method; CMM Integration; COTS Usage-Risk Evaluation; CURE; EPIC; Evolutionary
Process for Integrating COTS Based Systems; Framework for Software Product Line Practice; IDEAL; Interim Profile; OAR;
OCTAVE; Operationally Critical Threat, Asset, and Vulnerability Evaluation; Options Analysis for Reengineering; Personal Soft-
ware Process; PLTP; Product Line Technical Probe; PSP; SCAMPI; SCAMPI Lead Appraiser; SCAMPI Lead Assessor; SCE; SEI;
SEPG; Team Software Process; and TSP are service marks of Carnegie Mellon University.

Special permission to reproduce portions of CMMI for Development (CMU/SEI-2010-TR-035), © 2010 by Carnegie Mellon
 University, has been granted by the Software Engineering Institute.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
 connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may
include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and
branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Chrissis, Mary Beth.
CMMI for development : guidelines for process integration and product

improvement / Mary Beth Chrissis, Mike Konrad, Sandy Shrum.—3rd ed.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-321-71150-2 (hardcover : alk. paper)

1. Capability maturity model (Computer software) 2. Software
engineering. 3. Production engineering. 4. Manufacturing processes.
I. Konrad, Mike. II. Shrum, Sandy. III. Title.

QA76.758.C518 2011
005.1—dc22

2010049515

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by
any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-71150-2
ISBN-10: 0-321-71150-5

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, March 2011

00FMBass.indd 4 5/6/13 12:38 PM

v

Contents

Preface xv

Reader’s Guide xvii

Acknowledgments xix

 Part ONE INtrOductION 1
cHaPtEr 1 What Is Software architecture? 3

1.1 What Software Architecture Is and What It
Isn’t 4

1.2 Architectural Structures and Views 9

1.3 Architectural Patterns 18

1.4 What Makes a “Good” Architecture? 19

1.5 Summary 21

1.6 For Further Reading 22

1.7 Discussion Questions 23

cHaPtEr 2 Why Is Software architecture Important? 25

2.1 Inhibiting or Enabling a System’s Quality
Attributes 26

2.2 Reasoning About and Managing
Change 27

2.3 Predicting System Qualities 28

2.4 Enhancing Communication among
Stakeholders 29

2.5 Carrying Early Design Decisions 31

2.6 Defining Constraints on an
Implementation 32

2.7 Influencing the Organizational Structure 33

2.8 Enabling Evolutionary Prototyping 33

vi Contents

2.9 Improving Cost and Schedule Estimates 34

2.10 Supplying a Transferable, Reusable
Model 35

2.11 Allowing Incorporation of Independently
Developed Components 35

2.12 Restricting the Vocabulary of Design
Alternatives 36

2.13 Providing a Basis for Training 37

2.14 Summary 37

2.15 For Further Reading 38

2.16 Discussion Questions 38

cHaPtEr 3 the Many contexts of Software
architecture 39

3.1 Architecture in a Technical Context 40

3.2 Architecture in a Project Life-Cycle
Context 44

3.3 Architecture in a Business Context 49

3.4 Architecture in a Professional Context 51

3.5 Stakeholders 52

3.6 How Is Architecture Influenced? 56

3.7 What Do Architectures Influence? 57

3.8 Summary 59

3.9 For Further Reading 59

3.10 Discussion Questions 60

 Part tWO QualIty attrIbutES 61
cHaPtEr 4 understanding Quality attributes 63

4.1 Architecture and Requirements 64

4.2 Functionality 65

4.3 Quality Attribute Considerations 65

4.4 Specifying Quality Attribute
Requirements 68

4.5 Achieving Quality Attributes through
Tactics 70

4.6 Guiding Quality Design Decisions 72

4.7 Summary 76

Contents vii

4.8 For Further Reading 77

4.9 Discussion Questions 77

cHaPtEr 5 availability 79

5.1 Availability General Scenario 85

5.2 Tactics for Availability 87

5.3 A Design Checklist for Availability 96

5.4 Summary 98

5.5 For Further Reading 99

5.6 Discussion Questions 100

cHaPtEr 6 Interoperability 103

6.1 Interoperability General Scenario 107

6.2 Tactics for Interoperability 110

6.3 A Design Checklist for Interoperability 114

6.4 Summary 115

6.5 For Further Reading 116

6.6 Discussion Questions 116

cHaPtEr 7 Modifiability 117

7.1 Modifiability General Scenario 119

7.2 Tactics for Modifiability 121

7.3 A Design Checklist for Modifiability 125

7.4 Summary 128

7.5 For Further Reading 128

7.6 Discussion Questions 128

cHaPtEr 8 Performance 131

8.1 Performance General Scenario 132

8.2 Tactics for Performance 135

8.3 A Design Checklist for Performance 142

8.4 Summary 145

8.5 For Further Reading 145

8.6 Discussion Questions 145

cHaPtEr 9 Security 147

9.1 Security General Scenario 148

9.2 Tactics for Security 150

viii Contents

9.3 A Design Checklist for Security 154

9.4 Summary 156

9.5 For Further Reading 157

9.6 Discussion Questions 158

cHaPtEr 10 testability 159

10.1 Testability General Scenario 162

10.2 Tactics for Testability 164

10.3 A Design Checklist for Testability 169

10.4 Summary 172

10.5 For Further Reading 172

10.6 Discussion Questions 173

cHaPtEr 11 usability 175

11.1 Usability General Scenario 176

11.2 Tactics for Usability 177

11.3 A Design Checklist for Usability 181

11.4 Summary 183

11.5 For Further Reading 183

11.6 Discussion Questions 183

cHaPtEr 12 Other Quality attributes 185

12.1 Other Important Quality Attributes 185

12.2 Other Categories of Quality Attributes 189

12.3 Software Quality Attributes and System
Quality Attributes 190

12.4 Using Standard Lists of Quality Attributes—
or Not 193

12.5 Dealing with “X-ability”: Bringing a New
Quality Attribute into the Fold 196

12.6 For Further Reading 200

12.7 Discussion Questions 201

cHaPtEr 13 architectural tactics and Patterns 203

13.1 Architectural Patterns 204

13.2 Overview of the Patterns Catalog 205

13.3 Relationships between Tactics and
Patterns 238

Contents ix

13.4 Using Tactics Together 242

13.5 Summary 247

13.6 For Further Reading 248

13.7 Discussion Questions 249

cHaPtEr 14 Quality attribute Modeling and analysis 251

14.1 Modeling Architectures to Enable Quality
Attribute Analysis 252

14.2 Quality Attribute Checklists 260

14.3 Thought Experiments and
Back-of-the-Envelope Analysis 262

14.4 Experiments, Simulations, and
Prototypes 264

14.5 Analysis at Different Stages of the Life
Cycle 265

14.6 Summary 266

14.7 For Further Reading 267

14.8 Discussion Questions 269

 Part tHrEE arcHItEcturE IN tHE lIfE
cyclE 271

cHaPtEr 15 architecture in agile Projects 275

15.1 How Much Architecture? 277

15.2 Agility and Architecture Methods 281

15.3 A Brief Example of Agile Architecting 283

15.4 Guidelines for the Agile Architect 286

15.5 Summary 287

15.6 For Further Reading 288

15.7 Discussion Questions 289

cHaPtEr 16 architecture and requirements 291

16.1 Gathering ASRs from Requirements
Documents 292

16.2 Gathering ASRs by Interviewing
Stakeholders 294

16.3 Gathering ASRs by Understanding the
Business Goals 296

x Contents

16.4 Capturing ASRs in a Utility Tree 304

16.5 Tying the Methods Together 308

16.6 Summary 308

16.7 For Further Reading 309

16.8 Discussion Questions 309

cHaPtEr 17 designing an architecture 311

17.1 Design Strategy 311

17.2 The Attribute-Driven Design Method 316

17.3 The Steps of ADD 318

17.4 Summary 325

17.5 For Further Reading 325

17.6 Discussion Questions 326

cHaPtEr 18 documenting Software architectures 327

18.1 Uses and Audiences for Architecture
Documentation 328

18.2 Notations for Architecture
Documentation 329

18.3 Views 331

18.4 Choosing the Views 341

18.5 Combining Views 343

18.6 Building the Documentation Package 345

18.7 Documenting Behavior 351

18.8 Architecture Documentation and Quality
Attributes 354

18.9 Documenting Architectures That Change
Faster Than You Can Document Them 355

18.10 Documenting Architecture in an Agile
Development Project 356

18.11 Summary 359

18.12 For Further Reading 360

18.13 Discussion Questions 360

cHaPtEr 19 architecture, Implementation, and
testing 363

19.1 Architecture and Implementation 363

19.2 Architecture and Testing 370

Contents xi

19.3 Summary 376

19.4 For Further Reading 376

19.5 Discussion Questions 377

cHaPtEr 20 architecture reconstruction and
conformance 379

20.1 Architecture Reconstruction Process 381

20.2 Raw View Extraction 382

20.3 Database Construction 386

20.4 View Fusion 388

20.5 Architecture Analysis: Finding
Violations 389

20.6 Guidelines 392

20.7 Summary 393

20.8 For Further Reading 394

20.9 Discussion Questions 395

cHaPtEr 21 architecture Evaluation 397

21.1 Evaluation Factors 397

21.2 The Architecture Tradeoff Analysis
Method 400

21.3 Lightweight Architecture Evaluation 415

21.4 Summary 417

21.5 For Further Reading 417

21.6 Discussion Questions 418

cHaPtEr 22 Management and Governance 419

22.1 Planning 420

22.2 Organizing 422

22.3 Implementing 427

22.4 Measuring 429

22.5 Governance 430

22.6 Summary 432

22.7 For Further Reading 432

22.8 Discussion Questions 433

xii Contents

 Part fOur arcHItEcturE aNd
buSINESS 435

cHaPtEr 23 Economic analysis of architectures 437

23.1 Decision-Making Context 438

23.2 The Basis for the Economic Analyses 439

23.3 Putting Theory into Practice:
The CBAM 442

23.4 Case Study: The NASA ECS Project 450

23.5 Summary 457

23.6 For Further Reading 458

23.7 Discussion Questions 458

cHaPtEr 24 architecture competence 459

24.1 Competence of Individuals: Duties, Skills, and
Knowledge of Architects 460

24.2 Competence of a Software Architecture
Organization 467

24.3 Summary 475

24.4 For Further Reading 475

24.5 Discussion Questions 477

cHaPtEr 25 architecture and Software Product lines 479

25.1 An Example of Product Line
Variability 482

25.2 What Makes a Software Product Line
Work? 483

25.3 Product Line Scope 486

25.4 The Quality Attribute of Variability 488

25.5 The Role of a Product Line
Architecture 488

25.6 Variation Mechanisms 490

25.7 Evaluating a Product Line
Architecture 493

25.8 Key Software Product Line Issues 494

25.9 Summary 497

25.10 For Further Reading 498

25.11 Discussion Questions 498

Contents xiii

 Part fIVE tHE braVE NEW WOrld 501
cHaPtEr 26 architecture in the cloud 503

26.1 Basic Cloud Definitions 504

26.2 Service Models and Deployment
Options 505

26.3 Economic Justification 506

26.4 Base Mechanisms 509

26.5 Sample Technologies 514

26.6 Architecting in a Cloud Environment 520

26.7 Summary 524

26.8 For Further Reading 524

26.9 Discussion Questions 525

cHaPtEr 27 architectures for the Edge 527

27.1 The Ecosystem of Edge-Dominant
Systems 528

27.2 Changes to the Software Development Life
Cycle 530

27.3 Implications for Architecture 531

27.4 Implications of the Metropolis Model 533

27.5 Summary 537

27.6 For Further Reading 538

27.7 Discussion Questions 538

cHaPtEr 28 Epilogue 541

References 547

About the Authors 561

Index 563

This page intentionally left blank

xv

Preface

I should have no objection to go over the same
life from its beginning to the end: requesting only

the advantage authors have, of correcting in a
[third] edition the faults of the first [two].

— Benjamin Franklin

It has been a decade since the publication of the second edition of this book.
During that time, the field of software architecture has broadened its focus
from being primarily internally oriented—How does one design, evaluate,
and document software?—to including external impacts as well—a deeper
understanding of the influences on architectures and a deeper understanding of
the impact architectures have on the life cycle, organizations, and management.

The past ten years have also seen dramatic changes in the types of systems
being constructed. Large data, social media, and the cloud are all areas that, at
most, were embryonic ten years ago and now are not only mature but extremely
influential.

We listened to some of the criticisms of the previous editions and have
included much more material on patterns, reorganized the material on quality
attributes, and made interoperability a quality attribute worthy of its own chapter.
We also provide guidance about how you can generate scenarios and tactics for
your own favorite quality attributes.

To accommodate this plethora of new material, we had to make difficult
choices. In particular, this edition of the book does not include extended
case studies as the prior editions did. This decision also reflects the maturing
of the field, in the sense that case studies about the choices made in software
architectures are more prevalent than they were ten years ago, and they are less
necessary to convince readers of the importance of software architecture. The
case studies from the first two editions are available, however, on the book’s
website, at www.informit.com/title/9780321815736. In addition, on the same
website, we have slides that will assist instructors in presenting this material.

We have thoroughly reworked many of the topics covered in this edition.
In particular, we realize that the methods we present—for architecture design,
analysis, and documentation—are one version of how to achieve a particular
goal, but there are others. This led us to separate the methods that we present

http://www.informit.com/title/9780321815736

xvi Preface

in detail from their underlying theory. We now present the theory first with
specific methods given as illustrations of possible realizations of the theories.
The new topics in this edition include architecture-centric project management;
architecture competence; requirements modeling and analysis; Agile methods;
implementation and testing; the cloud; and the edge.

As with the prior editions, we firmly believe that the topics are best discussed
in either reading groups or in classroom settings, and to that end we have included
a collection of discussion questions at the end of each chapter. Most of these
questions are open-ended, with no absolute right or wrong answers, so you, as a
reader, should emphasize how you justify your answer rather than just answer the
question itself.

xvii

Reader’s Guide

We have structured this book into five distinct portions. Part One introduces
architecture and the various contextual lenses through which it could be viewed.
These are the following:

 ■ Technical. What technical role does the software architecture play in the
system or systems of which it’s a part?

 ■ Project. How does a software architecture relate to the other phases of a
software development life cycle?

 ■ Business. How does the presence of a software architecture affect an
organization’s business environment?

 ■ Professional. What is the role of a software architect in an organization or a
development project?

Part Two is focused on technical background. Part Two describes how
decisions are made. Decisions are based on the desired quality attributes for a
system, and Chapters 5–11 describe seven different quality attributes and the
techniques used to achieve them. The seven are availability, interoperability,
maintainability, performance, security, testability, and usability. Chapter 12
tells you how to add other quality attributes to our seven, Chapter 13 discusses
patterns and tactics, and Chapter 14 discusses the various types of modeling and
analysis that are possible.

Part Three is devoted to how a software architecture is related to the other
portions of the life cycle. Of special note is how architecture can be used in Agile
projects. We discuss individually other aspects of the life cycle: requirements,
design, implementation and testing, recovery and conformance, and evaluation.

Part Four deals with the business of architecting from an economic
perspective, from an organizational perspective, and from the perspective of
constructing a series of similar systems.

Part Five discusses several important emerging technologies and how
architecture relates to these technologies.

This page intentionally left blank

xix

Acknowledgments

We had a fantastic collection of reviewers for this edition, and their assistance
helped make this a better book. Our reviewers were Muhammad Ali Babar, Felix
Bachmann, Joe Batman, Phil Bianco, Jeromy Carriere, Roger Champagne, Steve
Chenoweth, Viktor Clerc, Andres Diaz Pace, George Fairbanks, Rik Farenhorst,
Ian Gorton, Greg Hartman, Rich Hilliard, James Ivers, John Klein, Philippe
Kruchten, Phil Laplante, George Leih, Grace Lewis, John McGregor, Tommi
Mikkonen, Linda Northrop, Ipek Ozkaya, Eltjo Poort, Eelco Rommes, Nick
Rozanski, Jungwoo Ryoo, James Scott, Antony Tang, Arjen Uittenbogaard, Hans
van Vliet, Hiroshi Wada, Rob Wojcik, Eoin Woods, and Liming Zhu.

In addition, we had significant contributions from Liming Zhu, Hong-
Mei Chen, Jungwoo Ryoo, Phil Laplante, James Scott, Grace Lewis, and Nick
Rozanski that helped give the book a richer flavor than one written by just the
three of us.

The issue of build efficiency in Chapter 12 came from Rolf Siegers and John
McDonald of Raytheon. John Klein and Eltjo Poort contributed the “abstract
system clock” and “sandbox mode” tactics, respectively, for testability. The list
of stakeholders in Chapter 3 is from Documenting Software Architectures: Views
and Beyond, Second Edition. Some of the material in Chapter 28 was inspired by a
talk given by Anthony Lattanze called “Organizational Design Thinking” in 2011.

Joe Batman was instrumental in the creation of the seven categories of design
decisions we describe in Chapter 4. In addition, the descriptions of the security
view, communications view, and exception view in Chapter 18 are based on material
that Joe wrote while planning the documentation for a real system’s architecture.
Much of the new material on modifiability tactics was based on the work of Felix
Bachmann and Rod Nord. James Ivers helped us with the security tactics.

Both Paul Clements and Len Bass have taken new positions since the
last edition was published, and we thank their new respective managements
(BigLever Software for Paul and NICTA for Len) for their willingness to support
our work on this edition. We would also like to thank our (former) colleagues at
the Software Engineering Institute for multiple contributions to the evolution of
the ideas expressed in this edition.

Finally, as always, we thank our editor at Addison-Wesley, Peter Gordon,
for providing guidance and support during the writing and production processes.

This page intentionally left blank

1

1

PA R T O N E

ENVISIONING
ARCHITECTURE

Where do architectures come from? They spring from the minds of architects, of
course, but how? What must go

into

 the mind of an architect for an architecture to
come

out?

 For that matter, what

is

 a software architecture? Is it the same as
design? If so, what’s the fuss? If it’s different, how so and why is it important?

In Part One, we focus on the forces and influences that are at work as the
architect begins creating—

envisioning

—the central artifact of a system whose
influences persist beyond the lifetime of the system. Whereas we often think of
design as taking the right steps to ensure that the system will perform as
expected—produce the correct answer or provide the expected functionality—
architecture is additionally concerned with much longer-range issues. The archi-
tect is faced with a swarm of competing, if not conflicting, influences and
demands, surprisingly few of which are concerned with getting the system to
work correctly. The organizational and technical environment brings to bear a
weighty set of sometimes implicit demands, and in practice these are as impor-
tant as any of the explicit requirements for the software even though they are
almost never written down.

Also surprising are the ways in which the architecture produces a deep influ-
ence on the organization that spawned it. It is decidedly not the case that the orga-
nization produces the architecture, ties it to the system for which it was developed,
and locks it away in that compartment. Instead, architectures and their developing
organizations dance an intricate waltz of influence and counterinfluence, helping
each other to grow, evolve, and take on larger roles.

Bass.book Page 1 Thursday, March 20, 2003 7:21 PM

PA R T O N E

INtrOductION

What is a software architecture? What is it good for? How does it come to be?
What effect does its existence have? These are the questions we answer in Part I.

Chapter 1 deals with a technical perspective on software architecture. We
define it and relate it to system and enterprise architectures. We discuss how the
architecture can be represented in different views to emphasize different perspec-
tives on the architecture. We define patterns and discuss what makes a “good”
architecture.

In Chapter 2, we discuss the uses of an architecture. You may be surprised
that we can find so many—ranging from a vehicle for communication among
stakeholders to a blueprint for implementation, to the carrier of the system’s
quality attributes. We also discuss how the architecture provides a reasoned basis
for schedules and how it provides the foundation for training new members on a
team.

Finally, in Chapter 3, we discuss the various contexts in which a software ar-
chitecture exists. It exists in a technical context, in a project life-cycle context, in
a business context, and in a professional context. Each of these contexts defines a
role for the software architecture to play, or an influence on it. These impacts and
influences define the Architecture Influence Cycle.

This page intentionally left blank

3

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

1
What Is Software
Architecture?

Good judgment is usually the result of experience.
And experience is frequently the result of bad
judgment. But to learn from the experience of

others requires those who have the experience to
share the knowledge with those who follow.

—Barry LePatner

Writing (on our part) and reading (on your part) a book about software architec-
ture, which distills the experience of many people, presupposes that

1. having a software architecture is important to the successful development
of a software system and

2. there is a sufficient, and sufficiently generalizable, body of knowledge
about software architecture to fill up a book.

One purpose of this book is to convince you that both of these assumptions are
true, and once you are convinced, give you a basic knowledge so that you can
apply it yourself.

Software systems are constructed to satisfy organizations’ business goals.
The architecture is a bridge between those (often abstract) business goals and
the final (concrete) resulting system. While the path from abstract goals to con-
crete systems can be complex, the good news is that software architectures can be
designed, analyzed, documented, and implemented using known techniques that
will support the achievement of these business and mission goals. The complex-
ity can be tamed, made tractable.

These, then, are the topics for this book: the design, analysis, documenta-
tion, and implementation of architectures. We will also examine the influences,
principally in the form of business goals and quality attributes, which inform
these activities.

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

4 Part One Introduction 1—What Is Software Architecture?

In this chapter we will focus on architecture strictly from a software engineer-
ing point of view. That is, we will explore the value that a software architecture
brings to a development project. (Later chapters will take a business and organi-
zational perspective.)

1.1 What Software architecture Is and What It Isn’t

There are many definitions of software architecture, easily discoverable with
a web search, but the one we like is this one:

The software architecture of a system is the set of structures needed to
reason about the system, which comprise software elements, relations
among them, and properties of both.

This definition stands in contrast to other definitions that talk about the sys-
tem’s “early” or “major” design decisions. While it is true that many architectural
decisions are made early, not all are—especially in Agile or spiral-development
projects. It’s also true that very many decisions are made early that are not archi-
tectural. Also, it’s hard to look at a decision and tell whether or not it’s “major.”
Sometimes only time will tell. And since writing down an architecture is one of
the architect’s most important obligations, we need to know now which decisions
an architecture comprises.

Structures, on the other hand, are fairly easy to identify in software, and they
form a powerful tool for system design.

Let us look at some of the implications of our definition.

architecture Is a Set of Software Structures

This is the first and most obvious implication of our definition. A structure is sim-
ply a set of elements held together by a relation. Software systems are composed
of many structures, and no single structure holds claim to being the architecture.
There are three categories of architectural structures, which will play an import-
ant role in the design, documentation, and analysis of architectures:

1. First, some structures partition systems into implementation units, which
in this book we call modules. Modules are assigned specific computational
responsibilities, and are the basis of work assignments for programming
teams (Team A works on the database, Team B works on the business rules,
Team C works on the user interface, etc.). In large projects, these elements
(modules) are subdivided for assignment to subteams. For example, the da-
tabase for a large enterprise resource planning (ERP) implementation might
be so complex that its implementation is split into many parts. The structure
that captures that decomposition is a kind of module structure, the module

1.1 What Software Architecture Is and What It Isn’t 5

decomposition structure in fact. Another kind of module structure emerges
as an output of object-oriented analysis and design—class diagrams. If you
aggregate your modules into layers, you’ve created another (and very use-
ful) module structure. Module structures are static structures, in that they
focus on the way the system’s functionality is divided up and assigned to
implementation teams.

2. Other structures are dynamic, meaning that they focus on the way the el-
ements interact with each other at runtime to carry out the system’s func-
tions. Suppose the system is to be built as a set of services. The services,
the infrastructure they interact with, and the synchronization and interaction
relations among them form another kind of structure often used to describe
a system. These services are made up of (compiled from) the programs in
the various implementation units that we just described. In this book we
will call runtime structures component-and-connector (C&C) structures.
The term component is overloaded in software engineering. In our use, a
component is always a runtime entity.

3. A third kind of structure describes the mapping from software structures
to the system’s organizational, developmental, installation, and execution
environments. For example, modules are assigned to teams to develop, and
assigned to places in a file structure for implementation, integration, and
testing. Components are deployed onto hardware in order to execute. These
mappings are called allocation structures.

Although software comprises an endless supply of structures, not all of them
are architectural. For example, the set of lines of source code that contain the let-
ter “z,” ordered by increasing length from shortest to longest, is a software struc-
ture. But it’s not a very interesting one, nor is it architectural. A structure is archi-
tectural if it supports reasoning about the system and the system’s properties. The
reasoning should be about an attribute of the system that is important to some
stakeholder. These include functionality achieved by the system, the availability
of the system in the face of faults, the difficulty of making specific changes to the
system, the responsiveness of the system to user requests, and many others. We
will spend a great deal of time in this book on the relationship between architec-
ture and quality attributes like these.

Thus, the set of architectural structures is not fixed or limited. What is archi-
tectural is what is useful in your context for your system.

architecture Is an abstraction

Because architecture consists of structures and structures consist of elements1
and relations, it follows that an architecture comprises software elements and

1. In this book we use the term “element” when we mean either a module or a component, and don’t
want to distinguish.

6 Part One Introduction 1—What Is Software Architecture?

how the elements relate to each other. This means that architecture specifically
omits certain information about elements that is not useful for reasoning about
the system—in particular, it omits information that has no ramifications outside
of a single element. Thus, an architecture is foremost an abstraction of a system
that selects certain details and suppresses others. In all modern systems, elements
interact with each other by means of interfaces that partition details about an el-
ement into public and private parts. Architecture is concerned with the public
side of this division; private details of elements—details having to do solely with
internal implementation—are not architectural. Beyond just interfaces, though,
the architectural abstraction lets us look at the system in terms of its elements,
how they are arranged, how they interact, how they are composed, what their
properties are that support our system reasoning, and so forth. This abstraction
is essential to taming the complexity of a system—we simply cannot, and do not
want to, deal with all of the complexity all of the time.

Every Software System Has a Software architecture

Every system can be shown to comprise elements and relations among them to
support some type of reasoning. In the most trivial case, a system is itself a single
element—an uninteresting and probably non-useful architecture, but an architec-
ture nevertheless.

Even though every system has an architecture, it does not necessarily follow
that the architecture is known to anyone. Perhaps all of the people who designed
the system are long gone, the documentation has vanished (or was never pro-
duced), the source code has been lost (or was never delivered), and all we have is
the executing binary code. This reveals the difference between the architecture of
a system and the representation of that architecture. Because an architecture can
exist independently of its description or specification, this raises the importance
of architecture documentation, which is described in Chapter 18, and architec-
ture reconstruction, discussed in Chapter 20.

architecture Includes behavior

The behavior of each element is part of the architecture insofar as that behavior
can be used to reason about the system. This behavior embodies how elements
interact with each other, which is clearly part of our definition of architecture.

This tells us that box-and-line drawings that are passed off as architectures
are in fact not architectures at all. When looking at the names of the boxes (da-
tabase, graphical user interface, executive, etc.), a reader may well imagine the
functionality and behavior of the corresponding elements. This mental image
approaches an architecture, but it springs from the imagination of the observ-
er’s mind and relies on information that is not present. This does not mean that
the exact behavior and performance of every element must be documented in
all circumstances—some aspects of behavior are fine-grained and below the

1.1 What Software Architecture Is and What It Isn’t 7

architect’s level of concern. But to the extent that an element’s behavior influ-
ences another element or influences the acceptability of the system as a whole,
this behavior must be considered, and should be documented, as part of the soft-
ware architecture.

Not all architectures are Good architectures

The definition is indifferent as to whether the architecture for a system is a good
one or a bad one. An architecture may permit or preclude a system’s achievement
of its behavioral, quality attribute, and life-cycle requirements. Assuming that we
do not accept trial and error as the best way to choose an architecture for a sys-
tem—that is, picking an architecture at random, building the system from it, and
then hacking away and hoping for the best—this raises the importance of archi-
tecture design, which is treated in Chapter 17, and architecture evaluation, which
we deal with in Chapter 21.

System and Enterprise Architectures

Two disciplines related to software architecture are system architecture
and enterprise architecture. Both of these disciplines have broader con-
cerns than software and affect software architecture through the estab-
lishment of constraints within which a software system must live. In both
cases, the software architect for a system should be on the team that pro-
vides input into the decisions made about the system or the enterprise.

System architecture
A system’s architecture is a representation of a system in which there
is a mapping of functionality onto hardware and software components,
a mapping of the software architecture onto the hardware architecture,
and a concern for the human interaction with these components. That is,
system architecture is concerned with a total system, including hardware,
software, and humans.

A system architecture will determine, for example, the functionality that
is assigned to different processors and the type of network that connects
those processors. The software architecture on each of those processors
will determine how this functionality is implemented and how the various
processors interact through the exchange of messages on the network.

A description of the software architecture, as it is mapped to hardware
and networking components, allows reasoning about qualities such as per-
formance and reliability. A description of the system architecture will allow
reasoning about additional qualities such as power consumption, weight,
and physical footprint.

When a particular system is designed, there is frequently negotiation be-
tween the system architect and the software architect as to the distribution

8 Part One Introduction 1—What Is Software Architecture?

of functionality and, consequently, the constraints placed on the software
architecture.

Enterprise architecture
Enterprise architecture is a description of the structure and behavior of an
organization’s processes, information flow, personnel, and organizational
subunits, aligned with the organization’s core goals and strategic direction.
An enterprise architecture need not include information systems—clearly
organizations had architectures that fit the preceding definition prior to the
advent of computers—but these days, enterprise architectures for all but the
smallest businesses are unthinkable without information system support.
Thus, a modern enterprise architecture is concerned with how an enter-
prise’s software systems support the business processes and goals of the
enterprise. Typically included in this set of concerns is a process for deciding
which systems with which functionality should be supported by an enterprise.

An enterprise architecture will specify the data model that various sys-
tems use to interact, for example. It will specify rules for how the enter-
prise’s systems interact with external systems.

Software is only one concern of enterprise architecture. Two other com-
mon concerns addressed by enterprise architecture are how the software
is used by humans to perform business processes, and the standards that
determine the computational environment.

Sometimes the software infrastructure that supports communication
among systems and with the external world is considered a portion of the
enterprise architecture; other times, this infrastructure is considered one
of the systems within an enterprise. (In either case, the architecture of that
infrastructure is a software architecture!) These two views will result in dif-
ferent management structures and spheres of influence for the individuals
concerned with the infrastructure.

The system and the enterprise provide environments for, and constraints
on, the software architecture. The software architecture must live within
the system and enterprise, and increasingly it is the focus for achieving the
organization’s business goals. But all three forms of architecture share im-
portant commonalities: They are concerned with major elements taken as
abstractions, the relationships among the elements, and how the elements
together meet the behavioral and quality goals of the thing being built.

Are these in scope for this book? Yes! (Well, no.)
System and enterprise architectures share a great deal with software ar-
chitectures. All can be designed, evaluated, and documented; all answer
to requirements; all are intended to satisfy stakeholders; all consist of
structures, which in turn consist of elements and relationships; all have a
repertoire of patterns and styles at their respective architects’ disposal;
and the list goes on. So to the extent that these architectures share com-
monalities with software architecture, they are in the scope of this book.
But like all technical disciplines, each has its own specialized vocabulary
and techniques, and we won’t cover those. Copious other sources do.

1.2 Architectural Structures and Views 9

1.2 architectural Structures and Views

The neurologist, the orthopedist, the hematologist, and the dermatologist all have
different views of the structure of a human body. Ophthalmologists, cardiolo-
gists, and podiatrists concentrate on specific subsystems. And the kinesiologist
and psychiatrist are concerned with different aspects of the entire arrangement’s
behavior. Although these views are pictured differently and have very different
properties, all are inherently related, interconnected: together they describe the
architecture of the human body. Figure 1.1 shows several different views of the
human body: the skeletal, the vascular, and the X-ray.

fIGurE 1.1 Physiological structures (Getty images: Brand X Pictures [skeleton],
Don Farrall [woman], Mads Abildgaard [man])

So it is with software. Modern systems are frequently too complex to grasp
all at once. Instead, we restrict our attention at any one moment to one (or a
small number) of the software system’s structures. To communicate meaningfully
about an architecture, we must make clear which structure or structures we are
discussing at the moment—which view we are taking of the architecture.

10 Part One Introduction 1—What Is Software Architecture?

Structures and Views

We will be using the related terms structure and view when discussing architec-
ture representation.

 ■ A view is a representation of a coherent set of architectural elements, as
written by and read by system stakeholders. It consists of a representation
of a set of elements and the relations among them.

 ■ A structure is the set of elements itself, as they exist in software or
hardware.

In short, a view is a representation of a structure. For example, a module
structure is the set of the system’s modules and their organization. A module view
is the representation of that structure, documented according to a template in a
chosen notation, and used by some system stakeholders.

So: Architects design structures. They document views of those structures.

three Kinds of Structures

As we saw in the previous section, architectural structures can be divided into
three major categories, depending on the broad nature of the elements they show.
These correspond to the three broad kinds of decisions that architectural design
involves:

1. Module structures embody decisions as to how the system is to be struc-
tured as a set of code or data units that have to be constructed or procured.
In any module structure, the elements are modules of some kind (perhaps
classes, or layers, or merely divisions of functionality, all of which are units
of implementation). Modules represent a static way of considering the sys-
tem. Modules are assigned areas of functional responsibility; there is less
emphasis in these structures on how the resulting software manifests itself
at runtime. Module structures allow us to answer questions such as these:

 ■ What is the primary functional responsibility assigned to each module?
 ■ What other software elements is a module allowed to use?
 ■ What other software does it actually use and depend on?
 ■ What modules are related to other modules by generalization or special-

ization (i.e., inheritance) relationships?

Module structures convey this information directly, but they can also be
used by extension to ask questions about the impact on the system when the
responsibilities assigned to each module change. In other words, examining
a system’s module structures—that is, looking at its module views—is an
excellent way to reason about a system’s modifiability.

2. Component-and-connector structures embody decisions as to how the
system is to be structured as a set of elements that have runtime behav-
ior (components) and interactions (connectors). In these structures, the

1.2 Architectural Structures and Views 11

elements are runtime components (which are the principal units of compu-
tation and could be services, peers, clients, servers, filters, or many other
types of runtime elements) and connectors (which are the communication
vehicles among components, such as call-return, process synchronization
operators, pipes, or others). Component-and-connector views help us an-
swer questions such as these:

 ■ What are the major executing components and how do they interact at
runtime?

 ■ What are the major shared data stores?
 ■ Which parts of the system are replicated?
 ■ How does data progress through the system?
 ■ What parts of the system can run in parallel?
 ■ Can the system’s structure change as it executes and, if so, how?

By extension, component-and-connector views are crucially important
for asking questions about the system’s runtime properties such as
performance, security, availability, and more.

3. Allocation structures embody decisions as to how the system will relate
to nonsoftware structures in its environment (such as CPUs, file systems,
networks, development teams, etc.). These structures show the relationship
between the software elements and elements in one or more external envi-
ronments in which the software is created and executed. Allocation views
help us answer questions such as these:

 ■ What processor does each software element execute on?
 ■ In what directories or files is each element stored during development,

testing, and system building?
 ■ What is the assignment of each software element to development teams?

Structures Provide Insight

Structures play such an important role in our perspective on software architec-
ture because of the analytical and engineering power they hold. Each structure
provides a perspective for reasoning about some of the relevant quality attributes.
For example:

 ■ The module “uses” structure, which embodies what modules use what other
modules, is strongly tied to the ease with which a system can be extended
or contracted.

 ■ The concurrency structure, which embodies parallelism within the system,
is strongly tied to the ease with which a system can be made free of
deadlock and performance bottlenecks.

 ■ The deployment structure is strongly tied to the achievement of
performance, availability, and security goals.

12 Part One Introduction 1—What Is Software Architecture?

And so forth. Each structure provides the architect with a different insight
into the design (that is, each structure can be analyzed for its ability to deliver a
quality attribute). But perhaps more important, each structure presents the archi-
tect with an engineering leverage point: By designing the structures appropri-
ately, the desired quality attributes emerge.

Scenarios, described in Chapter 4, are useful for exercising a given structure
as well as its connections to other structures. For example, a software engineer
wanting to make a change to the concurrency structure of a system would need
to consult the concurrency and deployment views, because the affected mecha-
nisms typically involve processes and threads, and physical distribution might
involve different control mechanisms than would be used if the processes were
co-located on a single machine. If control mechanisms need to be changed, the
module decomposition would need to be consulted to determine the extent of the
changes.

Some useful Module Structures

Useful module structures include the following:

 ■ Decomposition structure. The units are modules that are related to each
other by the is-a-submodule-of relation, showing how modules are decom-
posed into smaller modules recursively until the modules are small enough
to be easily understood. Modules in this structure represent a common
starting point for design, as the architect enumerates what the units of
software will have to do and assigns each item to a module for subsequent
(more detailed) design and eventual implementation. Modules often have
products (such as interface specifications, code, test plans, etc.) associated
with them. The decomposition structure determines, to a large degree, the
system’s modifiability, by assuring that likely changes are localized. That
is, changes fall within the purview of at most a few (preferably small) mod-
ules. This structure is often used as the basis for the development project’s
organization, including the structure of the documentation, and the project’s
integration and test plans. The units in this structure tend to have names that
are organization-specific such as “segment” or “subsystem.”

 ■ Uses structure. In this important but overlooked structure, the units here are
also modules, perhaps classes. The units are related by the uses relation,
a specialized form of dependency. A unit of software uses another if the
correctness of the first requires the presence of a correctly functioning
version (as opposed to a stub) of the second. The uses structure is used to
engineer systems that can be extended to add functionality, or from which
useful functional subsets can be extracted. The ability to easily create a
subset of a system allows for incremental development.

1.2 Architectural Structures and Views 13

 ■ Layer structure. The modules in this structure are called layers. A layer
is an abstract “virtual machine” that provides a cohesive set of services
through a managed interface. Layers are allowed to use other layers in a
strictly managed fashion; in strictly layered systems, a layer is only allowed
to use the layer immediately below. This structure is used to imbue a system
with portability, the ability to change the underlying computing platform.

 ■ Class (or generalization) structure. The module units in this structure are
called classes. The relation is inherits from or is an instance of. This view
supports reasoning about collections of similar behavior or capability (e.g.,
the classes that other classes inherit from) and parameterized differences.
The class structure allows one to reason about reuse and the incremental
addition of functionality. If any documentation exists for a project that has
followed an object-oriented analysis and design process, it is typically this
structure.

 ■ Data model. The data model describes the static information structure in
terms of data entities and their relationships. For example, in a banking
system, entities will typically include Account, Customer, and Loan.
Account has several attributes, such as account number, type (savings or
checking), status, and current balance. A relationship may dictate that one
customer can have one or more accounts, and one account is associated to
one or two customers.

Some useful c&c Structures

Component-and-connector structures show a runtime view of the system. In these
structures the modules described above have all been compiled into executable
forms. All component-and-connector structures are thus orthogonal to the mod-
ule-based structures and deal with the dynamic aspects of a running system. The
relation in all component-and-connector structures is attachment, showing how
the components and the connectors are hooked together. (The connectors them-
selves can be familiar constructs such as “invokes.”) Useful C&C structures in-
clude the following:

 ■ Service structure. The units here are services that interoperate with each
other by service coordination mechanisms such as SOAP (see Chapter 6).
The service structure is an important structure to help engineer a system
composed of components that may have been developed anonymously and
independently of each other.

 ■ Concurrency structure. This component-and-connector structure allows the
architect to determine opportunities for parallelism and the locations where
resource contention may occur. The units are components and the connec-
tors are their communication mechanisms. The components are arranged
into logical threads; a logical thread is a sequence of computations that

14 Part One Introduction 1—What Is Software Architecture?

could be allocated to a separate physical thread later in the design process.
The concurrency structure is used early in the design process to identify the
requirements to manage the issues associated with concurrent execution.

Some useful allocation Structures

Allocation structures define how the elements from C&C or module structures
map onto things that are not software: typically hardware, teams, and file sys-
tems. Useful allocation structures include these:

 ■ Deployment structure. The deployment structure shows how software is
assigned to hardware processing and communication elements. The ele-
ments are software elements (usually a process from a C&C view), hard-
ware entities (processors), and communication pathways. Relations are
allocated-to, showing on which physical units the software elements reside,
and migrates-to if the allocation is dynamic. This structure can be used to
reason about performance, data integrity, security, and availability. It is of
particular interest in distributed and parallel systems.

 ■ Implementation structure. This structure shows how software elements
(usually modules) are mapped to the file structure(s) in the system’s devel-
opment, integration, or configuration control environments. This is critical
for the management of development activities and build processes. (In prac-
tice, a screenshot of your development environment tool, which manages
the implementation environment, often makes a very useful and sufficient
diagram of your implementation view.)

 ■ Work assignment structure. This structure assigns responsibility for im-
plementing and integrating the modules to the teams who will carry it out.
Having a work assignment structure be part of the architecture makes it
clear that the decision about who does the work has architectural as well as
management implications. The architect will know the expertise required
on each team. Also, on large multi-sourced distributed development proj-
ects, the work assignment structure is the means for calling out units of
functional commonality and assigning those to a single team, rather than
having them implemented by everyone who needs them. This structure will
also determine the major communication pathways among the teams: regu-
lar teleconferences, wikis, email lists, and so forth.

Table 1.1 summarizes these structures. The table lists the meaning of the
elements and relations in each structure and tells what each might be used for.

relating Structures to Each Other

Each of these structures provides a different perspective and design handle on a
system, and each is valid and useful in its own right. Although the structures give

1.2
A

rchitectural S
tructures and V

iew
s

15
tablE 1.1 Useful Architectural Structures

Software
Structure

Element
types

relations

useful for

Quality attributes
affected

Module
Structures

Decomposition Module Is a submodule of Resource allocation and project structuring and
planning; information hiding, encapsulation;
configuration control

Modifiability

Uses Module Uses (i.e., requires the correct
presence of)

Engineering subsets, engineering extensions “Subsetability,”
extensibility

Layers Layer Requires the correct presence
of, uses the services of,
provides abstraction to

Incremental development, implementing systems
on top of “virtual machines”

Portability

Class Class, object Is an instance of, shares access
methods of

In object-oriented design systems, factoring out
commonality; planning extensions of functionality

Modifiability,
extensibility

Data model Data entity {one, many}-to-{one, many},
generalizes, specializes

Engineering global data structures for consistency
and performance

Modifiability,
performance

c&c
Structures

Service Service, ESB, registry,
others

Runs concurrently with, may
run concurrently with, excludes,
precedes, etc.

Scheduling analysis, performance analysis Interoperability,
modifiability

Concurrency Processes, threads Can run in parallel Identifying locations where resource contention
exists, or where threads may fork, join, be created,
or be killed

Performance,
availability

allocation
Structures

Deployment Components, hardware
elements

Allocated to, migrates to Performance, availability, security analysis Performance,
security, availability

Implementation Modules, file structure Stored in Configuration control, integration, test activities Development
efficiency

Work assignment Modules, organizational
units

Assigned to Project management, best use of expertise and
available resources, management of commonality

Development
efficiency

16 Part One Introduction 1—What Is Software Architecture?

different system perspectives, they are not independent. Elements of one structure
will be related to elements of other structures, and we need to reason about these
relations. For example, a module in a decomposition structure may be manifested
as one, part of one, or several components in one of the component-and-con-
nector structures, reflecting its runtime alter ego. In general, mappings between
structures are many to many.

Figure 1.2 shows a very simple example of how two structures might relate
to each other. The figure on the left shows a module decomposition view of a
tiny client-server system. In this system, two modules must be implemented: The
client software and the server software. The figure on the right shows a compo-
nent-and-connector view of the same system. At runtime there are ten clients run-
ning and accessing the server. Thus, this little system has two modules and eleven
components (and ten connectors).

Whereas the correspondence between the elements in the decomposition
structure and the client-server structure is obvious, these two views are used for
very different things. For example, the view on the right could be used for perfor-
mance analysis, bottleneck prediction, and network traffic management, which
would be extremely difficult or impossible to do with the view on the left.

(In Chapter 13 we’ll learn about the map-reduce pattern, in which copies
of simple, identical functionality are distributed across hundreds or thousands
of processing nodes—one module for the whole system, but one component per
node.)

Individual projects sometimes consider one structure dominant and cast
other structures, when possible, in terms of the dominant structure. Often the
dominant structure is the module decomposition structure. This is for a good

Client

Server

Module

System

Decomposition View

Key:

Client-Server View

Key: Component
Request-Reply

C7

C8 C2

C3

C1

C4C6

C9
C10

C5

S1

fIGurE 1.2 Two views of a client-server system

1.2 Architectural Structures and Views 17

reason: it tends to spawn the project structure, because it mirrors the team struc-
ture of development. In other projects, the dominant structure might be a C&C
structure that shows how the system’s functionality and/or critical quality attri-
butes are achieved.

fewer Is better

Not all systems warrant consideration of many architectural structures. The larger
the system, the more dramatic the difference between these structures tends to be;
but for small systems we can often get by with fewer. Instead of working with
each of several component-and-connector structures, usually a single one will do.
If there is only one process, then the process structure collapses to a single node
and need not be explicitly represented in the design. If there is to be no distribu-
tion (that is, if the system is implemented on a single processor), then the deploy-
ment structure is trivial and need not be considered further. In general, design and
document a structure only if doing so brings a positive return on the investment,
usually in terms of decreased development or maintenance costs.

Which Structures to choose?

We have briefly described a number of useful architectural structures, and there
are many more. Which ones shall an architect choose to work on? Which ones
shall the architect choose to document? Surely not all of them. Chapter 18 will
treat this topic in more depth, but for now a good answer is that you should think
about how the various structures available to you provide insight and leverage
into the system’s most important quality attributes, and then choose the ones that
will play the best role in delivering those attributes.

Ask Cal

More than a decade ago I went to a customer site to do an architecture
evaluation—one of the first instances of the Architecture Tradeoff Analysis
Method (ATAM) that I had ever performed (you can read about the ATAM,
and other architecture evaluation topics, in Chapter 21). In those early
days, we were still figuring out how to make architecture evaluations re-
peatable and predictable, and how to guarantee useful outcomes from
them. One of the ways that we ensured useful outcomes was to enforce
certain preconditions on the evaluation. A precondition that we figured out
rather quickly was this: if the architecture has not been documented, we
will not proceed with the evaluation. The reason for this precondition was
simple: we could not evaluate the architecture by reading the code—we
didn’t have the time for that—and we couldn’t just ask the architect to

18 Part One Introduction 1—What Is Software Architecture?

sketch the architecture in real time, since that would produce vague and
very likely erroneous representations.

Okay, it’s not completely true to say that they had no architecture docu-
mentation. They did produce a single-page diagram, with a few boxes and
lines. Some of those boxes were, however, clouds. Yes, they actually used
a cloud as one of their icons. When I pressed them on the meaning of this
icon—Was it a process? A class? A thread?—they waffled. This was not, in
fact, architecture documentation. It was, at best, “marketecture.”

But in those early days we had no preconditions and so we didn’t stop
the evaluation there. We just blithely waded in to whatever swamp we
found, and we enforced nothing. As I began this evaluation, I interviewed
some of the key project stakeholders: the project manager and several of
the architects (this was a large project with one lead architect and several
subordinates). As it happens, the lead architect was away, and so I spent
my time with the subordinate architects. Every time I asked the subor-
dinates a tough question—“How do you ensure that you will meet your
latency goal along this critical execution path?” or “What are your rules for
layering?”—they would answer: “Ask Cal. Cal knows that.” Cal was the lead
architect. Immediately I noted a risk for this system: What if Cal gets hit by
a bus? What then?

In the end, because of my pestering, the architecture team did in fact
produce respectable architecture documentation. About halfway through
the evaluation, the project manager came up to me and shook my hand
and thanked me for the great job I had done. I was dumbstruck. In my
mind I hadn’t done anything, at that point; the evaluation was only partially
complete and I hadn’t produced a single report or finding. I said that to the
manager and he said: “You got those guys to document the architecture.
I’ve never been able to get them to do that. So . . . thanks!”

If Cal had been hit by a bus or just left the company, they would have
had a serious problem on their hands: all of that architectural knowledge
located in one guy’s head and he is no longer with the organization. In can
happen. It does happen.

The moral of this story? An architecture that is not documented, and not
communicated, may still be a good architecture, but the risks surrounding it
are enormous.

—RK

1.3 architectural Patterns

In some cases, architectural elements are composed in ways that solve particular
problems. The compositions have been found useful over time, and over many
different domains, and so they have been documented and disseminated. These
compositions of architectural elements, called architectural patterns, provide
packaged strategies for solving some of the problems facing a system.

1.4 What Makes a “Good” Architecture? 19

An architectural pattern delineates the element types and their forms of in-
teraction used in solving the problem. Patterns can be characterized according to
the type of architectural elements they use. For example, a common module type
pattern is this:

 ■ Layered pattern. When the uses relation among software elements is
strictly unidirectional, a system of layers emerges. A layer is a coherent
set of related functionality. In a strictly layered structure, a layer can only
use the services of the layer immediately below it. Many variations of this
pattern, lessening the structural restriction, occur in practice. Layers are
often designed as abstractions (virtual machines) that hide implementation
specifics below from the layers above, engendering portability.

Common component-and-connector type patterns are these:

 ■ Shared-data (or repository) pattern. This pattern comprises components
and connectors that create, store, and access persistent data. The repository
usually takes the form of a (commercial) database. The connectors are
protocols for managing the data, such as SQL.

 ■ Client-server pattern. The components are the clients and the servers, and
the connectors are protocols and messages they share among each other to
carry out the system’s work.

Common allocation patterns include the following:

 ■ Multi-tier pattern, which describes how to distribute and allocate the
components of a system in distinct subsets of hardware and software,
connected by some communication medium. This pattern specializes the
generic deployment (software-to-hardware allocation) structure.

 ■ Competence center and platform, which are patterns that specialize a
software system’s work assignment structure. In competence center, work
is allocated to sites depending on the technical or domain expertise located
at a site. For example, user-interface design is done at a site where usability
engineering experts are located. In platform, one site is tasked with
developing reusable core assets of a software product line (see Chapter 25),
and other sites develop applications that use the core assets.

Architectural patterns will be investigated much further in Chapter 13.

1.4 What Makes a “Good” architecture?

There is no such thing as an inherently good or bad architecture. Architectures
are either more or less fit for some purpose. A three-tier layered service-oriented
architecture may be just the ticket for a large enterprise’s web-based B2B system

20 Part One Introduction 1—What Is Software Architecture?

but completely wrong for an avionics application. An architecture carefully
crafted to achieve high modifiability does not make sense for a throwaway proto-
type (and vice versa!). One of the messages of this book is that architectures can
in fact be evaluated—one of the great benefits of paying attention to them—but
only in the context of specific stated goals.

Nevertheless, there are rules of thumb that should be followed when design-
ing most architectures. Failure to apply any of these does not automatically mean
that the architecture will be fatally flawed, but it should at least serve as a warn-
ing sign that should be investigated.

We divide our observations into two clusters: process recommendations and
product (or structural) recommendations. Our process recommendations are the
following:

1. The architecture should be the product of a single architect or a small
group of architects with an identified technical leader. This approach
gives the architecture its conceptual integrity and technical consistency.
This recommendation holds for Agile and open source projects as well
as “traditional” ones. There should be a strong connection between the
architect(s) and the development team, to avoid ivory tower designs that are
impractical.

2. The architect (or architecture team) should, on an ongoing basis, base the
architecture on a prioritized list of well-specified quality attribute require-
ments. These will inform the tradeoffs that always occur. Functionality mat-
ters less.

3. The architecture should be documented using views. The views should
address the concerns of the most important stakeholders in support of the
project timeline. This might mean minimal documentation at first, elaborat-
ed later. Concerns usually are related to construction, analysis, and main-
tenance of the system, as well as education of new stakeholders about the
system.

4. The architecture should be evaluated for its ability to deliver the system’s
important quality attributes. This should occur early in the life cycle, when
it returns the most benefit, and repeated as appropriate, to ensure that
changes to the architecture (or the environment for which it is intended)
have not rendered the design obsolete.

5. The architecture should lend itself to incremental implementation, to avoid
having to integrate everything at once (which almost never works) as well
as to discover problems early. One way to do this is to create a “skeletal”
system in which the communication paths are exercised but which at first
has minimal functionality. This skeletal system can be used to “grow” the
system incrementally, refactoring as necessary.

Our structural rules of thumb are as follows:

1. The architecture should feature well-defined modules whose functional
responsibilities are assigned on the principles of information hiding and

1.5 Summary 21

separation of concerns. The information-hiding modules should encapsulate
things likely to change, thus insulating the software from the effects of
those changes. Each module should have a well-defined interface that
encapsulates or “hides” the changeable aspects from other software
that uses its facilities. These interfaces should allow their respective
development teams to work largely independently of each other.

2. Unless your requirements are unprecedented—possible, but unlikely—your
quality attributes should be achieved using well-known architectural pat-
terns and tactics (described in Chapter 13) specific to each attribute.

3. The architecture should never depend on a particular version of a commer-
cial product or tool. If it must, it should be structured so that changing to a
different version is straightforward and inexpensive.

4. Modules that produce data should be separate from modules that consume
data. This tends to increase modifiability because changes are frequently
confined to either the production or the consumption side of data. If new
data is added, both sides will have to change, but the separation allows for a
staged (incremental) upgrade.

5. Don’t expect a one-to-one correspondence between modules and compo-
nents. For example, in systems with concurrency, there may be multiple in-
stances of a component running in parallel, where each component is built
from the same module. For systems with multiple threads of concurrency,
each thread may use services from several components, each of which was
built from a different module.

6. Every process should be written so that its assignment to a specific proces-
sor can be easily changed, perhaps even at runtime.

7. The architecture should feature a small number of ways for components
to interact. That is, the system should do the same things in the same way
throughout. This will aid in understandability, reduce development time,
increase reliability, and enhance modifiability.

8. The architecture should contain a specific (and small) set of resource con-
tention areas, the resolution of which is clearly specified and maintained.
For example, if network utilization is an area of concern, the architect
should produce (and enforce) for each development team guidelines that
will result in a minimum of network traffic. If performance is a concern, the
architect should produce (and enforce) time budgets for the major threads.

1.5 Summary

The software architecture of a system is the set of structures needed to reason
about the system, which comprise software elements, relations among them, and
properties of both.

22 Part One Introduction 1—What Is Software Architecture?

A structure is a set of elements and the relations among them.
A view is a representation of a coherent set of architectural elements, as

written by and read by system stakeholders. A view is a representation of one or
more structures.

There are three categories of structures:

 ■ Module structures show how a system is to be structured as a set of code or
data units that have to be constructed or procured.

 ■ Component-and-connector structures show how the system is to be
structured as a set of elements that have runtime behavior (components) and
interactions (connectors).

 ■ Allocation structures show how the system will relate to nonsoftware
structures in its environment (such as CPUs, file systems, networks,
development teams, etc.).

Structures represent the primary engineering leverage points of an architec-
ture. Each structure brings with it the power to manipulate one or more quality
attributes. They represent a powerful approach for creating the architecture (and
later, for analyzing it and explaining it to its stakeholders). And as we will see
in Chapter 18, the structures that the architect has chosen as engineering lever-
age points are also the primary candidates to choose as the basis for architecture
documentation.

Every system has a software architecture, but this architecture may be docu-
mented and disseminated, or it may not be.

There is no such thing as an inherently good or bad architecture. Architec-
tures are either more or less fit for some purpose.

1.6 for further reading

The early work of David Parnas laid much of the conceptual foundation for what
became the study of software architecture. A quintessential Parnas reader would
include his foundational article on information hiding [Parnas 72] as well as his
works on program families [Parnas 76], the structures inherent in software sys-
tems [Parnas 74], and introduction of the uses structure to build subsets and sup-
ersets of systems [Parnas 79]. All of these papers can be found in the more easily
accessible collection of his important papers [Hoffman 00].

An early paper by Perry and Wolf [Perry 92] drew an analogy between soft-
ware architecture views and structures and the structures one finds in a house
(plumbing, electrical, and so forth).

Software architectural patterns have been extensively catalogued in the se-
ries Pattern-Oriented Software Architecture [Buschmann 96] and others. Chapter
13 of this book also deals with architectural patterns.

1.7 Discussion Questions 23

Early papers on architectural views as used in industrial development proj-
ects are [Soni 95] and [Kruchten 95]. The former grew into a book [Hofmeister
00] that presents a comprehensive picture of using views in development and
analysis. The latter grew into the Rational Unified Process, about which there is
no shortage of references, both paper and online. A good one is [Kruchten 03].

Cristina Gacek and her colleagues discuss the process issues surrounding
software architecture in [Gacek 95].

Garlan and Shaw’s seminal work on software architecture [Garlan 93]
provides many excellent examples of architectural styles (a concept similar to
patterns).

In [Clements 10a] you can find an extended discussion on the difference be-
tween an architectural pattern and an architectural style. (It argues that a pattern
is a context-problem-solution triple; a style is simply a condensation that focuses
most heavily on the solution part.)

See [Taylor 09] for a definition of software architecture based on decisions
rather than on structure.

1.7 discussion Questions

1. Software architecture is often compared to the architecture of buildings as a
conceptual analogy. What are the strong points of that analogy? What is the
correspondence in buildings to software architecture structures and views?
To patterns? What are the weaknesses of the analogy? When does it break
down?

2. Do the architectures you’ve been exposed to document different structures
and relations like those described in this chapter? If so, which ones? If not,
why not?

3. Is there a different definition of software architecture that you are familiar
with? If so, compare and contrast it with the definition given in this chapter.
Many definitions include considerations like “rationale” (stating the reasons
why the architecture is what it is) or how the architecture will evolve over
time. Do you agree or disagree that these considerations should be part of
the definition of software architecture?

4. Discuss how an architecture serves as a basis for analysis. What about
decision-making? What kinds of decision-making does an architecture
empower?

5. What is architecture’s role in project risk reduction?

24 Part One Introduction 1—What Is Software Architecture?

6. Find a commonly accepted definition of system architecture and discuss
what it has in common with software architecture. Do the same for enter-
prise architecture.

7. Find a published example of an architecture. What structure or structures
are shown? Given its purpose, what structure or structures should have
been shown? What analysis does the architecture support? Critique it: What
questions do you have that the representation does not answer?

8. Sailing ships have architectures, which means they have “structures” that
lend themselves to reasoning about the ship’s performance and other qual-
ity attributes. Look up the technical definitions for barque, brig, cutter,
frigate, ketch, schooner, and sloop. Propose a useful set of “structures” for
distinguishing and reasoning about ship architectures.

25

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

2
Why Is Software
Architecture Important?

Software architecture is the set of design
decisions which, if made incorrectly, may

cause your project to be cancelled.
—Eoin Woods

If architecture is the answer, what was the question?
While Chapter 3 will cover the business importance of architecture to an

enterprise, this chapter focuses on why architecture matters from a technical per-
spective. We will examine a baker’s dozen of the most important reasons.

1. An architecture will inhibit or enable a system’s driving quality attributes.
2. The decisions made in an architecture allow you to reason about and man-

age change as the system evolves.
3. The analysis of an architecture enables early prediction of a system’s

qualities.
4. A documented architecture enhances communication among stakeholders.
5. The architecture is a carrier of the earliest and hence most fundamental,

hardest-to-change design decisions.
6. An architecture defines a set of constraints on subsequent implementation.
7. The architecture dictates the structure of an organization, or vice versa.
8. An architecture can provide the basis for evolutionary prototyping.
9. An architecture is the key artifact that allows the architect and project man-

ager to reason about cost and schedule.
10. An architecture can be created as a transferable, reusable model that forms

the heart of a product line.
11. Architecture-based development focuses attention on the assembly of com-

ponents, rather than simply on their creation.
12. By restricting design alternatives, architecture channels the creativity of

developers, reducing design and system complexity.
13. An architecture can be the foundation for training a new team member.

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

26 Part One Introduction 2—Why Is Software Architecture Important?

Even if you already believe us that architecture is important and don’t need the
point hammered thirteen more times, think of these thirteen points (which form
the outline for this chapter) as thirteen useful ways to use architecture in a project.

2.1 Inhibiting or Enabling a System’s Quality
attributes

Whether a system will be able to exhibit its desired (or required) quality attri-
butes is substantially determined by its architecture.

This is such an important message that we’ve devoted all of Part 2 of this
book to expounding that message in detail. Until then, keep these examples in
mind as a starting point:

 ■ If your system requires high performance, then you need to pay attention
to managing the time-based behavior of elements, their use of shared
resources, and the frequency and volume of inter-element communication.

 ■ If modifiability is important, then you need to pay careful attention to
assigning responsibilities to elements so that the majority of changes to the
system will affect a small number of those elements. (Ideally each change
will affect just a single element.)

 ■ If your system must be highly secure, then you need to manage and protect
inter-element communication and control which elements are allowed to
access which information; you may also need to introduce specialized
elements (such as an authorization mechanism) into the architecture.

 ■ If you believe that scalability will be important to the success of your
system, then you need to carefully localize the use of resources to facilitate
introduction of higher-capacity replacements, and you must avoid hard-
coding in resource assumptions or limits.

 ■ If your projects need the ability to deliver incremental subsets of the
system, then you must carefully manage intercomponent usage.

 ■ If you want the elements from your system to be reusable in other systems,
then you need to restrict inter-element coupling, so that when you extract
an element, it does not come out with too many attachments to its current
environment to be useful.

The strategies for these and other quality attributes are supremely architectural.
But an architecture alone cannot guarantee the functionality or quality required of
a system. Poor downstream design or implementation decisions can always under-
mine an adequate architectural design. As we like to say (mostly in jest): The archi-
tecture giveth and the implementation taketh away. Decisions at all stages of the
life cycle—from architectural design to coding and implementation—affect system
quality. Therefore, quality is not completely a function of an architectural design.

2.2 Reasoning About and Managing Change 27

A good architecture is necessary, but not sufficient, to ensure quality. Achiev-
ing quality attributes must be considered throughout design, implementation, and
deployment. No quality attribute is entirely dependent on design, nor is it entirely
dependent on implementation or deployment. Satisfactory results are a matter of
getting the big picture (architecture) as well as the details (implementation) correct.

For example, modifiability is determined by how functionality is divided
and coupled (architectural) and by coding techniques within a module (nonar-
chitectural). Thus, a system is typically modifiable if changes involve the fewest
possible number of distinct elements. In spite of having the ideal architecture,
however, it is always possible to make a system difficult to modify by writing
obscure, tangled code.

2.2 reasoning about and Managing change

This point is a corollary to the previous point.
Modifiability—the ease with which changes can be made to a system—is

a quality attribute (and hence covered by the arguments in the previous section),
but it is such an important quality that we have awarded it its own spot in the List
of Thirteen. The software development community is coming to grips with the
fact that roughly 80 percent of a typical software system’s total cost occurs after
initial deployment. A corollary of this statistic is that most systems that people
work on are in this phase. Many programmers and software designers never get
to work on new development; they work under the constraints of the existing
architecture and the existing body of code. Virtually all software systems change
over their lifetime, to accommodate new features, to adapt to new environments,
to fix bugs, and so forth. But these changes are often fraught with difficulty.

Every architecture partitions possible changes into three categories: local,
nonlocal, and architectural.

 ■ A local change can be accomplished by modifying a single element. For
example, adding a new business rule to a pricing logic module.

 ■ A nonlocal change requires multiple element modifications but leaves
the underlying architectural approach intact. For example, adding a new
business rule to a pricing logic module, then adding new fields to the
database that this new business rule requires, and then revealing the results
of the rule in the user interface.

 ■ An architectural change affects the fundamental ways in which the
elements interact with each other and will probably require changes all
over the system. For example, changing a system from client-server to
peer-to-peer.

28 Part One Introduction 2—Why Is Software Architecture Important?

Obviously, local changes are the most desirable, and so an effective architec-
ture is one in which the most common changes are local, and hence easy to make.

Deciding when changes are essential, determining which change paths have
the least risk, assessing the consequences of proposed changes, and arbitrating
sequences and priorities for requested changes all require broad insight into rela-
tionships, performance, and behaviors of system software elements. These activ-
ities are in the job description for an architect. Reasoning about the architecture
and analyzing the architecture can provide the insight necessary to make deci-
sions about anticipated changes.

2.3 Predicting System Qualities

This point follows from the previous two. Architecture not only imbues systems
with qualities, but it does so in a predictable way.

Were it not possible to tell that the appropriate architectural decisions have
been made (i.e., if the system will exhibit its required quality attributes) without
waiting until the system is developed and deployed, then choosing an architec-
ture would be a hopeless task—randomly making architecture selections would
perform as well as any other method. Fortunately, it is possible to make quality
predictions about a system based solely on an evaluation of its architecture. If we
know that certain kinds of architectural decisions lead to certain quality attributes
in a system, then we can make those decisions and rightly expect to be rewarded
with the associated quality attributes. After the fact, when we examine an archi-
tecture, we can look to see if those decisions have been made, and confidently
predict that the architecture will exhibit the associated qualities.

This is no different from any mature engineering discipline, where design
analysis is a standard part of the development process. The earlier you can find
a problem in your design, the cheaper, easier, and less disruptive it will be to fix.

Even if you don't do the quantitative analytic modeling sometimes necessary
to ensure that an architecture will deliver its prescribed benefits, this principle of
evaluating decisions based on their quality attribute implications is invaluable for
at least spotting potential trouble spots early.

The architecture modeling and analysis techniques described in Chap-
ter 14, as well as the architecture evaluation techniques covered in Chapter 21,
allow early insight into the software product qualities made possible by software
architectures.

2.4 Enhancing Communication among Stakeholders 29

2.4 Enhancing communication among Stakeholders

Software architecture represents a common abstraction of a system that most,
if not all, of the system’s stakeholders can use as a basis for creating mutual under-
standing, negotiating, forming consensus, and communicating with each other. The
architecture—or at least parts of it—is sufficiently abstract that most nontechnical
people can understand it adequately, particularly with some coaching from the archi-
tect, and yet that abstraction can be refined into sufficiently rich technical specifica-
tions to guide implementation, integration, test, and deployment.

Each stakeholder of a software system—customer, user, project manager,
coder, tester, and so on—is concerned with different characteristics of the system
that are affected by its architecture. For example:

 ■ The user is concerned that the system is fast, reliable, and available when
needed.

 ■ The customer is concerned that the architecture can be implemented on
schedule and according to budget.

 ■ The manager is worried (in addition to concerns about cost and schedule)
that the architecture will allow teams to work largely independently,
interacting in disciplined and controlled ways.

 ■ The architect is worried about strategies to achieve all of those goals.

Architecture provides a common language in which different concerns can
be expressed, negotiated, and resolved at a level that is intellectually manageable
even for large, complex systems. Without such a language, it is difficult to under-
stand large systems sufficiently to make the early decisions that influence both
quality and usefulness. Architectural analysis, as we will see in Chapter 21, both
depends on this level of communication and enhances it.

Section 3.5 covers stakeholders and their concerns in greater depth.

“What Happens When I Push This Button?” Architecture as a
Vehicle for Stakeholder Communication

The project review droned on and on. The government-sponsored devel-
opment was behind schedule and over budget and was large enough that
these lapses were attracting congressional attention. And now the govern-
ment was making up for past neglect by holding a marathon come-one-
come-all review session. The contractor had recently undergone a buyout,
which hadn’t helped matters. It was the afternoon of the second day, and
the agenda called for the software architecture to be presented. The young
architect—an apprentice to the chief architect for the system—was bravely
explaining how the software architecture for the massive system would
enable it to meet its very demanding real-time, distributed, high-reliability

30 Part One Introduction 2—Why Is Software Architecture Important?

requirements. He had a solid presentation and a solid architecture to pres-
ent. It was sound and sensible. But the audience—about 30 government
representatives who had varying roles in the management and oversight of
this sticky project—was tired. Some of them were even thinking that per-
haps they should have gone into real estate instead of enduring another one
of these marathon let’s-finally-get-it-right-this-time reviews.

The viewgraph showed, in semiformal box-and-line notation, what the
major software elements were in a runtime view of the system. The names
were all acronyms, suggesting no semantic meaning without explanation,
which the young architect gave. The lines showed data flow, message
passing, and process synchronization. The elements were internally re-
dundant, the architect was explaining. “In the event of a failure,” he began,
using a laser pointer to denote one of the lines, “a restart mechanism
triggers along this path when—”

“What happens when the mode select button is pushed?” interrupted
one of the audience members. He was a government attendee represent-
ing the user community for this system.

“Beg your pardon?” asked the architect.
“The mode select button,” he said. “What happens when you push it?”
“Um, that triggers an event in the device driver, up here,” began the

architect, laser-pointing. “It then reads the register and interprets the event
code. If it’s mode select, well, then, it signals the blackboard, which in turns
signals the objects that have subscribed to that event. . . . ”

“No, I mean what does the system do,” interrupted the questioner. “Does
it reset the displays? And what happens if this occurs during a system
reconfiguration?”

The architect looked a little surprised and flicked off the laser pointer.
This was not an architectural question, but since he was an architect and
therefore fluent in the requirements, he knew the answer. “If the command
line is in setup mode, the displays will reset,” he said. “Otherwise an error
message will be put on the control console, but the signal will be ignored.”
He put the laser pointer back on. “Now, the restart mechanism that I was
talking about—”

“Well, I was just wondering,” said the users’ delegate. “Because I see
from your chart that the display console is sending signal traffic to the
target location module.”

“What should happen?” asked another member of the audience,
addressing the first questioner. “Do you really want the user to get mode
data during its reconfiguring?” And for the next 45 minutes, the architect
watched as the audience consumed his time slot by debating what the cor-
rect behavior of the system was supposed to be in various esoteric states.

The debate was not architectural, but the architecture (and the graphical
rendition of it) had sparked debate. It is natural to think of architecture as
the basis for communication among some of the stakeholders besides the
architects and developers: Managers, for example, use the architecture to
create teams and allocate resources among them. But users? The architec-
ture is invisible to users, after all; why should they latch on to it as a tool for
understanding the system?

2.5 Carrying Early Design Decisions 31

The fact is that they do. In this case, the questioner had sat through two
days of viewgraphs all about function, operation, user interface, and testing.
But it was the first slide on architecture that—even though he was tired and
wanted to go home—made him realize he didn’t understand something.
Attendance at many architecture reviews has convinced me that seeing
the system in a new way prods the mind and brings new questions to the
surface. For users, architecture often serves as that new way, and the
questions that a user poses will be behavioral in nature. In a memorable
architecture evaluation exercise a few years ago, the user representatives
were much more interested in what the system was going to do than in how
it was going to do it, and naturally so. Up until that point, their only contact
with the vendor had been through its marketers. The architect was the first
legitimate expert on the system to whom they had access, and they didn’t
hesitate to seize the moment.

Of course, careful and thorough requirements specifications would ame-
liorate this situation, but for a variety of reasons they are not always created
or available. In their absence, a specification of the architecture often
serves to trigger questions and improve clarity. It is probably more prudent
to recognize this reality than to resist it.

Sometimes such an exercise will reveal unreasonable requirements,
whose utility can then be revisited. A review of this type that emphasizes
synergy between requirements and architecture would have let the young
architect in our story off the hook by giving him a place in the overall review
session to address that kind of information. And the user representative
wouldn’t have felt like a fish out of water, asking his question at a clearly
inappropriate moment.

—PCC

2.5 carrying Early design decisions

Software architecture is a manifestation of the earliest design decisions about a
system, and these early bindings carry enormous weight with respect to the sys-
tem’s remaining development, its deployment, and its maintenance life. It is also
the earliest point at which these important design decisions affecting the system
can be scrutinized.

Any design, in any discipline, can be viewed as a set of decisions. When
painting a picture, an artist decides on the material for the canvas, on the media
for recording—oil paint, watercolor, crayon—even before the picture is begun.
Once the picture is begun, other decisions are immediately made: Where is the
first line? What is its thickness? What is its shape? All of these early design de-
cisions have a strong influence on the final appearance of the picture. Each deci-
sion constrains the many decisions that follow. Each decision, in isolation, might
appear innocent enough, but the early ones in particular have disproportionate
weight simply because they influence and constrain so much of what follows.

32 Part One Introduction 2—Why Is Software Architecture Important?

So it is with architecture design. An architecture design can also be viewed
as a set of decisions. The early design decisions constrain the decisions that fol-
low, and changing these decisions has enormous ramifications. Changing these
early decisions will cause a ripple effect, in terms of the additional decisions that
must now be changed. Yes, sometimes the architecture must be refactored or re-
designed, but this is not a task we undertake lightly (because the “ripple” might
turn into a tsunami).

What are these early design decisions embodied by software architecture?
Consider:

 ■ Will the system run on one processor or be distributed across multiple
processors?

 ■ Will the software be layered? If so, how many layers will there be? What
will each one do?

 ■ Will components communicate synchronously or asynchronously? Will
they interact by transferring control or data or both?

 ■ Will the system depend on specific features of the operating system or
hardware?

 ■ Will the information that flows through the system be encrypted or not?
 ■ What operating system will we use?
 ■ What communication protocol will we choose?

Imagine the nightmare of having to change any of these or a myriad other
related decisions. Decisions like these begin to flesh out some of the structures of
the architecture and their interactions. In Chapter 4, we describe seven categories
of these early design decisions. In Chapters 5–11 we show the implications of
these design decision categories on achieving quality attributes.

2.6 defining constraints on an Implementation

An implementation exhibits an architecture if it conforms to the design decisions
prescribed by the architecture. This means that the implementation must be im-
plemented as the set of prescribed elements, these elements must interact with
each other in the prescribed fashion, and each element must fulfill its responsibil-
ity to the other elements as dictated by the architecture. Each of these prescrip-
tions is a constraint on the implementer.

Element builders must be fluent in the specifications of their individual ele-
ments, but they may not be aware of the architectural tradeoffs—the architecture
(or architect) simply constrains them in such a way as to meet the tradeoffs. A
classic example of this phenomenon is when an architect assigns performance
budget to the pieces of software involved in some larger piece of functionality.
If each software unit stays within its budget, the overall transaction will meet its

2.8 Enabling Evolutionary Prototyping 33

performance requirement. Implementers of each of the constituent pieces may
not know the overall budget, only their own.

Conversely, the architects need not be experts in all aspects of algorithm
design or the intricacies of the programming language—although they should
certainly know enough not to design something that is difficult to build—but they
are the ones responsible for establishing, analyzing, and enforcing the architec-
tural tradeoffs.

2.7 Influencing the Organizational Structure

Not only does architecture prescribe the structure of the system being developed,
but that structure becomes engraved in the structure of the development project (and
sometimes the structure of the entire organization). The normal method for divid-
ing up the labor in a large project is to assign different groups different portions of
the system to construct. This is called the work-breakdown structure of a system.
Because the architecture includes the broadest decomposition of the system, it is
typically used as the basis for the work-breakdown structure. The work-breakdown
structure in turn dictates units of planning, scheduling, and budget; interteam com-
munication channels; configuration control and file-system organization; integration
and test plans and procedures; and even project minutiae such as how the project
intranet is organized and who sits with whom at the company picnic. Teams commu-
nicate with each other in terms of the interface specifications for the major elements.
The maintenance activity, when launched, will also reflect the software structure,
with teams formed to maintain specific structural elements from the architecture: the
database, the business rules, the user interface, the device drivers, and so forth.

A side effect of establishing the work-breakdown structure is to freeze some
aspects of the software architecture. A group that is responsible for one of the
subsystems will resist having its responsibilities distributed across other groups.
If these responsibilities have been formalized in a contractual relationship, chang-
ing responsibilities could become expensive or even litigious.

Thus, once the architecture has been agreed on, it becomes very costly—for
managerial and business reasons—to significantly modify it. This is one argu-
ment (among many) for carrying out extensive analysis before settling on the
software architecture for a large system—because so much depends on it.

2.8 Enabling Evolutionary Prototyping

Once an architecture has been defined, it can be analyzed and prototyped
as a skeletal system. A skeletal system is one in which at least some of the

34 Part One Introduction 2—Why Is Software Architecture Important?

infrastructure—how the elements initialize, communicate, share data, access re-
sources, report errors, log activity, and so forth—is built before much of the sys-
tem’s functionality has been created. (The two can go hand in hand: build a little
infrastructure to support a little end-to-end functionality; repeat until done.)

For example, systems built as plug-in architectures are skeletal systems: the
plug-ins provide the actual functionality. This approach aids the development
process because the system is executable early in the product’s life cycle. The
fidelity of the system increases as stubs are instantiated, or prototype parts are
replaced with complete versions of these parts of the software. In some cases the
prototype parts can be low-fidelity versions of the final functionality, or they can
be surrogates that consume and produce data at the appropriate rates but do little
else. Among other things, this approach allows potential performance problems
to be identified early in the product’s life cycle.

These benefits reduce the potential risk in the project. Furthermore, if the ar-
chitecture is part of a family of related systems, the cost of creating a framework
for prototyping can be distributed over the development of many systems.

2.9 Improving cost and Schedule Estimates

Cost and schedule estimates are important tools for the project manager both to
acquire the necessary resources and to monitor progress on the project, to know
if and when a project is in trouble. One of the duties of an architect is to help
the project manager create cost and schedule estimates early in the project life
cycle. Although top-down estimates are useful for setting goals and apportion-
ing budgets, cost estimations that are based on a bottom-up understanding of the
system’s pieces are typically more accurate than those that are based purely on
top-down system knowledge.

As we have said, the organizational and work-breakdown structure of a proj-
ect is almost always based on its architecture. Each team or individual responsi-
ble for a work item will be able to make more-accurate estimates for their piece
than a project manager and will feel more ownership in making the estimates
come true. But the best cost and schedule estimates will typically emerge from a
consensus between the top-down estimates (created by the architect and project
manager) and the bottom-up estimates (created by the developers). The discus-
sion and negotiation that results from this process creates a far more accurate
estimate than either approach by itself.

It helps if the requirements for a system have been reviewed and validated.
The more up-front knowledge you have about the scope, the more accurate the
cost and schedule estimates will be.

Chapter 22 delves into the use of architecture in project management.

2.11 Allowing Incorporation of Independently Developed Components 35

2.10 Supplying a transferable, reusable Model

The earlier in the life cycle that reuse is applied, the greater the benefit that can
be achieved. While code reuse provides a benefit, reuse of architectures provides
tremendous leverage for systems with similar requirements. Not only can code be
reused, but so can the requirements that led to the architecture in the first place,
as well as the experience and infrastructure gained in building the reused archi-
tecture. When architectural decisions can be reused across multiple systems, all
of the early-decision consequences we just described are also transferred.

A software product line or family is a set of software systems that are all
built using the same set of reusable assets. Chief among these assets is the archi-
tecture that was designed to handle the needs of the entire family. Product-line
architects choose an architecture (or a family of closely related architectures) that
will serve all envisioned members of the product line. The architecture defines
what is fixed for all members of the product line and what is variable. Software
product lines represent a powerful approach to multi-system development that
is showing order-of-magnitude payoffs in time to market, cost, productivity,
and product quality. The power of architecture lies at the heart of the paradigm.
Similar to other capital investments, the architecture for a product line becomes
a developing organization’s core asset. Software product lines are explained in
Chapter 25.

2.11 allowing Incorporation of Independently
developed components

Whereas earlier software paradigms have focused on programming as the prime
activity, with progress measured in lines of code, architecture-based development
often focuses on composing or assembling elements that are likely to have been
developed separately, even independently, from each other. This composition is
possible because the architecture defines the elements that can be incorporated
into the system. The architecture constrains possible replacements (or additions)
according to how they interact with their environment, how they receive and re-
linquish control, what data they consume and produce, how they access data, and
what protocols they use for communication and resource sharing.

In 1793, Eli Whitney’s mass production of muskets, based on the principle
of interchangeable parts, signaled the dawn of the industrial age. In the days be-
fore physical measurements were reliable, manufacturing interchangeable parts
was a daunting notion. Today in software, until abstractions can be reliably de-
limited, the notion of structural interchangeability is just as daunting and just as
significant.

36 Part One Introduction 2—Why Is Software Architecture Important?

Commercial off-the-shelf components, open source software, publicly avail-
able apps, and networked services are all modern-day software instantiations of
Whitney’s basic idea. Whitney’s musket parts had “interfaces” (having to do with
fit and durability) and so do today’s interchangeable software components.

For software, the payoff can be

 ■ Decreased time to market (it should be easier to use someone else’s ready
solution than build your own)

 ■ Increased reliability (widely used software should have its bugs ironed out
already)

 ■ Lower cost (the software supplier can amortize development cost across
their customer base)

 ■ Flexibility (if the component you want to buy is not terribly special-
purpose, it’s likely to be available from several sources, thus increasing
your buying leverage)

2.12 restricting the Vocabulary of design alternatives

As useful architectural patterns are collected, it becomes clear that although soft-
ware elements can be combined in more or less infinite ways, there is something
to be gained by voluntarily restricting ourselves to a relatively small number of
choices of elements and their interactions. By doing so we minimize the design
complexity of the system we are building.

A software engineer is not an artiste, whose creativity and freedom are
paramount. Engineering is about discipline, and discipline comes in part by re-
stricting the vocabulary of alternatives to proven solutions. Advantages of this
approach include enhanced reuse, more regular and simpler designs that are more
easily understood and communicated, more capable analysis, shorter selection
time, and greater interoperability. Architectural patterns guide the architect and
focus the architect on the quality attributes of interest in large part by restricting
the vocabulary of design alternatives to a relatively small number.

Properties of software design follow from the choice of an architectural pat-
tern. Those patterns that are more desirable for a particular problem should im-
prove the implementation of the resulting design solution, perhaps by making it
easier to arbitrate conflicting design constraints, by increasing insight into poorly
understood design contexts, or by helping to surface inconsistencies in require-
ments. We will discuss architectural patterns in more detail in Chapter 13.

2.14 Summary 37

2.13 Providing a basis for training

The architecture, including a description of how the elements interact with each
other to carry out the required behavior, can serve as the first introduction to the
system for new project members. This reinforces our point that one of the im-
portant uses of software architecture is to support and encourage communication
among the various stakeholders. The architecture is a common reference point.

Module views are excellent for showing someone the structure of a project:
Who does what, which teams are assigned to which parts of the system, and so
forth. Component-and-connector views are excellent for explaining how the sys-
tem is expected to work and accomplish its job.

We will discuss these views in more detail in Chapter 18.

2.14 Summary

Software architecture is important for a wide variety of technical and nontechni-
cal reasons. Our list includes the following:

1. An architecture will inhibit or enable a system’s driving quality attributes.
2. The decisions made in an architecture allow you to reason about and man-

age change as the system evolves.
3. The analysis of an architecture enables early prediction of a system’s

qualities.
4. A documented architecture enhances communication among stakeholders.
5. The architecture is a carrier of the earliest and hence most fundamental,

hardest-to-change design decisions.
6. An architecture defines a set of constraints on subsequent implementation.
7. The architecture dictates the structure of an organization, or vice versa.
8. An architecture can provide the basis for evolutionary prototyping.
9. An architecture is the key artifact that allows the architect and project man-

ager to reason about cost and schedule.
10. An architecture can be created as a transferable, reusable model that forms

the heart of a product line.
11. Architecture-based development focuses attention on the assembly of com-

ponents, rather than simply on their creation.
12. An architecture channels the creativity of developers, reducing design and

system complexity.
13. An architecture can be the foundation for training of a new team member.

38 Part One Introduction 2—Why Is Software Architecture Important?

2.15 for further reading

Rebecca Grinter has observed architects from a sociological standpoint. In
[Grinter 99] she argues eloquently that the architect’s primary role is to facilitate
stakeholder communication. The way she puts it is that architects enable com-
munication among parties who would otherwise not be able to talk to each other.

The granddaddy of papers about architecture and organization is [Conway
68]. Conway’s law states that “organizations which design systems . . . are con-
strained to produce designs which are copies of the communication structures of
these organizations.”

There is much about software development through composition that re-
mains unresolved. When the components that are candidates for importation and
reuse are distinct subsystems that have been built with conflicting architectural
assumptions, unanticipated complications can increase the effort required to inte-
grate their functions. David Garlan and his colleagues coined the term architec-
tural mismatch to describe this situation, and their paper on it is worth reading
[Garlan 95].

Paulish [Paulish 02] discusses architecture-based project management, and
in particular the ways in which an architecture can help in the estimation of proj-
ect cost and schedule.

2.16 discussion Questions

1. For each of the thirteen reasons articulated in this chapter why architecture
is important, take the contrarian position: Propose a set of circumstances
under which architecture is not necessary to achieve the result indicated.
Justify your position. (Try to come up with different circumstances for each
of the thirteen.)

2. This chapter argues that architecture brings a number of tangible benefits.
How would you measure the benefits, on a particular project, of each of the
thirteen points?

3. Suppose you want to introduce architecture-centric practices to your orga-
nization. Your management is open to the idea, but wants to know the ROI
for doing so. How would you respond?

4. Prioritize the list of thirteen points in this chapter according to some criteria
meaningful to you. Justify your answer. Or, if you could choose only two
or three of the reasons to promote the use of architecture in a project, which
would you choose and why?

39

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

3
The Many Contexts of
Software Architecture

People in London think of London as the center
of the world, whereas New Yorkers think the

world ends three miles outside of Manhattan.
—Toby Young

In 1976, a New Yorker magazine cover featured a cartoon by Saul Steinberg
showing a New Yorker’s view of the world. You’ve probably seen it; if not, you
can easily find it online. Looking to the west from 9th Avenue in Manhattan, the
illustration shows 10th Avenue, then the wide Hudson River, then a thin strip
of completely nondescript land called “Jersey,” followed by a somewhat thicker
strip of land representing the entire rest of the United States. The mostly empty
United States has a cartoon mountain or two here and there and a few cities hap-
hazardly placed “out there,” and is flanked by featureless “Canada” on the right
and “Mexico” on the left. Beyond is the Pacific Ocean, only slightly wider than
the Hudson, and beyond that lie tiny amorphous shapes for Japan and China and
Russia, and that’s pretty much the world from a New Yorker’s perspective.

In a book about architecture, it is tempting to view architecture in the same
way, as the most important piece of the software universe. And in some chapters,
we unapologetically will do exactly that. But in this chapter we put software ar-
chitecture in its place, showing how it supports and is informed by other critical
forces and activities in the various contexts in which it plays a role.

These contexts, around which we structured this book, are as follows:

 ■ Technical. What technical role does the software architecture play in the
system or systems of which it’s a part?

 ■ Project life cycle. How does a software architecture relate to the other
phases of a software development life cycle?

 ■ Business. How does the presence of a software architecture affect an orga-
nization’s business environment?

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

40 Part One Introduction 3—The Many Contexts of Software Architecture

 ■ Professional. What is the role of a software architect in an organization or a
development project?

These contexts all play out throughout the book, but this chapter introduces each
one. Although the contexts are unchanging, the specifics for your system may
change over time. One challenge for the architect is to envision what in their
context might change and to adopt mechanisms to protect the system and its de-
velopment if the envisioned changes come to pass.

3.1 architecture in a technical context

Architectures inhibit or enable the achievement of quality attributes, and one use
of an architecture is to support reasoning about the consequences of change in the
particular quality attributes important for a system at its inception.

architectures Inhibit or Enable the
achievement of Quality attributes

Chapter 2 listed thirteen reasons why software architecture is important and mer-
its study. Several of those reasons deal with exigencies that go beyond the bounds
of a particular development project (such as communication among stakehold-
ers, many of whom may reside outside the project’s organization). Others deal
with nontechnical aspects of a project (such as the architecture’s influence on a
project’s team structure, or its contribution to accurate budget and schedule esti-
mation). The first three reasons in that List of Thirteen deal specifically with an
architecture’s technical impact on every system that uses it:

1. An architecture will inhibit or enable the achievement of a system’s quality
attributes.

2. You can predict many aspects of a system’s qualities by studying its
architecture.

3. An architecture makes it easier for you to reason about and manage change.

These are all about the architecture’s effect on a system’s quality attributes,
although the first one states it the most explicitly. While all of the reasons enu-
merated in Chapter 2 are valid statements of the contribution of architecture,
probably the most important reason that it warrants attention is its critical effect
on quality attributes.

This is such a critical point that, with your indulgence, we’ll add a few more
points to the bullet list that we gave in Section 2.1. Remember? The one that
started like this:

3.1 Architecture in a Technical Context 41

 ■ If your system requires high performance, then you need to pay attention
to managing the time-based behavior of elements, their use of shared
resources, and the frequency and volume of interelement communication.

To that list, we’ll add the following:

 ■ If you care about a system’s availability, you have to be concerned with
how components take over for each other in the event of a failure, and how
the system responds to a fault.

 ■ If you care about usability, you have to be concerned about isolating the
details of the user interface and those elements responsible for the user
experience from the rest of the system, so that those things can be tailored
and improved over time.

 ■ If you care about the testability of your system, you have to be concerned
about the testability of individual elements, which means making their state
observable and controllable, plus understanding the emergent behavior of
the elements working together.

 ■ If you care about the safety of your system, you have to be concerned about
the behavioral envelope of the elements and the emergent behavior of the
elements working in concert.

 ■ If you care about interoperability between your system and another, you
have to be concerned about which elements are responsible for external
interactions so that you can control those interactions.

These and other representations are all saying the same thing in different
ways: If you care about this quality attribute, you have to be concerned with these
decisions, all of which are thoroughly architectural in nature. An architecture in-
hibits or enables a system’s quality attributes. And conversely, nothing else influ-
ences an architecture more than the quality attribute requirements it must satisfy.

If you care about architecture for no other reason, you should care about it for
this one. We feel so strongly about architecture’s importance with respect to achiev-
ing system quality attributes that all of Part II of this book is devoted to the topic.

Why is functionality missing from the preceding list? It is missing because
the architecture mainly provides containers into which the architect places func-
tionality. Functionality is not so much a driver for the architecture as it is a conse-
quence of it. We return to this point in more detail in Part II.

architectures and the technical Environment

The technical environment that is current when an architecture is designed will
influence that architecture. It might include standard industry practices or soft-
ware engineering techniques prevalent in the architect’s professional community.
It is a brave architect who, in today’s environment, does not at least consider
a web-based, object-oriented, service-oriented, mobility-aware, cloud-based,

42 Part One Introduction 3—The Many Contexts of Software Architecture

social-networking-friendly design for an information system. It wasn’t always so,
and it won’t be so ten years from now when another crop of technological trends
has come to the fore.

The Swedish Ship Vasa

In the 1620s, Sweden and Poland were at war. The king of Sweden,
Gustavus Adolphus, was determined to put a swift and favorable end to it
and commissioned a new warship the likes of which had never been seen
before. The Vasa, shown in Figure 3.1, was to be the world’s most formi-
dable instrument of war: 70 meters long, able to carry 300 soldiers, and
with an astonishing 64 heavy guns mounted on two gun decks. Seeking to
add overwhelming firepower to his navy to strike a decisive blow, the king
insisted on stretching the Vasa’s armaments to the limits. Her architect,
Henrik Hybertsson, was a seasoned Dutch shipbuilder with an impeccable
reputation, but the Vasa was beyond even his broad experience. Two-
gun-deck ships were rare, and none had been built of the Vasa’s size and
armament.

Like all architects of systems that push the envelope of experience,
Hybertsson had to balance many concerns. Swift time to deployment was
critical, but so were performance, functionality, safety, reliability, and cost.

fIGurE 3.1 The warship. Used with permission of The Vasa Museum,
Stockholm, Sweden.

3.1 Architecture in a Technical Context 43

He was also responsible to a variety of stakeholders. In this case, the
primary customer was the king, but Hybertsson also was responsible to
the crew that would sail his creation. Also like all architects, Hybertsson
brought his experience with him to the task. In this case, his experience
told him to design the Vasa as though it were a single-gun-deck ship and
then extrapolate, which was in accordance with the technical environment
of the day. Faced with an impossible task, Hybertsson had the good sense
to die about a year before the ship was finished.

The project was completed to his specifications, however, and on
Sunday morning, August 10, 1628, the mighty ship was ready. She set her
sails, waddled out into Stockholm’s deep-water harbor, fired her guns in sa-
lute, and promptly rolled over. Water poured in through the open gun ports,
and the Vasa plummeted. A few minutes later her first and only voyage
ended 30 meters beneath the surface. Dozens among her 150-man crew
drowned.

Inquiries followed, which concluded that the ship was well built but “badly
proportioned.” In other words, its architecture was flawed. Today we know
that Hybertsson did a poor job of balancing all of the conflicting constraints
levied on him. In particular, he did a poor job of risk management and a
poor job of customer management (not that anyone could have fared bet-
ter). He simply acquiesced in the face of impossible requirements.

The story of the Vasa, although more than 375 years old, well illustrates
the Architecture Influence Cycle: organization goals beget requirements,
which beget an architecture, which begets a system. The architecture flows
from the architect’s experience and the technical environment of the day.
Hybertsson suffered from the fact that neither of those were up to the task
before him.

In this book, we provide three things that Hybertsson could have used:

1. Examples of successful architectural practices that work under
demanding requirements, so as to help set the technical
playing field of the day.

2. Methods to assess an architecture before any system is built
from it, so as to mitigate the risks associated with launching
unprecedented designs.

3. Techniques for incremental architecture-based development,
so as to uncover design flaws before it is too late to correct
them.

Our goal is to give architects another way out of their design dilemmas
than the one that befell the ill-fated Dutch ship designer. Death before de-
ployment is not nearly so admired these days.

—PCC

44 Part One Introduction 3—The Many Contexts of Software Architecture

3.2 architecture in a Project life-cycle context

Software development processes are standard approaches for developing software
systems. They impose a discipline on software engineers and, more important,
teams of software engineers. They tell the members of the team what to do next.
There are four dominant software development processes, which we describe in
roughly the order in which they came to prominence:

1. Waterfall. For many years the Waterfall model dominated the field of
software development. The Waterfall model organized the life cycle into a
series of connected sequential activities, each with entry and exit conditions
and a formalized relationship with its upstream and downstream neighbors.
The process began with requirements specification, followed by design,
then implementation, then integration, then testing, then installation,
all followed by maintenance. Feedback paths from later to earlier steps
allowed for the revision of artifacts (requirements documents, design
documents, etc.) on an as-needed basis, based on the knowledge acquired
in the later stage. For example, designers might push back against overly
stringent requirements, which would then be reworked and flow back down.
Testing that uncovered defects would trigger reimplementation (and maybe
even redesign). And then the cycle continued.

2. Iterative. Over time the feedback paths of the Waterfall model became
so pronounced that it became clear that it was better to think of software
development as a series of short cycles through the steps—some
requirements lead to some design, which can be implemented and tested
while the next cycle’s worth of requirements are being captured and
designed. These cycles are called iterations, in the sense of iterating toward
the ultimate software solution for the given problem. Each iteration should
deliver something working and useful. The trick here is to uncover early
those requirements that have the most far-reaching effect on the design; the
corresponding danger is to overlook requirements that, when discovered
later, will capsize the design decisions made so far. An especially well-
known iterative process is called the Unified Process (originally named the
Rational Unified Process, after Rational Software, which originated it). It
defines four phases of each iteration: inception, elaboration, construction,
and transition. A set of chosen use cases defines the goals for each iteration,
and the iterations are ordered to address the greatest risks first.

3. Agile. The term “Agile software development” refers to a group of
software development methodologies, the best known of which include
Scrum, Extreme Programming, and Crystal Clear. These methodologies
are all incremental and iterative. As such, one can consider some iterative

3.2 Architecture in a Project Life-Cycle Context 45

methodologies as Agile. What distinguishes Agile practices is early
and frequent delivery of working software, close collaboration between
developers and customers, self-organizing teams, and a focus on adaptation
to changing circumstances (such as late-arriving requirements). All Agile
methodologies focus on teamwork, adaptability, and close collaboration
(both within the team and between team members and customers/end
users). These methodologies typically eschew substantial up-front work,
on the assumption that requirements always change, and they continue to
change throughout the project’s life cycle. As such, it might seem that Agile
methodologies and architecture cannot happily coexist. As we will show in
Chapter 15, this is not so.

4. Model-driven development. Model-driven development is based on the
idea that humans should not be writing code in programming languages,
but they should be creating models of the domain, from which code is
automatically generated. Humans create a platform-independent model
(PIM), which is combined with a platform-definition model (PDM) to
generate running code. In this way the PIM is a pure realization of the
functional requirements while the PDM addresses platform specifics and
quality attributes.

All of these processes include design among their obligations, and because
architecture is a special kind of design, architecture finds a home in each one.
Changing from one development process to another in the middle of a project re-
quires the architect to save useful information from the old process and determine
how to integrate it into the new process.

No matter what software development process or life-cycle model you’re
using, there are a number of activities that are involved in creating a software
architecture, using that architecture to realize a complete design, and then imple-
menting or managing the evolution of a target system or application. The process
you use will determine how often and when you revisit and elaborate each of
these activities. These activities include:

1. Making a business case for the system
2. Understanding the architecturally significant requirements
3. Creating or selecting the architecture
4. Documenting and communicating the architecture
5. Analyzing or evaluating the architecture
6. Implementing and testing the system based on the architecture
7. Ensuring that the implementation conforms to the architecture

Each of these activities is covered in a chapter in Part III of this book, and
described briefly below.

46 Part One Introduction 3—The Many Contexts of Software Architecture

Making a business case for the System

A business case is, briefly, a justification of an organizational investment. It is a
tool that helps you make business decisions by predicting how they will affect
your organization. Initially, the decision will be a go/no-go for pursuing a new
business opportunity or approach. After initiation, the business case is reviewed
to assess the accuracy of initial estimates and then updated to examine new or al-
ternative angles on the opportunity. By documenting the expected costs, benefits,
and risks, the business case serves as a repository of the business and market-
ing data. In this role, management uses the business case to determine possible
courses of action.

Knowing the business goals for the system—Chapter 16 will show you how
to elicit and capture them in a systematic way—is also critical in the creation of a
business case for a system.

Creating a business case is broader than simply assessing the market need
for a system. It is an important step in shaping and constraining any future re-
quirements. How much should the product cost? What is its targeted market?
What is its targeted time to market and lifetime? Will it need to interface with
other systems? Are there system limitations that it must work within?

These are all questions about which the system’s architects have specialized
knowledge; they must contribute to the answers. These questions cannot be de-
cided solely by an architect, but if an architect is not consulted in the creation of
the business case, the organization may be unable to achieve its business goals.
Typically, a business case is created prior to the initiation of a project, but it also
may be revisited during the course of the project for the organization to deter-
mine whether to continue making investments in the project. If the circumstances
assumed in the initial version of the business case change, the architect may be
called upon to establish how the system will change to reflect the new set of
circumstances.

understanding the architecturally Significant requirements

There are a variety of techniques for eliciting requirements from the stakeholders.
For example, object-oriented analysis uses use cases and scenarios to embody
requirements. Safety-critical systems sometimes use more rigorous approaches,
such as finite-state-machine models or formal specification languages. In Part II
of this book, which covers quality attributes, we introduce a collection of quality
attribute scenarios that aid in the brainstorming, discussion, and capture of qual-
ity attribute requirements for a system.

One fundamental decision with respect to the system being built is the extent
to which it is a variation on other systems that have been constructed. Because
it is a rare system these days that is not similar to other systems, requirements

3.2 Architecture in a Project Life-Cycle Context 47

elicitation techniques involve understanding these prior systems’ characteristics.
We discuss the architectural implications of software product lines in Chapter 25.

Another technique that helps us understand requirements is the creation of
prototypes. Prototypes may help to model and explore desired behavior, design
the user interface, or analyze resource utilization. This helps to make the system
“real” in the eyes of its stakeholders and can quickly build support for the project
and catalyze decisions on the system’s design and the design of its user interface.

creating or Selecting the architecture

In the landmark book The Mythical Man-Month, Fred Brooks argues forcefully
and eloquently that conceptual integrity is the key to sound system design and
that conceptual integrity can only be had by a small number of minds coming
together to design the system’s architecture. We firmly believe this as well. Good
architecture almost never results as an emergent phenomenon.

Chapters 5–12 and 17 will provide practical techniques that will aid you in
creating an architecture to achieve its behavioral and quality requirements.

documenting and communicating the architecture

For the architecture to be effective as the backbone of the project’s design, it
must be communicated clearly and unambiguously to all of the stakeholders. De-
velopers must understand the work assignments that the architecture requires of
them, testers must understand the task structure that the architecture imposes on
them, management must understand the scheduling implications it contains, and
so forth.

Toward this end, the architecture’s documentation should be informative,
unambiguous, and readable by many people with varied backgrounds. Architec-
tural documentation should also be minimal and aimed at the stakeholders who
will use it; we are no fans of documentation for documentation’s sake. We dis-
cuss the documentation of architectures and provide examples of good documen-
tation practices in Chapter 18. We will also discuss keeping the architecture up to
date when there is a change in something on which the architecture documenta-
tion depends.

analyzing or Evaluating the architecture

In any design process there will be multiple candidate designs considered. Some
will be rejected immediately. Others will contend for primacy. Choosing among
these competing designs in a rational way is one of the architect’s greatest
challenges.

48 Part One Introduction 3—The Many Contexts of Software Architecture

Evaluating an architecture for the qualities that it supports is essential to
ensuring that the system constructed from that architecture satisfies its stake-
holders’ needs. Analysis techniques to evaluate the quality attributes that an ar-
chitecture imparts to a system have become much more widespread in the past
decade. Scenario-based techniques provide one of the most general and effective
approaches for evaluating an architecture. The most mature methodological ap-
proach is found in the Architecture Tradeoff Analysis Method (ATAM) of Chap-
ter 21, while the economic implications of architectural decisions are explored in
Chapter 23.

Implementing and testing the System
based on the architecture

If the architect designs and analyzes a beautiful, conceptually sound architec-
ture which the implementers then ignore, what was the point? If architecture is
important enough to devote the time and effort of your best minds to, then it is
just as important to keep the developers faithful to the structures and interaction
protocols constrained by the architecture. Having an explicit and well-commu-
nicated architecture is the first step toward ensuring architectural conformance.
Having an environment or infrastructure that actively assists developers in creat-
ing and maintaining the architecture (as opposed to just the code) is better.

There are many reasons why developers might not be faithful to the archi-
tecture: It might not have been properly documented and disseminated. It might
be too confusing. It might be that the architect has not built ground-level support
for the architecture (particularly if it presents a different way of “doing business”
than the developers are used to), and so the developers resist it. Or the developers
may sincerely want to implement the architecture but, being human, they occa-
sionally slip up. This is not to say that the architecture should not change, but it
should not change purely on the basis of the whims of the developers, because
they may not have the overall picture.

Ensuring that the Implementation
conforms to the architecture

Finally, when an architecture is created and used, it goes into a maintenance
phase. Vigilance is required to ensure that the actual architecture and its repre-
sentation remain faithful to each other during this phase. And when they do get
significantly out of sync, effort must be expended to either fix the implementation
or update the architectural documentation.

Although work in this area is still relatively immature, it has been an area of
intense activity in recent years. Chapter 20 will present the current state of recov-
ering an architecture from an existing system and ensuring that it conforms to the
specified architecture.

3.3 Architecture in a Business Context 49

3.3 architecture in a business context

Architectures and systems are not constructed frivolously. They serve some business
purposes, although as mentioned before, these purposes may change over time.

architectures and business Goals

Systems are created to satisfy the business goals of one or more organizations.
Development organizations want to make a profit, or capture market, or stay in
business, or help their customers do their jobs better, or keep their staff gainfully
employed, or make their stockholders happy, or a little bit of each. Customers
have their own goals for acquiring a system, usually involving some aspect of
making their lives easier or more productive. Other organizations involved in a
project’s life cycle, such as subcontractors or government regulatory agencies,
have their own goals dealing with the system.

Architects need to understand who the vested organizations are and what their
goals are. Many of these goals will have a profound influence on the architecture.

Many business goals will be manifested as quality attribute requirements.
In fact, every quality attribute—such as a user-visible response time or platform
flexibility or ironclad security or any of a dozen other needs—should originate
from some higher purpose that can be described in terms of added value. If we
ask, for example, “Why do you want this system to have a really fast response
time?” we might hear that this will differentiate the product from its competition
and let the developing organization capture market share.

Some business goals, however, will not show up in the form of requirements.
We know of one software architect who was informed by his manager that the
architecture should include a database. The architect was perplexed, because the
requirements for the system really didn’t warrant a database and the architect’s
design had nicely avoided putting one in, thereby simplifying the design and
lowering the cost of the product. The architect was perplexed, that is, until the
manager reminded the architect that the company’s database department was cur-
rently overstaffed and underworked. They needed something to do! The architect
put in the database, and all was well. That kind of business goal—keeping staff
gainfully employed—is not likely to show up in any requirements document, but
if the architect had failed to meet it, the manager would have considered the ar-
chitecture as unacceptable, just as the customer would have if it failed to provide
a key piece of functionality.

Still other business goals have no effect on the architecture whatsoever. A
business goal to lower costs might be realized by asking employees to work from
home, or turn the office thermostats down in the winter, or using less paper in the
printers. Chapter 16 will deal with uncovering business goals and the require-
ments they lead to.

50 Part One Introduction 3—The Many Contexts of Software Architecture

Figure 3.2 illustrates the major points from the preceding discussion. In the
figure, the arrows mean “leads to.” The solid arrows highlight the relationships of
most interest to us.

architectures and the development Organization

A development organization contributes many of the business goals that influ-
ence an architecture. For example, if the organization has an abundance of ex-
perienced and idle programmers skilled in peer-to-peer communications, then
a peer-to-peer architecture might be the approach supported by management. If
not, it may well be rejected. This would support the business goal, perhaps left
implicit, of not wanting to hire new staff or lay off existing staff, or not wanting
to invest significantly in the retraining of existing staff.

More generally, an organization often has an investment in assets, such as
existing architectures and the products based on them. The foundation of a de-
velopment project may be that the proposed system is the next in a sequence of
similar systems, and the cost estimates assume a high degree of asset reuse and a
high degree of skill and productivity from the programmers.

Additionally, an organization may wish to make a long-term business in-
vestment in an infrastructure to pursue strategic goals and may view the proposed
system as one means of financing and extending that infrastructure. For example,
an organization may decide that it wants to develop a reputation for supporting
solutions based on cloud computing or service-oriented architecture or high-per-
formance real-time computing. This long-term goal would be supported, in part,
by infrastructural investments that will affect the developing organization: a
cloud-computing group needs to be hired or grown, infrastructure needs to be
purchased, or perhaps training needs to be planned.

Business Goals Quality Attributes

ArchitectureNonarchitectural Solutions

fIGurE 3.2 Some business goals may lead to quality attribute requirements
(which lead to architectures), or lead directly to architectural decisions, or lead to
nonarchitectural solutions.

3.4 Architecture in a Professional Context 51

Finally, the organizational structure can shape the software architecture, and
vice versa. Organizations are often organized around technology and application
concepts: a database group, a networking group, a business rules team, a user-in-
terface group. So the explicit identification of a distinct subsystem in the archi-
tecture will frequently lead to the creation of a group with the name of the sub-
system. Furthermore, if the user-interface team frequently needs to communicate
with the business rules team, these teams will need to either be co-located or they
will need some regular means of communicating and coordinating.

3.4 architecture in a Professional context

What do architects do? How do you become an architect? In this section we talk
about the many facets of being an architect that go beyond what you learned in a
programming or software engineering course.

You probably know by now that architects need more than just technical
skills. Architects need to explain to one stakeholder or another the chosen prior-
ities of different properties, and why particular stakeholders are not having all of
their expectations fulfilled. To be an effective architect, then, you will need diplo-
matic, negotiation, and communication skills.

You will perform many activities beyond directly producing an architecture.
These activities, which we call duties, form the backbone of individual architec-
ture competence. We surveyed the broad body of information aimed at architects
(such as websites, courses, books, and position descriptions for architects), as
well as practicing architects, and duties are but one aspect. Writers about archi-
tects also speak of skills and knowledge. For example, architects need the ability
to communicate ideas clearly and need to have up-to-date knowledge about (for
example) patterns, or database platforms, or web services standards.

Duties, skills, and knowledge form a triad on which architecture compe-
tence rests. You will need to be involved in supporting management and deal-
ing with customers. You will need to manage a diverse workload and be able to
switch contexts frequently. You will need to know business considerations. You
will need to be a leader in the eyes of developers and management. In Chapter 24
we examine at length the architectural competence of organizations and people.

architects’ background and Experience

We are all products of our experiences, architects included. If you have had good
results using a particular architectural approach, such as three-tier client-server
or publish-subscribe, chances are that you will try that same approach on a new
development effort. Conversely, if your experience with an approach was disas-
trous, you may be reluctant to try it again.

52 Part One Introduction 3—The Many Contexts of Software Architecture

Architectural choices may also come from your education and training,
exposure to successful architectural patterns, or exposure to systems that have
worked particularly poorly or particularly well. You may also wish to experiment
with an architectural pattern or technique learned from a book (such as this one)
or a training course.

Why do we mention this? Because you (and your organization) must be
aware of this influence, so that you can manage it to the best of your abilities. This
may mean that you will critically examine proposed architectural solutions, to
ensure that they are not simply the path of least resistance. It may mean that you
will take training courses in interesting new technologies. It may mean that you
will invest in exploratory projects, to “test the water” of a new technology. Each
of these steps is a way to proactively manage your background and experience.

3.5 Stakeholders

Many people and organizations are interested in a software system. We call these
entities stakeholders. A stakeholder is anyone who has a stake in the success of
the system: the customer, the end users, the developers, the project manager, the
maintainers, and even those who market the system, for example. But stakehold-
ers, despite all having a shared stake in the success of the system, typically have
different specific concerns that they wish the system to guarantee or optimize.
These concerns are as diverse as providing a certain behavior at runtime, perform-
ing well on a particular piece of hardware, being easy to customize, achieving
short time to market or low cost of development, gainfully employing program-
mers who have a particular specialty, or providing a broad range of functions.
Figure 3.3 shows the architect receiving a few helpful stakeholder “suggestions.”

You will need to know and understand the nature, source, and priority of
constraints on the project as early as possible. Therefore, you must identify and
actively engage the stakeholders to solicit their needs and expectations. Early en-
gagement of stakeholders allows you to understand the constraints of the task,
manage expectations, negotiate priorities, and make tradeoffs. Architecture eval-
uation (covered in Part III of this book) and iterative prototyping are two means
for you to achieve stakeholder engagement.

Having an acceptable system involves appropriate performance, reliability,
availability, platform compatibility, memory utilization, network usage, security,
modifiability, usability, and interoperability with other systems as well as behav-
ior. All of these qualities, and others, affect how the delivered system is viewed
by its eventual recipients, and so such quality attributes will be demanded by one
or more of the system’s stakeholders.

The underlying problem, of course, is that each stakeholder has different
concerns and goals, some of which may be contradictory. It is a rare requirements

3.5 Stakeholders 53

document that does a good job of capturing all of a system’s quality requirements
in testable detail (a property is testable if it is falsifiable; “make the system easy
to use” is not falsifiable but “deliver audio packets with no more than 10 ms.
jitter” is falsifiable). The architect often has to fill in the blanks—the quality attri-
bute requirements that have not been explicitly stated—and mediate the conflicts
that frequently emerge.

Therefore, one of the best pieces of advice we can give to architects is this:
Know your stakeholders. Talk to them, engage them, listen to them, and put your-
self in their shoes. Table 3.1 enumerates a set of stakeholders. Notice the remark-
able variety and length of this set, but remember that not every stakeholder named
in this list may play a role in every system, and one person may play many roles.

Architect

Developing
Organization’s
Management
Stakeholder

Marketing
Stakeholder

End User
Stakeholder

Maintenance
Organization
Stakeholder

Customer
Stakeholder

low cost,
keeping people

employed!

behavior,
performance,

security,
reliability,
usability!

Neat features,
short time to market,
low cost, parity with
competing products!

Modifiability!

low cost, timely
delivery, not changed

very often!

Ohhhhhh...

fIGurE 3.3 Influence of stakeholders on the architect

54
P

art O
n

e
In

tro
d

u
ctio

n

3—
T

he M
any C

ontexts of S
oftw

are A
rchitecture

tablE 3.1 Stakeholders for a System and Their Interests

Name description Interest in architecture

Analyst Responsible for analyzing the architecture to make sure it meets certain
critical quality attribute requirements. Analysts are often specialized; for
instance, performance analysts, safety analysts, and security analysts
may have well-defined positions in a project.

Analyzing satisfaction of quality attribute requirements of the system
based on its architecture.

Architect Responsible for the development of the architecture and its
documentation. Focus and responsibility is on the system.

Negotiating and making tradeoffs among competing requirements
and design approaches. A vessel for recording design decisions.
Providing evidence that the architecture satisfies its requirements.

Business
Manager

Responsible for the functioning of the business/organizational entity
that owns the system. Includes managerial/executive responsibility,
responsibility for defining business processes, etc.

Understanding the ability of the architecture to meet business goals.

Conformance
Checker

Responsible for assuring conformance to standards and processes to
provide confidence in a product’s suitability.

Basis for conformance checking, for assurance that implementations
have been faithful to the architectural prescriptions.

Customer Pays for the system and ensures its delivery. The customer often speaks
for or represents the end user, especially in a government acquisition
context.

Assuring required functionality and quality will be delivered; gauging
progress; estimating cost; and setting expectations for what will be
delivered, when, and for how much.

Database
Administrator

Involved in many aspects of the data stores, including database design,
data analysis, data modeling and optimization, installation of database
software, and monitoring and administration of database security.

Understanding how data is created, used, and updated by other
architectural elements, and what properties the data and database
must have for the overall system to meet its quality goals.

Deployer Responsible for accepting the completed system from the development
effort and deploying it, making it operational, and fulfilling its allocated
business function.

Understanding the architectural elements that are delivered and
to be installed at the customer or end user’s site, and their overall
responsibility toward system function.

Designer Responsible for systems and/or software design downstream of the
architecture, applying the architecture to meet specific requirements of the
parts for which they are responsible.

Resolving resource contention and establishing performance and
other kinds of runtime resource consumption budgets. Understand-
ing how their part will communicate and interact with other parts of
the system.

Evaluator Responsible for conducting a formal evaluation of the architecture (and its
documentation) against some clearly defined criteria.

Evaluating the architecture’s ability to deliver required behavior and
quality attributes.

3.5
S

takeholders
55

Name description Interest in architecture

Implementer Responsible for the development of specific elements according to
designs, requirements, and the architecture.

Understanding inviolable constraints and exploitable freedoms on
development activities.

Integrator Responsible for taking individual components and integrating them,
according to the architecture and system designs.

Producing integration plans and procedures, and locating the source
of integration failures.

Maintainer Responsible for fixing bugs and providing enhancements to the system
throughout its life (including adaptation of the system for uses not originally
envisioned).

Understanding the ramifications of a change.

Network
Administrator

Responsible for the maintenance and oversight of computer hardware
and software in a computer network. This may include the deployment,
configuration, maintenance, and monitoring of network components.

Determining network loads during various use profiles, understanding
uses of the network.

Product-Line
Manager

Responsible for development of an entire family of products, all built using
the same core assets (including the architecture).

Determining whether a potential new member of a product family is in
or out of scope and, if out, by how much.

Project Manager Responsible for planning, sequencing, scheduling, and allocating
resources to develop software components and deliver components to
integration and test activities.

Helping to set budget and schedule, gauging progress against
established budget and schedule, identifying and resolving
development-time resource contention.

Representative of
External Systems

Responsible for managing a system with which this one must interoperate,
and its interface with our system.

Defining the set of agreement between the systems.

System Engineer Responsible for design and development of systems or system
components in which software plays a role.

Assuring that the system environment provided for the software is
sufficient.

Tester Responsible for the (independent) test and verification of the system or its
elements against the formal requirements and the architecture.

Creating tests based on the behavior and interaction of the software
elements.

User The actual end users of the system. There may be distinguished kinds of
users, such as administrators, superusers, etc.

Users, in the role of reviewers, might use architecture documentation
to check whether desired functionality is being delivered. Users might
also use the documentation to understand what the major system
elements are, which can aid them in emergency field maintenance.

56 Part One Introduction 3—The Many Contexts of Software Architecture

3.6 How Is architecture Influenced?

For decades, software designers have been taught to build systems based on the
software’s technical requirements. In the older Waterfall model, the requirements
document is “tossed over the wall” into the designer’s cubicle, and the designer
must come forth with a satisfactory design. Requirements beget design, which
begets system. In an iterative or Agile approach to development, an increment of
requirements begets an increment of design, and so forth.

This vision of software development is short-sighted. In any development
effort, the requirements make explicit some—but only some—of the desired
properties of the final system. Not all requirements are focused directly on de-
sired system properties; some requirements might mandate a development pro-
cess or the use of a particular tool. Furthermore, the requirements specification
only begins to tell the story. Failure to satisfy other constraints may render the
system just as problematic as if it functioned poorly.

What do you suppose would happen if two different architects, working in two
different organizations, were given the same requirements specification for a sys-
tem? Do you think they would produce the same architecture or different ones?

The answer is that they would very likely produce different ones, which im-
mediately belies the notion that requirements determine architecture. Other fac-
tors are at work.

A software architecture is a result of business and social influences, as well
as technical ones. The existence of an architecture in turn affects the technical,
business, and social environments that subsequently influence future architec-
tures. In particular, each of the contexts for architecture that we just covered—
technical, project, business, and professional—plays a role in influencing an ar-
chitect and the architecture, as shown in Figure 3.4.

Architect’s Influences

Architect

Business

Technical

Project

Professional

Stakeholders

Architecture

System

fIGurE 3.4 Influences on the architect

3.7 What Do Architectures Influence? 57

An architect designing a system for which the real-time deadlines are tight
will make one set of design choices; the same architect, designing a similar sys-
tem in which the deadlines can be easily satisfied, will make different choices.
And the same architect, designing a non-real-time system, is likely to make quite
different choices still. Even with the same requirements, hardware, support soft-
ware, and human resources available, an architect designing a system today is
likely to design a different system than might have been designed five years ago.

3.7 What do architectures Influence?

The story about contexts influencing architectures has a flip side. It turns out that
architectures have an influence on the very factors that influence them. Specifi-
cally, the existence of an architecture affects the technical, project, business, and
professional contexts that subsequently influence future architectures.

Here is how the cycle works:

 ■ Technical context. The architecture can affect stakeholder requirements
for the next system by giving the customer the opportunity to receive a
system (based on the same architecture) in a more reliable, timely, and
economical manner than if the subsequent system were to be built from
scratch, and typically with fewer defects. A customer may in fact be willing
to relax some of their requirements to gain these economies. Shrink-
wrapped software has clearly affected people’s requirements by providing
solutions that are not tailored to any individual’s precise needs but are
instead inexpensive and (in the best of all possible worlds) of high quality.
Software product lines have the same effect on customers who cannot be so
flexible with their requirements.

 ■ Project context. The architecture affects the structure of the developing
organization. An architecture prescribes a structure for a system; as we will
see, it particularly prescribes the units of software that must be implemented
(or otherwise obtained) and integrated to form the system. These units
are the basis for the development project’s structure. Teams are formed
for individual software units; and the development, test, and integration
activities all revolve around the units. Likewise, schedules and budgets
allocate resources in chunks corresponding to the units. If a company
becomes adept at building families of similar systems, it will tend to invest
in each team by nurturing each area of expertise. Teams become embedded
in the organization’s structure. This is feedback from the architecture to
the developing organization. In any design undertaken by the organization
at large, these groups have a strong voice in the system’s decomposition,
pressuring for the continued existence of the portions they control.

58 Part One Introduction 3—The Many Contexts of Software Architecture

 ■ Business context. The architecture can affect the business goals of the
developing organization. A successful system built from an architecture can
enable a company to establish a foothold in a particular market segment—
think of the iPhone or Android app platforms as examples. The architecture
can provide opportunities for the efficient production and deployment of
similar systems, and the organization may adjust its goals to take advantage
of its newfound expertise to plumb the market. This is feedback from the
system to the developing organization and the systems it builds.

 ■ Professional context. The process of system building will affect the
architect’s experience with subsequent systems by adding to the corporate
experience base. A system that was successfully built around a particular
technical approach will make the architect more inclined to build systems
using the same approach in the future. On the other hand, architectures that
fail are less likely to be chosen for future projects.

These and other feedback mechanisms form what we call the Architecture
Influence Cycle, or AIC, illustrated in Figure 3.5, which depicts the influences of
the culture and business of the development organization on the software archi-
tecture. That architecture is, in turn, a primary determinant of the properties of
the developed system or systems. But the AIC is also based on a recognition that
shrewd organizations can take advantage of the organizational and experiential
effects of developing an architecture and can use those effects to position their
business strategically for future projects.

Architect’s Influences

Architect

Business

Technical

Project

Professional

Stakeholders

Architecture

System

fIGurE 3.5 Architecture Influence Cycle

3.9 For Further Reading 59

3.8 Summary

Architectures exist in four different contexts.

1. Technical. The technical context includes the achievement of quality
attribute requirements. We spend Part II discussing how to do this. The
technical context also includes the current technology. The cloud (discussed
in Chapter 26) and mobile computing (discussed in Chapter 27) are
important current technologies.

2. Project life cycle. Regardless of the software development methodology
you use, you must make a business case for the system, understand the
architecturally significant requirements, create or select the architecture,
document and communicate the architecture, analyze or evaluate the archi-
tecture, implement and test the system based on the architecture, and ensure
that the implementation conforms to the architecture.

3. Business. The system created from the architecture must satisfy the busi-
ness goals of a wide variety of stakeholders, each of whom has different
expectations for the system. The architecture is also influenced by and in-
fluences the structure of the development organization.

4. Professional. You must have certain skills and knowledge to be an architect,
and there are certain duties that you must perform as an architect. These
are influenced not only by coursework and reading but also by your
experiences.

An architecture has some influences that lead to its creation, and its exis-
tence has an impact on the architect, the organization, and, potentially, the indus-
try. We call this cycle the Architecture Influence Cycle.

3.9 for further reading

The product line framework produced by the Software Engineering Institute in-
cludes a discussion of business cases from which we drew [SEI 12].

The SEI has also published a case study of Celsius Tech that includes an ex-
ample of how organizations and customers change over time [Brownsword 96].

Several other SEI reports discuss how to find business goals and the busi-
ness goals that have been articulated by certain organizations [Kazman 05, Cle-
ments 10b].

Ruth Malan and Dana Bredemeyer provide a description of how an architect
can build buy-in within an organization [Malan 00].

60 Part One Introduction 3—The Many Contexts of Software Architecture

3.10 discussion Questions

1. Enumerate six different software systems used by your organization. For
each of these systems:

a. What are the contextual influences?
b. Who are the stakeholders?
c. How do these systems reflect or impact the organizational structure?

2. What kinds of business goals have driven the construction of the following:

a. The World Wide Web
b. Amazon’s EC2 cloud infrastructure
c. Google’s Android platform

3. What mechanisms are available to improve your skills and knowledge?
What skills are you lacking?

4. Describe a system you are familiar with and place it into the AIC. Specifi-
cally, identify the forward and reverse influences on contextual factors.

61

1

PA R T O N E

ENVISIONING
ARCHITECTURE

Where do architectures come from? They spring from the minds of architects, of
course, but how? What must go

into

 the mind of an architect for an architecture to
come

out?

 For that matter, what

is

 a software architecture? Is it the same as
design? If so, what’s the fuss? If it’s different, how so and why is it important?

In Part One, we focus on the forces and influences that are at work as the
architect begins creating—

envisioning

—the central artifact of a system whose
influences persist beyond the lifetime of the system. Whereas we often think of
design as taking the right steps to ensure that the system will perform as
expected—produce the correct answer or provide the expected functionality—
architecture is additionally concerned with much longer-range issues. The archi-
tect is faced with a swarm of competing, if not conflicting, influences and
demands, surprisingly few of which are concerned with getting the system to
work correctly. The organizational and technical environment brings to bear a
weighty set of sometimes implicit demands, and in practice these are as impor-
tant as any of the explicit requirements for the software even though they are
almost never written down.

Also surprising are the ways in which the architecture produces a deep influ-
ence on the organization that spawned it. It is decidedly not the case that the orga-
nization produces the architecture, ties it to the system for which it was developed,
and locks it away in that compartment. Instead, architectures and their developing
organizations dance an intricate waltz of influence and counterinfluence, helping
each other to grow, evolve, and take on larger roles.

Bass.book Page 1 Thursday, March 20, 2003 7:21 PM

PA R T T WO

QualIty attrIbutES

In Part II, we provide the technical foundations for you to design or analyze an
architecture to achieve particular quality attributes. We do not discuss design or
analysis processes here; we cover those topics in Part III. It is impossible, how-
ever, to understand how to improve the performance of a design, for example,
without understanding something about performance.

In Chapter 4 we describe how to specify a quality attribute requirement and
motivate design techniques called tactics to enable you to achieve a particular qual-
ity attribute requirement. We also enumerate seven categories of design decisions.
These are categories of decisions that are universally important, and so we provide
material to help an architect focus on these decisions. In Chapter 4, we describe
these categories, and in each of the following chapters devoted to a particular quality
attribute—Chapters 5–11—we use those categories to develop a checklist that tells
you how to focus your attention on the important aspects associated with that quality
attribute. Many of the items in our checklists may seem obvious, but the purpose of
a checklist is to help ensure the completeness of your design and analysis process.

In addition to providing a treatment of seven specific quality attributes
(availability, interoperability, modifiability, performance, security, testability, and
usability), we also describe how you can generate the material provided in Chap-
ters 5–11 for other quality attributes that we have not covered.

Architectural patterns provide known solutions to a number of common
problems in design. In Chapter 13, we present some of the most important pat-
terns and discuss the relationship between patterns and tactics.

Being able to analyze a design for a particular quality attribute is a key skill
that you as an architect will need to acquire. In Chapter 14, we discuss modeling
techniques for some of the quality attributes.

This page intentionally left blank

63

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

4
Understanding Quality
Attributes

Between stimulus and response, there is a space. In
that space is our power to choose our response. In

our response lies our growth and our freedom.
— Viktor E. Frankl, Man’s Search for Meaning

As we have seen in the Architecture Influence Cycle (in Chapter 3), many fac-
tors determine the qualities that must be provided for in a system’s architecture.
These qualities go beyond functionality, which is the basic statement of the sys-
tem’s capabilities, services, and behavior. Although functionality and other qual-
ities are closely related, as you will see, functionality often takes the front seat in
the development scheme. This preference is shortsighted, however. Systems are
frequently redesigned not because they are functionally deficient—the replace-
ments are often functionally identical—but because they are difficult to maintain,
port, or scale; or they are too slow; or they have been compromised by hackers.
In Chapter 2, we said that architecture was the first place in software creation in
which quality requirements could be addressed. It is the mapping of a system’s
functionality onto software structures that determines the architecture’s support
for qualities. In Chapters 5–11 we discuss how various qualities are supported by
architectural design decisions. In Chapter 17 we show how to integrate all of the
quality attribute decisions into a single design.

We have been using the term “quality attribute” loosely, but now it is time to
define it more carefully. A quality attribute (QA) is a measurable or testable prop-
erty of a system that is used to indicate how well the system satisfies the needs of
its stakeholders. You can think of a quality attribute as measuring the “goodness”
of a product along some dimension of interest to a stakeholder.

In this chapter our focus is on understanding the following:

 ■ How to express the qualities we want our architecture to provide to the sys-
tem or systems we are building from it

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

64 Part two Quality attributes 4—Understanding Quality Attributes

 ■ How to achieve those qualities
 ■ How to determine the design decisions we might make with respect to those

qualities

This chapter provides the context for the discussion of specific quality attributes
in Chapters 5–11.

4.1 architecture and requirements

Requirements for a system come in a variety of forms: textual requirements,
mockups, existing systems, use cases, user stories, and more. Chapter 16 dis-
cusses the concept of an architecturally significant requirement, the role such re-
quirements play in architecture, and how to identify them. No matter the source,
all requirements encompass the following categories:

1. Functional requirements. These requirements state what the system must
do, and how it must behave or react to runtime stimuli.

2. Quality attribute requirements. These requirements are qualifications of
the functional requirements or of the overall product. A qualification of a
functional requirement is an item such as how fast the function must be
performed, or how resilient it must be to erroneous input. A qualification
of the overall product is an item such as the time to deploy the product or a
limitation on operational costs.

3. Constraints. A constraint is a design decision with zero degrees of freedom.
That is, it’s a design decision that’s already been made. Examples include
the requirement to use a certain programming language or to reuse a certain
existing module, or a management fiat to make your system service ori-
ented. These choices are arguably in the purview of the architect, but ex-
ternal factors (such as not being able to train the staff in a new language, or
having a business agreement with a software supplier, or pushing business
goals of service interoperability) have led those in power to dictate these
design outcomes.

What is the “response” of architecture to each of these kinds of requirements?

1. Functional requirements are satisfied by assigning an appropriate sequence
of responsibilities throughout the design. As we will see later in this chap-
ter, assigning responsibilities to architectural elements is a fundamental
architectural design decision.

2. Quality attribute requirements are satisfied by the various structures de-
signed into the architecture, and the behaviors and interactions of the ele-
ments that populate those structures. Chapter 17 will show this approach in
more detail.

4.3 Quality Attribute Considerations 65

3. Constraints are satisfied by accepting the design decision and reconciling it
with other affected design decisions.

4.2 functionality

Functionality is the ability of the system to do the work for which it was in-
tended. Of all of the requirements, functionality has the strangest relationship to
architecture.

First of all, functionality does not determine architecture. That is, given a
set of required functionality, there is no end to the architectures you could create
to satisfy that functionality. At the very least, you could divide up the function-
ality in any number of ways and assign the subpieces to different architectural
elements.

In fact, if functionality were the only thing that mattered, you wouldn’t have
to divide the system into pieces at all; a single monolithic blob with no internal
structure would do just fine. Instead, we design our systems as structured sets
of cooperating architectural elements—modules, layers, classes, services, data-
bases, apps, threads, peers, tiers, and on and on—to make them understandable
and to support a variety of other purposes. Those “other purposes” are the other
quality attributes that we’ll turn our attention to in the remaining sections of this
chapter, and the remaining chapters of Part II.

But although functionality is independent of any particular structure, func-
tionality is achieved by assigning responsibilities to architectural elements, re-
sulting in one of the most basic of architectural structures.

Although responsibilities can be allocated arbitrarily to any modules, soft-
ware architecture constrains this allocation when other quality attributes are im-
portant. For example, systems are frequently divided so that several people can
cooperatively build them. The architect’s interest in functionality is in how it in-
teracts with and constrains other qualities.

4.3 Quality attribute considerations

Just as a system’s functions do not stand on their own without due consideration of
other quality attributes, neither do quality attributes stand on their own; they pertain
to the functions of the system. If a functional requirement is “When the user presses
the green button, the Options dialog appears,” a performance QA annotation might
describe how quickly the dialog will appear; an availability QA annotation might
describe how often this function will fail, and how quickly it will be repaired; a us-
ability QA annotation might describe how easy it is to learn this function.

66 Part two Quality attributes 4—Understanding Quality Attributes

Functional Requirements

After more than 15 years of writing and discussing the distinction between
functional requirements and quality requirements, the definition of func-
tional requirements still eludes me. Quality attribute requirements are well
defined: performance has to do with the timing behavior of the system,
modifiability has to do with the ability of the system to support changes in
its behavior or other qualities after initial deployment, availability has to do
with the ability of the system to survive failures, and so forth.

Function, however, is much more slippery. An international standard
(ISO 25010) defines functional suitability as “the capability of the software
product to provide functions which meet stated and implied needs when
the software is used under specified conditions.” That is, functionality is the
ability to provide functions. One interpretation of this definition is that func-
tionality describes what the system does and quality describes how well
the system does its function. That is, qualities are attributes of the system
and function is the purpose of the system.

This distinction breaks down, however, when you consider the nature
of some of the “function.” If the function of the software is to control engine
behavior, how can the function be correctly implemented without consid-
ering timing behavior? Is the ability to control access through requiring a
user name/password combination not a function even though it is not the
purpose of any system?

I like much better the use of the word “responsibility” to describe com-
putations that a system must perform. Questions such as “What are the
timing constraints on that set of responsibilities?”, “What modifications are
anticipated with respect to that set of responsibilities?”, and “What class of
users is allowed to execute that set of responsibilities?” make sense and
are actionable.

The achievement of qualities induces responsibility; think of the user
name/password example just mentioned. Further, one can identify respon-
sibilities as being associated with a particular set of requirements.

So does this mean that the term “functional requirement” shouldn’t be
used? People have an understanding of the term, but when precision is
desired, we should talk about sets of specific responsibilities instead.

Paul Clements has long ranted against the careless use of the term
“nonfunctional,” and now it’s my turn to rant against the careless use of the
term “functional”—probably equally ineffectually.

—LB

Quality attributes have been of interest to the software community at least
since the 1970s. There are a variety of published taxonomies and definitions, and
many of them have their own research and practitioner communities. From an

4.3 Quality Attribute Considerations 67

architect’s perspective, there are three problems with previous discussions of sys-
tem quality attributes:

1. The definitions provided for an attribute are not testable. It is meaningless
to say that a system will be “modifiable.” Every system may be modifiable
with respect to one set of changes and not modifiable with respect to an-
other. The other quality attributes are similar in this regard: a system may
be robust with respect to some faults and brittle with respect to others. And
so forth.

2. Discussion often focuses on which quality a particular concern belongs to.
Is a system failure due to a denial-of-service attack an aspect of availability,
an aspect of performance, an aspect of security, or an aspect of usability?
All four attribute communities would claim ownership of a system failure
due to a denial-of-service attack. All are, to some extent, correct. But this
doesn’t help us, as architects, understand and create architectural solutions
to manage the attributes of concern.

3. Each attribute community has developed its own vocabulary. The perfor-
mance community has “events” arriving at a system, the security com-
munity has “attacks” arriving at a system, the availability community has
“failures” of a system, and the usability community has “user input.” All
of these may actually refer to the same occurrence, but they are described
using different terms.

A solution to the first two of these problems (untestable definitions and
overlapping concerns) is to use quality attribute scenarios as a means of charac-
terizing quality attributes (see the next section). A solution to the third problem
is to provide a discussion of each attribute—concentrating on its underlying con-
cerns—to illustrate the concepts that are fundamental to that attribute community.

There are two categories of quality attributes on which we focus. The first is
those that describe some property of the system at runtime, such as availability,
performance, or usability. The second is those that describe some property of the
development of the system, such as modifiability or testability.

Within complex systems, quality attributes can never be achieved in isola-
tion. The achievement of any one will have an effect, sometimes positive and
sometimes negative, on the achievement of others. For example, almost every
quality attribute negatively affects performance. Take portability. The main tech-
nique for achieving portable software is to isolate system dependencies, which
introduces overhead into the system’s execution, typically as process or proce-
dure boundaries, and this hurts performance. Determining the design that sat-
isfies all of the quality attribute requirements is partially a matter of making the
appropriate tradeoffs; we discuss design in Chapter 17. Our purpose here is to
provide the context for discussing each quality attribute. In particular, we focus
on how quality attributes can be specified, what architectural decisions will en-
able the achievement of particular quality attributes, and what questions about
quality attributes will enable the architect to make the correct design decisions.

68 Part two Quality attributes 4—Understanding Quality Attributes

4.4 Specifying Quality attribute requirements

A quality attribute requirement should be unambiguous and testable. We use a
common form to specify all quality attribute requirements. This has the advantage
of emphasizing the commonalities among all quality attributes. It has the disad-
vantage of occasionally being a force-fit for some aspects of quality attributes.

Our common form for quality attribute expression has these parts:

 ■ Stimulus. We use the term “stimulus” to describe an event arriving at the
system. The stimulus can be an event to the performance community, a
user operation to the usability community, or an attack to the security
community. We use the same term to describe a motivating action for de-
velopmental qualities. Thus, a stimulus for modifiability is a request for
a modification; a stimulus for testability is the completion of a phase of
development.

 ■ Stimulus source. A stimulus must have a source—it must come from some-
where. The source of the stimulus may affect how it is treated by the sys-
tem. A request from a trusted user will not undergo the same scrutiny as a
request by an untrusted user.

 ■ Response. How the system should respond to the stimulus must also be
specified. The response consists of the responsibilities that the system
(for runtime qualities) or the developers (for development-time qualities)
should perform in response to the stimulus. For example, in a performance
scenario, an event arrives (the stimulus) and the system should process
that event and generate a response. In a modifiability scenario, a request
for a modification arrives (the stimulus) and the developers should imple-
ment the modification—without side effects—and then test and deploy the
modification.

 ■ Response measure. Determining whether a response is satisfactory—
whether the requirement is satisfied—is enabled by providing a response
measure. For performance this could be a measure of latency or throughput;
for modifiability it could be the labor or wall clock time required to make,
test, and deploy the modification.

These four characteristics of a scenario are the heart of our quality attribute
specifications. But there are two more characteristics that are important: environ-
ment and artifact.

 ■ Environment. The environment of a requirement is the set of circumstances
in which the scenario takes place. The environment acts as a qualifier on
the stimulus. For example, a request for a modification that arrives after
the code has been frozen for a release may be treated differently than one
that arrives before the freeze. A failure that is the fifth successive failure

4.4 Specifying Quality Attribute Requirements 69

of a component may be treated differently than the first failure of that
component.

 ■ Artifact. Finally, the artifact is the portion of the system to which the
requirement applies. Frequently this is the entire system, but occasion-
ally specific portions of the system may be called out. A failure in a
data store may be treated differently than a failure in the metadata store.
Modifications to the user interface may have faster response times than
modifications to the middleware.

To summarize how we specify quality attribute requirements, we capture
them formally as six-part scenarios. While it is common to omit one or more of
these six parts, particularly in the early stages of thinking about quality attributes,
knowing that all parts are there forces the architect to consider whether each part
is relevant.

In summary, here are the six parts:

1. Source of stimulus. This is some entity (a human, a computer system, or
any other actuator) that generated the stimulus.

2. Stimulus. The stimulus is a condition that requires a response when it ar-
rives at a system.

3. Environment. The stimulus occurs under certain conditions. The system
may be in an overload condition or in normal operation, or some other rele-
vant state. For many systems, “normal” operation can refer to one of a num-
ber of modes. For these kinds of systems, the environment should specify in
which mode the system is executing.

4. Artifact. Some artifact is stimulated. This may be a collection of systems,
the whole system, or some piece or pieces of it.

5. Response. The response is the activity undertaken as the result of the arrival
of the stimulus.

6. Response measure. When the response occurs, it should be measurable in
some fashion so that the requirement can be tested.

We distinguish general quality attribute scenarios (which we call “general
scenarios” for short)—those that are system independent and can, potentially,
pertain to any system—from concrete quality attribute scenarios (concrete sce-
narios)—those that are specific to the particular system under consideration.

We can characterize quality attributes as a collection of general scenarios.
Of course, to translate these generic attribute characterizations into requirements
for a particular system, the general scenarios need to be made system specific.
Detailed examples of these scenarios will be given in Chapters 5–11. Figure 4.1
shows the parts of a quality attribute scenario that we have just discussed. Fig-
ure 4.2 shows an example of a general scenario, in this case for availability.

70 Part two Quality attributes 4—Understanding Quality Attributes

4.5 achieving Quality attributes through tactics

The quality attribute requirements specify the responses of the system that, with a
bit of luck and a dose of good planning, realize the goals of the business. We now
turn to the techniques an architect can use to achieve the required quality attri-
butes. We call these techniques architectural tactics. A tactic is a design decision
that influences the achievement of a quality attribute response—tactics directly
affect the system’s response to some stimulus. Tactics impart portability to one
design, high performance to another, and integrability to a third.

Stimulus Response

Response
Measure

Source
of Stimulus

Artifact

Environment

3
2

1

4

fIGurE 4.1 The parts of a quality attribute scenario

fIGurE 4.2 A general scenario for availability

Stimulus Response

Response
Measure

Source
of Stimulus

3
2

1

4

Internal/External:
people, hardware,
software, physical
infrastructure,
physical
environment

Fault:
omission,
crash,
incorrect
timing,
incorrect
response

Prevent fault from
becoming failure
Detect fault: log, notify
Recover from fault:
disable event source,
be unavailable,
fix/mask, degraded
mode

Time or time interval
system must be available
Availability percentage
Time in degraded mode
Time to detect fault
Repair time
Proportion of faults
system handles

Artifact
Processors,

communication
channels, persistent
storage, processes

Environment
Normal operation,
startup, shutdown,
repair mode,
degraded
operation,
overloaded
operation

4.5 Achieving Quality Attributes through Tactics 71

Not My Problem

One time I was doing an architecture analysis on a complex system cre-
ated by and for Lawrence Livermore National Laboratory. If you visit their
website (www.llnl.gov) and try to figure out what Livermore Labs does, you
will see the word “security” mentioned over and over. The lab focuses on
nuclear security, international and domestic security, and environmental
and energy security. Serious stuff . . .

Keeping this emphasis in mind, I asked them to describe the quality
attributes of concern for the system that I was analyzing. I’m sure you can
imagine my surprise when security wasn’t mentioned once! The system
stakeholders mentioned performance, modifiability, evolvability, interoper-
ability, configurability, and portability, and one or two more, but the word
security never passed their lips.

Being a good analyst, I questioned this seemingly shocking and obvious
omission. Their answer was simple and, in retrospect, straightforward: “We
don’t care about it. Our systems are not connected to any external net-
work and we have barbed-wire fences and guards with machine guns.” Of
course, someone at Livermore Labs was very interested in security. But it
was clearly not the software architects.

—RK

The focus of a tactic is on a single quality attribute response. Within a tactic,
there is no consideration of tradeoffs. Tradeoffs must be explicitly considered
and controlled by the designer. In this respect, tactics differ from architectural
patterns, where tradeoffs are built into the pattern. (We visit the relation between
tactics and patterns in Chapter 14. Chapter 13 explains how sets of tactics for a
quality attribute can be constructed, which are the steps we used to produce the
set in this book.)

A system design consists of a collection of decisions. Some of these deci-
sions help control the quality attribute responses; others ensure achievement of
system functionality. We represent the relationship between stimulus, tactics, and
response in Figure 4.3. The tactics, like design patterns, are design techniques
that architects have been using for years. Our contribution is to isolate, catalog,
and describe them. We are not inventing tactics here, we are just capturing what
architects do in practice.

Why do we do this? There are three reasons:

1. Design patterns are complex; they typically consist of a bundle of design
decisions. But patterns are often difficult to apply as is; architects need to
modify and adapt them. By understanding the role of tactics, an architect
can more easily assess the options for augmenting an existing pattern to
achieve a quality attribute goal.

http://www.llnl.gov

72 Part two Quality attributes 4—Understanding Quality Attributes

2. If no pattern exists to realize the architect’s design goal, tactics allow the
architect to construct a design fragment from “first principles.” Tactics give
the architect insight into the properties of the resulting design fragment.

3. By cataloging tactics, we provide a way of making design more systematic
within some limitations. Our list of tactics does not provide a taxonomy. We
only provide a categorization. The tactics will overlap, and you frequently
will have a choice among multiple tactics to improve a particular quality at-
tribute. The choice of which tactic to use depends on factors such as tradeoffs
among other quality attributes and the cost to implement. These consider-
ations transcend the discussion of tactics for particular quality attributes.
Chapter 17 provides some techniques for choosing among competing tactics.

The tactics that we present can and should be refined. Consider perfor-
mance: Schedule resources is a common performance tactic. But this tactic needs
to be refined into a specific scheduling strategy, such as shortest-job-first, round-
robin, and so forth, for specific purposes. Use an intermediary is a modifiability
tactic. But there are multiple types of intermediaries (layers, brokers, and prox-
ies, to name just a few). Thus there are refinements that a designer will employ to
make each tactic concrete.

In addition, the application of a tactic depends on the context. Again consid-
ering performance: Manage sampling rate is relevant in some real-time systems
but not in all real-time systems and certainly not in database systems.

4.6 Guiding Quality design decisions

Recall that one can view an architecture as the result of applying a collection of
design decisions. What we present here is a systematic categorization of these

fIGurE 4.3 Tactics are intended to control responses to stimuli.

Stimulus Response

Tactics
to Control
Response

4.6 Guiding Quality Design Decisions 73

decisions so that an architect can focus attention on those design dimensions
likely to be most troublesome.

The seven categories of design decisions are

1. Allocation of responsibilities
2. Coordination model
3. Data model
4. Management of resources
5. Mapping among architectural elements
6. Binding time decisions
7. Choice of technology

These categories are not the only way to classify architectural design deci-
sions, but they do provide a rational division of concerns. These categories might
overlap, but it’s all right if a particular decision exists in two different categories,
because the concern of the architect is to ensure that every important decision is
considered. Our categorization of decisions is partially based on our definition
of software architecture in that many of our categories relate to the definition of
structures and the relations among them.

allocation of responsibilities

Decisions involving allocation of responsibilities include the following:

 ■ Identifying the important responsibilities, including basic system functions,
architectural infrastructure, and satisfaction of quality attributes.

 ■ Determining how these responsibilities are allocated to non-runtime and
runtime elements (namely, modules, components, and connectors).

Strategies for making these decisions include functional decomposition,
modeling real-world objects, grouping based on the major modes of system oper-
ation, or grouping based on similar quality requirements: processing frame rate,
security level, or expected changes.

In Chapters 5–11, where we apply these design decision categories to a
number of important quality attributes, the checklists we provide for the alloca-
tion of responsibilities category is derived systematically from understanding the
stimuli and responses listed in the general scenario for that QA.

coordination Model

Software works by having elements interact with each other through designed
mechanisms. These mechanisms are collectively referred to as a coordination
model. Decisions about the coordination model include these:

74 Part two Quality attributes 4—Understanding Quality Attributes

 ■ Identifying the elements of the system that must coordinate, or are prohib-
ited from coordinating.

 ■ Determining the properties of the coordination, such as timeliness, cur-
rency, completeness, correctness, and consistency.

 ■ Choosing the communication mechanisms (between systems, between our
system and external entities, between elements of our system) that realize
those properties. Important properties of the communication mechanisms
include stateful versus stateless, synchronous versus asynchronous, guar-
anteed versus nonguaranteed delivery, and performance-related properties
such as throughput and latency.

data Model

Every system must represent artifacts of system-wide interest—data—in some
internal fashion. The collection of those representations and how to interpret
them is referred to as the data model. Decisions about the data model include the
following:

 ■ Choosing the major data abstractions, their operations, and their properties.
This includes determining how the data items are created, initialized, ac-
cessed, persisted, manipulated, translated, and destroyed.

 ■ Compiling metadata needed for consistent interpretation of the data.
 ■ Organizing the data. This includes determining whether the data is going

to be kept in a relational database, a collection of objects, or both. If both,
then the mapping between the two different locations of the data must be
determined.

Management of resources

An architect may need to arbitrate the use of shared resources in the architec-
ture. These include hard resources (e.g., CPU, memory, battery, hardware buffers,
system clock, I/O ports) and soft resources (e.g., system locks, software buffers,
thread pools, and non-thread-safe code).

Decisions for management of resources include the following:

 ■ Identifying the resources that must be managed and determining the limits
for each.

 ■ Determining which system element(s) manage each resource.
 ■ Determining how resources are shared and the arbitration strategies em-

ployed when there is contention.
 ■ Determining the impact of saturation on different resources. For example,

as a CPU becomes more heavily loaded, performance usually just degrades
fairly steadily. On the other hand, when you start to run out of memory, at

4.6 Guiding Quality Design Decisions 75

some point you start paging/swapping intensively and your performance
suddenly crashes to a halt.

Mapping among architectural Elements

An architecture must provide two types of mappings. First, there is mapping
between elements in different types of architecture structures—for example,
mapping from units of development (modules) to units of execution (threads or
processes). Next, there is mapping between software elements and environment
elements—for example, mapping from processes to the specific CPUs where
these processes will execute.

Useful mappings include these:

 ■ The mapping of modules and runtime elements to each other—that is, the
runtime elements that are created from each module; the modules that con-
tain the code for each runtime element.

 ■ The assignment of runtime elements to processors.
 ■ The assignment of items in the data model to data stores.
 ■ The mapping of modules and runtime elements to units of delivery.

binding time decisions

Binding time decisions introduce allowable ranges of variation. This variation
can be bound at different times in the software life cycle by different entities—
from design time by a developer to runtime by an end user. A binding time de-
cision establishes the scope, the point in the life cycle, and the mechanism for
achieving the variation.

The decisions in the other six categories have an associated binding time
decision. Examples of such binding time decisions include the following:

 ■ For allocation of responsibilities, you can have build-time selection of mod-
ules via a parameterized makefile.

 ■ For choice of coordination model, you can design runtime negotiation of
protocols.

 ■ For resource management, you can design a system to accept new periph-
eral devices plugged in at runtime, after which the system recognizes them
and downloads and installs the right drivers automatically.

 ■ For choice of technology, you can build an app store for a smartphone that
automatically downloads the version of the app appropriate for the phone of
the customer buying the app.

When making binding time decisions, you should consider the costs to im-
plement the decision and the costs to make a modification after you have im-
plemented the decision. For example, if you are considering changing platforms

76 Part two Quality attributes 4—Understanding Quality Attributes

at some time after code time, you can insulate yourself from the effects caused
by porting your system to another platform at some cost. Making this decision
depends on the costs incurred by having to modify an early binding compared to
the costs incurred by implementing the mechanisms involved in the late binding.

choice of technology

Every architecture decision must eventually be realized using a specific tech-
nology. Sometimes the technology selection is made by others, before the in-
tentional architecture design process begins. In this case, the chosen technology
becomes a constraint on decisions in each of our seven categories. In other cases,
the architect must choose a suitable technology to realize a decision in every one
of the categories.

Choice of technology decisions involve the following:

 ■ Deciding which technologies are available to realize the decisions made in
the other categories.

 ■ Determining whether the available tools to support this technology choice
(IDEs, simulators, testing tools, etc.) are adequate for development to
proceed.

 ■ Determining the extent of internal familiarity as well as the degree of exter-
nal support available for the technology (such as courses, tutorials, exam-
ples, and availability of contractors who can provide expertise in a crunch)
and deciding whether this is adequate to proceed.

 ■ Determining the side effects of choosing a technology, such as a required
coordination model or constrained resource management opportunities.

 ■ Determining whether a new technology is compatible with the existing
technology stack. For example, can the new technology run on top of or
alongside the existing technology stack? Can it communicate with the exist-
ing technology stack? Can the new technology be monitored and managed?

4.7 Summary

Requirements for a system come in three categories:

1. Functional. These requirements are satisfied by including an appropriate set
of responsibilities within the design.

2. Quality attribute. These requirements are satisfied by the structures and
behaviors of the architecture.

3. Constraints. A constraint is a design decision that’s already been made.

4.9 Discussion Questions 77

To express a quality attribute requirement, we use a quality attribute sce-
nario. The parts of the scenario are these:

1. Source of stimulus
2. Stimulus
3. Environment
4. Artifact
5. Response
6. Response measure

An architectural tactic is a design decision that affects a quality attribute
response. The focus of a tactic is on a single quality attribute response. Architec-
tural patterns can be seen as “packages” of tactics.

The seven categories of architectural design decisions are these:

1. Allocation of responsibilities
2. Coordination model
3. Data model
4. Management of resources
5. Mapping among architectural elements
6. Binding time decisions
7. Choice of technology

4.8 for further reading

Philippe Kruchten [Kruchten 04] provides another categorization of design
decisions.

Pena [Pena 87] uses categories of Function/Form/Economy/Time as a way
of categorizing design decisions.

Binding time and mechanisms to achieve different types of binding times
are discussed in [Bachmann 05].

Taxonomies of quality attributes can be found in [Boehm 78], [McCall 77],
and [ISO 11].

Arguments for viewing architecture as essentially independent from func-
tion can be found in [Shaw 95].

4.9 discussion Questions

1. What is the relationship between a use case and a quality attribute scenario?
If you wanted to add quality attribute information to a use case, how would
you do it?

78 Part two Quality attributes 4—Understanding Quality Attributes

2. Do you suppose that the set of tactics for a quality attribute is finite or in-
finite? Why?

3. Discuss the choice of programming language (an example of choice of
technology) and its relation to architecture in general, and the design
decisions in the other six categories? For instance, how can certain pro-
gramming languages enable or inhibit the choice of particular coordination
models?

4. We will be using the automatic teller machine as an example throughout
the chapters on quality attributes. Enumerate the set of responsibilities that
an automatic teller machine should support and propose an initial design to
accommodate that set of responsibilities. Justify your proposal.

5. Think about the screens that your favorite automatic teller machine uses.
What do those screens tell you about binding time decisions reflected in the
architecture?

6. Consider the choice between synchronous and asynchronous communica-
tion (a choice in the coordination mechanism category). What quality attri-
bute requirements might lead you to choose one over the other?

7. Consider the choice between stateful and stateless communication (a choice
in the coordination mechanism category). What quality attribute require-
ments might lead you to choose one over the other?

8. Most peer-to-peer architecture employs late binding of the topology. What
quality attributes does this promote or inhibit?

79

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

5
Availability
With James Scott

Ninety percent of life is just showing up.
—Woody Allen

Availability refers to a property of software that it is there and ready to carry
out its task when you need it to be. This is a broad perspective and encompasses
what is normally called reliability (although it may encompass additional con-
siderations such as downtime due to periodic maintenance). In fact, availability
builds upon the concept of reliability by adding the notion of recovery—that is,
when the system breaks, it repairs itself. Repair may be accomplished by various
means, which we’ll see in this chapter. More precisely, Avižienis and his col-
leagues have defined dependability:

Dependability is the ability to avoid failures that are more frequent and
more severe than is acceptable.

Our definition of availability as an aspect of dependability is this: “Availabil-
ity refers to the ability of a system to mask or repair faults such that the cumula-
tive service outage period does not exceed a required value over a specified time
interval.” These definitions make the concept of failure subject to the judgment of
an external agent, possibly a human. They also subsume concepts of reliability,
confidentiality, integrity, and any other quality attribute that involves a concept of
unacceptable failure.

Availability is closely related to security. A denial-of-service attack is ex-
plicitly designed to make a system fail—that is, to make it unavailable. Availabil-
ity is also closely related to performance, because it may be difficult to tell when
a system has failed and when it is simply being outrageously slow to respond.
Finally, availability is closely allied with safety, which is concerned with keeping

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

80 Part two Quality attributes 5—Availability

the system from entering a hazardous state and recovering or limiting the damage
when it does.

Fundamentally, availability is about minimizing service outage time by mit-
igating faults. Failure implies visibility to a system or human observer in the en-
vironment. That is, a failure is the deviation of the system from its specification,
where the deviation is externally visible. One of the most demanding tasks in
building a high-availability, fault-tolerant system is to understand the nature of
the failures that can arise during operation (see the sidebar “Planning for Fail-
ure”). Once those are understood, mitigation strategies can be designed into the
software.

A failure’s cause is called a fault. A fault can be either internal or external to
the system under consideration. Intermediate states between the occurrence of a
fault and the occurrence of a failure are called errors. Faults can be prevented, tol-
erated, removed, or forecast. In this way a system becomes “resilient” to faults.

Among the areas with which we are concerned are how system faults are
detected, how frequently system faults may occur, what happens when a fault
occurs, how long a system is allowed to be out of operation, when faults or fail-
ures may occur safely, how faults or failures can be prevented, and what kinds of
notifications are required when a failure occurs.

Because a system failure is observable by users, the time to repair is the time
until the failure is no longer observable. This may be a brief delay in the response
time or it may be the time it takes someone to fly to a remote location in the An-
des to repair a piece of mining machinery (as was recounted to us by a person
responsible for repairing the software in a mining machine engine). The notion
of “observability” can be a tricky one: the Stuxnet virus, as an example, went un-
observed for a very long time even though it was doing damage. In addition, we
are often concerned with the level of capability that remains when a failure has
occurred—a degraded operating mode.

The distinction between faults and failures allows discussion of automatic
repair strategies. That is, if code containing a fault is executed but the system is
able to recover from the fault without any deviation from specified behavior be-
ing observable, there is no failure.

The availability of a system can be calculated as the probability that it will
provide the specified services within required bounds over a specified time inter-
val. When referring to hardware, there is a well-known expression used to derive
steady-state availability:

MTBF
(MTBF + MTTR)

where MTBF refers to the mean time between failures and MTTR refers to the
mean time to repair. In the software world, this formula should be interpreted
to mean that when thinking about availability, you should think about what will
make your system fail, how likely that is to occur, and that there will be some
time required to repair it.

 5—Availability 81

From this formula it is possible to calculate probabilities and make claims
like “99.999 percent availability,” or a 0.001 percent probability that the system
will not be operational when needed. Scheduled downtimes (when the system is
intentionally taken out of service) may not be considered when calculating avail-
ability, because the system is deemed “not needed” then; of course, this depends
on the specific requirements for the system, often encoded in service-level agree-
ments (SLAs). This arrangement may lead to seemingly odd situations where the
system is down and users are waiting for it, but the downtime is scheduled and so
is not counted against any availability requirements.

In operational systems, faults are detected and correlated prior to being re-
ported and repaired. Fault correlation logic will categorize a fault according to
its severity (critical, major, or minor) and service impact (service-affecting or
non-service-affecting) in order to provide the system operator with timely and ac-
curate system status and allow for the appropriate repair strategy to be employed.
The repair strategy may be automated or may require manual intervention.

The availability provided by a computer system or hosting service is fre-
quently expressed as a service-level agreement. This SLA specifies the availabil-
ity level that is guaranteed and, usually, the penalties that the computer system or
hosting service will suffer if the SLA is violated. The SLA that Amazon provides
for its EC2 cloud service is

AWS will use commercially reasonable efforts to make Amazon EC2
available with an Annual Uptime Percentage [defined elsewhere] of at
least 99.95% during the Service Year. In the event Amazon EC2 does
not meet the Annual Uptime Percentage commitment, you will be
eligible to receive a Service Credit as described below.

Table 5.1 provides examples of system availability requirements and associated
threshold values for acceptable system downtime, measured over observation pe-
riods of 90 days and one year. The term high availability typically refers to de-
signs targeting availability of 99.999 percent (“5 nines”) or greater. By definition
or convention, only unscheduled outages contribute to system downtime.

tablE 5.1 System Availability Requirements

availability downtime/90 days downtime/year

99.0% 21 hours, 36 minutes 3 days, 15.6 hours

99.9% 2 hours, 10 minutes 8 hours, 0 minutes, 46 seconds

99.99% 12 minutes, 58 seconds 52 minutes, 34 seconds

99.999% 1 minute, 18 seconds 5 minutes, 15 seconds

99.9999% 8 seconds 32 seconds

82 Part two Quality attributes 5—Availability

Planning for Failure

When designing a high-availability or safety-critical system, it’s tempting to
say that failure is not an option. It’s a catchy phrase, but it’s a lousy design
philosophy. In fact, failure is not only an option, it’s almost inevitable. What
will make your system safe and available is planning for the occurrence of
failure or (more likely) failures, and handling them with aplomb. The first
step is to understand what kinds of failures your system is prone to, and
what the consequences of each will be. Here are three well-known tech-
niques for getting a handle on this.

Hazard analysis
Hazard analysis is a technique that attempts to catalog the hazards that
can occur during the operation of a system. It categorizes each hazard
according to its severity. For example, the DO-178B standard used in the
aeronautics industry defines these failure condition levels in terms of their
effects on the aircraft, crew, and passengers:

 ■ Catastrophic. This kind of failure may cause a crash. This failure represents
the loss of critical function required to safely fly and land aircraft.

 ■ Hazardous. This kind of failure has a large negative impact on safety or
performance, or reduces the ability of the crew to operate the aircraft due
to physical distress or a higher workload, or causes serious or fatal injuries
among the passengers.

 ■ Major. This kind of failure is significant, but has a lesser impact than a
Hazardous failure (for example, leads to passenger discomfort rather than
injuries) or significantly increases crew workload to the point where safety
is affected.

 ■ Minor. This kind of failure is noticeable, but has a lesser impact than a Ma-
jor failure (for example, causing passenger inconvenience or a routine flight
plan change).

 ■ No effect. This kind of failure has no impact on safety, aircraft operation, or
crew workload.

Other domains have their own categories and definitions. Hazard anal-
ysis also assesses the probability of each hazard occurring. Hazards for
which the product of cost and probability exceed some threshold are then
made the subject of mitigation activities.

Fault tree analysis
Fault tree analysis is an analytical technique that specifies a state of the
system that negatively impacts safety or reliability, and then analyzes the
system’s context and operation to find all the ways that the undesired state
could occur. The technique uses a graphic construct (the fault tree) that
helps identify all sequential and parallel sequences of contributing faults
that will result in the occurrence of the undesired state, which is listed at
the top of the tree (the “top event”). The contributing faults might be hard-
ware failures, human errors, software errors, or any other pertinent events
that can lead to the undesired state.

Part two Quality attributes 5—Availability 83

Figure 5.1, taken from a NASA handbook on fault tree analysis, shows
a very simple fault tree for which the top event is failure of component D. It
shows that component D can fail if A fails and either B or C fails.

The symbols that connect the events in a fault tree are called gate symbols,
and are taken from Boolean logic diagrams. Figure 5.2 illustrates the notation.

A fault tree lends itself to static analysis in various ways. For example, a
“minimal cut set” is the smallest combination of events along the bottom of
the tree that together can cause the top event. The set of minimal cut sets
shows all the ways the bottom events can combine to cause the overarch-
ing failure. Any singleton minimal cut set reveals a single point of failure,
which should be carefully scrutinized. Also, the probabilities of various con-
tributing failures can be combined to come up with a probability of the top
event occurring. Dynamic analysis occurs when the order of contributing
failures matters. In this case, techniques such as Markov analysis can be
used to calculate probability of failure over different failure sequences.

Fault trees aid in system design, but they can also be used to diagnose
failures at runtime. If the top event has occurred, then (assuming the fault
tree model is complete) one or more of the contributing failures has oc-
curred, and the fault tree can be used to track it down and initiate repairs.

Failure Mode, Effects, and Criticality Analysis (FMECA) catalogs the
kinds of failures that systems of a given type are prone to, along with how
severe the effects of each one can be. FMECA relies on the history of

D Fails

A Fails B or C Fail

B Fails C Fails

G1

A G2

CB

fIGurE 5.1 A simple fault tree. D fails if A fails and either B or C fails.

84 Part two Quality attributes 5—Availability

failure of similar systems in the past. Table 5.2, also taken from the NASA
handbook, shows the data for a system of redundant amplifiers. Historical
data shows that amplifiers fail most often when there is a short circuit or
the circuit is left open, but there are several other failure modes as well
(lumped together as “Other”).

n

 GATE SYMBOLS

AND Output fault occurs if all of the input faults occur

OR Output fault occurs if a least one of the input faults occurs

COMBINATION Output fault occurs if n of the input faults occur

EXCLUSIVE OR Output fault occurs if exactly one of the input
faults occurs

PRIORITY AND Output fault occurs if all of the input faults occur in a
specific sequence (the sequence is represented by a CONDITIONING
EVENT drawn to the right of the gate)

INHIBIT Output fault occurs if the (single) input fault occurs in the
presence of an enabling condition (the enabling condition is represented
by a CONDITIONING EVENT drawn to the right of the gate)

fIGurE 5.2 Fault tree gate symbols

tablE 5.2 Failure Probabilities and Effects

component

failure
Probability

failure
Mode

% failures
by Mode

Effects

critical Noncritical

A 1 × 10–3

Open 90 X

Short 5 X (5 × 10–5)

Other 5 X (5 × 10–5)

B 1 × 10–3 Open 90 X

Short 5 X (5 × 10–5)

Other 5 X (5 × 10–5)

5.1 Availability General Scenario 85

Adding up the critical column gives us the probability of a critical system
failure: 5 × 10–5 + 5 × 10–5 + 5 × 10–5 + 5 × 10–5 = 2 × 10–4.

These techniques, and others, are only as good as the knowledge and
experience of the people who populate their respective data structures.
One of the worst mistakes you can make, according to the NASA hand-
book, is to let form take priority over substance. That is, don’t let safety
engineering become a matter of just filling out the tables. Instead, keep
pressing to find out what else can go wrong, and then plan for it.

5.1 availability General Scenario

From these considerations we can now describe the individual portions of an
availability general scenario. These are summarized in Table 5.3:

 ■ Source of stimulus. We differentiate between internal and external origins of
faults or failure because the desired system response may be different.

 ■ Stimulus. A fault of one of the following classes occurs:

 ■ Omission. A component fails to respond to an input.
 ■ Crash. The component repeatedly suffers omission faults.
 ■ Timing. A component responds but the response is early or late.
 ■ Response. A component responds with an incorrect value.

 ■ Artifact. This specifies the resource that is required to be highly available,
such as a processor, communication channel, process, or storage.

 ■ Environment. The state of the system when the fault or failure occurs may
also affect the desired system response. For example, if the system has al-
ready seen some faults and is operating in other than normal mode, it may
be desirable to shut it down totally. However, if this is the first fault ob-
served, some degradation of response time or function may be preferred.

 ■ Response. There are a number of possible reactions to a system fault.
First, the fault must be detected and isolated (correlated) before any other
response is possible. (One exception to this is when the fault is prevented
before it occurs.) After the fault is detected, the system must recover from
it. Actions associated with these possibilities include logging the failure,
notifying selected users or other systems, taking actions to limit the damage
caused by the fault, switching to a degraded mode with either less capacity
or less function, shutting down external systems, or becoming unavailable
during repair.

 ■ Response measure. The response measure can specify an availability per-
centage, or it can specify a time to detect the fault, time to repair the fault,
times or time intervals during which the system must be available, or the
duration for which the system must be available.

86 Part two Quality attributes 5—Availability

Figure 5.3 shows a concrete scenario generated from the general scenario: The
heartbeat monitor determines that the server is nonresponsive during normal opera-
tions. The system informs the operator and continues to operate with no downtime.

tablE 5.3 Availability General Scenario

Portion of
Scenario

Possible Values

Source Internal/external: people, hardware, software, physical infrastructure,
physical environment

Stimulus Fault: omission, crash, incorrect timing, incorrect response

Artifact Processors, communication channels, persistent storage, processes

Environment Normal operation, startup, shutdown, repair mode, degraded operation,
overloaded operation

Response Prevent the fault from becoming a failure
Detect the fault:

 ■ Log the fault
 ■ Notify appropriate entities (people or systems)

Recover from the fault:
 ■ Disable source of events causing the fault
 ■ Be temporarily unavailable while repair is being effected
 ■ Fix or mask the fault/failure or contain the damage it causes
 ■ Operate in a degraded mode while repair is being effected

Response
Measure

Time or time interval when the system must be available
Availability percentage (e.g., 99.999%)
Time to detect the fault
Time to repair the fault
Time or time interval in which system can be in degraded mode
Proportion (e.g., 99%) or rate (e.g., up to 100 per second) of a certain
class of faults that the system prevents, or handles without failing

Stimulus:
Server
Unresponsive

Response:
Inform
Operator
Continue
to Operate

Response
Measure:
No Downtime

Source:
Heartbeat
Monitor

Artifact:
Process

Environment:
Normal
Operation

3
2

1

4

fIGurE 5.3 Sample concrete availability scenario

5.2 Tactics for Availability 87

5.2 tactics for availability

A failure occurs when the system no longer delivers a service that is consistent
with its specification; this failure is observable by the system’s actors. A fault
(or combination of faults) has the potential to cause a failure. Availability tac-
tics, therefore, are designed to enable a system to endure system faults so that a
service being delivered by the system remains compliant with its specification.
The tactics we discuss in this section will keep faults from becoming failures or
at least bound the effects of the fault and make repair possible. We illustrate this
approach in Figure 5.4.

Availability tactics may be categorized as addressing one of three catego-
ries: fault detection, fault recovery, and fault prevention. The tactics categoriza-
tion for availability is shown in Figure 5.5 (on the next page). Note that it is often
the case that these tactics will be provided for you by a software infrastructure,
such as a middleware package, so your job as an architect is often one of choos-
ing and assessing (rather than implementing) the right availability tactics and the
right combination of tactics.

Fault Fault Masked
or Repair Made

Tactics
to Control
Availability

fIGurE 5.4 Goal of availability tactics

detect faults

Before any system can take action regarding a fault, the presence of the fault
must be detected or anticipated. Tactics in this category include the following:

 ■ Ping/echo refers to an asynchronous request/response message pair ex-
changed between nodes, used to determine reachability and the round-trip
delay through the associated network path. But the echo also determines
that the pinged component is alive and responding correctly. The ping is

88 Part two Quality attributes 5—Availability

often sent by a system monitor. Ping/echo requires a time threshold to be
set; this threshold tells the pinging component how long to wait for the
echo before considering the pinged component to have failed (“timed out”).
Standard implementations of ping/echo are available for nodes intercon-
nected via IP.

 ■ Monitor. A monitor is a component that is used to monitor the state of
health of various other parts of the system: processors, processes, I/O,
memory, and so on. A system monitor can detect failure or congestion in
the network or other shared resources, such as from a denial-of-service
attack. It orchestrates software using other tactics in this category to detect

Availability Tactics

Detect Faults Prevent Faults

Ping / Echo Removal from
Service

Monitor
Transactions

Predictive
Model

Recover from Faults

Heartbeat

Preparation
and Repair

Reintroduction

Active
Redundancy

Passive
Redundancy

Spare
Escalating
Restart

Exception
Handling

Shadow

Non-Stop
Forwarding

State
Resynchronization

Exception
Prevention

Fault

Fault
Masked
or
Repair
Made

Timestamp

Sanity
Checking

Condition
Monitoring

Voting

Exception
Detection

Self-Test

Rollback

Software
Upgrade

Retry

Ignore Faulty
Behavior

Degradation

Reconfiguration

Increase
Competence Set

fIGurE 5.5 Availability tactics

5.2 Tactics for Availability 89

malfunctioning components. For example, the system monitor can initiate
self-tests, or be the component that detects faulty time stamps or missed
heartbeats.1

 ■ Heartbeat is a fault detection mechanism that employs a periodic message
exchange between a system monitor and a process being monitored. A
special case of heartbeat is when the process being monitored periodically
resets the watchdog timer in its monitor to prevent it from expiring and thus
signaling a fault. For systems where scalability is a concern, transport and
processing overhead can be reduced by piggybacking heartbeat messages
on to other control messages being exchanged between the process being
monitored and the distributed system controller. The big difference between
heartbeat and ping/echo is who holds the responsibility for initiating the
health check—the monitor or the component itself.

 ■ Time stamp. This tactic is used to detect incorrect sequences of events, pri-
marily in distributed message-passing systems. A time stamp of an event
can be established by assigning the state of a local clock to the event imme-
diately after the event occurs. Simple sequence numbers can also be used
for this purpose, if time information is not important.

 ■ Sanity checking checks the validity or reasonableness of specific operations
or outputs of a component. This tactic is typically based on a knowledge of
the internal design, the state of the system, or the nature of the information
under scrutiny. It is most often employed at interfaces, to examine a specific
information flow.

 ■ Condition monitoring involves checking conditions in a process or device,
or validating assumptions made during the design. By monitoring condi-
tions, this tactic prevents a system from producing faulty behavior. The
computation of checksums is a common example of this tactic. However,
the monitor must itself be simple (and, ideally, provable) to ensure that it
does not introduce new software errors.

 ■ Voting. The most common realization of this tactic is referred to as triple
modular redundancy (TMR), which employs three components that do the
same thing, each of which receives identical inputs, and forwards their out-
put to voting logic, used to detect any inconsistency among the three output
states. Faced with an inconsistency, the voter reports a fault. It must also
decide what output to use. It can let the majority rule, or choose some com-
puted average of the disparate outputs. This tactic depends critically on the
voting logic, which is usually realized as a simple, rigorously reviewed and
tested singleton so that the probability of error is low.

1. When the detection mechanism is implemented using a counter or timer that is periodically reset,
this specialization of system monitor is referred to as a “watchdog.” During nominal operation, the
process being monitored will periodically reset the watchdog counter/timer as part of its signal that
it’s working correctly; this is sometimes referred to as “petting the watchdog.”

90 Part two Quality attributes 5—Availability

 ■ Replication is the simplest form of voting; here, the components are exact
clones of each other. Having multiple copies of identical components can
be effective in protecting against random failures of hardware, but this
cannot protect against design or implementation errors, in hardware or
software, because there is no form of diversity embedded in this tactic.

 ■ Functional redundancy is a form of voting intended to address the issue
of common-mode failures (design or implementation faults) in hardware
or software components. Here, the components must always give the
same output given the same input, but they are diversely designed and
diversely implemented.

 ■ Analytic redundancy permits not only diversity among components’ pri-
vate sides, but also diversity among the components’ inputs and outputs.
This tactic is intended to tolerate specification errors by using separate
requirement specifications. In embedded systems, analytic redundancy
also helps when some input sources are likely to be unavailable at times.
For example, avionics programs have multiple ways to compute aircraft
altitude, such as using barometric pressure, the radar altimeter, and geo-
metrically using the straight-line distance and look-down angle of a point
ahead on the ground. The voter mechanism used with analytic redun-
dancy needs to be more sophisticated than just letting majority rule or
computing a simple average. It may have to understand which sensors are
currently reliable or not, and it may be asked to produce a higher-fidelity
value than any individual component can, by blending and smoothing
individual values over time.

 ■ Exception detection refers to the detection of a system condition that alters
the normal flow of execution. The exception detection tactic can be further
refined:

 ■ System exceptions will vary according to the processor hardware architec-
ture employed and include faults such as divide by zero, bus and address
faults, illegal program instructions, and so forth.

 ■ The parameter fence tactic incorporates an a priori data pattern (such as
0xDEADBEEF) placed immediately after any variable-length parameters
of an object. This allows for runtime detection of overwriting the memory
allocated for the object’s variable-length parameters.

 ■ Parameter typing employs a base class that defines functions that add,
find, and iterate over type-length-value (TLV) formatted message param-
eters. Derived classes use the base class functions to implement functions
that provide parameter typing according to each parameter’s structure.
Use of strong typing to build and parse messages results in higher avail-
ability than implementations that simply treat messages as byte buckets.
Of course, all design involves tradeoffs. When you employ strong typing,
you typically trade higher availability against ease of evolution.

5.2 Tactics for Availability 91

 ■ Timeout is a tactic that raises an exception when a component detects
that it or another component has failed to meet its timing constraints. For
example, a component awaiting a response from another component can
raise an exception if the wait time exceeds a certain value.

 ■ Self-test. Components (or, more likely, whole subsystems) can run proce-
dures to test themselves for correct operation. Self-test procedures can be
initiated by the component itself, or invoked from time to time by a system
monitor. These may involve employing some of the techniques found in
condition monitoring, such as checksums.

recover from faults

Recover-from-faults tactics are refined into preparation-and-repair tactics and
reintroduction tactics. The latter are concerned with reintroducing a failed (but
rehabilitated) component back into normal operation.

Preparation-and-repair tactics are based on a variety of combinations of re-
trying a computation or introducing redundancy. They include the following:

 ■ Active redundancy (hot spare). This refers to a configuration where all of
the nodes (active or redundant spare) in a protection group2 receive and
process identical inputs in parallel, allowing the redundant spare(s) to main-
tain synchronous state with the active node(s). Because the redundant spare
possesses an identical state to the active processor, it can take over from a
failed component in a matter of milliseconds. The simple case of one active
node and one redundant spare node is commonly referred to as 1+1 (“one
plus one”) redundancy. Active redundancy can also be used for facilities
protection, where active and standby network links are used to ensure high-
ly available network connectivity.

 ■ Passive redundancy (warm spare). This refers to a configuration where
only the active members of the protection group process input traffic;
one of their duties is to provide the redundant spare(s) with periodic state
updates. Because the state maintained by the redundant spares is only
loosely coupled with that of the active node(s) in the protection group
(with the looseness of the coupling being a function of the checkpointing
mechanism employed between active and redundant nodes), the redundant
nodes are referred to as warm spares. Depending on a system’s availability
requirements, passive redundancy provides a solution that achieves a bal-
ance between the more highly available but more compute-intensive (and
expensive) active redundancy tactic and the less available but significantly
less complex cold spare tactic (which is also significantly cheaper). (For an

2. A protection group is a group of processing nodes where one or more nodes are “active,” with the
remaining nodes in the protection group serving as redundant spares.

92 Part two Quality attributes 5—Availability

example of implementing passive redundancy, see the section on code tem-
plates in Chapter 19.)

 ■ Spare (cold spare). Cold sparing refers to a configuration where the re-
dundant spares of a protection group remain out of service until a fail-over
occurs, at which point a power-on-reset procedure is initiated on the re-
dundant spare prior to its being placed in service. Due to its poor recovery
performance, cold sparing is better suited for systems having only high-re-
liability (MTBF) requirements as opposed to those also having high-avail-
ability requirements.

 ■ Exception handling. Once an exception has been detected, the system must
handle it in some fashion. The easiest thing it can do is simply to crash, but
of course that’s a terrible idea from the point of availability, usability, test-
ability, and plain good sense. There are much more productive possibilities.
The mechanism employed for exception handling depends largely on the
programming environment employed, ranging from simple function return
codes (error codes) to the use of exception classes that contain information
helpful in fault correlation, such as the name of the exception thrown, the
origin of the exception, and the cause of the exception thrown. Software
can then use this information to mask the fault, usually by correcting the
cause of the exception and retrying the operation.

 ■ Rollback. This tactic permits the system to revert to a previous known good
state, referred to as the “rollback line”—rolling back time—upon the detec-
tion of a failure. Once the good state is reached, then execution can contin-
ue. This tactic is often combined with active or passive redundancy tactics
so that after a rollback has occurred, a standby version of the failed compo-
nent is promoted to active status. Rollback depends on a copy of a previous
good state (a checkpoint) being available to the components that are rolling
back. Checkpoints can be stored in a fixed location and updated at regular
intervals, or at convenient or significant times in the processing, such as at
the completion of a complex operation.

 ■ Software upgrade is another preparation-and-repair tactic whose goal is to
achieve in-service upgrades to executable code images in a non-service-af-
fecting manner. This may be realized as a function patch, a class patch,
or a hitless in-service software upgrade (ISSU). A function patch is used
in procedural programming and employs an incremental linker/loader to
store an updated software function into a pre-allocated segment of target
memory. The new version of the software function will employ the entry
and exit points of the deprecated function. Also, upon loading the new
software function, the symbol table must be updated and the instruction
cache invalidated. The class patch tactic is applicable for targets executing
object-oriented code, where the class definitions include a back-door mech-
anism that enables the runtime addition of member data and functions. Hit-
less in-service software upgrade leverages the active redundancy or passive

5.2 Tactics for Availability 93

redundancy tactics to achieve non-service-affecting upgrades to software
and associated schema. In practice, the function patch and class patch are
used to deliver bug fixes, while the hitless in-service software upgrade is
used to deliver new features and capabilities.

 ■ Retry. The retry tactic assumes that the fault that caused a failure is tran-
sient and retrying the operation may lead to success. This tactic is used in
networks and in server farms where failures are expected and common.
There should be a limit on the number of retries that are attempted before a
permanent failure is declared.

 ■ Ignore faulty behavior. This tactic calls for ignoring messages sent from a
particular source when we determine that those messages are spurious. For
example, we would like to ignore the messages of an external component
launching a denial-of-service attack by establishing Access Control List
filters, for example.

 ■ The degradation tactic maintains the most critical system functions in the
presence of component failures, dropping less critical functions. This is
done in circumstances where individual component failures gracefully re-
duce system functionality rather than causing a complete system failure.

 ■ Reconfiguration attempts to recover from component failures by reassign-
ing responsibilities to the (potentially restricted) resources left functioning,
while maintaining as much functionality as possible.

Reintroduction is where a failed component is reintroduced after it has been
corrected. Reintroduction tactics include the following:

 ■ The shadow tactic refers to operating a previously failed or in-service up-
graded component in a “shadow mode” for a predefined duration of time
prior to reverting the component back to an active role. During this duration
its behavior can be monitored for correctness and it can repopulate its state
incrementally.

 ■ State resynchronization is a reintroduction partner to the active redun-
dancy and passive redundancy preparation-and-repair tactics. When used
alongside the active redundancy tactic, the state resynchronization occurs
organically, because the active and standby components each receive and
process identical inputs in parallel. In practice, the states of the active and
standby components are periodically compared to ensure synchronization.
This comparison may be based on a cyclic redundancy check calculation
(checksum) or, for systems providing safety-critical services, a message
digest calculation (a one-way hash function). When used alongside the pas-
sive redundancy (warm spare) tactic, state resynchronization is based solely
on periodic state information transmitted from the active component(s) to
the standby component(s), typically via checkpointing. A special case of
this tactic is found in stateless services, whereby any resource can handle a
request from another (failed) resource.

94 Part two Quality attributes 5—Availability

 ■ Escalating restart is a reintroduction tactic that allows the system to recov-
er from faults by varying the granularity of the component(s) restarted and
minimizing the level of service affected. For example, consider a system
that supports four levels of restart, as follows. The lowest level of restart
(call it Level 0), and hence having the least impact on services, employs
passive redundancy (warm spare), where all child threads of the faulty
component are killed and recreated. In this way, only data associated with
the child threads is freed and reinitialized. The next level of restart (Level
1) frees and reinitializes all unprotected memory (protected memory would
remain untouched). The next level of restart (Level 2) frees and reinitializes
all memory, both protected and unprotected, forcing all applications to re-
load and reinitialize. And the final level of restart (Level 3) would involve
completely reloading and reinitializing the executable image and associated
data segments. Support for the escalating restart tactic is particularly useful
for the concept of graceful degradation, where a system is able to degrade
the services it provides while maintaining support for mission-critical or
safety-critical applications.

 ■ Non-stop forwarding (NSF) is a concept that originated in router design. In
this design functionality is split into two parts: supervisory, or control plane
(which manages connectivity and routing information), and data plane
(which does the actual work of routing packets from sender to receiver). If
a router experiences the failure of an active supervisor, it can continue for-
warding packets along known routes—with neighboring routers—while the
routing protocol information is recovered and validated. When the control
plane is restarted, it implements what is sometimes called “graceful restart,”
incrementally rebuilding its routing protocol database even as the data
plane continues to operate.

Prevent faults

Instead of detecting faults and then trying to recover from them, what if your sys-
tem could prevent them from occurring in the first place? Although this sounds
like some measure of clairvoyance might be required, it turns out that in many
cases it is possible to do just that.3

 ■ Removal from service. This tactic refers to temporarily placing a system
component in an out-of-service state for the purpose of mitigating potential
system failures. One example involves taking a component of a system out
of service and resetting the component in order to scrub latent faults (such

3. These tactics deal with runtime means to prevent faults from occurring. Of course, an excellent
way to prevent faults—at least in the system you’re building, if not in systems that your system must
interact with—is to produce high-quality code. This can be done by means of code inspections, pair
programming, solid requirements reviews, and a host of other good engineering practices.

5.2 Tactics for Availability 95

as memory leaks, fragmentation, or soft errors in an unprotected cache) be-
fore the accumulation of faults affects service (resulting in system failure).
Another term for this tactic is software rejuvenation.

 ■ Transactions. Systems targeting high-availability services leverage transac-
tional semantics to ensure that asynchronous messages exchanged between
distributed components are atomic, consistent, isolated, and durable. These
four properties are called the “ACID properties.” The most common realiza-
tion of the transactions tactic is “two-phase commit” (a.k.a. 2PC) protocol.
This tactic prevents race conditions caused by two processes attempting to
update the same data item.

 ■ Predictive model. A predictive model, when combined with a monitor, is
employed to monitor the state of health of a system process to ensure that
the system is operating within its nominal operating parameters, and to take
corrective action when conditions are detected that are predictive of likely
future faults. The operational performance metrics monitored are used to
predict the onset of faults; examples include session establishment rate (in
an HTTP server), threshold crossing (monitoring high and low water marks
for some constrained, shared resource), or maintaining statistics for process
state (in service, out of service, under maintenance, idle), message queue
length statistics, and so on.

 ■ Exception prevention. This tactic refers to techniques employed for the pur-
pose of preventing system exceptions from occurring. The use of exception
classes, which allows a system to transparently recover from system excep-
tions, was discussed previously. Other examples of exception prevention
include abstract data types, such as smart pointers, and the use of wrappers
to prevent faults, such as dangling pointers and semaphore access violations
from occurring. Smart pointers prevent exceptions by doing bounds check-
ing on pointers, and by ensuring that resources are automatically deallocat-
ed when no data refers to it. In this way resource leaks are avoided.

 ■ Increase competence set. A program’s competence set is the set of states in
which it is “competent” to operate. For example, the state when the denom-
inator is zero is outside the competence set of most divide programs. When
a component raises an exception, it is signaling that it has discovered itself
to be outside its competence set; in essence, it doesn’t know what to do and
is throwing in the towel. Increasing a component’s competence set means
designing it to handle more cases—faults—as part of its normal operation.
For example, a component that assumes it has access to a shared resource
might throw an exception if it discovers that access is blocked. Another
component might simply wait for access, or return immediately with an
indication that it will complete its operation on its own the next time it does
have access. In this example, the second component has a larger compe-
tence set than the first.

96 Part two Quality attributes 5—Availability

5.3 a design checklist for availability

Table 5.4 is a checklist to support the design and analysis process for availability.

tablE 5.4 Checklist to Support the Design and Analysis Process for
Availability

category checklist

Allocation of
Responsibilities

Determine the system responsibilities that need to be highly
available. Within those responsibilities, ensure that additional
responsibilities have been allocated to detect an omission,
crash, incorrect timing, or incorrect response. Additionally,
ensure that there are responsibilities to do the following:

 ■ Log the fault
 ■ Notify appropriate entities (people or systems)
 ■ Disable the source of events causing the fault
 ■ Be temporarily unavailable
 ■ Fix or mask the fault/failure
 ■ Operate in a degraded mode

Coordination Model Determine the system responsibilities that need to be highly
available. With respect to those responsibilities, do the
following:

 ■ Ensure that coordination mechanisms can detect an
omission, crash, incorrect timing, or incorrect response.
Consider, for example, whether guaranteed delivery is
necessary. Will the coordination work under conditions of
degraded communication?

 ■ Ensure that coordination mechanisms enable the logging
of the fault, notification of appropriate entities, disabling of
the source of the events causing the fault, fixing or masking
the fault, or operating in a degraded mode.

 ■ Ensure that the coordination model supports the replace-
ment of the artifacts used (processors, communications
channels, persistent storage, and processes). For exam-
ple, does replacement of a server allow the system to
continue to operate?

 ■ Determine if the coordination will work under conditions
of degraded communication, at startup/shutdown, in re-
pair mode, or under overloaded operation. For example,
how much lost information can the coordination model
withstand and with what consequences?

Data Model Determine which portions of the system need to be highly
available. Within those portions, determine which data
abstractions, along with their operations or their properties,
could cause a fault of omission, a crash, incorrect timing
behavior, or an incorrect response.
For those data abstractions, operations, and properties,
ensure that they can be disabled, be temporarily unavailable,
or be fixed or masked in the event of a fault.
For example, ensure that write requests are cached if a
server is temporarily unavailable and performed when the
server is returned to service.

5.3 A Design Checklist for Availability 97

category checklist

Mapping among
Architectural Elements

Determine which artifacts (processors, communication
channels, persistent storage, or processes) may produce
a fault: omission, crash, incorrect timing, or incorrect
response.
Ensure that the mapping (or remapping) of architectural
elements is flexible enough to permit the recovery from the
fault. This may involve a consideration of the following:

 ■ Which processes on failed processors need to be reas-
signed at runtime

 ■ Which processors, data stores, or communication chan-
nels can be activated or reassigned at runtime

 ■ How data on failed processors or storage can be served
by replacement units

 ■ How quickly the system can be reinstalled based on the
units of delivery provided

 ■ How to (re)assign runtime elements to processors, com-
munication channels, and data stores

 ■ When employing tactics that depend on redundancy of
functionality, the mapping from modules to redundant
components is important. For example, it is possible to
write one module that contains code appropriate for both
the active component and backup components in a pro-
tection group.

Resource
Management

Determine what critical resources are necessary to
continue operating in the presence of a fault: omission,
crash, incorrect timing, or incorrect response. Ensure
there are sufficient remaining resources in the event of a
fault to log the fault; notify appropriate entities (people or
systems); disable the source of events causing the fault;
be temporarily unavailable; fix or mask the fault/failure;
operate normally, in startup, shutdown, repair mode,
degraded operation, and overloaded operation.
Determine the availability time for critical resources, what
critical resources must be available during specified time
intervals, time intervals during which the critical resources
may be in a degraded mode, and repair time for critical
resources. Ensure that the critical resources are available
during these time intervals.
For example, ensure that input queues are large enough
to buffer anticipated messages if a server fails so that the
messages are not permanently lost.

continues

98 Part two Quality attributes 5—Availability

tablE 5.4 Checklist to Support the Design and Analysis Process for
Availability, continued

category checklist

Binding Time Determine how and when architectural elements are bound.
If late binding is used to alternate between components
that can themselves be sources of faults (e.g., processes,
processors, communication channels), ensure the chosen
availability strategy is sufficient to cover faults introduced by
all sources. For example:

 ■ If late binding is used to switch between artifacts such
as processors that will receive or be the subject of faults,
will the chosen fault detection and recovery mechanisms
work for all possible bindings?

 ■ If late binding is used to change the definition or toler-
ance of what constitutes a fault (e.g., how long a process
can go without responding before a fault is assumed),
is the recovery strategy chosen sufficient to handle all
cases? For example, if a fault is flagged after 0.1 millisec-
onds, but the recovery mechanism takes 1.5 seconds to
work, that might be an unacceptable mismatch.

 ■ What are the availability characteristics of the late bind-
ing mechanism itself? Can it fail?

Choice of Technology Determine the available technologies that can (help) detect
faults, recover from faults, or reintroduce failed components.
Determine what technologies are available that help the
response to a fault (e.g., event loggers).
Determine the availability characteristics of chosen
technologies themselves: What faults can they recover
from? What faults might they introduce into the system?

5.4 Summary

Availability refers to the ability of the system to be available for use, especially
after a fault occurs. The fault must be recognized (or prevented) and then the
system must respond in some fashion. The response desired will depend on the
criticality of the application and the type of fault and can range from “ignore it”
to “keep on going as if it didn’t occur.”

Tactics for availability are categorized into detect faults, recover from faults
and prevent faults. Detection tactics depend, essentially, on detecting signs of life
from various components. Recovery tactics are some combination of retrying an
operation or maintaining redundant data or computations. Prevention tactics de-
pend either on removing elements from service or utilizing mechanisms to limit
the scope of faults.

5.5 For Further Reading 99

All of the availability tactics involve the coordination model because the
coordination model must be aware of faults that occur to generate an appropriate
response.

5.5 for further reading

Patterns for availability:
 ■ You can find patterns for fault tolerance in [Hanmer 07].

Tactics for availability, overall:

 ■ A more detailed discussion of some of the availability tactics in this chapter is
given in [Scott 09]. This is the source of much of the material in this chapter.

 ■ The Internet Engineering Task Force has promulgated a number of stan-
dards supporting availability tactics. These standards include non-stop for-
warding [IETF 04], ping/echo ICMPv6 [IETF 06b], echo request/response),
and MPLS (LSP Ping) networks [IETF 06a].

Tactics for availability, fault detection:

 ■ The parameter fence tactic was first used (to our knowledge) in the Control
Data Series computers of the late 1960s.

 ■ Triple modular redundancy (TMR), part of the voting tactic, was developed
in the early 1960s by Lyons [Lyons 62].

 ■ The fault detection tactic of voting is based on the fundamental contribu-
tions to automata theory by Von Neumann, who demonstrated how systems
having a prescribed reliability could be built from unreliable components
[Von Neumann 56].

Tactics for availability, fault recovery:

 ■ Standards-based realizations of active redundancy exist for protecting net-
work links (i.e., facilities) at both the physical layer [Bellcore 99, Telcordia
00] and the network/link layer [IETF 05].

 ■ Exception handlinghas been written about by [Powel Douglass 99]. Soft-
ware can then use this information to mask the fault, usually by correcting
the cause of the exception and retrying the operation.

 ■ [Morelos-Zaragoza 06] and [Schneier 96] have written about the compari-
son of state during resynchronization.

 ■ Some examples of how a system can degrade through use (degradation) are
given in [Nygard 07].

 ■ [Utas 05] has written about escalating restart.

100 Part two Quality attributes 5—Availability

 ■ Mountains of papers have been written about parameter typing, but [Utas
05] writes about it in the context of availability (as opposed to bug preven-
tion, its usual context).

 ■ Hardware engineers often use preparation-and-repair tactics. Examples in-
clude error detection and correction (EDAC) coding, forward error correction
(FEC), and temporal redundancy. EDAC coding is typically used to protect
control memory structures in high-availability distributed real-time embedded
systems [Hamming 80]. Conversely, FEC coding is typically employed to
recover from physical-layer errors occurring on external network links More-
los-Zaragoza 06]. Temporal redundancy involves sampling spatially redundant
clock or data lines at time intervals that exceed the pulse width of any transient
pulse to be tolerated, and then voting out any defects detected [Mavis 02].

Tactics for availability, fault prevention:

 ■ Parnas and Madey have written about increasing an element’s competence
set [Parnas 95].

 ■ The ACID properties, important in the transactions tactic, were introduced
by Gray in the 1970s and discussed in depth in [Gray 93].

Analysis:
 ■ Fault tree analysis dates from the early 1960s, but the granddaddy of re-

sources for it is the U.S. Nuclear Regulatory Commission’s “Fault Tree
Handbook,” published in 1981 [Vesely 81]. NASA’s 2002 “Fault Tree
Handbook with Aerospace Applications” [Vesely 02] is an updated compre-
hensive primer of the NRC handbook, and the source for the notation used
in this chapter. Both are available online as downloadable PDF files.

5.6 discussion Questions

1. Write a set of concrete scenarios for availability using each of the possible
responses in the general scenario.

2. Write a concrete availability scenario for the software for a (hypothetical)
pilotless passenger aircraft.

3. Write a concrete availability scenario for a program like Microsoft Word.

4. Redundancy is often cited as a key strategy for achieving high availability.
Look at the tactics presented in this chapter and decide how many of them
exploit some form of redundancy and how many do not.

5. How does availability trade off against modifiability? How would you make
a change to a system that is required to have “24/7” availability (no sched-
uled or unscheduled downtime, ever)?

5.6 Discussion Questions 101

6. Create a fault tree for an automatic teller machine. Include faults dealing
with hardware component failure, communications failure, software failure,
running out of supplies, user errors, and security attacks. How would you
modify your automatic teller machine design to accommodate these faults?

7. Consider the fault detection tactics (ping/echo, heartbeat, system monitor,
voting, and exception detection). What are the performance implications of
using these tactics?

This page intentionally left blank

103

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

6
Interoperability
With Liming Zhu

The early bird (A) arrives and catches worm (B), pulling
string (C) and shooting off pistol (D). Bullet (E) bursts

balloon (F), dropping brick (G) on bulb (H) of atomizer
(I) and shooting perfume (J) on sponge (K). As sponge

gains in weight, it lowers itself and pulls string (L),
raising end of board (M). Cannon ball (N) drops on nose
of sleeping gentleman. String tied to cannon ball releases

cork (O) of vacuum bottle (P) and ice water falls on
sleeper’s face to assist the cannon ball in its good work.

—Rube Goldberg, instructions for “a simple alarm clock”

Interoperability is about the degree to which two or more systems can usefully
exchange meaningful information via interfaces in a particular context. The defi-
nition includes not only having the ability to exchange data (syntactic interoper-
ability) but also having the ability to correctly interpret the data being exchanged
(semantic interoperability). A system cannot be interoperable in isolation. Any
discussion of a system’s interoperability needs to identify with whom, with what,
and under what circumstances—hence, the need to include the context.

Interoperability is affected by the systems expected to interoperate. If we
already know the interfaces of external systems with which our system will in-
teroperate, then we can design that knowledge into the system. Or we can design
our system to interoperate in a more generic fashion, so that the identity and the
services that another system provides can be bound later in the life cycle, at build
time or runtime.

Like all quality attributes, interoperability is not a yes-or-no proposition but
has shades of meaning. There are several characterizing frameworks for interop-
erability, all of which seem to define five levels of interoperability “maturity”
(see the “For Further Reading” section at the end of this chapter for a pointer).
The lowest level signifies systems that do not share data at all, or do not do so

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

104 Part two Quality attributes 6—Interoperability

with any success. The highest level signifies systems that work together seam-
lessly, never make any mistakes interpreting each other’s communications, and
share the same underlying semantic model of the world in which they work.

“Exchanging Information via Interfaces”

Interoperability, as we said, is about two or more systems exchanging
information via interfaces.

At this point, we need to clarify two critical concepts central to this dis-
cussion and emphasize that we are taking a broad view of each.

The first is what it means to “exchange information.” This can mean
something as simple as program A calling program B with some param-
eters. However, two systems (or parts of a system) can exchange infor-
mation even if they never communicate directly with each other. Did you
ever have a conversation like the following in junior high school? “Charlene
said that Kim told her that Trevor heard that Heather wants to come to
your party.” Of course, junior high school protocol would preclude the
possibility of responding directly to Heather. Instead, your response (if you
like Heather) might be, “Cool,” which would make its way back through
Charlene, Kim, and Trevor. You and Heather exchanged information, but
never talked to each other. (We hope you got to talk to each other at the
party.)

Entities can exchange information in even less direct ways. If I have an
idea of a program’s behavior, and I design my program to work assuming
that behavior, the two programs have also exchanged information—just not
at runtime.

One of the more infamous software disasters in history occurred when
an antimissile system failed to intercept an incoming ballistic rocket in
Operation Desert Storm in 1991, resulting in 28 fatalities. One of the mis-
sile’s software components “expected” to be shut down and restarted peri-
odically, so it could recalibrate its orientation framework from a known initial
point. The software had been running for some 100 hours when the missile
was launched, and calculation errors had accumulated to the point where
the software component’s idea of its orientation had wandered hopelessly
away from truth.

Systems (or components within systems) often have or embody ex-
pectations about the behaviors of its “information exchange” partners.
The assumption of everything interacting with the errant component in the
preceding example was that its accuracy did not degrade over time. The
result was a system of parts that did not work together correctly to solve
the problem they were supposed to.

The second concept we need to stress is what we mean by “interface.”
Once again, we mean something beyond the simple case—a syntactic
description of a component’s programs and the type and number of their
parameters, most commonly realized as an API. That’s necessary for

 6—Interoperability 105

interoperability—heck, it’s necessary if you want your software to compile
successfully—but it’s not sufficient. To illustrate this concept, we’ll use an-
other “conversation” analogy. Has your partner or spouse ever come home,
slammed the door, and when you ask what’s wrong, replied “Nothing!”?
If so, then you should be able to appreciate the keen difference between
syntax and semantics and the role of expectations in understanding how an
entity behaves. Because we want interoperable systems and components,
and not simply ones that compile together nicely, we require a higher bar
for interfaces than just a statement of syntax. By “interface,” we mean the
set of assumptions that you can safely make about an entity. For example,
it’s a safe assumption that whatever’s wrong with your spouse/partner,
it’s not “Nothing,” and you know that because that “interface” extends way
beyond just the words they say. And it’s also a safe assumption that nothing
about our missile component’s accuracy degradation over time was in its
API, and yet that was a critical part of its interface.

—PCC

Here are some of the reasons you might want systems to interoperate:

 ■ Your system provides a service to be used by a collection of unknown
systems. These systems need to interoperate with your system even though
you may know nothing about them. An example is a service such as Google
Maps.

 ■ You are constructing capabilities from existing systems. For example, one
of the existing systems is responsible for sensing its environment, another
one is responsible for processing the raw data, a third is responsible for
interpreting the data, and a final one is responsible for producing and
distributing a representation of what was sensed. An example is a traffic
sensing system where the input comes from individual vehicles, the raw
data is processed into common units of measurement, is interpreted and
fused, and traffic congestion information is broadcast.

These examples highlight two important aspects of interoperability:

1. Discovery. The consumer of a service must discover (possibly at runtime,
possibly prior to runtime) the location, identity, and the interface of the
service.

2. Handling of the response. There are three distinct possibilities:

 ■ The service reports back to the requester with the response.
 ■ The service sends its response on to another system.
 ■ The service broadcasts its response to any interested parties.

These elements, discovery and disposition of response, along with management
of interfaces, govern our discussion of scenarios and tactics for interoperability.

106 Part two Quality attributes 6—Interoperability

Systems of Systems

If you have a group of systems that are interoperating to achieve a joint
purpose, you have what is called a system of systems (SoS). An SoS is
an arrangement of systems that results when independent and useful sys-
tems are integrated into a larger system that delivers unique capabilities.
Table 6.1 shows a categorization of SoSs.

tablE 6.1 Taxonomy of Systems of Systems*

Directed SoS objectives, centralized management, funding, and
authority for the overall SoS are in place. Systems are
subordinated to the SoS.

Acknowledged SoS objectives, centralized management, funding, and
authority in place. However, systems retain their own
management, funding, and authority in parallel with the
SoS.

Collaborative There are no overall objectives, centralized
management, authority, responsibility, or funding at the
SoS level. Systems voluntarily work together to address
shared or common interests.

Virtual Like collaborative, but systems don’t know about each
other.

* The taxonomy shown is an extension of work done by Mark Maier in 1998.

In directed and acknowledged SoSs, there is a deliberate attempt to
create an SoS. The key difference is that in the former, there is SoS-level
management that exercises control over the constituent systems, while in
the latter, the constituent systems retain a high degree of autonomy in their
own evolution. Collaborative and virtual systems of systems are more ad
hoc, absent an overarching authority or source of funding and, in the case
of a virtual SoS, even absent the knowledge about the scope and member-
ship of the SoS.

The collaborative case is quite common. Consider the Google Maps ex-
ample from the introduction. Google is the manager and funding authority
for the map service. Each use of the maps in an application (an SoS) has
its own management and funding authority, and there is no overall manage-
ment of all of the applications that use Google Maps. The various organiza-
tions involved in the applications collaborate (either explicitly or implicitly) to
enable the applications to work correctly.

A virtual SoS involves large systems and is much more ad hoc. For
example, there are over 3,000 electric companies in the U.S. electric grid,
each state has a public utility commission that oversees the utility companies
operating in its state, and the federal Department of Energy provides some
level of policy guidance. Many of the systems within the electric grid must
interoperate, but there is no management authority for the overall system.

6.1 Interoperability General Scenario 107

6.1 Interoperability General Scenario

The following are the portions of an interoperability general scenario:

 ■ Source of stimulus. A system that initiates a request.
 ■ Stimulus. A request to exchange information among systems.
 ■ Artifacts. The systems that wish to interoperate.
 ■ Environment. The systems that wish to interoperate are discovered at run-

time or are known prior to runtime.
 ■ Response. The request to interoperate results in the exchange of informa-

tion. The information is understood by the receiving party both syntactical-
ly and semantically. Alternatively, the request is rejected and appropriate
entities are notified. In either case, the request may be logged.

 ■ Response measure. The percentage of information exchanges correctly
processed or the percentage of information exchanges correctly rejected.

Figure 6.1 gives an example: Our vehicle information system sends our cur-
rent location to the traffic monitoring system. The traffic monitoring system com-
bines our location with other information, overlays this information on a Goo-
gle Map, and broadcasts it. Our location information is correctly included with a
probability of 99.9%.

Table 6.2 presents the possible values for each portion of an interoperability
scenario.

Stimulus: Response:

Environment:
Systems known
prior to run-time

Artifact:

Response
Measure:

Source
of Stimulus:

3
2

1

4

Our Vehicle
Information
System

Current
Location
Sent

Traffic Monitor
Combines Current
Location with Other
Information,
Overlays on Google
Maps, and
Broadcasts

Our Information
Included Correctly
99.9% of the Time

Traffic Monitoring
System

FIGure 6.1 Sample concrete interoperability scenario

108 Part two Quality attributes 6—Interoperability

tablE 6.2 General Interoperability Scenario

Portion of Scenario Possible Values

Source A system initiates a request to interoperate with another
system.

Stimulus A request to exchange information among system(s).

Artifact The systems that wish to interoperate.

Environment System(s) wishing to interoperate are discovered at runtime or
known prior to runtime.

Response One or more of the following:
 ■ The request is (appropriately) rejected and appropriate

entities (people or systems) are notified.
 ■ The request is (appropriately) accepted and information is

exchanged successfully.
 ■ The request is logged by one or more of the involved

systems.

Response Measure One or more of the following:
 ■ Percentage of information exchanges correctly processed
 ■ Percentage of information exchanges correctly rejected

SOAP vs. REST

If you want to allow web-based applications to interoperate, you have
two major off-the-shelf technology options today: (1) WS* and SOAP
(which once stood for “Simple Object Access Protocol,” but that acronym
is no longer blessed) and (2) REST (which stands for “Representation
State Transfer,” and therefore is sometimes spelled ReST). How can we
compare these technologies? What is each good for? What are the road
hazards you need to be aware of? This is a bit of an apples-and-oranges
comparison, but I will try to sketch the landscape.

SOAP is a protocol specification for XML-based information that distrib-
uted applications can use to exchange information and hence interoperate.
It is most often accompanied by a set of SOA middleware interoperability
standards and compliant implementations, referred to (collectively) as WS*.
SOAP and WS* together define many standards, including the following:

 ■ An infrastructure for service composition. SOAP can employ the Business
Process Execution Language (BPEL) as a way to let developers express
business processes that are implemented as WS* services.

 ■ Transactions. There are several web-service standards for ensuring
that transactions are properly managed: WS-AT, WS-BA, WS-CAF, and
WS-Transaction.

 ■ Service discovery. The Universal Description, Discovery and Integration
(UDDI) language enables businesses to publish service listings and
discover each other.

6.1 Interoperability General Scenario 109

 ■ Reliability. SOAP, by itself, does not ensure reliable message delivery.
Applications that require such guarantees must use services compliant with
SOAP’s reliability standard: WS-Reliability.

SOAP is quite general and has its roots in a remote procedure call
(RPC) model of interacting applications, although other models are cer-
tainly possible. SOAP has a simple type system, comparable to that found
in the major programming languages. SOAP relies on HTTP and RPC for
message transmission, but it could, in theory, be implemented on top of
any communication protocol. SOAP does not mandate a service’s method
names, addressing model, or procedural conventions. Thus, choosing
SOAP buys little actual interoperability between applications—it is just
an information exchange standard. The interacting applications need to
agree on how to interpret the payload, which is where you get semantic
interoperability.

REST, on the other hand, is a client-server-based architectural style that
is structured around a small set of create, read, update, delete (CRUD) op-
erations (called POST, GET, PUT, DELETE respectively in the REST world)
and a single addressing scheme (based on a URI, or uniform resource
identifier). REST imposes few constraints on an architecture: SOAP offers
completeness; REST offers simplicity.

REST is about state and state transfer and views the web (and the ser-
vices that service-oriented systems can string together) as a huge network
of information that is accessible by a single URI-based addressing scheme.
There is no notion of type and hence no type checking in REST—it is up to
the applications to get the semantics of interaction right.

Because REST interfaces are so simple and general, any HTTP client
can talk to any HTTP server, using the REST operations (POST, GET, PUT,
DELETE) with no further configuration. That buys you syntactic interopera-
bility, but of course there must be organization-level agreement about what
these programs actually do and what information they exchange. That is,
semantic interoperability is not guaranteed between services just because
both have REST interfaces.

REST, on top of HTTP, is meant to be self-descriptive and in the best
case is a stateless protocol. Consider the following example, in REST, of a
phone book service that allows someone to look up a person, given some
unique identifier for that person:

http://www.XYZdirectory.com/phonebook/UserInfo/99999

The same simple lookup, implemented in SOAP, would be specified as
something like the following:

<?xml version=”1.0”?>
<soap:Envelope xmlns:soap=http://www.w3.org/2001/
 12/soap-envelope
 soap:encodingStyle=”http://www.w3.org/2001/12/
 soap-encoding”>
 <soap:Body pb=”http://www.XYZdirectory.com/
 phonebook”>

110 Part two Quality attributes 6—Interoperability

 <pb:GetUserInfo>
 <pb:UserIdentifier>99999</pb:UserIdentifier>
 </pb:GetUserInfo>
 </soap:Body>
</soap:Envelope>

One aspect of the choice between SOAP and REST is whether you
want to accept the complexity and restrictions of SOAP+WSDL (the Web
Services Description Language) to get more standardized interoperability
or if you want to avoid the overhead by using REST, but perhaps benefit
from less standardization. What are the other considerations?

A message exchange in REST has somewhat fewer characters than a
message exchange in SOAP. So one of the tradeoffs in the choice between
REST and SOAP is the size of the individual messages. For systems
exchanging a large number of messages, another tradeoff is between per-
formance (favoring REST) and structured messages (favoring SOAP).

The decision to implement WS* or REST will depend on aspects such
as the quality of service (QoS) required—WS* implementation has greater
support for security, availability, and so on—and type of functionality. A
RESTful implementation, because of its simplicity, is more appropriate for
read-only functionality, typical of mashups, where there are minimal QoS
requirements and concerns.

OK, so if you are building a service-based system, how do you choose?
The truth is, you don’t have to make a single choice, once and for all time;
each technology is reasonably easy to use, at least for simple applications.
And each has its strengths and weaknesses. Like everything else in archi-
tecture, it’s all about the tradeoffs; your decision will likely hinge on the way
those tradeoffs affect your system in your context.

—RK

6.2 tactics for Interoperability

Figure 6.2 shows the goal of the set of interoperability tactics.

Information
Exchange
Request

Request
Correctly
Handled

Tactics
to Control

Interoperability

fIGurE 6.2 Goal of interoperability tactics

6.2 Tactics for Interoperability 111

We identify two categories of interoperability tactics: locate and manage
interfaces.

locate

There is only one tactic in this category: discover service. It is used when the
systems that interoperate must be discovered at runtime.

 ■ Discover service. Locate a service through searching a known directory ser-
vice. (By “service,” we simply mean a set of capabilities that is accessible
via some kind of interface.) There may be multiple levels of indirection in
this location process—that is, a known location points to another location
that in turn can be searched for the service. The service can be located by
type of service, by name, by location, or by some other attribute.

Manage Interfaces

Managing interfaces consists of two tactics: orchestrate and tailor interface.

 ■ Orchestrate. Orchestrate is a tactic that uses a control mechanism to
coordinate and manage and sequence the invocation of particular services
(which could be ignorant of each other). Orchestration is used when the
interoperating systems must interact in a complex fashion to accomplish a
complex task; orchestration “scripts” the interaction. Workflow engines are
an example of the use of the orchestrate tactic. The mediator design pattern
can serve this function for simple orchestration. Complex orchestration can
be specified in a language such as BPEL.

 ■ Tailor interface. Tailor interface is a tactic that adds or removes capabilities
to an interface. Capabilities such as translation, adding buffering, or
smoothing data can be added. Capabilities may be removed as well. An
example of removing capabilities is to hide particular functions from
untrusted users. The decorator pattern is an example of the tailor interface
tactic.

The enterprise service bus that underlies many service-oriented architec-
tures combines both of the manage interface tactics.

Figure 6.3 shows a summary of the tactics to achieve interoperability.

112 Part two Quality attributes 6—Interoperability

Interoperability Tactics

Locate Manage Interfaces

Discover
Service

Orchestrate

Tailor Interface

Information
Exchange
Request

Request
Correctly
Handled

fIGurE 6.3 Summary of interoperability tactics

Why Standards Are Not Enough to Guarantee Interoperability
By Grace Lewis

Developer of System A needs to exchange product data with System B.
Developer A finds that there is an existing WS* web service interface for
sending product data that among other fields contains price expressed
in XML Schema as a decimal with two fraction digits. Developer A writes
code to interact with the web service and the system works perfectly.
However, after two weeks of operation, there is a huge discrepancy be-
tween the totals reported by System A and the totals reported by System
B. After conversations between the two developers, they discover that
System B expected to receive a price that included tax and System A was
sending it without tax.

This is a simple example of why standards are not enough. The sys-
tems exchanged data perfectly because they both agreed that the price
was a decimal with two fractions digits expressed in XML Schema and the
message was sent via SOAP over HTTP (syntax)—standards used in the
implementation of WS* web services—but they did not agree on whether
the price included tax or not (semantics).

Of course, the only realistic approach to getting diverse applications to
share information is by reaching agreements on the structure and func-
tion of the information to be shared. These agreements are often reflected
in standards that provide a common interface that multiple vendors and
application builders support. Standards have indeed been instrumental

6.2 Tactics for Interoperability 113

in achieving a significant level of interoperability that we rely on in almost
every domain. However, while standards are useful and in many ways in-
dispensable, expectations of what can be achieved through standards are
unrealistic. Here are some of the challenges that organizations face related
to standards and interoperability:

1. Ideally, every implementation of a standard should be identical
and thus completely interoperable with any other implementation.
However, this is far from reality. Standards, when incorporated into
products, tools, and services, undergo customizations and exten-
sions because every vendor wants to create a unique selling point as
a competitive advantage.

2. Standards are often deliberately open-ended and provide exten-
sion points. The actual implementation of these extension points
is left to the discretion of implementers, leading to proprietary
implementations.

3. Standards, like any technology, have a life cycle of their own and
evolve over time in compatible and noncompatible ways. Deciding
when to adopt a new or revised standard is a critical decision for or-
ganizations. Committing to a new standard that is not ready or even-
tually not adopted by the community is a big risk for organizations.
On the other hand, waiting too long may also become a problem,
which can lead to unsupported products, incompatibilities, and work-
arounds, because everyone else is using the standard.

4. Within the software community, there are as many bad standards as
there are engineers with opinions. Bad standards include underspe-
cified, overspecified, inconsistently specified, unstable, or irrelevant
standards.

5. It is quite common for standards to be championed by competing
organizations, resulting in conflicting standards due to overlap or mu-
tual exclusion.

6. For new and rapidly emerging domains, the argument often made is
that standardization will be destructive because it will hinder flexibil-
ity: premature standardization will force the use of an inadequate ap-
proach and lead to abandoning other presumably better approaches.
So what do organizations do in the meantime?

What these challenges illustrate is that because of the way in which
standards are usually created and evolved, we cannot let standards drive
our architectures. We need to architect systems first and then decide which
standards can support desired system requirements and qualities. This ap-
proach allows standards to change and evolve without affecting the overall
architecture of the system.

I once heard someone in a keynote address say that “The nice thing
about standards is that there are so many to choose from.”

114 Part two Quality attributes 6—Interoperability

6.3 a design checklist for Interoperability

Table 6.3 is a checklist to support the design and analysis process for inter operability.

tablE 6.3 Checklist to Support the Design and Analysis Process for
Interoperability

category checklist

Allocation of
Responsibilities

Determine which of your system responsibilities will need to
interoperate with other systems.
Ensure that responsibilities have been allocated to detect
a request to interoperate with known or unknown external
systems.
Ensure that responsibilities have been allocated to carry out the
following tasks:

 ■ Accept the request
 ■ Exchange information
 ■ Reject the request
 ■ Notify appropriate entities (people or systems)
 ■ Log the request (for interoperability in an untrusted environ-

ment, logging for nonrepudiation is essential)

Coordination Model Ensure that the coordination mechanisms can meet the critical
quality attribute requirements. Considerations for performance
include the following:

 ■ Volume of traffic on the network both created by the sys-
tems under your control and generated by systems not
under your control

 ■ Timeliness of the messages being sent by your systems
 ■ Currency of the messages being sent by your systems
 ■ Jitter of the messages’ arrival times
 ■ Ensure that all of the systems under your control make as-

sumptions about protocols and underlying networks that are
consistent with the systems not under your control.

Data Model Determine the syntax and semantics of the major data
abstractions that may be exchanged among interoperating
systems.
Ensure that these major data abstractions are consistent with
data from the interoperating systems. (If your system’s data
model is confidential and must not be made public, you may
have to apply transformations to and from the data abstractions
of systems with which yours interoperates.)

Mapping among
Architectural
Elements

For interoperability, the critical mapping is that of components
to processors. Beyond the necessity of making sure that
components that communicate externally are hosted
on processors that can reach the network, the primary
considerations deal with meeting the security, availability, and
performance requirements for the communication. These will
be dealt with in their respective chapters.

6.4 Summary 115

category checklist

Resource
Management

Ensure that interoperation with another system (accepting a
request and/or rejecting a request) can never exhaust critical
system resources (e.g., can a flood of such requests cause
service to be denied to legitimate users?).
Ensure that the resource load imposed by the communication
requirements of interoperation is acceptable.
Ensure that if interoperation requires that resources be shared
among the participating systems, an adequate arbitration policy
is in place.

Binding Time Determine the systems that may interoperate, and when they
become known to each other. For each system over which you
have control:

 ■ Ensure that it has a policy for dealing with binding to both
known and unknown external systems.

 ■ Ensure that it has mechanisms in place to reject unaccept-
able bindings and to log such requests.

 ■ In the case of late binding, ensure that mechanisms will
support the discovery of relevant new services or protocols,
or the sending of information using chosen protocols.

Choice of
Technology

For any of your chosen technologies, are they “visible” at the
interface boundary of a system? If so, what interoperability
effects do they have? Do they support, undercut, or have
no effect on the interoperability scenarios that apply to your
system? Ensure the effects they have are acceptable.
Consider technologies that are designed to support
interoperability, such as web services. Can they be used to
satisfy the interoperability requirements for the systems under
your control?

6.4 Summary

Interoperability refers to the ability of systems to usefully exchange information.
These systems may have been constructed with the intention of exchanging infor-
mation, they may be existing systems that are desired to exchange information,
or they may provide general services without knowing the details of the systems
that wish to utilize those services.

The general scenario for interoperability provides the details of these dif-
ferent cases. In any interoperability case, the goal is to intentionally exchange
information or reject the request to exchange information.

Achieving interoperability involves the relevant systems locating each other
and then managing the interfaces so that they can exchange information.

116 Part two Quality attributes 6—Interoperability

6.5 for further reading

An SEI report gives a good overview of interoperability, and it highlights some of
the “maturity frameworks” for interoperability [Brownsword 04].

The various WS* services are being developed under the auspices of the
World Wide Web Consortium (W3C) and can be found at www.w3.org/2002/ws.

Systems of systems are of particular interest to the U.S. Department of De-
fense. An engineering guide can be found at [ODUSD 08].

6.6 discussion Questions

1. Find a web service mashup. Write several concrete interoperability scenari-
os for this system.

2. What is the relationship between interoperability and the other quality
attributes highlighted in this book? For example, if two systems fail to ex-
change information properly, could a security flaw result? What other quali-
ty attributes seem strongly related (at least potentially) to interoperability?

3. Is a service-oriented system a system of systems? If so, describe a ser-
vice-oriented system that is directed, one that is acknowledged, one that is
collaborative, and one that is virtual.

4. Universal Description, Discovery, and Integration (UDDI) was touted as a
discovery service, but commercial support for UDDI is being withdrawn.
Why do you suppose this is? Does it have anything to do with the quality
attributes delivered or not delivered by UDDI solutions?

5. Why has the importance of orchestration grown in recent years?

6. If you are a technology producer, what are the advantages and disadvan-
tages of adhering to interoperability standards? Why would a producer not
adhere to a standard?

7. With what other systems will an automatic teller machine need to interoper-
ate? How would you change your automatic teller system design to accom-
modate these other systems?

http://www.w3.org/2002/ws

117

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

7
Modifiability

Adapt or perish, now as ever, is
nature’s inexorable imperative.

—H.G. Wells

Change happens.
Study after study shows that most of the cost of the typical software system

occurs after it has been initially released. If change is the only constant in the uni-
verse, then software change is not only constant but ubiquitous. Changes happen
to add new features, to change or even retire old ones. Changes happen to fix de-
fects, tighten security, or improve performance. Changes happen to enhance the
user’s experience. Changes happen to embrace new technology, new platforms,
new protocols, new standards. Changes happen to make systems work together,
even if they were never designed to do so.

Modifiability is about change, and our interest in it centers on the cost and
risk of making changes. To plan for modifiability, an architect has to consider
four questions:

 ■ What can change? A change can occur to any aspect of a system: the
functions that the system computes, the platform (the hardware, operating
system, middleware), the environment in which the system operates
(the systems with which it must interoperate, the protocols it uses to
communicate with the rest of the world), the qualities the system exhibits
(its performance, its reliability, and even its future modifications), and its
capacity (number of users supported, number of simultaneous operations).

 ■ What is the likelihood of the change? One cannot plan a system for all
potential changes—the system would never be done, or if it was done
it would be far too expensive and would likely suffer quality attribute
problems in other dimensions. Although anything might change, the
architect has to make the tough decisions about which changes are likely,
and hence which changes are to be supported, and which are not.

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

118 Part two Quality attributes 7—Modifiability

 ■ When is the change made and who makes it? Most commonly in the
past, a change was made to source code. That is, a developer had to make
the change, which was tested and then deployed in a new release. Now,
however, the question of when a change is made is intertwined with the
question of who makes it. An end user changing the screen saver is clearly
making a change to one of the aspects of the system. Equally clear, it is
not in the same category as changing the system so that it can be used
over the web rather than on a single machine. Changes can be made to the
implementation (by modifying the source code), during compile (using
compile-time switches), during build (by choice of libraries), during
configuration setup (by a range of techniques, including parameter setting),
or during execution (by parameter settings, plugins, etc.). A change can also
be made by a developer, an end user, or a system administrator.

 ■ What is the cost of the change? Making a system more modifiable involves
two types of cost:

 ■ The cost of introducing the mechanism(s) to make the system more
modifiable

 ■ The cost of making the modification using the mechanism(s)

For example, the simplest mechanism for making a change is to wait for
a change request to come in, then change the source code to accommodate the
request. The cost of introducing the mechanism is zero; the cost of exercising
it is the cost of changing the source code and revalidating the system. At the
other end of the spectrum is an application generator, such as a user interface
builder. The builder takes as input a description of the designer user interface
produced through direct manipulation techniques and produces (usually) source
code. The cost of introducing the mechanism is the cost of constructing the UI
builder, which can be substantial. The cost of using the mechanism is the cost of
producing the input to feed the builder (cost can be substantial or negligible), the
cost of running the builder (approximately zero), and then the cost of whatever
testing is performed on the result (usually much less than usual).

For N similar modifications, a simplified justification for a change mecha-
nism is that

N × Cost of making the change without the mechanism <_
Cost of installing the mechanism +

(N × Cost of making the change using the mechanism).

N is the anticipated number of modifications that will use the modifiability
mechanism, but N is a prediction. If fewer changes than expected come in, then
an expensive modification mechanism may not be warranted. In addition, the cost
of creating the modifiability mechanism could be applied elsewhere—in adding
functionality, in improving the performance, or even in nonsoftware investments
such as buying tech stocks. Also, the equation does not take time into account. It

7.1 Modifiability General Scenario 119

might be cheaper in the long run to build a sophisticated change-handling mecha-
nism, but you might not be able to wait for that.

7.1 Modifiability General Scenario

From these considerations, we can see the portions of the modifiability general
scenario:

 ■ Source of stimulus. This portion specifies who makes the change: the
developer, a system administrator, or an end user.

 ■ Stimulus. This portion specifies the change to be made. A change can be
the addition of a function, the modification of an existing function, or the
deletion of a function. (For this categorization, we regard fixing a defect
as changing a function, which presumably wasn’t working correctly as
a result of the defect.) A change can also be made to the qualities of the
system: making it more responsive, increasing its availability, and so forth.
The capacity of the system may also change. Accommodating an increasing
number of simultaneous users is a frequent requirement. Finally, changes
may happen to accommodate new technology of some sort, the most
common of which is porting the system to a different type of computer or
communication network.

 ■ Artifact. This portion specifies what is to be changed: specific components
or modules, the system’s platform, its user interface, its environment, or
another system with which it interoperates.

 ■ Environment. This portion specifies when the change can be made: design
time, compile time, build time, initiation time, or runtime.

 ■ Response. Make the change, test it, and deploy it.
 ■ Response measure. All of the possible responses take time and cost money;

time and money are the most common response measures. Although both
sound simple to measure, they aren’t. You can measure calendar time or
staff time. But do you measure the time it takes for the change to wind its
way through configuration control boards and approval authorities (some
of whom may be outside your organization), or merely the time it takes
your engineers to make the change? Cost usually means direct outlay, but
it might also include opportunity cost of having your staff work on changes
instead of other tasks. Other measures include the extent of the change
(number of modules or other artifacts affected) or the number of new
defects introduced by the change, or the effect on other quality attributes. If
the change is being made by a user, you may wish to measure the efficacy
of the change mechanisms provided, which somewhat overlaps with
measures of usability (see Chapter 11).

120 Part two Quality attributes 7—Modifiability

Figure 7.1 illustrates a concrete modifiability scenario: The developer
wishes to change the user interface by modifying the code at design time. The
modifications are made with no side effects within three hours.

Table 7.1 enumerates the elements of the general scenario that characterize
modifiability.

Stimulus:
Wishes
to Change
the UI

Response:
Change Made
and Unit Tested

Source:
Developer

Artifact:
Code

Environment:
Design
Time

Response
Measure:
In Three
Hours

3
2

1

4

fIGurE 7.1 Sample concrete modifiability scenario

tablE 7.1 Modifiability General Scenario

Portion of Scenario Possible Values

Source End user, developer, system administrator

Stimulus A directive to add/delete/modify functionality, or change a
quality attribute, capacity, or technology

Artifacts Code, data, interfaces, components, resources, configurations,
. . .

Environment Runtime, compile time, build time, initiation time, design time

Response One or more of the following:
 ■ Make modification
 ■ Test modification
 ■ Deploy modification

Response Measure Cost in terms of the following:
 ■ Number, size, complexity of affected artifacts
 ■ Effort
 ■ Calendar time
 ■ Money (direct outlay or opportunity cost)
 ■ Extent to which this modification affects other functions or

quality attributes
 ■ New defects introduced

7.2 Tactics for Modifiability 121

7.2 tactics for Modifiability

Tactics to control modifiability have as their goal controlling the complexity of
making changes, as well as the time and cost to make changes. Figure 7.2 shows
this relationship.

To understand modifiability, we begin with coupling and cohesion.
Modules have responsibilities. When a change causes a module to be modi-

fied, its responsibilities are changed in some way. Generally, a change that affects
one module is easier and less expensive than if it changes more than one mod-
ule. However, if two modules’ responsibilities overlap in some way, then a single
change may well affect them both. We can measure this overlap by measuring the
probability that a modification to one module will propagate to the other. This is
called coupling, and high coupling is an enemy of modifiability.

Cohesion measures how strongly the responsibilities of a module are re-
lated. Informally, it measures the module’s “unity of purpose.” Unity of purpose
can be measured by the change scenarios that affect a module. The cohesion of a
module is the probability that a change scenario that affects a responsibility will
also affect other (different) responsibilities. The higher the cohesion, the lower
the probability that a given change will affect multiple responsibilities. High co-
hesion is good; low cohesion is bad. The definition allows for two modules with
similar purposes each to be cohesive.

Given this framework, we can now identify the parameters that we will use
to motivate modifiability tactics:

 ■ Size of a module. Tactics that split modules will reduce the cost of making
a modification to the module that is being split as long as the split is chosen
to reflect the type of change that is likely to be made.

Change
Arrives

Change Made within
Time and Budget

Tactics
to Control
Modifiability

fIGurE 7.2 The goal of modifiability tactics

122 Part two Quality attributes 7—Modifiability

 ■ Coupling. Reducing the strength of the coupling between two modules A
and B will decrease the expected cost of any modification that affects A.
Tactics that reduce coupling are those that place intermediaries of various
sorts between modules A and B.

 ■ Cohesion. If module A has a low cohesion, then cohesion can be improved
by removing responsibilities unaffected by anticipated changes.

Finally we need to be concerned with when in the software development
life cycle a change occurs. If we ignore the cost of preparing the architecture for
the modification, we prefer that a change is bound as late as possible. Changes
can only be successfully made (that is, quickly and at lowest cost) late in the
life cycle if the architecture is suitably prepared to accommodate them. Thus the
fourth and final parameter in a model of modifiability is this:

 ■ Binding time of modification. An architecture that is suitably equipped to
accommodate modifications late in the life cycle will, on average, cost less
than an architecture that forces the same modification to be made earlier.
The preparedness of the system means that some costs will be zero, or very
low, for late life-cycle modifications. This, however, neglects the cost of
preparing the architecture for the late binding.

Now we may understand tactics and their consequences as affecting one or
more of the previous parameters: reducing the size of a module, increasing cohe-
sion, reducing coupling, and deferring binding time. These tactics are shown in
Figure 7.3.

Modifiability Tactics

Increase
Cohesion

Reduce
Coupling

Split Module
Encapsulate

Use an
Intermediary

Change
Arrives

Change Made
within Time
and Budget

Reduce Size
of a Module

Increase
Semantic
Coherence

Restrict
Dependencies

Refactor

Abstract Common
Services

Defer
Binding

fIGurE 7.3 Modifiability tactics

7.2 Tactics for Modifiability 123

reduce the Size of a Module

 ■ Split module. If the module being modified includes a great deal of capa-
bility, the modification costs will likely be high. Refining the module into
several smaller modules should reduce the average cost of future changes.

Increase cohesion

Several tactics involve moving responsibilities from one module to another. The
purpose of moving a responsibility from one module to another is to reduce the
likelihood of side effects affecting other responsibilities in the original module.

 ■ Increase semantic coherence. If the responsibilities A and B in a module
do not serve the same purpose, they should be placed in different modules.
This may involve creating a new module or it may involve moving a re-
sponsibility to an existing module. One method for identifying responsibil-
ities to be moved is to hypothesize likely changes that affect a module. If
some responsibilities are not affected by these changes, then those responsi-
bilities should probably be removed.

reduce coupling

We now turn to tactics that reduce the coupling between modules.

 ■ Encapsulate. Encapsulation introduces an explicit interface to a module.
This interface includes an application programming interface (API) and its
associated responsibilities, such as “perform a syntactic transformation on
an input parameter to an internal representation.” Perhaps the most common
modifiability tactic, encapsulation reduces the probability that a change to
one module propagates to other modules. The strengths of coupling that
previously went to the module now go to the interface for the module.
These strengths are, however, reduced because the interface limits the ways
in which external responsibilities can interact with the module (perhaps
through a wrapper). The external responsibilities can now only directly in-
teract with the module through the exposed interface (indirect interactions,
however, such as dependence on quality of service, will likely remain un-
changed). Interfaces designed to increase modifiability should be abstract
with respect to the details of the module that are likely to change—that is,
they should hide those details.

 ■ Use an intermediary breaks a dependency. Given a dependency between re-
sponsibility A and responsibility B (for example, carrying out A first requires
carrying out B), the dependency can be broken by using an intermediary.
The type of intermediary depends on the type of dependency. For example,
a publish-subscribe intermediary will remove the data producer’s knowledge

124 Part two Quality attributes 7—Modifiability

of its consumers. So will a shared data repository, which separates readers of
a piece of data from writers of that data. In a service-oriented architecture in
which services discover each other by dynamic lookup, the directory service
is an intermediary.

 ■ Restrict dependencies is a tactic that restricts the modules that a given mod-
ule interacts with or depends on. In practice this tactic is achieved by re-
stricting a module’s visibility (when developers cannot see an interface, they
cannot employ it) and by authorization (restricting access to only authorized
modules). This tactic is seen in layered architectures, in which a layer is only
allowed to use lower layers (sometimes only the next lower layer) and in the
use of wrappers, where external entities can only see (and hence depend on)
the wrapper and not the internal functionality that it wraps.

 ■ Refactor is a tactic undertaken when two modules are affected by the same
change because they are (at least partial) duplicates of each other. Code re-
factoring is a mainstay practice of Agile development projects, as a cleanup
step to make sure that teams have not produced duplicative or overly com-
plex code; however, the concept applies to architectural elements as well.
Common responsibilities (and the code that implements them) are “factored
out” of the modules where they exist and assigned an appropriate home of
their own. By co-locating common responsibilities—that is, making them
submodules of the same parent module—the architect can reduce coupling.

 ■ Abstract common services. In the case where two modules provide not-
quite-the-same but similar services, it may be cost-effective to implement
the services just once in a more general (abstract) form. Any modification
to the (common) service would then need to occur just in one place, reduc-
ing modification costs. A common way to introduce an abstraction is by pa-
rameterizing the description (and implementation) of a module’s activities.
The parameters can be as simple as values for key variables or as complex
as statements in a specialized language that are subsequently interpreted.

defer binding

Because the work of people is almost always more expensive than the work of
computers, letting computers handle a change as much as possible will almost
always reduce the cost of making that change. If we design artifacts with built-in
flexibility, then exercising that flexibility is usually cheaper than hand-coding a
specific change.

Parameters are perhaps the best-known mechanism for introducing
flexibility, and that is reminiscent of the abstract common services tactic. A
parameterized function f(a, b) is more general than the similar function f(a) that
assumes b = 0. When we bind the value of some parameters at a different phase
in the life cycle than the one in which we defined the parameters, we are applying
the defer binding tactic.

7.3 A Design Checklist for Modifiability 125

In general, the later in the life cycle we can bind values, the better. However,
putting the mechanisms in place to facilitate that late binding tends to be more
expensive—yet another tradeoff. And so the equation on page 118 comes into
play. We want to bind as late as possible, as long as the mechanism that allows it
is cost-effective.

Tactics to bind values at compile time or build time include these:

 ■ Component replacement (for example, in a build script or makefile)
 ■ Compile-time parameterization
 ■ Aspects

Tactics to bind values at deployment time include this:

 ■ Configuration-time binding

Tactics to bind values at startup or initialization time include this:

 ■ Resource files

Tactics to bind values at runtime include these:

 ■ Runtime registration
 ■ Dynamic lookup (e.g., for services)
 ■ Interpret parameters
 ■ Startup time binding
 ■ Name servers
 ■ Plug-ins
 ■ Publish-subscribe
 ■ Shared repositories
 ■ Polymorphism

Separating building a mechanism for modifiability from using the
mechanism to make a modification admits the possibility of different stakeholders
being involved—one stakeholder (usually a developer) to provide the mechanism
and another stakeholder (an installer, for example, or a user) to exercise it later,
possibly in a completely different life-cycle phase. Installing a mechanism so that
someone else can make a change to the system without having to change any
code is sometimes called externalizing the change.

7.3 a design checklist for Modifiability

Table 7.2 is a checklist to support the design and analysis process for modifiability.

126 Part two Quality attributes 7—Modifiability

tablE 7.2 Checklist to Support the Design and Analysis Process for Modifiability

category checklist

Allocation of
Responsibilities

Determine which changes or categories of changes are likely to
occur through consideration of changes in technical, legal, social,
business, and customer forces. For each potential change or
category of changes:

 ■ Determine the responsibilities that would need to be added,
modified, or deleted to make the change.

 ■ Determine what responsibilities are impacted by the change.
 ■ Determine an allocation of responsibilities to modules that

places, as much as possible, responsibilities that will be
changed (or impacted by the change) together in the same
module, and places responsibilities that will be changed at
different times in separate modules.

Coordination
Model

Determine which functionality or quality attribute can change at
runtime and how this affects coordination; for example, will the
information being communicated change at runtime, or will the
communication protocol change at runtime? If so, ensure that such
changes affect a small number set of modules.
Determine which devices, protocols, and communication paths
used for coordination are likely to change. For those devices,
protocols, and communication paths, ensure that the impact of
changes will be limited to a small set of modules.
For those elements for which modifiability is a concern, use
a coordination model that reduces coupling such as publish-
subscribe, defers bindings such as enterprise service bus, or
restricts dependencies such as broadcast.

Data Model Determine which changes (or categories of changes) to the data
abstractions, their operations, or their properties are likely to
occur. Also determine which changes or categories of changes
to these data abstractions will involve their creation, initialization,
persistence, manipulation, translation, or destruction.
For each change or category of change, determine if the
changes will be made by an end user, a system administrator, or
a developer. For those changes to be made by an end user or
system administrator, ensure that the necessary attributes are
visible to that user and that the user has the correct privileges to
modify the data, its operations, or its properties.
For each potential change or category of change:

 ■ Determine which data abstractions would need to be added,
modified, or deleted to make the change.

 ■ Determine whether there would be any changes to the
creation, initialization, persistence, manipulation, translation, or
destruction of these data abstractions.

 ■ Determine which other data abstractions are impacted
by the change. For these additional data abstractions,
determine whether the impact would be on the operations,
their properties, their creation, initialization, persistence,
manipulation, translation, or destruction.

 ■ Ensure an allocation of data abstractions that minimizes the
number and severity of modifications to the abstractions by the
potential changes.

Design your data model so that items allocated to each element of
the data model are likely to change together.

7.3 A Design Checklist for Modifiability 127

category checklist

Mapping among
Architectural
Elements

Determine if it is desirable to change the way in which functionality
is mapped to computational elements (e.g., processes, threads,
processors) at runtime, compile time, design time, or build time.
Determine the extent of modifications necessary to accommodate
the addition, deletion, or modification of a function or a quality
attribute. This might involve a determination of the following, for
example:

 ■ Execution dependencies
 ■ Assignment of data to databases
 ■ Assignment of runtime elements to processes, threads, or

processors
Ensure that such changes are performed with mechanisms that
utilize deferred binding of mapping decisions.

Resource
Management

Determine how the addition, deletion, or modification of a
responsibility or quality attribute will affect resource usage. This
involves, for example:

 ■ Determining what changes might introduce new resources or
remove old ones or affect existing resource usage

 ■ Determining what resource limits will change and how
Ensure that the resources after the modification are sufficient to
meet the system requirements.
Encapsulate all resource managers and ensure that the policies
implemented by those resource managers are themselves
encapsulated and bindings are deferred to the extent possible.

Binding Time For each change or category of change:
 ■ Determine the latest time at which the change will need to be

made.
 ■ Choose a defer-binding mechanism (see Section 7.2) that

delivers the appropriate capability at the time chosen.
 ■ Determine the cost of introducing the mechanism and the cost

of making changes using the chosen mechanism. Use the
equation on page 118 to assess your choice of mechanism.

 ■ Do not introduce so many binding choices that change is
impeded because the dependencies among the choices are
complex and unknown.

Choice of
Technology

Determine what modifications are made easier or harder by your
technology choices.

 ■ Will your technology choices help to make, test, and deploy
modifications?

 ■ How easy is it to modify your choice of technologies (in case
some of these technologies change or become obsolete)?

Choose your technologies to support the most likely modifications.
For example, an enterprise service bus makes it easier to change
how elements are connected but may introduce vendor lock-in.

128 Part two Quality attributes 7—Modifiability

7.4 Summary

Modifiability deals with change and the cost in time or money of making a
change, including the extent to which this modification affects other functions or
quality attributes.

Changes can be made by developers, installers, or end users, and these
changes need to be prepared for. There is a cost of preparing for change as well
as a cost of making a change. The modifiability tactics are designed to prepare for
subsequent changes.

Tactics to reduce the cost of making a change include making modules
smaller, increasing cohesion, and reducing coupling. Deferring binding will also
reduce the cost of making a change.

Reducing coupling is a standard category of tactics that includes encapsulat-
ing, using an intermediary, restricting dependencies, co-locating related responsi-
bilities, refactoring, and abstracting common services.

Increasing cohesion is another standard tactic that involves separating re-
sponsibilities that do not serve the same purpose.

Defer binding is a category of tactics that affect build time, load time, ini-
tialization time, or runtime.

7.5 for further reading

Serious students of software engineering should read two early papers about
designing for modifiability. The first is Edsger Dijkstra’s 1968 paper about the
T.H.E. operating system [Dijkstra 68], which is the first paper that talks about de-
signing systems to be layered, and the modifiability benefits it brings. The second
is David Parnas’s 1972 paper that introduced the concept of information hiding
[Parnas 72]. Parnas prescribed defining modules not by their functionality but by
their ability to internalize the effects of changes.

The tactics that we have presented in this chapter are a variant on those in-
troduced by [Bachmann 07].

Additional tactics for modifiability within the avionics domain can be found
in [EOSAN 07], published by the European Organization for the Safety of Air
Navigation.

7.6 discussion Questions

1. Modifiability comes in many flavors and is known by many names. Find
one of the IEEE or ISO standards dealing with quality attributes and

7.6 Discussion Questions 129

compile a list of quality attributes that refer to some form of modifiability.
Discuss the differences.

2. For each quality attribute that you discovered as a result of the previous
question, write a modifiability scenario that expresses it.

3. In a certain metropolitan subway system, the ticket machines accept cash
but do not give change. There is a separate machine that dispenses change
but does not sell tickets. In an average station there are six or eight ticket
machines for every change machine. What modifiability tactics do you see
at work in this arrangement? What can you say about availability?

4. For the subway system in the previous question, describe the specific form
of modifiability (using a modifiability scenario) that seems to be the aim of
arranging the ticket and change machines as described.

5. A wrapper is a common aid to modifiability. A wrapper for a component
is the only element allowed to use that component; every other piece of
software uses the component’s services by going through the wrapper. The
wrapper transforms the data or control information for the component it
wraps. For example, a component may expect input using English measures
but find itself in a system in which all of the other components produce
metric measures. A wrapper could be employed to translate. What modifi-
ability tactics does a wrapper embody?

6. Once an intermediary has been introduced into an architecture, some mod-
ules may attempt to circumvent it, either inadvertently (because they are
not aware of the intermediary) or intentionally (for performance, for conve-
nience, or out of habit). Discuss some architectural means to prevent inad-
vertent circumvention of an intermediary.

7. In some projects, deployability is an important quality attribute that mea-
sures how easy it is to get a new version of the system into the hands of its
users. This might mean a trip to your auto dealer or transmitting updates
over the Internet. It also includes the time it takes to install the update once
it arrives. In projects that measure deployability separately, should the cost
of a modification stop when the new version is ready to ship? Justify your
answer.

8. The abstract common services tactic is intended to reduce coupling, but it
also might reduce cohesion. Discuss.

9. Identify particular change scenarios for an automatic teller machine. What
modifications would you make to your automatic teller machine design to
accommodate these changes?

This page intentionally left blank

131

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

8
Performance

An ounce of performance is worth pounds of promises.
—Mae West

It’s about time.
Performance, that is: It’s about time and the software system’s ability to meet

timing requirements. When events occur—interrupts, messages, requests from
users or other systems, or clock events marking the passage of time—the system,
or some element of the system, must respond to them in time. Characterizing
the events that can occur (and when they can occur) and the system or element’s
time-based response to those events is the essence is discussing performance.

Web-based system events come in the form of requests from users (num-
bering in the tens or tens of millions) via their clients such as web browsers. In
a control system for an internal combustion engine, events come from the opera-
tor’s controls and the passage of time; the system must control both the firing of
the ignition when a cylinder is in the correct position and the mixture of the fuel
to maximize power and efficiency and minimize pollution.

For a web-based system, the desired response might be expressed as number
of transactions that can be processed in a minute. For the engine control system,
the response might be the allowable variation in the firing time. In each case, the
pattern of events arriving and the pattern of responses can be characterized, and
this characterization forms the language with which to construct performance
scenarios.

For much of the history of software engineering, performance has been the
driving factor in system architecture. As such, it has frequently compromised the
achievement of all other qualities. As the price/performance ratio of hardware
continues to plummet and the cost of developing software continues to rise, other
qualities have emerged as important competitors to performance.

Nevertheless, all systems have performance requirements, even if they are
not expressed. For example, a word processing tool may not have any explicit
performance requirement, but no doubt everyone would agree that waiting an

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

132 Part two Quality attributes 8—Performance

hour (or a minute, or a second) before seeing a typed character appear on the
screen is unacceptable. Performance continues to be a fundamentally important
quality attribute for all software.

Performance is often linked to scalability—that is, increasing your system’s
capacity for work, while still performing well. Technically, scalability is making
your system easy to change in a particular way, and so is a kind of modifiability.
In addition, we address scalability explicitly in Chapter 12.

8.1 Performance General Scenario

A performance scenario begins with an event arriving at the system. Responding
correctly to the event requires resources (including time) to be consumed. While
this is happening, the system may be simultaneously servicing other events.

Concurrency

Concurrency is one of the more important concepts that an architect must
understand and one of the least-taught in computer science courses.
Concurrency refers to operations occurring in parallel. For example, sup-
pose there is a thread that executes the statements

x := 1;
x++;

and another thread that executes the same statements. What is the value
of x after both threads have executed those statements? It could be either
2 or 3. I leave it to you to figure out how the value 3 could occur—or
should I say I interleave it to you?

Concurrency occurs any time your system creates a new thread, be-
cause threads, by definition, are independent sequences of control. Multi-
tasking on your system is supported by independent threads. Multiple users
are simultaneously supported on your system through the use of threads.
Concurrency also occurs any time your system is executing on more than
one processor, whether the processors are packaged separately or as
multi-core processors. In addition, you must consider concurrency when
parallel algorithms, parallelizing infrastructures such as map-reduce, or
NoSQL databases are used by your system, or you utilize one of a variety
of concurrent scheduling algorithms. In other words, concurrency is a tool
available to you in many ways.

Concurrency, when you have multiple CPUs or wait states that can
exploit it, is a good thing. Allowing operations to occur in parallel improves
performance, because delays introduced in one thread allow the processor

8.1 Performance General Scenario 133

to progress on another thread. But because of the interleaving phenome-
non just described (referred to as a race condition), concurrency must also
be carefully managed by the architect.

As the example shows, race conditions can occur when there are two
threads of control and there is shared state. The management of con-
currency frequently comes down to managing how state is shared. One
technique for preventing race conditions is to use locks to enforce sequen-
tial access to state. Another technique is to partition the state based on the
thread executing a portion of code. That is, if there are two instances of x in
our example, x is not shared by the two threads and there will not be a race
condition.

Race conditions are one of the hardest types of bugs to discover; the
occurrence of the bug is sporadic and depends on (possibly minute) differ-
ences in timing. I once had a race condition in an operating system that I
could not track down. I put a test in the code so that the next time the race
condition occurred, a debugging process was triggered. It took over a year
for the bug to recur so that the cause could be determined.

Do not let the difficulties associated with concurrency dissuade you from
utilizing this very important technique. Just use it with the knowledge that
you must carefully identify critical sections in your code and ensure that
race conditions will not occur in those sections.

—LB

Events can arrive in predictable patterns or mathematical distributions, or be
unpredictable. An arrival pattern for events is characterized as periodic, stochastic,
or sporadic:

 ■ Periodic events arrive predictably at regular time intervals. For instance, an
event may arrive every 10 milliseconds. Periodic event arrival is most often
seen in real-time systems.

 ■ Stochastic arrival means that events arrive according to some probabilistic
distribution.

 ■ Sporadic events arrive according to a pattern that is neither periodic
nor stochastic. Even these can be characterized, however, in certain
circumstances. For example, we might know that at most 600 events will
occur in a minute, or that there will be at least 200 milliseconds between
the arrival of any two events. (This might describe a system in which events
correspond to keyboard strokes from a human user.) These are helpful
characterizations, even though we don’t know when any single event will
arrive.

The response of the system to a stimulus can be measured by the following:

 ■ Latency. The time between the arrival of the stimulus and the system’s
response to it.

134 Part two Quality attributes 8—Performance

 ■ Deadlines in processing. In the engine controller, for example, the fuel
should ignite when the cylinder is in a particular position, thus introducing
a processing deadline.

 ■ The throughput of the system, usually given as the number of transactions
the system can process in a unit of time.

 ■ The jitter of the response—the allowable variation in latency.
 ■ The number of events not processed because the system was too busy to

respond.

From these considerations we can now describe the individual portions of a
general scenario for performance:

 ■ Source of stimulus. The stimuli arrive either from external (possibly
multiple) or internal sources.

 ■ Stimulus. The stimuli are the event arrivals. The arrival pattern can be peri-
odic, stochastic, or sporadic, characterized by numeric parameters.

 ■ Artifact. The artifact is the system or one or more of its components.
 ■ Environment. The system can be in various operational modes, such as nor-

mal, emergency, peak load, or overload.
 ■ Response. The system must process the arriving events. This may cause a

change in the system environment (e.g., from normal to overload mode).
 ■ Response measure. The response measures are the time it takes to process

the arriving events (latency or a deadline), the variation in this time (jitter),
the number of events that can be processed within a particular time interval
(throughput), or a characterization of the events that cannot be processed
(miss rate).

The general scenario for performance is summarized in Table 8.1.
Figure 8.1 gives an example concrete performance scenario: Users initiate

transactions under normal operations. The system processes the transactions with
an average latency of two seconds.

tablE 8.1 Performance General Scenario

Portion of Scenario Possible Values

Source Internal or external to the system

Stimulus Arrival of a periodic, sporadic, or stochastic event

Artifact System or one or more components in the system

Environment Operational mode: normal, emergency, peak load, overload

Response Process events, change level of service

Response Measure Latency, deadline, throughput, jitter, miss rate

8.2 Tactics for Performance 135

8.2 tactics for Performance

The goal of performance tactics is to generate a response to an event arriving
at the system within some time-based constraint. The event can be single or a
stream and is the trigger to perform computation. Performance tactics control the
time within which a response is generated, as illustrated in Figure 8.2.

At any instant during the period after an event arrives but before the sys-
tem’s response t`o it is complete, either the system is working to respond to that
event or the processing is blocked for some reason. This leads to the two basic
contributors to the response time: processing time (when the system is working to
respond) and blocked time (when the system is unable to respond).

Stimulus:
Initiate
Transactions

response:
Transactions
Are Processed

response
Measure:
Average
Latency
of Two

Source:
Users

artifact:
System

Environment:
Normal
Operation

3
2

1

4

Seconds

fIGurE 8.1 Sample concrete performance scenario

Event
Arrives

Response
Generated
within Time
Constraints

Tactics
to Control
Performance

fIGurE 8.2 The goal of performance tactics

136 Part two Quality attributes 8—Performance

 ■ Processing time. Processing consumes resources, which takes time. Events
are handled by the execution of one or more components, whose time
expended is a resource. Hardware resources include CPU, data stores,
network communication bandwidth, and memory. Software resources
include entities defined by the system under design. For example, buffers
must be managed and access to critical sections1 must be made sequential.

For example, suppose a message is generated by one component. It
might be placed on the network, after which it arrives at another compo-
nent. It is then placed in a buffer; transformed in some fashion; processed
according to some algorithm; transformed for output; placed in an output
buffer; and sent onward to another component, another system, or some
actor. Each of these steps consumes resources and time and contributes to
the overall latency of the processing of that event.

Different resources behave differently as their utilization approaches
their capacity—that is, as they become saturated. For example, as a CPU
becomes more heavily loaded, performance usually degrades fairly steadily.
On the other hand, when you start to run out of memory, at some point the
page swapping becomes overwhelming and performance crashes suddenly.

 ■ Blocked time. A computation can be blocked because of contention for some
needed resource, because the resource is unavailable, or because the compu-
tation depends on the result of other computations that are not yet available:

 ■ Contention for resources. Many resources can only be used by a single
client at a time. This means that other clients must wait for access to
those resources. Figure 8.2 shows events arriving at the system. These
events may be in a single stream or in multiple streams. Multiple streams
vying for the same resource or different events in the same stream vying
for the same resource contribute to latency. The more contention for a
resource, the more likelihood of latency being introduced.

 ■ Availability of resources. Even in the absence of contention, computation
cannot proceed if a resource is unavailable. Unavailability may be caused
by the resource being offline or by failure of the component or for some
other reason. In any case, you must identify places where resource un-
availability might cause a significant contribution to overall latency. Some
of our tactics are intended to deal with this situation.

 ■ Dependency on other computation. A computation may have to wait
because it must synchronize with the results of another computation or
because it is waiting for the results of a computation that it initiated. If a
component calls another component and must wait for that component to
respond, the time can be significant if the called component is at the other
end of a network (as opposed to co-located on the same processor).

1. A critical section is a section of code in a multi-threaded system in which at most one thread may
be active at any time.

8.2 Tactics for Performance 137

With this background, we turn to our tactic categories. We can either reduce
demand for resources or make the resources we have handle the demand more
effectively:

 ■ Control resource demand. This tactic operates on the demand side to
produce smaller demand on the resources that will have to service the
events.

 ■ Manage resources. This tactic operates on the response side to make the re-
sources at hand work more effectively in handling the demands put to them.

control resource demand

One way to increase performance is to carefully manage the demand for re-
sources. This can be done by reducing the number of events processed by en-
forcing a sampling rate, or by limiting the rate at which the system responds to
events. In addition, there are a number of techniques for ensuring that the re-
sources that you do have are applied judiciously:

 ■ Manage sampling rate. If it is possible to reduce the sampling frequency
at which a stream of environmental data is captured, then demand can be
reduced, typically with some attendant loss of fidelity. This is common
in signal processing systems where, for example, different codecs can be
chosen with different sampling rates and data formats. This design choice
is made to maintain predictable levels of latency; you must decide whether
having a lower fidelity but consistent stream of data is preferable to losing
packets of data.

 ■ Limit event response. When discrete events arrive at the system (or element)
too rapidly to be processed, then the events must be queued until they can
be processed. Because these events are discrete, it is typically not desirable
to “downsample” them. In such a case, you may choose to process events
only up to a set maximum rate, thereby ensuring more predictable process-
ing when the events are actually processed. This tactic could be triggered
by a queue size or processor utilization measure exceeding some warning
level. If you adopt this tactic and it is unacceptable to lose any events, then
you must ensure that your queues are large enough to handle the worst case.
If, on the other hand, you choose to drop events, then you need to choose a
policy for handling this situation: Do you log the dropped events, or simply
ignore them? Do you notify other systems, users, or administrators?

 ■ Prioritize events. If not all events are equally important, you can impose a
priority scheme that ranks events according to how important it is to service
them. If there are not enough resources available to service them when they
arise, low-priority events might be ignored. Ignoring events consumes min-
imal resources (including time), and thus increases performance compared
to a system that services all events all the time. For example, a building

138 Part two Quality attributes 8—Performance

management system may raise a variety of alarms. Life-threatening alarms
such as a fire alarm should be given higher priority than informational
alarms such as a room is too cold.

 ■ Reduce overhead. The use of intermediaries (so important for modifiability,
as we saw in Chapter 7) increases the resources consumed in processing
an event stream, and so removing them improves latency. This is a clas-
sic modifiability/performance tradeoff. Separation of concerns, another
linchpin of modifiability, can also increase the processing overhead nec-
essary to service an event if it leads to an event being serviced by a chain
of components rather than a single component. The context switching and
intercomponent communication costs add up, especially when the compo-
nents are on different nodes on a network. A strategy for reducing compu-
tational overhead is to co-locate resources. Co-location may mean hosting
cooperating components on the same processor to avoid the time delay of
network communication; it may mean putting the resources in the same
runtime software component to avoid even the expense of a subroutine call.
A special case of reducing computational overhead is to perform a periodic
cleanup of resources that have become inefficient. For example, hash tables
and virtual memory maps may require recalculation and reinitialization.
Another common strategy is to execute single-threaded servers (for simplic-
ity and avoiding contention) and split workload across them.

 ■ Bound execution times. Place a limit on how much execution time is used to
respond to an event. For iterative, data-dependent algorithms, limiting the
number of iterations is a method for bounding execution times. The cost is
usually a less accurate computation. If you adopt this tactic, you will need
to assess its effect on accuracy and see if the result is “good enough.” This
resource management tactic is frequently paired with the manage sampling
rate tactic.

 ■ Increase resource efficiency. Improving the algorithms used in critical areas
will decrease latency.

Manage resources

Even if the demand for resources is not controllable, the management of these re-
sources can be. Sometimes one resource can be traded for another. For example,
intermediate data may be kept in a cache or it may be regenerated depending on
time and space resource availability. This tactic is usually applied to the proces-
sor but is also effective when applied to other resources such as a disk. Here are
some resource management tactics:

 ■ Increase resources. Faster processors, additional processors, additional
memory, and faster networks all have the potential for reducing latency.

8.2 Tactics for Performance 139

Cost is usually a consideration in the choice of resources, but increasing the
resources is definitely a tactic to reduce latency and in many cases is the
cheapest way to get immediate improvement.

 ■ Introduce concurrency. If requests can be processed in parallel, the blocked
time can be reduced. Concurrency can be introduced by processing differ-
ent streams of events on different threads or by creating additional threads
to process different sets of activities. Once concurrency has been intro-
duced, scheduling policies can be used to achieve the goals you find desir-
able. Different scheduling policies may maximize fairness (all requests get
equal time), throughput (shortest time to finish first), or other goals. (See
the sidebar.)

 ■ Maintain multiple copies of computations. Multiple servers in a client-serv-
er pattern are replicas of computation. The purpose of replicas is to reduce
the contention that would occur if all computations took place on a single
server. A load balancer is a piece of software that assigns new work to one
of the available duplicate servers; criteria for assignment vary but can be as
simple as round-robin or assigning the next request to the least busy server.

 ■ Maintain multiple copies of data. Caching is a tactic that involves keeping
copies of data (possibly one a subset of the other) on storage with different
access speeds. The different access speeds may be inherent (memory versus
secondary storage) or may be due to the necessity for network communica-
tion. Data replication involves keeping separate copies of the data to reduce
the contention from multiple simultaneous accesses. Because the data being
cached or replicated is usually a copy of existing data, keeping the copies
consistent and synchronized becomes a responsibility that the system must
assume. Another responsibility is to choose the data to be cached. Some
caches operate by merely keeping copies of whatever was recently request-
ed, but it is also possible to predict users’ future requests based on patterns
of behavior, and begin the calculations or prefetches necessary to comply
with those requests before the user has made them.

 ■ Bound queue sizes. This controls the maximum number of queued arrivals
and consequently the resources used to process the arrivals. If you adopt
this tactic, you need to adopt a policy for what happens when the queues
overflow and decide if not responding to lost events is acceptable. This tac-
tic is frequently paired with the limit event response tactic.

 ■ Schedule resources. Whenever there is contention for a resource, the
resource must be scheduled. Processors are scheduled, buffers are
scheduled, and networks are scheduled. Your goal is to understand the
characteristics of each resource’s use and choose the scheduling strategy
that is compatible with it. (See the sidebar.)

The tactics for performance are summarized in Figure 8.3.

140 Part two Quality attributes 8—Performance

Scheduling Policies

A scheduling policy conceptually has two parts: a priority assignment
and dispatching. All scheduling policies assign priorities. In some cases
the assignment is as simple as first-in/first-out (or FIFO). In other cases,
it can be tied to the deadline of the request or its semantic importance.
Competing criteria for scheduling include optimal resource usage, request
importance, minimizing the number of resources used, minimizing latency,
maximizing throughput, preventing starvation to ensure fairness, and so
forth. You need to be aware of these possibly conflicting criteria and the
effect that the chosen tactic has on meeting them.

A high-priority event stream can be dispatched only if the resource to
which it is being assigned is available. Sometimes this depends on pre-
empting the current user of the resource. Possible preemption options are
as follows: can occur anytime, can occur only at specific preemption points,
and executing processes cannot be preempted. Some common scheduling
policies are these:

 ■ First-in/first-out. FIFO queues treat all requests for resources as equals
and satisfy them in turn. One possibility with a FIFO queue is that one
request will be stuck behind another one that takes a long time to gener-
ate a response. As long as all of the requests are truly equal, this is not
a problem, but if some requests are of higher priority than others, it is
problematic.

 ■ Fixed-priority scheduling. Fixed-priority scheduling assigns each source
of resource requests a particular priority and assigns the resources in
that priority order. This strategy ensures better service for higher priority
requests. But it admits the possibility of a lower priority, but important,
request taking an arbitrarily long time to be serviced, because it is stuck
behind a series of higher priority requests. Three common prioritization
strategies are these:

 ■ Semantic importance. Each stream is assigned a priority statically
according to some domain characteristic of the task that generates it.

 ■ Deadline monotonic. Deadline monotonic. Deadline monotonic is a
static priority assignment that assigns higher priority to streams with
shorter deadlines. This scheduling policy is used when streams of
different priorities with real-time deadlines are to be scheduled.

 ■ Rate monotonic. Rate monotonic is a static priority assignment
for periodic streams that assigns higher priority to streams with
shorter periods. This scheduling policy is a special case of deadline
monotonic but is better known and more likely to be supported by the
operating system.

 ■ Dynamic priority scheduling. Strategies include these:
 ■ Round-robin. Round-robin is a scheduling strategy that orders

the requests and then, at every assignment possibility, assigns
the resource to the next request in that order. A special form of

8.2 Tactics for Performance 141

round-robin is a cyclic executive, where assignment possibilities are
at fixed time intervals.

 ■ Earliest-deadline-first. Earliest-deadline-first. Earliest-deadline-first
assigns priorities based on the pending requests with the earliest
deadline.

 ■ Least-slack-first. This strategy assigns the highest priority to the job
having the least “slack time,” which is the difference between the exe-
cution time remaining and the time to the job’s deadline.

For a single processor and processes that are preemptible (that is, it is
possible to suspend processing of one task in order to service a task
whose deadline is drawing near), both the earliest-deadline and least-
slack scheduling strategies are optimal. That is, if the set of processes can
be scheduled so that all deadlines are met, then these strategies will be
able to schedule that set successfully.

 ■ Static scheduling. A cyclic executive schedule is a scheduling strategy
where the preemption points and the sequence of assignment to the
resource are determined offline. The runtime overhead of a scheduler is
thereby obviated.

Performance Tactics

Control Resource Demand Manage Resources

Manage Sampling Rate

Limit Event Response

Prioritize Events

Reduce Overhead

Bound Execution Times

Increase Resource
Efficiency

Event
Arrives

Response
Generated within
Time Constraints

Increase Resources

Introduce Concurrency

Maintain Multiple
Copies of Computations

Maintain Multiple
Copies of Data

Bound Queue Sizes

Schedule Resources

fIGurE 8.3 Performance tactics

142 Part two Quality attributes 8—Performance

Performance Tactics on the Road

Tactics are generic design principles. To exercise this point, think about
the design of the systems of roads and highways where you live. Traffic
engineers employ a bunch of design “tricks” to optimize the performance
of these complex systems, where performance has a number of mea-
sures, such as throughput (how many cars per hour get from the suburbs
to the football stadium), average-case latency (how long it takes, on aver-
age, to get from your house to downtown), and worst-case latency (how
long does it take an emergency vehicle to get you to the hospital). What
are these tricks? None other than our good old buddies, tactics.

Let’s consider some examples:
 ■ Manage event rate. Lights on highway entrance ramps let cars onto the

highway only at set intervals, and cars must wait (queue) on the ramp for
their turn.

 ■ Prioritize events. Ambulances and police, with their lights and sirens
going, have higher priority than ordinary citizens; some highways have
high-occupancy vehicle (HOV) lanes, giving priority to vehicles with two
or more occupants.

 ■ Maintain multiple copies. Add traffic lanes to existing roads, or build
parallel routes.

In addition, there are some tricks that users of the system can employ:
 ■ Increase resources. Buy a Ferrari, for example. All other things being

equal, the fastest car with a competent driver on an open road will get
you to your destination more quickly.

 ■ Increase efficiency. Find a new route that is quicker and/or shorter than
your current route.

 ■ Reduce computational overhead. You can drive closer to the car in
front of you, or you can load more people into the same vehicle (that is,
carpooling).

What is the point of this discussion? To paraphrase Gertrude Stein: per-
formance is performance is performance. Engineers have been analyzing
and optimizing systems for centuries, trying to improve their performance,
and they have been employing the same design strategies to do so. So
you should feel some comfort in knowing that when you try to improve the
performance of your computer-based system, you are applying tactics that
have been thoroughly “road tested.”

—RK

8.3 a design checklist for Performance

Table 8.2 is a checklist to support the design and analysis process for performance.

8.3 A Design Checklist for Performance 143

tablE 8.2 Checklist to Support the Design and Analysis Process for
Performance

category checklist

Allocation of
Responsibilities

Determine the system’s responsibilities that will involve heavy
loading, have time-critical response requirements, are heavily
used, or impact portions of the system where heavy loads or
time-critical events occur.
For those responsibilities, identify the processing requirements
of each responsibility, and determine whether they may cause
bottlenecks.
Also, identify additional responsibilities to recognize and process
requests appropriately, including

 ■ Responsibilities that result from a thread of control crossing
process or processor boundaries

 ■ Responsibilities to manage the threads of control—allocation
and deallocation of threads, maintaining thread pools, and so
forth

 ■ Responsibilities for scheduling shared resources or
managing performance-related artifacts such as queues,
buffers, and caches

For the responsibilities and resources you identified, ensure that
the required performance response can be met (perhaps by
building a performance model to help in the evaluation).

Coordination
Model

Determine the elements of the system that must coordinate with
each other—directly or indirectly—and choose communication
and coordination mechanisms that do the following:

 ■ Support any introduced concurrency (for example, is it thread
safe?), event prioritization, or scheduling strategy

 ■ Ensure that the required performance response can be
delivered

 ■ Can capture periodic, stochastic, or sporadic event arrivals,
as needed

 ■ Have the appropriate properties of the communication
mechanisms; for example, stateful, stateless, synchronous,
asynchronous, guaranteed delivery, throughput, or latency

Data Model Determine those portions of the data model that will be heavily
loaded, have time-critical response requirements, are heavily
used, or impact portions of the system where heavy loads or
time-critical events occur.
For those data abstractions, determine the following:

 ■ Whether maintaining multiple copies of key data would
benefit performance

 ■ Whether partitioning data would benefit performance
 ■ Whether reducing the processing requirements for the

creation, initialization, persistence, manipulation, translation,
or destruction of the enumerated data abstractions is
possible

 ■ Whether adding resources to reduce bottlenecks for the
creation, initialization, persistence, manipulation, translation,
or destruction of the enumerated data abstractions is feasible

continues

144 Part two Quality attributes 8—Performance

tablE 8.2 Checklist to Support the Design and Analysis Process for
Performance, continued

category checklist

Mapping among
Architectural
Elements

Where heavy network loading will occur, determine whether
co-locating some components will reduce loading and improve
overall efficiency.
Ensure that components with heavy computation requirements
are assigned to processors with the most processing capacity.
Determine where introducing concurrency (that is, allocating
a piece of functionality to two or more copies of a component
running simultaneously) is feasible and has a significant positive
effect on performance.
Determine whether the choice of threads of control and their
associated responsibilities introduces bottlenecks.

Resource
Management

Determine which resources in your system are critical for
performance. For these resources, ensure that they will be
monitored and managed under normal and overloaded system
operation. For example:

 ■ System elements that need to be aware of, and manage,
time and other performance-critical resources

 ■ Process/thread models
 ■ Prioritization of resources and access to resources
 ■ Scheduling and locking strategies
 ■ Deploying additional resources on demand to meet increased

loads

Binding Time For each element that will be bound after compile time,
determine the following:

 ■ Time necessary to complete the binding
 ■ Additional overhead introduced by using the late binding

mechanism
Ensure that these values do not pose unacceptable performance
penalties on the system.

Choice of
Technology

Will your choice of technology let you set and meet hard, real-
time deadlines? Do you know its characteristics under load and
its limits?
Does your choice of technology give you the ability to set the
following:

 ■ Scheduling policy
 ■ Priorities
 ■ Policies for reducing demand
 ■ Allocation of portions of the technology to processors
 ■ Other performance-related parameters

Does your choice of technology introduce excessive overhead
for heavily used operations?

8.6 Discussion Questions 145

8.4 Summary

Performance is about the management of system resources in the face of partic-
ular types of demand to achieve acceptable timing behavior. Performance can be
measured in terms of throughput and latency for both interactive and embedded
real-time systems, although throughput is usually more important in interactive
systems, and latency is more important in embedded systems.

Performance can be improved by reducing demand or by managing re-
sources more appropriately. Reducing demand will have the side effect of re-
ducing fidelity or refusing to service some requests. Managing resources more
appropriately can be done through scheduling, replication, or just increasing the
resources available.

8.5 for further reading

Performance has a rich body of literature. Here are some books we recommend:

 ■ Software Performance and Scalability: A Quantitative Approach [Liu 09].
This books covers performance geared toward enterprise applications, with
an emphasis on queuing theory and measurement.

 ■ Performance Solutions: A Practical Guide to Creating Responsive, Scal-
able Software [Smith 01]. This book covers designing with performance in
mind, with emphasis on building (and populating with real data) practical
predictive performance models.

 ■ Real-Time Design Patterns: Robust Scalable Architecture for Real-Time
Systems [Douglass 99].

 ■ Real-Time Systems [Liu 00].
 ■ Pattern-Oriented Software Architecture Volume 3: Patterns for Resource

Management [Kircher 03].

8.6 discussion Questions

1. “Every system has real-time performance constraints.” Discuss. Or provide
a counterexample.

2. Write a performance scenario that describes the average on-time flight ar-
rival performance for an airline.

146 Part two Quality attributes 8—Performance

3. Write several performance scenarios for an automatic teller machine. Think
about whether your major concern is worst-case latency, average-case la-
tency, throughput, or some other response measure. How would you modify
your automatic teller machine design to accommodate these scenarios?

4. Web-based systems often use proxy servers, which are the first element of
the system to receive a request from a client (such as your browser). Proxy
servers are able to serve up often-requested web pages, such as a company’s
home page, without bothering the real application servers that carry out
transactions. There may be many proxy servers, and they are often located
geographically close to large user communities, to decrease response time
for routine requests. What performance tactics do you see at work here?

5. A fundamental difference between coordination mechanisms is whether
interaction is synchronous or asynchronous. Discuss the advantages and
disadvantages of each with respect to each of the performance responses:
latency, deadline, throughput, jitter, miss rate, data loss, or any other re-
quired performance-related response you may be used to.

6. Find real-world (that is, nonsoftware) examples of applying each of the
manage-resources tactics. For example, suppose you were managing a
brick-and-mortar big-box retail store. How would you get people through
the checkout lines faster using these tactics?

7. User interface frameworks typically are single-threaded. Why is this so and
what are the performance implications of this single-threading?

147

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

9
Security
With Jungwoo Ryoo and Phil Laplante

Your personal identity isn’t worth quite as much as
it used to be—at least to thieves willing to swipe it.

According to experts who monitor such markets, the
value of stolen credit card data may range from $3 to

as little as 40 cents. That’s down tenfold from a decade
ago—even though the cost to an individual who has a

credit card stolen can soar into the hundreds of dollars.
—Forbes.com (Taylor Buley. “Hackonomics,” Forbes.com,

October 27, 2008, www.forbes.com/2008/10/25/credit-card-
theft-tech-security-cz_tb1024theft.html)

Security is a measure of the system’s ability to protect data and information from
unauthorized access while still providing access to people and systems that are
authorized. An action taken against a computer system with the intention of do-
ing harm is called an attack and can take a number of forms. It may be an un-
authorized attempt to access data or services or to modify data, or it may be in-
tended to deny services to legitimate users.

The simplest approach to characterizing security has three characteristics:
confidentiality, integrity, and availability (CIA):

1. Confidentiality is the property that data or services are protected from
unauthorized access. For example, a hacker cannot access your income tax
returns on a government computer.

2. Integrity is the property that data or services are not subject to unauthorized
manipulation. For example, your grade has not been changed since your
instructor assigned it.

3. Availability is the property that the system will be available for legitimate
use. For example, a denial-of-service attack won’t prevent you from order-
ing book from an online bookstore.

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

http://www.forbes.com/2008/10/25/creditcard-theft-tech-security-cz_tb1024theft.html
http://www.forbes.com/2008/10/25/creditcard-theft-tech-security-cz_tb1024theft.html

148 Part two Quality attributes 9—Security

Other characteristics that are used to support CIA are these:

4. Authentication verifies the identities of the parties to a transaction and
checks if they are truly who they claim to be. For example, when you get
an email purporting to come from a bank, authentication guarantees that it
actually comes from the bank.

5. Nonrepudiation guarantees that the sender of a message cannot later deny
having sent the message, and that the recipient cannot deny having received
the message. For example, you cannot deny ordering something from the
Internet, or the merchant cannot disclaim getting your order.

6. Authorization grants a user the privileges to perform a task. For example, an
online banking system authorizes a legitimate user to access his account.

We will use these characteristics in our general scenarios for security. Approaches
to achieving security can be characterized as those that detect attacks, those that
resist attacks, those that react to attacks, and those that recover from successful
attacks. The objects that are being protected from attacks are data at rest, data in
transit, and computational processes.

9.1 Security General Scenario

One technique that is used in the security domain is threat modeling. An “attack
tree,” similar to a fault tree discussed in Chapter 5, is used by security engineers
to determine possible threats. The root is a successful attack and the nodes are
possible direct causes of that successful attack. Children nodes decompose the
direct causes, and so forth. An attack is an attempt to break CIA, and the leaves of
attack trees would be the stimulus in the scenario. The response to the attack is to
preserve CIA or deter attackers through monitoring of their activities. From these
considerations we can now describe the individual portions of a security general
scenario. These are summarized in Table 9.1, and an example security scenario is
given in Figure 9.1.

 ■ Source of stimulus. The source of the attack may be either a human or
another system. It may have been previously identified (either correctly or
incorrectly) or may be currently unknown. A human attacker may be from
outside the organization or from inside the organization.

 ■ Stimulus. The stimulus is an attack. We characterize this as an unauthorized
attempt to display data, change or delete data, access system services,
change the system’s behavior, or reduce availability.

 ■ Artifact. The target of the attack can be either the services of the system,
the data within it, or the data produced or consumed by the system. Some
attacks are made on particular components of the system known to be
vulnerable.

9.1 Security General Scenario 149

 ■ Environment. The attack can come when the system is either online or
offline, either connected to or disconnected from a network, either behind a
firewall or open to a network, fully operational, partially operational, or not
operational.

 ■ Response. The system should ensure that transactions are carried out in a
fashion such that data or services are protected from unauthorized access;
data or services are not being manipulated without authorization; parties
to a transaction are identified with assurance; the parties to the transaction
cannot repudiate their involvements; and the data, resources, and system
services will be available for legitimate use.

The system should also track activities within it by recording access
or modification; attempts to access data, resources, or services; and noti-
fying appropriate entities (people or systems) when an apparent attack is
occurring.

 ■ Response measure. Measures of a system’s response include how much
of a system is compromised when a particular component or data value is
compromised, how much time passed before an attack was detected, how
many attacks were resisted, how long it took to recover from a successful
attack, and how much data was vulnerable to a particular attack.

Table 9.1 enumerates the elements of the general scenario, which charac-
terize security, and Figure 9.1 shows a sample concrete scenario: A disgruntled
employee from a remote location attempts to modify the pay rate table during
normal operations. The system maintains an audit trail, and the correct data is
restored within a day.

Stimulus: Response:

Response
Measure:Source: Environment:

Normal
Operations

3
2

1

4

Disgruntled
Employee from
Remote Location

Attempts to
Modify Pay
Rate

System
Maintains
Audit Trail

Correct Data Is
Restored within a
Day and Source
of Tampering
Identified

Artifact:
Data within
the System

fIGurE 9.1 Sample concrete security scenario

150 Part two Quality attributes 9—Security

tablE 9.1 Security General Scenario

Portion of
Scenario Possible Values

Source Human or another system which may have been previously
identified (either correctly or incorrectly) or may be currently
unknown. A human attacker may be from outside the organization or
from inside the organization.

Stimulus Unauthorized attempt is made to display data, change or delete
data, access system services, change the system’s behavior, or
reduce availability.

Artifact System services, data within the system, a component or resources
of the system, data produced or consumed by the system

Environment The system is either online or offline; either connected to or
disconnected from a network; either behind a firewall or open to a
network; fully operational, partially operational, or not operational.

Response Transactions are carried out in a fashion such that
 ■ Data or services are protected from unauthorized access.
 ■ Data or services are not being manipulated without authorization.
 ■ Parties to a transaction are identified with assurance.
 ■ The parties to the transaction cannot repudiate their

involvements.
 ■ The data, resources, and system services will be available for

legitimate use.
The system tracks activities within it by

 ■ Recording access or modification
 ■ Recording attempts to access data, resources, or services
 ■ Notifying appropriate entities (people or systems) when an

apparent attack is occurring

Response
Measure

One or more of the following:
 ■ How much of a system is compromised when a particular

component or data value is compromised
 ■ How much time passed before an attack was detected
 ■ How many attacks were resisted
 ■ How long does it take to recover from a successful attack
 ■ How much data is vulnerable to a particular attack

9.2 tactics for Security

One method for thinking about how to achieve security in a system is to think
about physical security. Secure installations have limited access (e.g., by using
security checkpoints), have means of detecting intruders (e.g., by requiring le-
gitimate visitors to wear badges), have deterrence mechanisms such as armed
guards, have reaction mechanisms such as automatic locking of doors, and have
recovery mechanisms such as off-site backup. These lead to our four categories
of tactics: detect, resist, react, and recover. Figure 9.2 shows these categories as
the goal of security tactics.

9.2 Tactics for Security 151

Attack System Detects, Resists,
Reacts, or Recovers

Tactics
to Control
Security

fIGurE 9.2 The goal of security tactics

detect attacks

The detect attacks category consists of four tactics: detect intrusion, detect service
denial, verify message integrity, and detect message delay.

 ■ Detect intrusion is the comparison of network traffic or service request
patterns within a system to a set of signatures or known patterns of
malicious behavior stored in a database. The signatures can be based on
protocol, TCP flags, payload sizes, applications, source or destination
address, or port number.

 ■ Detect service denial is the comparison of the pattern or signature of
network traffic coming into a system to historic profiles of known denial-of-
service attacks.

 ■ Verify message integrity. This tactic employs techniques such as
checksums or hash values to verify the integrity of messages, resource
files, deployment files, and configuration files. A checksum is a validation
mechanism wherein the system maintains redundant information for
configuration files and messages, and uses this redundant information
to verify the configuration file or message when it is used. A hash value
is a unique string generated by a hashing function whose input could be
configuration files or messages. Even a slight change in the original files or
messages results in a significant change in the hash value.

 ■ Detect message delay is intended to detect potential man-in-the-middle
attacks, where a malicious party is intercepting (and possibly modifying)
messages. By checking the time that it takes to deliver a message, it is
possible to detect suspicious timing behavior, where the time it takes to
deliver a message is highly variable.

152 Part Two Quality Attributes 9—Security

Resist Attacks

There are a number of well-known means of resisting an attack:

 ■ Identify actors. Identifying “actors” is really about identifying the source of
any external input to the system. Users are typically identified through user
IDs. Other systems may be “identified” through access codes, IP addresses,
protocols, ports, and so on.

 ■ Authenticate actors. Authentication means ensuring that an actor (a user or
a remote computer) is actually who or what it purports to be. Passwords,
one-time passwords, digital certificates, and biometric identification
provide a means for authentication.

 ■ Authorize actors. Authorization means ensuring that an authenticated actor
has the rights to access and modify either data or services. This mechanism
is usually enabled by providing some access control mechanisms within
a system. Access control can be by an actor or by an actor class. Classes
of actors can be defined by actor groups, by actor roles, or by lists of
individuals.

 ■ Limit access. Limiting access involves controlling what and who may access
which parts of a system. This may include limiting access to resources such
as processors, memory, and network connections, which may be achieved
by using process management, memory protection, blocking a host, closing
a port, or rejecting a protocol. For example, a firewall is a single point of
access to an organization’s intranet. A demilitarized zone (DMZ) is a subnet
between the Internet and an intranet, protected by two firewalls: one facing
the Internet and the other the intranet. A DMZ is used when an organization
wants to let external users access services that should be publicly available
outside the intranet. This way the number of open ports in the internal firewall
can be minimized. This tactic also limits access for actors (by identifying,
authenticating, and authorizing them).

 ■ Limit exposure. Limiting exposure refers to ultimately and indirectly
reducing the probability of a successful attack, or restricting the amount of
potential damage. This can be achieved by concealing facts about a system
to be protected (“security by obscurity”) or by dividing and distributing
critical resources so that the exploitation of a single weakness cannot fully
compromise any resource (“don’t put all your eggs in one basket”). For
example, a design decision to hide how many entry points a system has is a
way of limiting exposure. A decision to distribute servers amongst several
geographically dispersed data centers is also a way of limiting exposure.

 ■ Encrypt data. Data should be protected from unauthorized access.
Confidentiality is usually achieved by applying some form of encryption
to data and to communication. Encryption provides extra protection to
persistently maintained data beyond that available from authorization.
Communication links, on the other hand, may not have authorization
controls. In such cases, encryption is the only protection for passing data
over publicly accessible communication links. The link can be implemented
by a virtual private network (VPN) or by a Secure Sockets Layer (SSL) for

9.2 Tactics for Security 153

a web-based link. Encryption can be symmetric (both parties use the same
key) or asymmetric (public and private keys).

 ■ Separate entities. Separating different entities within the system can be
done through physical separation on different servers that are attached
to different networks; the use of virtual machines (see Chapter 26 for
a discussion of virtual machines); or an “air gap,” that is, by having no
connection between different portions of a system. Finally, sensitive
data is frequently separated from nonsensitive data to reduce the attack
possibilities from those who have access to nonsensitive data.

 ■ Change default settings. Many systems have default settings assigned
when the system is delivered. Forcing the user to change those settings will
prevent attackers from gaining access to the system through settings that
are, generally, publicly available.

React to Attacks

Several tactics are intended to respond to a potential attack:

 ■ Revoke access. If the system or a system administrator believes that
an attack is underway, then access can be severely limited to sensitive
resources, even for normally legitimate users and uses. For example, if your
desktop has been compromised by a virus, your access to certain resources
may be limited until the virus is removed from your system.

 ■ Lock computer. Repeated failed login attempts may indicate a potential
attack. Many systems limit access from a particular computer if there
are repeated failed attempts to access an account from that computer.
Legitimate users may make mistakes in attempting to log in. Therefore, the
limited access may only be for a certain time period.

 ■ Inform actors. Ongoing attacks may require action by operators, other
personnel, or cooperating systems. Such personnel or systems—the set of
relevant actors—must be notified when the system has detected an attack.

Recover from Attacks

Once a system has detected and attempted to resist an attack, it needs to recover.
Part of recovery is restoration of services. For example, additional servers or net-
work connections may be kept in reserve for such a purpose. Since a successful
attack can be considered a kind of failure, the set of availability tactics (from
Chapter 5) that deal with recovering from a failure can be brought to bear for this
aspect of security as well.

In addition to the availability tactics that permit restoration of services, we
need to maintain an audit trail. We audit—that is, keep a record of user and sys-
tem actions and their effects—to help trace the actions of, and to identify, an at-
tacker. We may analyze audit trails to attempt to prosecute attackers, or to create
better defenses in the future.

The set of security tactics is shown in Figure 9.3.

154 Part Two Quality Attributes 9—Security

Security Tactics

Resist Attacks

Encrypt Data

Attack System Detects,
Resists, Reacts,
or Recovers

Detect Attacks

Maintain
Audit Trail

Limit Exposure

Recover
from Attacks

React to
Attacks

Revoke
Access

Lock
Computer

Detect
Intrusion

Detect Service
Denial
Verify Message
Integrity

Detect Message
Delay

Change Default
Settings

Separate
Entities

Restore

See
Availability

Identify
Actors

Authenticate
Actors

Authorize
Actors

Limit Access

Inform
Actors

FIGURE 9.3 Security tactics

9.3 A Design Checklist for Security

Table 9.2 is a checklist to support the design and analysis process for security.

TABLE 9.2 Checklist to Support the Design and Analysis Process for Security

Category Checklist

Allocation of
Responsibilities

Determine which system responsibilities need to be secure.
For each of these responsibilities, ensure that additional
responsibilities have been allocated to do the following:

 ■ Identify the actor
 ■ Authenticate the actor
 ■ Authorize actors
 ■ Grant or deny access to data or services
 ■ Record attempts to access or modify data or services
 ■ Encrypt data
 ■ Recognize reduced availability for resources or services and

inform appropriate personnel and restrict access
 ■ Recover from an attack
 ■ Verify checksums and hash values

9.3 A Design Checklist for Security 155

category checklist

Coordination
Model

Determine mechanisms required to communicate and coordinate
with other systems or individuals. For these communications,
ensure that mechanisms for authenticating and authorizing the
actor or system, and encrypting data for transmission across
the connection, are in place. Ensure also that mechanisms exist
for monitoring and recognizing unexpectedly high demands for
resources or services as well as mechanisms for restricting or
terminating the connection.

Data Model Determine the sensitivity of different data fields. For each data
abstraction:

 ■ Ensure that data of different sensitivity is separated.
 ■ Ensure that data of different sensitivity has different access

rights and that access rights are checked prior to access.
 ■ Ensure that access to sensitive data is logged and that the log

file is suitably protected.
 ■ Ensure that data is suitably encrypted and that keys are

separated from the encrypted data.
 ■ Ensure that data can be restored if it is inappropriately

modified.

Mapping among
Architectural
Elements

Determine how alternative mappings of architectural elements
that are under consideration may change how an individual or
system may read, write, or modify data; access system services or
resources; or reduce availability to system services or resources.
Determine how alternative mappings may affect the recording
of access to data, services or resources and the recognition of
unexpectedly high demands for resources.
For each such mapping, ensure that there are responsibilities to do
the following:

 ■ Identify an actor
 ■ Authenticate an actor
 ■ Authorize actors
 ■ Grant or deny access to data or services
 ■ Record attempts to access or modify data or services
 ■ Encrypt data
 ■ Recognize reduced availability for resources or services, inform

appropriate personnel, and restrict access
 ■ Recover from an attack

Resource
Management

Determine the system resources required to identify and monitor
a system or an individual who is internal or external, authorized or
not authorized, with access to specific resources or all resources.
Determine the resources required to authenticate the actor, grant
or deny access to data or resources, notify appropriate entities
(people or systems), record attempts to access data or resources,
encrypt data, recognize inexplicably high demand for resources,
inform users or systems, and restrict access.
For these resources consider whether an external entity can
access a critical resource or exhaust a critical resource; how to
monitor the resource; how to manage resource utilization; how
to log resource utilization; and ensure that there are sufficient
resources to perform the necessary security operations.
Ensure that a contaminated element can be prevented from
contaminating other elements.
Ensure that shared resources are not used for passing sensitive
data from an actor with access rights to that data to an actor
without access rights to that data.

continues

156 Part two Quality attributes 9—Security

tablE 9.2 Checklist to Support the Design and Analysis Process for Security,
continued

category checklist

Binding Time Determine cases where an instance of a late-bound component
may be untrusted. For such cases ensure that late-bound
components can be qualified; that is, if ownership certificates
for late-bound components are required, there are appropriate
mechanisms to manage and validate them; that access to
late-bound data and services can be managed; that access by
late-bound components to data and services can be blocked; that
mechanisms to record the access, modification, and attempts to
access data or services by late-bound components are in place;
and that system data is encrypted where the keys are intentionally
withheld for late-bound components

Choice of
Technology

Determine what technologies are available to help user
authentication, data access rights, resource protection, and data
encryption.
Ensure that your chosen technologies support the tactics relevant
for your security needs.

9.4 Summary

Attacks against a system can be characterized as attacks against the confidential-
ity, integrity, or availability of a system or its data. Confidentiality means keeping
data away from those who should not have access while granting access to those
who should. Integrity means that there are no unauthorized modifications to or
deletion of data, and availability means that the system is accessible to those who
are entitled to use it.

The emphasis of distinguishing various classes of actors in the characteri-
zation leads to many of the tactics used to achieve security. Identifying, authen-
ticating, and authorizing actors are tactics intended to determine which users or
systems are entitled to what kind of access to a system.

An assumption is made that no security tactic is foolproof and that systems
will be compromised. Hence, tactics exist to detect an attack, limit the spread of
any attack, and to react and recover from an attack.

Recovering from an attack involves many of the same tactics as availability
and, in general, involves returning the system to a consistent state prior to any attack.

9.5 For Further Reading 157

9.5 for further reading

The architectural tactics that we have described in this chapter are only one as-
pect of making a system secure. Other aspects are these:

 ■ Coding. Secure Coding in C and C++ [Seacord 05] describes how to code
securely. The Common Weakness Enumeration [CWE 12] is a list of the
most common vulnerabilities discovered in systems.

 ■ Organizational processes. Organizations must have processes that provide
for responsibility for various aspects of security, including ensuring that
systems are patched to put into place the latest protections. The National
Institute of Standards and Technology (NIST) provides an enumeration of
organizational processes [NIST 09]. [Cappelli 12] discusses insider threats.

 ■ Technical processes. Microsoft has a life-cycle development process (The
Secure Development Life Cycle) that includes modeling of threats. Four
training classes are publicly available. www.microsoft.com/download/en/
details.aspx?id=16420

NIST has several volumes that give definitions of security terms [NIST 04],
categories of security controls [NIST 06], and an enumeration of security con-
trols that an organization could employ [NIST 09]. A security control could be a
tactic, but it could also be organizational, coding-related, or a technical process.

The attack surface of a system is the code that can be run by unauthorized
users. A discussion of how to minimize the attack surface for a system can be
found at [Howard 04].

Encryption and certificates of various types and strengths are commonly
used to resist certain types of attacks. Encryption algorithms are particularly dif-
ficult to code correctly. A document produced by NIST [NIST 02] gives require-
ments for these algorithms.

Good books on engineering systems for security have been written by Ross
Anderson [Anderson 08] and Bruce Schneier [Schneier 08].

Different domains have different specific sets of practices. The Payment
Card Industry (PCI) has a set of standards intended for those involved in credit
card processing (www.pcisecuritystandards.org). There is also a set of recom-
mendations for securing various portions of the electric grid (www.smartgridipe-
dia.org/index.php/ASAP-SG).

Data on the various sources of data breaches can be found in the Verizon
2012 Data Breach Investigations Report [Verizon 12].

John Viega has written several books about secure software development in
various environments. See, for example, [Viega 01].

http://www.microsoft.com/download/en/details.aspx?id=16420
http://www.microsoft.com/download/en/details.aspx?id=16420
http://www.pcisecuritystandards.org
http://www.smartgridipedia.org/index.php/ASAP-SG
http://www.smartgridipedia.org/index.php/ASAP-SG

158 Part two Quality attributes 9—Security

9.6 discussion Questions

1. Write a set of concrete scenarios for security for an automatic teller ma-
chine. How would you modify your design for the automatic teller machine
to satisfy these scenarios?

2. One of the most sophisticated attacks on record was carried out by a virus
known as Stuxnet. Stuxnet first appeared in 2009 but became widely known
in 2011 when it was revealed that it had apparently severely damaged or
incapacitated the high-speed centrifuges involved in Iran’s uranium en-
richment program. Read about Stuxnet and see if you can devise a defense
strategy against it based on the tactics in this chapter.

3. Some say that inserting security awareness into the software develop-
ment life cycle is at least as important as designing software with security
countermeasures. What are some examples of software development pro-
cesses that can lead to more-secure systems?

4. Security and usability are often seen to be at odds with each other. Security
often imposes procedures and processes that seem like needless overhead to
the casual user. But some say that security and usability go (or should go)
hand in hand and argue that making the system easy to use securely is the
best way to promote security to the user. Discuss.

5. List some examples of critical resources for security that might become
exhausted.

6. List an example of a mapping of architectural elements that has strong se-
curity implications. Hint: think of where data is stored.

7. Which of the tactics in our list will protect against an insider threat? Can
you think of any that should be added?

8. In the United States, Facebook can account for more than 5 percent of all
Internet traffic in a given week. How would you recognize a denial-of-ser-
vice attack on Facebook.com?

9. The public disclosure of vulnerabilities in production systems is a matter of
controversy. Discuss why this is so and the pros and cons of public disclo-
sure of vulnerabilities.

159

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

10
Testability

Testing leads to failure, and failure
leads to understanding

—Burt Rutan

Industry estimates indicate that between 30 and 50 percent (or in some cases,
even more) of the cost of developing well-engineered systems is taken up by test-
ing. If the software architect can reduce this cost, the payoff is large.

Software testability refers to the ease with which software can be made to
demonstrate its faults through (typically execution-based) testing. Specifically,
testability refers to the probability, assuming that the software has at least one
fault, that it will fail on its next test execution. Intuitively, a system is testable if it
“gives up” its faults easily. If a fault is present in a system, then we want it to fail
during testing as quickly as possible. Of course, calculating this probability is not
easy and, as you will see when we discuss response measures for testability, other
measures will be used.

Figure 10.1 shows a model of testing in which a program processes input
and produces output. An oracle is an agent (human or mechanical) that decides
whether the output is correct or not by comparing the output to the program’s
specification. Output is not just the functionally produced value, but it also can
include derived measures of quality attributes such as how long it took to produce
the output. Figure 10.1 also shows that the program’s internal state can also be
shown to the oracle, and an oracle can decide whether that is correct or not—that
is, it can detect whether the program has entered an erroneous state and render a
judgment as to the correctness of the program.

Setting and examining a program’s internal state is an aspect of testing that
will figure prominently in our tactics for testability.

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

160 Part two Quality attributes 10—Testability

Program

Oracle { }

input output

approved
rejected

internal state

fIGurE 10.1 A model of testing

For a system to be properly testable, it must be possible to control each compo-
nent’s inputs (and possibly manipulate its internal state) and then to observe its
outputs (and possibly its internal state, either after or on the way to computing
the outputs). Frequently this control and observation is done through the use of a
test harness, which is specialized software (or in some cases, hardware) designed
to exercise the software under test. Test harnesses come in various forms, such
as a record-and-playback capability for data sent across various interfaces, or a
simulator for an external environment in which a piece of embedded software is
tested, or even during production (see sidebar). The test harness can provide as-
sistance in executing the test procedures and recording the output. A test harness
can be a substantial piece of software in its own right, with its own architecture,
stakeholders, and quality attribute requirements.

Testing is carried out by various developers, users, or quality assurance per-
sonnel. Portions of the system or the entire system may be tested. The response
measures for testability deal with how effective the tests are in discovering faults
and how long it takes to perform the tests to some desired level of coverage. Test
cases can be written by the developers, the testing group, or the customer. The
test cases can be a portion of acceptance testing or can drive the development as
they do in certain types of Agile methodologies.

Netflix’s Simian Army

Netflix distributes movies and television shows both via DVD and via
streaming video. Their streaming video service has been extremely suc-
cessful. In May 2011 Netflix streaming video accounted for 24 percent of the
Internet traffic in North America. Naturally, high availability is important to
Netflix.

Netflix hosts their computer services in the Amazon EC2 cloud, and they
utilize what they call a “Simian Army” as a portion of their testing process.
They began with a Chaos Monkey, which randomly kills processes in the

 10—Testability 161

running system. This allows the monitoring of the effect of failed processes
and gives the ability to ensure that the system does not fail or suffer serious
degradation as a result of a process failure.

Recently, the Chaos Monkey got some friends to assist in the testing.
Currently, the Netflix Simian Army includes these:

 ■ The Latency Monkey induces artificial delays in the client-server
communication layer to simulate service degradation and measures if
upstream services respond appropriately.

 ■ The Conformity Monkey finds instances that don’t adhere to best
practices and shuts them down. For example, if an instance does not
belong to an auto-scaling group, it will not appropriately scale when
demand goes up.

 ■ The Doctor Monkey taps into health checks that run on each instance as
well as monitors other external signs of health (e.g., CPU load) to detect
unhealthy instances.

 ■ The Janitor Monkey ensures that the Netflix cloud environment is
running free of clutter and waste. It searches for unused resources and
disposes of them.

 ■ The Security Monkey is an extension of Conformity Monkey. It finds
security violations or vulnerabilities, such as improperly configured
security groups, and terminates the offending instances. It also ensures
that all the SSL and digital rights management (DRM) certificates are
valid and are not coming up for renewal.

 ■ The 10-18 Monkey (localization-internationalization) detects
configuration and runtime problems in instances serving customers in
multiple geographic regions, using different languages and character
sets. The name 10-18 comes from L10n-i18n, a sort of shorthand for the
words localization and internationalization.

Some of the members of the Simian Army use fault injection to place
faults into the running system in a controlled and monitored fashion.
Other members monitor various specialized aspects of the system and its
environment. Both of these techniques have broader applicability than just
Netflix.

Not all faults are equal in terms of severity. More emphasis should be
placed on finding the most severe faults than on finding other faults. The
Simian Army reflects a determination by Netflix that the faults they look for
are the most serious in terms of their impact.

This strategy illustrates that some systems are too complex and adap-
tive to be tested fully, because some of their behaviors are emergent. An
aspect of testing in that arena is logging of operational data produced by
the system, so that when failures occur, the logged data can be analyzed in
the lab to try to reproduce the faults. Architecturally this can require mecha-
nisms to access and log certain system state. The Simian Army is one way
to discover and log behavior in systems of this ilk.

—LB

162 Part two Quality attributes 10—Testability

Testing of code is a special case of validation, which is making sure that an
engineered artifact meets the needs of its stakeholders or is suitable for use. In
Chapter 21 we will discuss architectural design reviews. This is another kind of
validation, where the artifact being tested is the architecture. In this chapter we
are concerned only with the testability of a running system and of its source code.

10.1 testability General Scenario

We can now describe the general scenario for testability.

 ■ Source of stimulus. The testing is performed by unit testers, integration
testers, or system testers (on the developing organization side), or
acceptance testers and end users (on the customer side). The source could
be human or an automated tester.

 ■ Stimulus. A set of tests is executed due to the completion of a coding incre-
ment such as a class layer or service, the completed integration of a subsys-
tem, the complete implementation of the whole system, or the delivery of
the system to the customer.

 ■ Artifact. A unit of code (corresponding to a module in the architecture), a
subsystem, or the whole system is the artifact being tested.

 ■ Environment. The test can happen at development time, at compile time, at
deployment time, or while the system is running (perhaps in routine use). The
environment can also include the test harness or test environments in use.

 ■ Response. The system can be controlled to perform the desired tests and the
results from the test can be observed.

 ■ Response measure. Response measures are aimed at representing how eas-
ily a system under test “gives up” its faults. Measures might include the
effort involved in finding a fault or a particular class of faults, the effort
required to test a given percentage of statements, the length of the longest
test chain (a measure of the difficulty of performing the tests), measures of
effort to perform the tests, measures of effort to actually find faults, esti-
mates of the probability of finding additional faults, and the length of time
or amount of effort to prepare the test environment.

Maybe one measure is the ease at which the system can be brought into
a specific state. In addition, measures of the reduction in risk of the remain-
ing errors in the system can be used. Not all faults are equal in terms of
their possible impact. Measures of risk reduction attempt to rate the severity
of faults found (or to be found).

Figure 10.2 shows a concrete scenario for testability. The unit tester com-
pletes a code unit during development and performs a test sequence whose results
are captured and that gives 85 percent path coverage within three hours of testing.

10.1 Testability General Scenario 163

Table 10.1 enumerates the elements of the general scenario that characterize
testability.

tablE 10.1 Testability General Scenario

Portion of Scenario Possible Values

Source Unit testers, integration testers, system testers, acceptance
testers, end users, either running tests manually or using
automated testing tools

Stimulus A set of tests is executed due to the completion of a coding
increment such as a class layer or service, the completed
integration of a subsystem, the complete implementation of the
whole system, or the delivery of the system to the customer.

Environment Design time, development time, compile time, integration time,
deployment time, run time

Artifacts The portion of the system being tested

Response One or more of the following: execute test suite and capture
results, capture activity that resulted in the fault, control and
monitor the state of the system

Response Measure One or more of the following: effort to find a fault or class of
faults, effort to achieve a given percentage of state space
coverage, probability of fault being revealed by the next
test, time to perform tests, effort to detect faults, length of
longest dependency chain in test, length of time to prepare
test environment, reduction in risk exposure (size(loss) ×
prob(loss))

Stimulus: Response:

Response
Measure:Source: Environment:

Development

3
2

1

4

Unit Tester

Code Unit
Completed

Results Captured

85% Path Coverage
in Three Hours

Artifact:
Code Unit

fIGurE 10. 2 Sample concrete testability scenario

164 Part two Quality attributes 10—Testability

10.2 tactics for testability

The goal of tactics for testability is to allow for easier testing when an increment
of software development is completed. Figure 10.3 displays the use of tactics for
testability. Architectural techniques for enhancing the software testability have not
received as much attention as more mature quality attribute disciplines such as
modifiability, performance, and availability, but as we stated before, anything the
architect can do to reduce the high cost of testing will yield a significant benefit.

There are two categories of tactics for testability. The first category deals
with adding controllability and observability to the system. The second deals
with limiting complexity in the system’s design.

control and Observe System State

Control and observation are so central to testability that some authors even define
testability in those terms. The two go hand-in-hand; it makes no sense to control
something if you can’t observe what happens when you do. The simplest form of
control and observation is to provide a software component with a set of inputs,
let it do its work, and then observe its outputs. However, the control and observe
system state category of testability tactics provides insight into software that goes
beyond its inputs and outputs. These tactics cause a component to maintain some
sort of state information, allow testers to assign a value to that state information,
and/or make that information accessible to testers on demand. The state infor-
mation might be an operating state, the value of some key variable, performance
load, intermediate process steps, or anything else useful to re-creating component
behavior. Specific tactics include the following:

Tests
Executed

Faults
Detected

Tactics
to Control
Testability

fIGurE 10.3 The goal of testability tactics

10.2 Tactics for Testability 165

 ■ Specialized interfaces. Having specialized testing interfaces allows you
to control or capture variable values for a component either through a test
harness or through normal execution. Examples of specialized test routines
include these:

 ■ A set and get method for important variables, modes, or attributes
(methods that might otherwise not be available except for testing
purposes)

 ■ A report method that returns the full state of the object
 ■ A reset method to set the internal state (for example, all the attributes of a

class) to a specified internal state
 ■ A method to turn on verbose output, various levels of event logging,

performance instrumentation, or resource monitoring

Specialized testing interfaces and methods should be clearly identified or
kept separate from the access methods and interfaces for required function-
ality, so that they can be removed if needed. (However, in performance-crit-
ical and some safety-critical systems, it is problematic to field different
code than that which was tested. If you remove the test code, how will you
know the code you field has the same behavior, particularly the same timing
behavior, as the code you tested? For other kinds of systems, however, this
strategy is effective.)

 ■ Record/playback. The state that caused a fault is often difficult to re-create.
Recording the state when it crosses an interface allows that state to be used
to “play the system back” and to re-create the fault. Record/playback refers
to both capturing information crossing an interface and using it as input for
further testing.

 ■ Localize state storage. To start a system, subsystem, or module in an arbi-
trary state for a test, it is most convenient if that state is stored in a single
place. By contrast, if the state is buried or distributed, this becomes difficult
if not impossible. The state can be fine-grained, even bit-level, or coarse-
grained to represent broad abstractions or overall operational modes. The
choice of granularity depends on how the states will be used in testing. A
convenient way to “externalize” state storage (that is, to make it able to be
manipulated through interface features) is to use a state machine (or state
machine object) as the mechanism to track and report current state.

 ■ Abstract data sources. Similar to controlling a program’s state, easily con-
trolling its input data makes it easier to test. Abstracting the interfaces lets
you substitute test data more easily. For example, if you have a database of
customer transactions, you could design your architecture so that it is easy
to point your test system at other test databases, or possibly even to files of
test data instead, without having to change your functional code.

 ■ Sandbox. “Sandboxing” refers to isolating an instance of the system from
the real world to enable experimentation that is unconstrained by the worry

166 Part two Quality attributes 10—Testability

about having to undo the consequences of the experiment. Testing is helped
by the ability to operate the system in such a way that it has no permanent
consequences, or so that any consequences can be rolled back. This can
be used for scenario analysis, training, and simulation. (The Spring frame-
work, which is quite popular in the Java community, comes with a set of
test utilities that support this. Tests are run as a “transaction,” which is
rolled back at the end.)

A common form of sandboxing is to virtualize resources. Testing a
system often involves interacting with resources whose behavior is outside
the control of the system. Using a sandbox, you can build a version of the
resource whose behavior is under your control. For example, the system
clock’s behavior is typically not under our control—it increments one
second each second—which means that if we want to make the system
think it’s midnight on the day when all of the data structures are supposed
to overflow, we need a way to do that, because waiting around is a poor
choice. By having the capability to abstract system time from clock time,
we can allow the system (or components) to run at faster than wall-clock
time, and to allow the system (or components) to be tested at critical time
boundaries (such as the next shift on or off Daylight Savings Time). Similar
virtualizations could be done for other resources, such as memory, battery,
network, and so on. Stubs, mocks, and dependency injection are simple but
effective forms of virtualization.

 ■ Executable assertions. Using this tactic, assertions are (usually) hand-coded
and placed at desired locations to indicate when and where a program is in
a faulty state. The assertions are often designed to check that data values
satisfy specified constraints. Assertions are defined in terms of specific data
declarations, and they must be placed where the data values are referenced
or modified. Assertions can be expressed as pre- and post-conditions for
each method and also as class-level invariants. This results in increasing
observability, when an assertion is flagged as having failed. Assertions
systematically inserted where data values change can be seen as a manual
way to produce an “extended” type. Essentially, the user is annotating
a type with additional checking code. Any time an object of that type is
modified, the checking code is automatically executed, and warnings are
generated if any conditions are violated. To the extent that the assertions
cover the test cases, they effectively embed the test oracle in the code—
assuming the assertions are correct and correctly coded.

All of these tactics add capability or abstraction to the software that (were we
not interested in testing) otherwise would not be there. They can be seen as replac-
ing bare-bones, get-the-job-done software with more elaborate software that has
bells and whistles for testing. There are a number of techniques for effecting this
replacement. These are not testability tactics, per se, but techniques for replacing
one component with a different version of itself. They include the following:

10.2 Tactics for Testability 167

 ■ Component replacement, which simply swaps the implementation of a
component with a different implementation that (in the case of testability)
has features that facilitate testing. Component replacement is often
accomplished in a system’s build scripts.

 ■ Preprocessor macros that, when activated, expand to state-reporting code or
activate probe statements that return or display information, or return con-
trol to a testing console.

 ■ Aspects (in aspect-oriented programs) that handle the cross-cutting concern
of how state is reported.

limit complexity

Complex software is harder to test. This is because, by the definition of complex-
ity, its operating state space is very large and (all else being equal) it is more dif-
ficult to re-create an exact state in a large state space than to do so in a small state
space. Because testing is not just about making the software fail but about finding
the fault that caused the failure so that it can be removed, we are often concerned
with making behavior repeatable. This category has three tactics:

 ■ Limit structural complexity. This tactic includes avoiding or resolving
cyclic dependencies between components, isolating and encapsulating
dependencies on the external environment, and reducing dependencies
between components in general (for example, reduce the number of
external accesses to a module’s public data). In object-oriented systems,
you can simplify the inheritance hierarchy: Limit the number of classes
from which a class is derived, or the number of classes derived from a
class. Limit the depth of the inheritance tree, and the number of children of
a class. Limit polymorphism and dynamic calls. One structural metric that
has been shown empirically to correlate to testability is called the response
of a class. The response of class C is a count of the number of methods
of C plus the number of methods of other classes that are invoked by the
methods of C. Keeping this metric low can increase testability.

Having high cohesion, loose coupling, and separation of concerns—all
modifiability tactics (see Chapter 7)—can also help with testability. They
are a form of limiting the complexity of the architectural elements by
giving each element a focused task with limited interaction with other ele-
ments. Separation of concerns can help achieve controllability and observ-
ability (as well as reducing the size of the overall program’s state space).
Controllability is critical to making testing tractable, as Robert Binder has
noted: “A component that can act independently of others is more readily
controllable. . . . With high coupling among classes it is typically more
difficult to control the class under test, thus reducing testability. . . . If user
interface capabilities are entwined with basic functions it will be more
difficult to test each function” [Binder 94].

168 Part two Quality attributes 10—Testability

Also, systems that require complete data consistency at all times are of-
ten more complex than those that do not. If your requirements allow it, con-
sider building your system under the “eventual consistency” model, where
sooner or later (but maybe not right now) your data will reach a consistent
state. This often makes system design simpler, and therefore easier to test.

Finally, some architectural styles lend themselves to testability. In a
layered style, you can test lower layers first, then test higher layers with
confidence in the lower layers.

 ■ Limit nondeterminism. The counterpart to limiting structural complexity
is limiting behavioral complexity, and when it comes to testing,
nondeterminism is a very pernicious form of complex behavior.
Nondeterministic systems are harder to test than deterministic systems.
This tactic involves finding all the sources of nondeterminism, such as
unconstrained parallelism, and weeding them out as much as possible.
Some sources of nondeterminism are unavoidable—for instance, in multi-
threaded systems that respond to unpredictable events—but for such
systems, other tactics (such as record/playback) are available.

Figure 10.4 provides a summary of the tactics used for testability.

Testability Tactics

Control and Observe
System State

Limit Complexity

Specialized
Interfaces

Limit Structural
Complexity

Limit
Nondeterminism

Tests
Executed

Faults
Detected

Record/
Playback

Localize State
Storage

Sandbox

Executable
Assertions

Abstract Data
Sources

fIGurE 10.4 Testability tactics

10.3 A Design Checklist for Testability 169

10.3 a design checklist for testability

Table 10.2 is a checklist to support the design and analysis process for testability.

tablE 10.2 Checklist to Support the Design and Analysis Process for Testability

category checklist

Allocation of
Responsibilities

Determine which system responsibilities are most critical
and hence need to be most thoroughly tested.
Ensure that additional system responsibilities have been
allocated to do the following:

 ■ Execute test suite and capture results (external test or
self-test)

 ■ Capture (log) the activity that resulted in a fault or that
resulted in unexpected (perhaps emergent) behavior
that was not necessarily a fault

 ■ Control and observe relevant system state for testing
Make sure the allocation of functionality provides high
cohesion, low coupling, strong separation of concerns, and
low structural complexity.

Coordination Model Ensure the system’s coordination and communication
mechanisms:

 ■ Support the execution of a test suite and capture the
results within a system or between systems

 ■ Support capturing activity that resulted in a fault within
a system or between systems

 ■ Support injection and monitoring of state into the
communication channels for use in testing, within a
system or between systems

 ■ Do not introduce needless nondeterminism

Data Model Determine the major data abstractions that must be tested
to ensure the correct operation of the system.

 ■ Ensure that it is possible to capture the values of
instances of these data abstractions

 ■ Ensure that the values of instances of these data
abstractions can be set when state is injected into the
system, so that system state leading to a fault may be
re-created

 ■ Ensure that the creation, initialization, persistence,
manipulation, translation, and destruction of instances
of these data abstractions can be exercised and
captured

Mapping among
Architectural Elements

Determine how to test the possible mappings of
architectural elements (especially mappings of processes
to processors, threads to processes, and modules to
components) so that the desired test response is achieved
and potential race conditions identified.
In addition, determine whether it is possible to test for
illegal mappings of architectural elements.

continues

170 Part two Quality attributes 10—Testability

tablE 10.2 Checklist to Support the Design and Analysis Process for
Testability, continued

category checklist

Resource Management Ensure there are sufficient resources available to execute
a test suite and capture the results. Ensure that your test
environment is representative of (or better yet, identical to)
the environment in which the system will run. Ensure that
the system provides the means to do the following:

 ■ Test resource limits
 ■ Capture detailed resource usage for analysis in the

event of a failure
 ■ Inject new resource limits into the system for the

purposes of testing
 ■ Provide virtualized resources for testing

Binding Time Ensure that components that are bound later than compile
time can be tested in the late-bound context.
Ensure that late bindings can be captured in the event of a
failure, so that you can re-create the system’s state leading
to the failure.
Ensure that the full range of binding possibilities can be
tested.

Choice of Technology Determine what technologies are available to help achieve
the testability scenarios that apply to your architecture. Are
technologies available to help with regression testing, fault
injection, recording and playback, and so on?
Determine how testable the technologies are that you have
chosen (or are considering choosing in the future) and
ensure that your chosen technologies support the level of
testing appropriate for your system. For example, if your
chosen technologies do not make it possible to inject state,
it may be difficult to re-create fault scenarios.

Now That Your Architecture Is Set to Help You Test . . .
By Nick Rozanski, coauthor (with Eoin Woods) of Software Systems
Architecture: Working With Stakeholders Using Viewpoints and
Perspectives

In addition to architecting your system to make it amenable to testing,
you will need to overcome two more specific and daunting challenges
when testing very large or complex systems, namely test data and test
automation.

Test Data
Your first challenge is how to create large, consistent and useful test
data sets. This is a significant problem in my experience, particularly for
integration testing (that is, testing a number of components to confirm that
they work together correctly) and performance testing (confirming that

10.3 A Design Checklist for Testability 171

the system meets it requirements for throughput, latency, and response
time). For unit tests, and usually for user acceptance tests, the test data is
typically created by hand.

For example, you might need 50 products, 100 customers, and 500
orders in your test database, so that you can test the functional steps
involved in creating, amending, or deleting orders. This data has to be
sufficiently varied to make testing worthwhile, it has to conform to all the
referential integrity rules and other constraints of your data model, and you
need to be able to calculate and specify the expected results of the tests.

I’ve seen—and been involved in—two ways of doing this: you either
write a system to generate your test data, or you capture a representative
data set from the production environment and anonymize it as necessary.
(Anonymizing test data involves removing any sensitive information, such as
personal data about people or organizations, financial details, and so on.)

Creating your own test data is the ideal, because you know what data
you are using and can ensure that it covers all of your edge cases, but it is
a lot of effort. Capturing data from the live environment is easier, assum-
ing that there is a system there already, but you don’t know what data and
hence what coverage you’re going to get, and you may have to take extra
care to conform to privacy and data protection legislation.

This can have an impact on the system’s architecture in a number of
ways, and should be given due consideration early on by the architect. For
example, the system may need to be able to capture live transactions, or
take “snapshots” of live data, which can be used to generate test data. In ad-
dition, the test-data-generation system may need an architecture of its own.

Test Automation
Your second challenge is around test automation. In practice it is not pos-
sible to test large systems by hand because of the number of tests, their
complexity, and the amount of checking of results that’s required. In the
ideal world, you create a test automation framework to do this automati-
cally, which you feed with test data, and set running every night, or even
run every time you check in something (the continuous integration model).

This is an area that is given too little attention on many large software
development projects. It is often not budgeted for in the project plan, with
an unwritten assumption that the effort needed to build it can be somehow
“absorbed” into the development costs. A test automation framework can
be a significantly complex thing in its own right (which raises the question
of how you test it!). It should be scoped and planned like any other project
deliverable.

Due consideration should be given to how the framework will invoke
functions on the system under test, particularly for testing user interfaces,
which is almost without exception a nightmare. (The execution of a UI test
is highly dependent on the layout of the windows, the ordering of fields,
and so on, which usually changes a lot in heavily user-focused systems.
It is sometimes possible to execute window controls programmatically, but
in the worst case you may have to record and replay keystrokes or mouse
movements.)

172 Part two Quality attributes 10—Testability

There are lots of tools to help with this nowadays, such as Quick Test
Pro, TestComplete, or Selenium for testing, and CruiseControl, Hudson,
and TeamCity for continuous integration. A comprehensive list on the web
can be found here: en.wikipedia.org/wiki/Test_automation.

10.4 Summary

Ensuring that a system is easily testable has payoffs both in terms of the cost of
testing and the reliability of the system. A vehicle often used to execute the tests
is the test harness. Test harnesses are software systems that encapsulate test re-
sources such as test cases and test infrastructure so that it is easy to reapply tests
across iterations and it is easy to apply the test infrastructure to new increments
of the system. Another vehicle is the creation of test cases prior to the develop-
ment of a component, so that developers know which tests their component must
pass.

Controlling and observing the system state is a major class of testability
tactics. Providing the ability to do fault injection, to record system state at key
portions of the system, to isolate the system from its environment, and to abstract
various resources are all different tactics to support the control and observation of
a system and its components.

Complex systems are difficult to test because of the large state space in
which their computations take place, and because of the larger number of inter-
connections among the elements of the system. Consequently, keeping the sys-
tem simple is another class of tactics that supports testability.

10.5 for further reading

An excellent general introduction to software testing is [Beizer 90]. For a more
modern take on testing, and from the software developer’s perspective rather than
the tester’s, Freeman and Pryce cover test-driven development in the object-ori-
ented realm [Freeman 09].

Bertolino and Strigini [Bertolino 96] are the developers of the model of test-
ing shown in Figure 10.1.

Yin and Bieman [Yin 94] have written about executable assertions. Hartman
[Hartman 10] describes a technique for using executable assertions as a means
for detecting race conditions.

Bruntink and van Deursen [Bruntink 06] write about the impact of structure
on testing.

10.6 Discussion Questions 173

Jeff Voas’s foundational work on testability and the relationship between
testability and reliability is worthwhile. There are several papers to choose from,
but [Voas 95] is a good start that will point you to others.

10.6 discussion Questions

1. A testable system is one that gives up its faults easily. That is, if a system
contains a fault, then it doesn’t take long or much effort to make that fault
show up. On the other hand, fault tolerance is all about designing systems
that jealously hide their faults; there, the whole idea is to make it very diffi-
cult for a system to reveal its faults. Is it possible to design a system that is
both highly testable and highly fault tolerant, or are these two design goals
inherently incompatible? Discuss.

2. “Once my system is in routine use by end users, it should not be highly
testable, because if it still contains faults—and all systems probably do—
then I don’t want them to be easily revealed.” Discuss.

3. Many of the tactics for testability are also useful for achieving modifiabili-
ty. Why do you think that is?

4. Write some concrete testability scenarios for an automatic teller machine.
How would you modify your design for the automatic teller machine to ac-
commodate these scenarios?

5. What other quality attributes do you think testability is most in conflict
with? What other quality attributes do you think testability is most compati-
ble with?

6. One of our tactics is to limit nondeterminism. One method is to use locking
to enforce synchronization. What impact does the use of locks have on oth-
er quality attributes?

7. Suppose you’re building the next great social networking system. You antic-
ipate that within a month of your debut, you will have half a million users.
You can’t pay half a million people to test your system, and yet it has to be
robust and easy to use when all half a million are banging away at it. What
should you do? What tactics will help you? Write a testability scenario for
this social networking system.

8. Suppose you use executable assertions to improve testability. Make a case
for, and then a case against, allowing the assertions to run in the production
system as opposed to removing them after testing.

This page intentionally left blank

175

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

11
Usability

Any darn fool can make something complex; it
takes a genius to make something simple.

—Albert Einstein

Usability is concerned with how easy it is for the user to accomplish a desired
task and the kind of user support the system provides. Over the years, a focus on
usability has shown itself to be one of the cheapest and easiest ways to improve a
system’s quality (or more precisely, the user’s perception of quality).

Usability comprises the following areas:

 ■ Learning system features. If the user is unfamiliar with a particular system
or a particular aspect of it, what can the system do to make the task of
learning easier? This might include providing help features.

 ■ Using a system efficiently. What can the system do to make the user more
efficient in its operation? This might include the ability for the user to redi-
rect the system after issuing a command. For example, the user may wish to
suspend one task, perform several operations, and then resume that task.

 ■ Minimizing the impact of errors. What can the system do so that a user
error has minimal impact? For example, the user may wish to cancel a com-
mand issued incorrectly.

 ■ Adapting the system to user needs. How can the user (or the system itself)
adapt to make the user’s task easier? For example, the system may automat-
ically fill in URLs based on a user’s past entries.

 ■ Increasing confidence and satisfaction. What does the system do to give the
user confidence that the correct action is being taken? For example, pro-
viding feedback that indicates that the system is performing a long-running
task and the extent to which the task is completed will increase the user’s
confidence in the system.

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

176 Part two Quality attributes 11—Usability

11.1 usability General Scenario

The portions of the usability general scenarios are these:

 ■ Source of stimulus. The end user (who may be in a specialized role, such as
a system or network administrator) is always the source of the stimulus for
usability.

 ■ Stimulus. The stimulus is that the end user wishes to use a system efficient-
ly, learn to use the system, minimize the impact of errors, adapt the system,
or configure the system.

 ■ Environment. The user actions with which usability is concerned always
occur at runtime or at system configuration time.

 ■ Artifact. The artifact is the system or the specific portion of the system with
which the user is interacting.

 ■ Response. The system should either provide the user with the features need-
ed or anticipate the user’s needs.

 ■ Response measure. The response is measured by task time, number of
errors, number of tasks accomplished, user satisfaction, gain of user
knowledge, ratio of successful operations to total operations, or amount of
time or data lost when an error occurs.

Table 11.1 enumerates the elements of the general scenario that characterize
usability.

Figure 11.1 gives an example of a concrete usability scenario that you could
generate using Table 11.1: The user downloads a new application and is using it
productively after two minutes of experimentation.

tablE 11.1 Usability General Scenario

Portion of Scenario Possible Values

Source End user, possibly in a specialized role

Stimulus End user tries to use a system efficiently, learn to use the
system, minimize the impact of errors, adapt the system, or
configure the system.

Environment Runtime or configuration time

Artifacts System or the specific portion of the system with which the
user is interacting

Response The system should either provide the user with the features
needed or anticipate the user’s needs.

Response Measure One or more of the following: task time, number of errors,
number of tasks accomplished, user satisfaction, gain of user
knowledge, ratio of successful operations to total operations,
or amount of time or data lost when an error occurs

11.2 Tactics for Usability 177

11.2 tactics for usability

Recall that usability is concerned with how easy it is for the user to accomplish
a desired task, as well as the kind of support the system provides to the user.
Researchers in human-computer interaction have used the terms user initiative,
system initiative, and mixed initiative to describe which of the human-computer
pair takes the initiative in performing certain actions and how the interaction pro-
ceeds. Usability scenarios can combine initiatives from both perspectives. For
example, when canceling a command, the user issues a cancel—user initiative—
and the system responds. During the cancel, however, the system may put up a
progress indicator—system initiative. Thus, cancel may demonstrate mixed ini-
tiative. We use this distinction between user and system initiative to discuss the
tactics that the architect uses to achieve the various scenarios.

Figure 11.2 shows the goal of the set of runtime usability tactics.

Stimulus: Response:

Response
Measure:Source: Environment:

Runtime

3
2

1

4

User

Downloads
a New
Application

User Uses
Application
Productively

Within Two
Minutes of
Experimentation

Artifact:
System

fIGurE 11.1 Sample concrete usability scenario

User
Request

User Given
Appropriate
Feedback and
Assistance

Tactics
to Control
Usability

fIGurE 11.2 The goal of runtime usability tactics

178 Part two Quality attributes 11—Usability

Separate the User Interface!

One of the most helpful things an architect can do to make a system
usable is to facilitate experimentation with the user interface via the con-
struction of rapid prototypes. Building a prototype, or several prototypes,
to let real users experience the interface and give their feedback pays
enormous dividends. The best way to do this is to design the software so
that the user interface can be quickly changed.

Tactics for modifiability that we saw in Chapter 7 support this goal per-
fectly well, especially these:

 ■ Increase semantic coherence, encapsulate, and co-locate related re-
sponsibilities, which localize user interface responsibilities to a single
place

 ■ Restrict dependencies, which minimizes the ripple effect to other soft-
ware when the user interface changes

 ■ Defer binding, which lets you make critical user interface choices without
having to recode

Defer binding is especially helpful here, because you can expect that
your product’s user interface will face pressure to change during testing
and even after it goes to market.

User interface generation tools are consistent with these tactics; most
produce a single module with an abstract interface to the rest of the soft-
ware. Many provide the capability to change the user interface after compile
time. You can do your part by restricting dependencies on the generated
module, should you later decide to adopt a different tool.

Much work in different user interface separation patterns occurred in the
1980s and 90s. With the advent of the web and the modernization of the
model-view-controller (MVC) pattern to reflect web interfaces, MVC has
become the dominant separation pattern. Now the MVC pattern is built into
a wide variety of different frameworks. (See Chapter 14 for a discussion of
MVC.) MVC makes it easy to provide multiple views of the data, supporting
user initiative, as we discuss next.

Many times quality attributes are in conflict with each other. Usability
and modifiability, on the other hand, often complement each other,
because one of the best ways to make a system more usable is to make
it modifiable. However, this is not always the case. In many systems busi-
ness rules drive the UI—for example, specifying how to validate input. To
realize this validation, the UI may need to call a server (which can neg-
atively affect performance). To get around this performance penalty, the
architect may choose to duplicate these rules in the client and the server,
which then makes evolution difficult. Alas, the architect’s life is never easy!

11.2 Tactics for Usability 179

There is a connection between the achievement of usability and modifiabil-
ity. The user interface design process consists of generating and then testing a
user interface design. Deficiencies in the design are corrected and the process
repeats. If the user interface has already been constructed as a portion of the sys-
tem, then the system must be modified to reflect the latest design. Hence the con-
nection with modifiability. This connection has resulted in standard patterns to
support user interface design (see sidebar).

Support user Initiative

Once a system is executing, usability is enhanced by giving the user feed-
back as to what the system is doing and by allowing the user to make appro-
priate responses. For example, the tactics described next—cancel, undo, pause/
resume, and aggregate—support the user in either correcting errors or being more
efficient.

The architect designs a response for user initiative by enumerating and al-
locating the responsibilities of the system to respond to the user command. Here
are some common examples of user initiative:

 ■ Cancel. When the user issues a cancel command, the system must be
listening for it (thus, there is the responsibility to have a constant listener
that is not blocked by the actions of whatever is being canceled); the
command being canceled must be terminated; any resources being
used by the canceled command must be freed; and components that are
collaborating with the canceled command must be informed so that they
can also take appropriate action.

 ■ Undo. To support the ability to undo, the system must maintain a sufficient
amount of information about system state so that an earlier state may be
restored, at the user’s request. Such a record may be in the form of state
“snapshots”—for example, checkpoints—or as a set of reversible oper-
ations. Not all operations can be easily reversed: for example, changing
all occurrences of the letter “a” to the letter “b” in a document cannot be
reversed by changing all instances of “b” to “a”, because some of those in-
stances of “b” may have existed prior to the original change. In such a case
the system must maintain a more elaborate record of the change. Of course,
some operations, such as ringing a bell, cannot be undone.

 ■ Pause/resume. When a user has initiated a long-running operation—say,
downloading a large file or set of files from a server—it is often useful to
provide the ability to pause and resume the operation. Effectively pausing a
long-running operation requires the ability to temporarily free resources so
that they may be reallocated to other tasks.

180 Part two Quality attributes 11—Usability

 ■ Aggregate. When a user is performing repetitive operations, or operations
that affect a large number of objects in the same way, it is useful to provide
the ability to aggregate the lower-level objects into a single group, so that
the operation may be applied to the group, thus freeing the user from the
drudgery (and potential for mistakes) of doing the same operation repeated-
ly. For example, aggregate all of the objects in a slide and change the text to
14-point font.

Support System Initiative

When the system takes the initiative, it must rely on a model of the user, the
task being undertaken by the user, or the system state itself. Each model requires
various types of input to accomplish its initiative. The support system initiative
tactics are those that identify the models the system uses to predict either its
own behavior or the user’s intention. Encapsulating this information will make
it easier for it to be tailored or modified. Tailoring and modification can be either
dynamically based on past user behavior or offline during development. These
tactics are the following:

 ■ Maintain task model. The task model is used to determine context so the
system can have some idea of what the user is attempting and provide
assistance. For example, knowing that sentences start with capital letters
would allow an application to correct a lowercase letter in that position.

 ■ Maintain user model. This model explicitly represents the user’s knowledge
of the system, the user’s behavior in terms of expected response time, and
other aspects specific to a user or a class of users. For example, maintaining
a user model allows the system to pace mouse selection so that not all of
the document is selected when scrolling is required. Or a model can control
the amount of assistance and suggestions automatically provided to a user.
A special case of this tactic is commonly found in user interface customiza-
tion, wherein a user can explicitly modify the system’s user model.

 ■ Maintain system model. Here the system maintains an explicit model
of itself. This is used to determine expected system behavior so that
appropriate feedback can be given to the user. A common manifestation of
a system model is a progress bar that predicts the time needed to complete
the current activity.

Figure 11.3 shows a summary of the tactics to achieve usability.

11.3 A Design Checklist for Usability 181

Usability Tactics

Support User
Initiative

Support System
Initiative

Cancel

Maintain User
Model

Maintain System
Model

User
Request

User Given
Appropriate

Feedback and
Assistance

Undo

Pause/Resume

Aggregate

Maintain Task
Model

fIGurE 11.3 Usability tactics

11.3 a design checklist for usability

Table 11.2 is a checklist to support the design and analysis process for usability.

tablE 11.2 Checklist to Support the Design and Analysis Process for Usability

category checklist

Allocation of
Responsibilities

Ensure that additional system responsibilities have been
allocated, as needed, to assist the user in the following:

 ■ Learning how to use the system
 ■ Efficiently achieving the task at hand
 ■ Adapting and configuring the system
 ■ Recovering from user and system errors

Coordination Model Determine whether the properties of system elements’
coordination—timeliness, currency, completeness,
correctness, consistency—affect how a user learns to use
the system, achieves goals or completes tasks, adapts
and configures the system, recovers from user and system
errors, and gains increased confidence and satisfaction.
For example, can the system respond to mouse events
and give semantic feedback in real time? Can long-running
events be canceled in a reasonable amount of time?

continues

182 Part two Quality attributes 11—Usability

tablE 11.2 Checklist to Support the Design and Analysis Process for Usability,
continued

category checklist

Data Model Determine the major data abstractions that are involved
with user-perceivable behavior. Ensure these major data
abstractions, their operations, and their properties have
been designed to assist the user in achieving the task at
hand, adapting and configuring the system, recovering from
user and system errors, learning how to use the system, and
increasing satisfaction and user confidence.
For example, the data abstractions should be designed
to support undo and cancel operations: the transaction
granularity should not be so great that canceling or undoing
an operation takes an excessively long time.

Mapping among
Architectural
Elements

Determine what mapping among architectural elements is
visible to the end user (for example, the extent to which the
end user is aware of which services are local and which
are remote). For those that are visible, determine how this
affects the ways in which, or the ease with which, the user
will learn how to use the system, achieve the task at hand,
adapt and configure the system, recover from user and
system errors, and increase confidence and satisfaction.

Resource
Management

Determine how the user can adapt and configure the
system’s use of resources. Ensure that resource limitations
under all user-controlled configurations will not make users
less likely to achieve their tasks. For example, attempt to
avoid configurations that would result in excessively long
response times. Ensure that the level of resources will not
affect the users’ ability to learn how to use the system, or
decrease their level of confidence and satisfaction with the
system.

Binding Time Determine which binding time decisions should be under
user control and ensure that users can make decisions
that aid in usability. For example, if the user can choose, at
runtime, the system’s configuration, or its communication
protocols, or its functionality via plug-ins, you need to ensure
that such choices do not adversely affect the user’s ability to
learn system features, use the system efficiently, minimize
the impact of errors, further adapt and configure the system,
or increase confidence and satisfaction.

Choice of Technology Ensure the chosen technologies help to achieve the usability
scenarios that apply to your system. For example, do these
technologies aid in the creation of online help, the production
of training materials, and the collection of user feedback?
How usable are any of your chosen technologies? Ensure
the chosen technologies do not adversely affect the usability
of the system (in terms of learning system features, using the
system efficiently, minimizing the impact of errors, adapting/
configuring the system, and increasing confidence and
satisfaction).

11.6 Discussion Questions 183

11.4 Summary

Architectural support for usability involves both allowing the user to take the ini-
tiative—in circumstances such as canceling a long-running command or undoing
a completed command—and aggregating data and commands.

To be able to predict user or system responses, the system must keep an ex-
plicit model of the user, the system, and the task.

There is a strong relationship between supporting the user interface design
process and supporting modifiability; this relation is promoted by patterns that
enforce separation of the user interface from the rest of the system, such as the
MVC pattern.

11.5 for further reading

Claire Marie Karat has investigated the relation between usability and business
advantage [Karat 94].

Jakob Nielsen has also written extensively on this topic, including a calcula-
tion on the ROI of usability [Nielsen 08].

Bonnie John and Len Bass have investigated the relation between usabil-
ity and software architecture. They have enumerated around two dozen usability
scenarios that have architectural impact and given associated patterns for these
scenarios [Bass 03].

Greg Hartman has defined attentiveness as the ability of the system to sup-
port user initiative and allow cancel or pause/resume [Hartman 10].

Some of the patterns for separating the user interface are Arch/Slinky, See-
heim, and PAC. These are discussed in Chapter 8 of Human-Computer Interac-
tion [Dix 04].

11.6 discussion Questions

1. Write a concrete usability scenario for your automobile that specifies how
long it takes you to set your favorite radio stations? Now consider another
part of the driver experience and create scenarios that test other aspects of
the response measures from the general scenario table.

2. Write a concrete usability scenario for an automatic teller machine. How
would your design be modified to satisfy these scenarios?

184 Part two Quality attributes 11—Usability

3. How might usability trade off against security? How might it trade off
against performance?

4. Pick a few of your favorite web sites that do similar things, such as social
networking or online shopping. Now pick one or two appropriate responses
from the usability general scenario (such as “achieve the task at hand”) and
a correspondingly appropriate response measure. Using the response and
response measure you chose, compare the web sites’ usability.

5. Specify the data model for a four-function calculator that allows undo.

6. Why is it that in so many systems, the cancel button in a dialog box appears
to be unresponsive? What architectural principles do you think were ig-
nored in these systems?

7. Why do you think that progress bars frequently behave erratically, moving
from 10 to 90 percent in one step and then getting stuck on 90 percent?

8. Research the crash of Air France Flight 296 into the forest at Habsheim,
France, on June 26, 1988. The pilots said they were unable to read the dig-
ital display of the radio altimeter or hear its audible readout. If they could
have, do you believe the crash would have been averted? In this context,
discuss the relationship between usability and safety.

185

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

12
Other Quality Attributes

Quality is not an act, it is a habit.
—Aristotle

Chapters 5–11 each dealt with a particular quality attribute important to software
systems. Each of those chapters discussed how its particular quality attribute is
defined, gave a general scenario for that quality attribute, and showed how to
write specific scenarios to express precise shades of meaning concerning that
quality attribute. And each gave a collection of techniques to achieve that quality
attribute in an architecture. In short, each chapter presented a kind of portfolio for
specifying and designing to achieve a particular quality attribute.
Those seven chapters covered seven of the most important quality attributes, in
terms of their occurrence in modern software-reliant systems. However, as is no
doubt clear, seven only begins to scratch the surface of the quality attributes that
you might find needed in a software system you’re working on.
Is cost a quality attribute? It is not a technical quality attribute, but it certainly
affects fitness for use. We consider economic factors in Chapter 23.
This chapter will give a brief introduction to a few other quality attributes—a
sort of “B list” of quality attributes—but, more important, show how to build the
same kind of specification or design portfolio for a quality attribute not covered
in our list.

12.1 Other Important Quality attributes

Besides the quality attributes we’ve covered in depth in Chapters 5–11, some oth-
ers that arise frequently are variability, portability, development distributability,
scalability and elasticity, deployability, mobility, and monitorability. We discuss
“green” computing in Section 12.3.

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

186 Part two Quality attributes 12—Other Quality Attributes

Variability

Variability is a special form of modifiability. It refers to the ability of a system
and its supporting artifacts such as requirements, test plans, and configuration
specifications to support the production of a set of variants that differ from each
other in a preplanned fashion. Variability is an especially important quality at-
tribute in a software product line (this will be explored in depth in Chapter 25),
where it means the ability of a core asset to adapt to usages in the different prod-
uct contexts that are within the product line scope. The goal of variability in a
software product line is to make it easy to build and maintain products in the
product line over a period of time. Scenarios for variability will deal with the
binding time of the variation and the people time to achieve it.

Portability

Portability is also a special form of modifiability. Portability refers to the ease
with which software that was built to run on one platform can be changed to
run on a different platform. Portability is achieved by minimizing platform de-
pendencies in the software, isolating dependencies to well-identified locations,
and writing the software to run on a “virtual machine” (such as a Java Virtual
Machine) that encapsulates all the platform dependencies within. Scenarios de-
scribing portability deal with moving software to a new platform by expending
no more than a certain level of effort or by counting the number of places in the
software that would have to change.

development distributability

Development distributability is the quality of designing the software to support
distributed software development. Many systems these days are developed using
globally distributed teams. One problem that must be overcome when develop-
ing with distributed teams is coordinating their activities. The system should be
designed so that coordination among teams is minimized. This minimal coor-
dination needs to be achieved both for the code and for the data model. Teams
working on modules that communicate with each other may need to negotiate
the interfaces of those modules. When a module is used by many other mod-
ules, each developed by a different team, communication and negotiation become
more complex and burdensome. Similar considerations apply for the data model.
Scenarios for development distributability will deal with the compatibility of the
communication structures and data model of the system being developed and the
coordination mechanisms of the organizations doing the development.

12.1 Other Important Quality Attributes 187

Scalability

Two kinds of scalability are horizontal scalability and vertical scalability. Hori-
zontal scalability (scaling out) refers to adding more resources to logical units,
such as adding another server to a cluster of servers. Vertical scalability (scaling
up) refers to adding more resources to a physical unit, such as adding more mem-
ory to a single computer. The problem that arises with either type of scaling is
how to effectively utilize the additional resources. Being effective means that the
additional resources result in a measurable improvement of some system quality,
did not require undue effort to add, and did not disrupt operations. In cloud en-
vironments, horizontal scalability is called elasticity. Elasticity is a property that
enables a customer to add or remove virtual machines from the resource pool (see
Chapter 26 for further discussion of such environments). These virtual machines
are hosted on a large collection of upwards of 10,000 physical machines that are
managed by the cloud provider. Scalability scenarios will deal with the impact of
adding or removing resources, and the measures will reflect associated availabil-
ity and the load assigned to existing and new resources.

deployability

Deployability is concerned with how an executable arrives at a host platform and
how it is subsequently invoked. Some of the issues involved in deploying soft-
ware are: How does it arrive at its host (push, where updates are sent to users un-
bidden, or pull, where users must explicitly request updates)? How is it integrated
into an existing system? Can this be done while the existing system is executing?
Mobile systems have their own problems in terms of how they are updated, be-
cause of concerns about bandwidth. Deployment scenarios will deal with the type
of update (push or pull), the form of the update (medium, such as DVD or Inter-
net download, and packaging, such as executable, app, or plug-in), the resulting
integration into an existing system, the efficiency of executing the process, and
the associated risk.

Mobility

Mobility deals with the problems of movement and affordances of a platform
(e.g., size, type of display, type of input devices, availability and volume of
bandwidth, and battery life). Issues in mobility include battery management,
reconnecting after a period of disconnection, and the number of different user
interfaces necessary to support multiple platforms. Scenarios will deal with spec-
ifying the desired effects of mobility or the various affordances. Scenarios may
also deal with variability, where the same software is deployed on multiple (per-
haps radically different) platforms.

188 Part two Quality attributes 12—Other Quality Attributes

Monitorability

Monitorability deals with the ability of the operations staff to monitor the system
while it is executing. Items such as queue lengths, average transaction processing
time, and the health of various components should be visible to the operations
staff so that they can take corrective action in case of potential problems. Sce-
narios will deal with a potential problem and its visibility to the operator, and
potential corrective action.

Safety

In 2009 an employee of the Shushenskaya hydroelectric power station in Siberia
sent commands over a network to remotely, and accidentally, activate an unused
turbine. The offline turbine created a “water hammer” that flooded and then de-
stroyed the plant and killed dozens of workers.

The thought that software could kill people used to belong in the realm of
kitschy computers-run-amok science fiction. Sadly, it didn’t stay there. As soft-
ware has come to control more and more of the devices in our lives, software
safety has become a critical concern.

Safety is not purely a software concern, but a concern for any system that
can affect its environment. As such it receives mention in Section 12.3, where we
discuss system quality attributes. But there are means to address safety that are
wholly in the software realm, which is why we discuss it here as well.

Software safety is about the software’s ability to avoid entering states that
cause or lead to damage, injury, or loss of life to actors in the software’s envi-
ronment, and to recover and limit the damage when it does enter into bad states.
Another way to put this is that safety is concerned with the prevention of and
recovery from hazardous failures. Because of this, the architectural concerns with
safety are almost identical to those for availability, which is also about avoiding
and recovering from failures. Tactics for safety, then, overlap with those for avail-
ability to a large degree. Both comprise tactics to prevent failures and to detect
and recover from failures that do occur.

Safety is not the same as reliability. A system can be reliable (consistent
with its specification) but still unsafe (for example, when the specification ig-
nores conditions leading to unsafe action). In fact, paying careful attention to the
specification for safety-critical software is perhaps the most powerful thing you
can do to produce safe software. Failures and hazards cannot be detected, pre-
vented, or ameliorated if the software has not been designed with them in mind.
Safety is frequently engineered by performing failure mode and effects analy-
sis, hazard analysis, and fault tree analysis. (These techniques are discussed in
Chapter 5.) These techniques are intended to discover possible hazards that could
result from the system’s operation and provide plans to cope with these hazards.

12.2 Other Categories of Quality Attributes 189

12.2 Other categories of Quality attributes

We have primarily focused on product qualities in our discussions of quality at-
tributes, but there are other types of quality attributes that measure “goodness” of
something other than the final product. Here are three:

conceptual Integrity of the architecture

Conceptual integrity refers to consistency in the design of the architecture, and it
contributes to the understandability of the architecture and leads to fewer errors
of confusion. Conceptual integrity demands that the same thing is done in the
same way through the architecture. In an architecture with conceptual integrity,
less is more. For example, there are countless ways that components can send
information to each other: messages, data structures, signaling of events, and so
forth. An architecture with conceptual integrity would feature one way only, and
only provide alternatives if there was a compelling reason to do so. Similarly,
components should all report and handle errors in the same way, log events or
transactions in the same way, interact with the user in the same way, and so forth.

Quality in use

ISO/IEC 25010, which we discuss in Section 12.4, has a category of qualities that
pertain to the use of the system by various stakeholders. For example, time-to-
market is an important characteristic of a system, but it is not discernible from an
examination of the product itself. Some of the qualities in this category are these:

 ■ Effectiveness. This refers to the distinction between building the system
correctly (the system performs according to its requirements) and building
the correct system (the system performs in the manner the user wishes).
Effectiveness is a measure of whether the system is correct.

 ■ Efficiency. The effort and time required to develop a system. Put another
way, what is the architecture’s impact on the project’s cost and schedule?
Would a different set of architectural choices have resulted in a system
that would be faster or cheaper to bring to fruition? Efficiency can include
training time for developers; an architecture that uses technology unfamiliar
to the staff on hand is less buildable. Is the architecture appropriate for the
organization in terms of its experience and its available supporting infra-
structure (such as test facilities or development environments)?

 ■ Freedom from risk. The degree to which a product or system affects
economic status, human life, health, or the environment.

190 Part two Quality attributes 12—Other Quality Attributes

A special case of efficiency is how easy it is to build (that is, compile and
assemble) the system after a change. This becomes critical during testing. A
recompile process that takes hours or overnight is a schedule-killer. Architects
have control over this by managing dependencies among modules. If the archi-
tect doesn’t do this, then what often happens is that some bright-eyed developer
writes a makefile early on, it works, and people add to it and add to it. Eventually
the project ends up with a seven-hour compile step and very unhappy integrators
and testers who are already behind schedule (because they always are).

Marketability

An architecture’s marketability is another quality attribute of concern. Some sys-
tems are well known by their architectures, and these architectures sometimes
carry a meaning all their own, independent of what other quality attributes they
bring to the system. The current craze in building cloud-based systems has taught
us that the perception of an architecture can be more important than the qualities
the architecture brings. Many organizations have felt they had to build cloud-
based systems (or some other technology du jour) whether or not that was the
correct technical choice.

12.3 Software Quality attributes and
System Quality attributes

Physical systems, such as aircraft or automobiles or kitchen appliances, that rely
on software embedded within are designed to meet a whole other litany of qual-
ity attributes: weight, size, electric consumption, power output, pollution output,
weather resistance, battery life, and on and on. For many of these systems, safety
tops the list (see the sidebar).

Sometimes the software architecture can have a surprising effect on the sys-
tem’s quality attributes. For example, software that makes inefficient use of com-
puting resources might require additional memory, a faster processor, a bigger
battery, or even an additional processor. Additional processors can add to a sys-
tem’s power consumption, weight, required cabinet space, and of course expense.

Green computing is an issue of growing concern. Recently there was a con-
troversy about how much greenhouse gas was pumped into the atmosphere by
Google’s massive processor farms. Given the daily output and the number of
daily requests, it is possible to estimate how much greenhouse gas you cause to be
emitted each time you ask Google to perform a search. (Current estimates range
from 0.2 grams to 7 grams of CO

2
.) Green computing is all the rage. Eve Troeh,

on the American Public Media show “Marketplace” (July 5, 2011), reports:

12.3 Software Quality Attributes and System Quality Attributes 191

Two percent of all U.S. electricity now goes to data centers, according
to the Environmental Protection Agency. Electricity has become the
biggest cost for processing data—more than the equipment to do it,
more than the buildings to house that equipment. . . . Google’s making
data servers that can float offshore, cooled by ocean breezes. HP has
plans to put data servers near farms, and power them with methane gas
from cow pies.

The lesson here is that if you are the architect for software that resides in a
larger system, you will need to understand the quality attributes that are import-
ant for the containing system to achieve, and work with the system architects and
engineers to see how your software architecture can contribute to achieving them.

The Vanishing Line between Software and System Qualities

This is a book about software architecture, and so we treat quality attri-
butes from a software architect’s perspective. But you may have already
noticed that the quality attributes that the software architect can bring to
the party are limited by the architecture of the system in which the soft-
ware runs.

For example:

 ■ The performance of a piece of software is fundamentally constrained
by the performance of the computer that runs it. No matter how well you
design the software, you just can’t run the latest whole-earth weather
forecasting models on Grampa’s Commodore 64 and hope to know if it’s
going to rain tomorrow.

 ■ Physical security is probably more important and more effective than
software security at preventing fraud and theft. If you don’t believe this,
write your laptop’s password on a slip of paper, tape it to your laptop,
and leave it in an unlocked car with the windows down. (Actually, don’t
really do that. Consider this a thought experiment.)

 ■ If we’re being perfectly honest here, how usable is a device for web
browsing that has a screen smaller than a credit card and keys the size
of a raisin?

For me, nowhere is the barrier between software and system more
nebulous than in the area of safety. The thought that software—strings
of 0’s and 1’s—can kill or maim or destroy is still an unnatural notion. Of
course, it’s not the 0’s and 1’s that wreak havoc. At least, not directly. It’s
what they’re connected to. Software, and the system in which it runs, has
to be connected to the outside world in some way before it can do damage.
That’s the good news. The bad news is that the good news isn’t all that
good. Software is connected to the outside world, always. If your program

192 Part two Quality attributes 12—Other Quality Attributes

has no effect whatsoever that is observable outside of itself, it probably
serves no purpose.

There are notorious examples of software-related failures. The Siberian
hydroelectric plant catastrophe mentioned in the text, the Therac-25 fatal
radiation overdose, the Ariane 5 explosion, and a hundred lesser known
accidents all caused harm because the software was part of a system that
included a turbine, an X-ray emitter, or a rocket’s steering controls, in the
examples just cited. In these cases, flawed software commanded some
hardware in the system to take a disastrous action, and the hardware sim-
ply obeyed. Actuators are devices that connect hardware to software; they
are the bridge between the world of 0’s and 1’s and the world of motion and
control. Send a digital value to an actuator (or write a bit string in the hard-
ware register corresponding to the actuator) and that value is translated to
some mechanical action, for better or worse.

But connection to an actuator is not required for software-related disas-
ters. Sometimes all the computer has to do is send erroneous information
to its human operators. In September 1983, a Soviet satellite sent data
to its ground system computer, which interpreted that data as a missile
launched from the United States aimed at Moscow. Seconds later, the
computer reported a second missile in flight. Soon, a third, then a fourth,
and then a fifth appeared. Soviet Strategic Rocket Forces lieutenant colonel
Stanislav Yevgrafovich Petrov made the astonishing decision to ignore the
warning system, believing it to be in error. He thought it extremely unlikely
that the U.S. would have fired just a few missiles, thereby inviting total
retaliatory destruction. He decided to wait it out, to see if the missiles were
real—that is, to see if his country’s capital city was going to be incinerated.
As we know, it wasn’t. The Soviet system had mistaken a rare sunlight con-
dition for missiles in flight. Similar mistakes have occurred on the U.S. side.

Of course, the humans don’t always get it right. On the dark and stormy
night of June 1, 2009, Air France flight 447 from Rio de Janeiro to Paris
plummeted into the Atlantic Ocean, killing all on board. The Airbus A-330’s
flight recorders were not recovered until May 2011, and as this book goes
to publication it appears that the pilots never knew that the aircraft had en-
tered a high-altitude stall. The sensors that measure airspeed had become
clogged with ice and therefore unreliable. The software was required to dis-
engage the autopilot in this situation, which it did. The human pilots thought
the aircraft was going too fast (and in danger of structural failure) when in
fact it was going too slow (and falling). During the entire three-minute-plus
plunge from 38,000 feet, the pilots kept trying to pull the nose up and throt-
tles back to lower the speed. It’s a good bet that adding to the confusion
was the way the A-330’s stall warning system worked. When the system
detects a stall, it emits a loud audible alarm. The computers deactivate the
stall warning when they “think” that the angle of attack measurements are
invalid. This can occur when the airspeed readings are very low. That is ex-
actly what happened with Air France 447: Its forward speed dropped below
60 knots, and the angle of attack was extremely high. As a consequence
of a rule in the flight control software, the stall warning stopped and started

12.4 Using Standard Lists of Quality Attributes—or Not 193

several times. Worse, it came on whenever the pilot let the nose fall a bit
(increasing the airspeed and taking the readings into the “valid” range, but
still in stall) and then stopped when he pulled back. That is, doing the right
thing resulted in the wrong feedback and vice versa.

Was this an unsafe system, or a safe system unsafely operated?
Ultimately the courts will decide.

Software that can physically harm us is a fact of our modern life.
Sometimes the link between software and physical harm is direct, as in
the Ariane example, and sometimes it’s much more tenuous, as in the Air
France 447 example. But as software professionals, we cannot take refuge
in the fact that our software can’t actually inflict harm any more than the
person who shouts “Fire!” in a crowded theater can claim it was the stam-
pede, not the shout, that caused injury.

—PCC

12.4 using Standard lists of Quality attributes—or Not

Architects have no shortage of lists of quality attributes for software systems at
their disposal. The standard with the pause-and-take-a-breath title of “ISO/IEC
FCD 25010: Systems and software engineering—Systems and software product
Quality Requirements and Evaluation (SQuaRE)—System and software quality
models,” is a good example. The standard divides quality attributes into those
supporting a “quality in use” model and those supporting a “product quality”
model. That division is a bit of a stretch in some places, but nevertheless begins
a divide-and-conquer march through a breathtaking array of qualities. See Figure
12.1 for this array.

The standard lists the following quality attributes that deal with product
quality:

 ■ Functional suitability. The degree to which a product or system provides
functions that meet stated and implied needs when used under specified
conditions

 ■ Performance efficiency. Performance relative to the amount of resources
used under stated conditions

 ■ Compatibility. The degree to which a product, system, or component can
exchange information with other products, systems, or components, and/or
perform its required functions, while sharing the same hardware or software
environment

 ■ Usability. The degree to which a product or system can be used by specified
users to achieve specified goals with effectiveness, efficiency, and satisfac-
tion in a specified context of use

194
P

art tw
o

Q

u
ality a

ttribu
tes

12—
O

ther Q
uality A

ttributes

System Software
Product Quality

Functional
suitability

Functional
completeness

Functional
correctness

Functional
appropriateness

Performance
efficiency

Time behavior

Resource
utilization

Capacity

Compatibility

Coexistence

Interoperability

Learnability

Operability

User interface
aesthetics

Accessibility

Reliability

Maturity

Availability

Fault tolerance

Recoverability

Security

Confidentiality

Integrity

Nonrepudiation

Accountability

Authenticity

Maintainability

Modularity

Reusability

Analyzability

Modifiability

Testability

Usability

Appropriateness
recognizability

User error
prediction

Portability

Adaptability

Installability

Replaceability

fIGurE 12.1 The ISO/IEC FCD 25010 product quality standard

12.4 Using Standard Lists of Quality Attributes—or Not 195

 ■ Reliability. The degree to which a system, product, or component performs
specified functions under specified conditions for a specified period of time

 ■ Security. The degree to which a product or system protects information and
data so that persons or other products or systems have the degree of data
access appropriate to their types and levels of authorization

 ■ Maintainability. The degree of effectiveness and efficiency with which a
product or system can be modified by the intended maintainers

 ■ Portability. The degree of effectiveness and efficiency with which a system,
product, or component can be transferred from one hardware, software, or
other operational or usage environment to another

In ISO 25010, these “quality characteristics” are each composed of “qual-
ity subcharacteristics” (for example, nonrepudiation is a subcharacteristic of se-
curity). The standard slogs through almost five dozen separate descriptions of
quality subcharacteristics in this way. It defines for us the qualities of “pleasure”
and “comfort.” It distinguishes among “functional correctness” and “functional
completeness,” and then adds “functional appropriateness” for good measure. To
exhibit “compatibility,” systems must either have “interoperability” or just plain
“coexistence.” “Usability” is a product quality, not a quality-in-use quality, al-
though it includes “satisfaction,” which is a quality-in-use quality. “Modifiabil-
ity” and “testability” are both part of “maintainability.” So is “modularity,” which
is a strategy for achieving a quality rather than a goal in its own right. “Avail-
ability” is part of “reliability.” “Interoperability” is part of “compatibility.” And
“scalability” isn’t mentioned at all.

Got all that?
Lists like these—and there are many—do serve a purpose. They can be help-

ful checklists to assist requirements gatherers in making sure that no important
needs were overlooked. Even more useful than standalone lists, they can serve
as the basis for creating your own checklist that contains the quality attributes
of concern in your domain, your industry, your organization, and your products.
Quality attribute lists can also serve as the basis for establishing measures. If
“pleasure” turns out to be an important concern in your system, how do you mea-
sure it to know if your system is providing enough of it?

However, general lists like these also have drawbacks. First, no list will ever
be complete. As an architect, you will be called upon to design a system to meet
a stakeholder concern not foreseen by any list-maker. For example, some writers
speak of “manageability,” which expresses how easy it is for system administra-
tors to manage the application. This can be achieved by inserting useful instru-
mentation for monitoring operation and for debugging and performance tuning.
We know of an architecture that was designed with the conscious goal of retain-
ing key staff and attracting talented new hires to a quiet region of the American
Midwest. That system’s architects spoke of imbuing the system with “Iowabil-
ity.” They achieved it by bringing in state-of-the-art technology and giving their
development teams wide creative latitude. Good luck finding “Iowability” in any

196 Part two Quality attributes 12—Other Quality Attributes

standard list of quality attributes, but that QA was as important to that organiza-
tion as any other.

Second, lists often generate more controversy than understanding. You
might argue persuasively that “functional correctness” should be part of “reliabil-
ity,” or that “portability” is just a kind of “modifiability,” or that “maintainability”
is a kind of “modifiability” (not the other way around). The writers of ISO 25010
apparently spent time and effort deciding to make security its own characteristic,
instead of a subcharacteristic of functionality, which it was in a previous version.
We believe that effort in making these arguments could be better spent elsewhere.

Third, these lists often purport to be taxonomies, which are lists with the
special property that every member can be assigned to exactly one place. Quality
attributes are notoriously squishy in this regard. We discussed denial of service as
being part of security, availability, performance, and usability in Chapter 4.

Finally, these lists force architects to pay attention to every quality attribute
on the list, even if only to finally decide that the particular quality attribute is ir-
relevant to their system. Knowing how to quickly decide that a quality attribute is
irrelevant to a specific system is a skill gained over time.

These observations reinforce the lesson introduced in Chapter 4 that quality
attribute names, by themselves, are largely useless and are at best invitations to
begin a conversation; that spending time worrying about what qualities are sub-
qualities of what other qualities is also almost useless; and that scenarios provide
the best way for us to specify precisely what we mean when we speak of a quality
attribute.

Use standard lists of quality attributes to the extent that they are helpful as
checklists, but don’t feel the need to slavishly adhere to their terminology.

12.5 dealing with “X-ability”: bringing a New
Quality attribute into the fold

Suppose, as an architect, you must deal with a quality attribute for which there
is no compact body of knowledge, no “portfolio” like Chapters 5–11 provided
for those seven QAs? Suppose you find yourself having to deal with a quality
attribute like “green computing” or “manageability” or even “Iowability”? What
do you do?

capture Scenarios for the New Quality attribute

The first thing to do is interview the stakeholders whose concerns have led to the
need for this quality attribute. You can work with them, either individually or as
a group, to build a set of attribute characterizations that refine what is meant by

12.5 Dealing with “X-ability”: Bringing a New Quality Attribute into the Fold 197

the QA. For example, security is often decomposed into concerns such as confi-
dentiality, integrity, availability, and others. After that refinement, you can work
with the stakeholders to craft a set of specific scenarios that characterize what is
meant by that QA.

Once you have a set of specific scenarios, then you can work to generalize
the collection. Look at the set of stimuli you’ve collected, the set of responses,
the set of response measures, and so on. Use those to construct a general scenario
by making each part of the general scenario a generalization of the specific in-
stances you collected.

In our experience, the steps described so far tend to consume about half a day.

assemble design approaches for the New Quality attribute

After you have a set of guiding scenarios for the QA, you can assemble a set of
design approaches for dealing with it. You can do this by

1. Revisiting a body of patterns you’re familiar with and asking yourself how
each one affects the QA of interest.

2. Searching for designs that have had to deal with this QA. You can search on
the name you’ve given the QA itself, but you can also search for the terms
you chose when you refined the QA into subsidiary attribute characteriza-
tions (such as “confidentiality” for the QA of security).

3. Finding experts in this area and interviewing them or simply writing and
asking them for advice.

4. Using the general scenario to try to catalog a list of design approaches to
produce the responses in the response category.

5. Using the general scenario to catalog a list of ways in which a problematic
architecture would fail to produce the desired responses, and thinking of
design approaches to head off those cases.

Model the New Quality attribute

If you can build a conceptual model of the quality attribute, this can be helpful in
creating a set of design approaches for it. By “model,” we don’t mean anything
more than understanding the set of parameters to which the quality attribute is
sensitive. For example, a model of modifiability might tell us that modifiability
is a function of how many places in a system have to be changed in response to
a modification, and the interconnectedness of those places. A model for perfor-
mance might tell us that throughput is a function of transactional workload, the
dependencies among the transactions, and the number of transactions that can be
processed in parallel.

198 Part two Quality attributes 12—Other Quality Attributes

Once you have a model for your QA, then you can work to catalog the ar-
chitectural approaches (tactics and patterns) open to you for manipulating each of
the relevant parameters in your favor.

assemble a Set of tactics for the New Quality attribute

There are two sources that can be used to derive tactics for any quality attribute:
models and experts.

Figure 12.2 shows a queuing model for performance. Such models are
widely used to analyze the latency and throughput of various types of queuing
systems, including manufacturing and service environments, as well as computer
systems.

Within this model, there are seven parameters that can affect the latency that
the model predicts:

 ■ Arrival rate
 ■ Queuing discipline
 ■ Scheduling algorithm
 ■ Service time
 ■ Topology
 ■ Network bandwidth
 ■ Routing algorithm

Results

Routing of
messages

Arrivals

Queue

Server

Scheduling
algorithm

fIGurE 12.2 A generic queuing model

12.5 Dealing with “X-ability”: Bringing a New Quality Attribute into the Fold 199

These are the only parameters that can affect latency within this model. This
is what gives the model its power. Furthermore, each of these parameters can be
affected by various architectural decisions. This is what makes the model useful
for an architect. For example, the routing algorithm can be fixed or it could be a
load-balancing algorithm. A scheduling algorithm must be chosen. The topology
can be affected by dynamically adding or removing new servers. And so forth.

The process of generating tactics based on a model is this:

 ■ Enumerate the parameters of the model
 ■ For each parameter, enumerate the architectural decisions that can affect

this parameter

What results is a list of tactics to, in the example case, control performance
and, in the more general case, to control the quality attribute that the model is
concerned with. This makes the design problem seem much more tractable. This
list of tactics is finite and reasonably small, because the number of parameters of
the model is bounded, and for each parameter, the number of architectural deci-
sions to affect the parameter is limited.

Deriving tactics from models is fine as long as the quality attribute in ques-
tion has a model. Unfortunately, the number of such models is limited and is a
subject of active research. There are no good architectural models for usability or
security, for example. In the cases where we had no model to work from, we did
four things to catalog the tactics:

1. We interviewed experts in the field, asking them what they do as architects
to improve the quality attribute response.

2. We examined systems that were touted as having high usability (or testabil-
ity, or whatever tactic we were focusing on).

3. We scoured the relevant design literature looking for common themes in
design.

4. We examined documented architectural patterns to look for ways they
achieved the quality attribute responses touted for them.

construct design checklists for the New Quality attribute

Finally, examine the seven categories of design decisions in Chapter 4 and ask
yourself (or your experts) how to specialize your new quality of interest to these
categories. In particular, think about reviewing a software architecture and trying
to figure out how well it satisfies your new qualities in these seven categories.
What questions would you ask the architect of that system to understand how
the design attempts to achieve the new quality? These are the basis for the design
checklist.

200 Part two Quality attributes 12—Other Quality Attributes

12.6 for further reading

For most of the quality attributes we discussed in this chapter, the Internet is your
friend. You can find reasonable discussions of scalability, portability, and deploy-
ment strategies using your favorite search engine. Mobility is harder to find be-
cause it has so many meanings, but look under “mobile computing” as a start.

Distributed development is a topic covered in the International Conference
on Global Software Engineering, and looking at the proceedings of this confer-
ence will give you access to the latest research in this area (www.icgse.org).

Release It! [Nygard 07] has a good discussion of monitorability (which he
calls transparency) as well as potential problems that are manifested after ex-
tended operation of a system. The book also includes various patterns for dealing
with some of the problems.

To gain an appreciation for the importance of software safety, we suggest
reading some of the disaster stories that arise when software fails. A vener-
able source is the ACM Risks Forum newsgroup, known as comp.risks in the
USENET community, available at www.risks.org. This list has been moderated
by Peter Neumann since 1985 and is still going strong.

Nancy Leveson is an undisputed thought leader in the area of software and
safety. If you’re working in safety-critical systems, you should become familiar
with her work. You can start small with a paper like [Leveson 04], which dis-
cusses a number of software-related factors that have contributed to spacecraft
accidents. Or you can start at the top with [Leveson 11], a book that treats safety
in the context of today’s complex, sociotechnical, software-intensive systems.

The Federal Aviation Administration is the U.S. government agency charged
with oversight of the U.S. airspace system, and the agency is extremely concerned
about safety. Their 2000 System Safety Handbook is a good practical overview of
the topic [FAA 00].

IEEE STD-1228-1994 (“Software Safety Plans”) defines best practices for
conducting software safety hazard analyses, to help ensure that requirements and
attributes are specified for safety-critical software [IEEE 94]. The aeronautical
standard DO-178B (due to be replaced by DO-178C as this book goes to publica-
tion) covers software safety requirements for aerospace applications.

A discussion of safety tactics can be found in the work of Wu and Kelly
[Wu 06].

In particular, interlocks are an important tactic for safety. They enforce some
safe sequence of events, or ensure that a safe condition exists before an action is
taken. Your microwave oven shuts off when you open the door because of a hard-
ware interlock. Interlocks can be implemented in software also. For an interesting
case study of this, see [Wozniak 07].

http://www.icgse.org
http://www.risks.org

12.7 Discussion Questions 201

12.7 discussion Questions

1. The Kingdom of Bhutan measures the happiness of its population, and
government policy is formulated to increase Bhutan’s GNH (gross national
happiness). Go read about how the GNH is measured (try www.grossna-
tionalhappiness.com) and then sketch a general scenario for the quality
attribute of happiness that will let you express concrete happiness require-
ments for a software system.

2. Choose a quality attribute not described in Chapters 5–11. For that quality
attribute, assemble a set of specific scenarios that describe what you mean
by it. Use that set of scenarios to construct a general scenario for it.

3. For the QA you chose for discussion question 2, assemble a set of design
approaches (patterns and tactics) that help you achieve it.

4. For the QA you chose for discussion question 2, develop a design checklist
for that quality attribute using the seven categories of guiding quality de-
sign decisions outlined in Chapter 4.

5. What might cause you to add a tactic or pattern to the sets of quality attri-
butes already described in Chapters 5–11 (or any other quality attribute, for
that matter)?

6. According to slate.com and other sources, a teenage girl in Germany “went
into hiding after she forgot to set her Facebook birthday invitation to private
and accidentally invited the entire Internet. After 15,000 people confirmed
they were coming, the girl’s parents canceled the party, notified police, and
hired private security to guard their home.” Fifteen hundred people showed
up anyway; several minor injuries ensued. Is Facebook “unsafe”? Discuss.

7. Author James Gleick (“A Bug and a Crash,” www.around.com/ariane.html)
writes that “It took the European Space Agency 10 years and $7 billion to
produce Ariane 5, a giant rocket capable of hurling a pair of three-ton sat-
ellites into orbit with each launch. . . . All it took to explode that rocket less
than a minute into its maiden voyage . . . was a small computer program
trying to stuff a 64-bit number into a 16-bit space. One bug, one crash. Of
all the careless lines of code recorded in the annals of computer science,
this one may stand as the most devastatingly efficient.” Write a safety sce-
nario that addresses the Ariane 5 disaster and discuss tactics that might have
prevented it.

8. Discuss how you think development distributability tends to “trade off”
against the quality attributes of performance, availability, modifiability, and
interoperability.

http://www.grossnationalhappiness.com
http://www.grossnationalhappiness.com
http://www.around.com/ariane.html

202 Part two Quality attributes 12—Other Quality Attributes

Extra Credit: Close your eyes and, without peeking, spell “distributability.”
Bonus points for successfully saying “development distributability” three
times as fast as you can.

9. What is the relationship between mobility and security?

10. Relate monitorability to observability and controllability, the two parts of
testability. Are they the same? If you want to make your system more of
one, can you just optimize for the other?

203

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

13
Architectural Tactics
and Patterns

I have not failed. I’ve just found
10,000 ways that won’t work.

—Thomas Edison

There are many ways to do design badly, and just a few ways to do it well. Be-
cause success in architectural design is complex and challenging, designers have
been looking for ways to capture and reuse hard-won architectural knowledge.
Architectural patterns and tactics are ways of capturing proven good design
structures, so that they can be reused.

Architectural patterns have seen increased interest and attention, from both
software practitioners and theorists, over the past 15 years or more. An architec-
tural pattern

 ■ is a package of design decisions that is found repeatedly in practice,
 ■ has known properties that permit reuse, and
 ■ describes a class of architectures.

Because patterns are (by definition) found in practice, one does not invent
them; one discovers them. Cataloging patterns is akin to the job of a Linnaean
botanist or zoologist: “discovering” patterns and describing their shared charac-
teristics. And like the botanist, zoologist, or ecologist, the pattern cataloger strives
to understand how the characteristics lead to different behaviors and different re-
sponses to environmental conditions. For this reason there will never be a com-
plete list of patterns: patterns spontaneously emerge in reaction to environmental
conditions, and as long as those conditions change, new patterns will emerge.

Architectural design seldom starts from first principles. Experienced architects
typically think of creating an architecture as a process of selecting, tailoring, and
combining patterns. The software architect must decide how to instantiate a pat-
tern—how to make it fit with the specific context and the constraints of the problem.

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

204 Part two Quality attributes 13—Architectural Tactics and Patterns

In Chapters 5–11 we have seen a variety of architectural tactics. These are
simpler than patterns. Tactics typically use just a single structure or computa-
tional mechanism, and they are meant to address a single architectural force. For
this reason they give more precise control to an architect when making design
decisions than patterns, which typically combine multiple design decisions into
a package. Tactics are the “building blocks” of design, from which architectural
patterns are created. Tactics are atoms and patterns are molecules. Most patterns
consist of (are constructed from) several different tactics. For this reason we say
that patterns package tactics.

In this chapter we will take a very brief tour through the patterns universe,
touching on some of the most important and most commonly used patterns for ar-
chitecture, and we will then look at the relationships between patterns and tactics:
showing how a pattern is constructed from tactics, and showing how tactics can
be used to tailor patterns when the pattern that you find in a book or on a website
doesn’t quite address your design needs.

13.1 architectural Patterns

An architectural pattern establishes a relationship between:

 ■ A context. A recurring, common situation in the world that gives rise to a
problem.

 ■ A problem. The problem, appropriately generalized, that arises in the given
context. The pattern description outlines the problem and its variants, and
describes any complementary or opposing forces. The description of the
problem often includes quality attributes that must be met.

 ■ A solution. A successful architectural resolution to the problem, appro-
priately abstracted. The solution describes the architectural structures
that solve the problem, including how to balance the many forces at
work. The solution will describe the responsibilities of and static rela-
tionships among elements (using a module structure), or it will describe
the runtime behavior of and interaction between elements (laying out a
component-and-connector or allocation structure). The solution for a pat-
tern is determined and described by:

 ■ A set of element types (for example, data repositories, processes, and
objects)

 ■ A set of interaction mechanisms or connectors (for example, method
calls, events, or message bus)

 ■ A topological layout of the components
 ■ A set of semantic constraints covering topology, element behavior, and

interaction mechanisms

13.2 Overview of the Patterns Catalog 205

The solution description should also make clear what quality attributes are
provided by the static and runtime configurations of elements.

This {context, problem, solution} form constitutes a template for document-
ing a pattern.

Complex systems exhibit multiple patterns at once. A web-based system
might employ a three-tier client-server architectural pattern, but within this pat-
tern it might also use replication (mirroring), proxies, caches, firewalls, MVC,
and so forth, each of which may employ more patterns and tactics. And all of
these parts of the client-server pattern likely employ layering to internally struc-
ture their software modules.

13.2 Overview of the Patterns catalog

In this section we list an assortment of useful and widely used patterns. This cata-
log is not meant to be exhaustive—in fact no such catalog is possible. Rather it is
meant to be representative. We show patterns of runtime elements (such as broker
or client-server) and of design-time elements (such as layers). For each pattern
we list the context, problem, and solution. As part of the solution, we briefly de-
scribe the elements, relations, and constraints of each pattern.

Applying a pattern is not an all-or-nothing proposition. Pattern definitions
given in catalogs are strict, but in practice architects may choose to violate them
in small ways when there is a good design tradeoff to be had (sacrificing a little
of whatever the violation cost, but gaining something that the deviation gained).
For example, the layered pattern expressly forbids software in lower layers from
using software in upper layers, but there may be cases (such as to gain some per-
formance) when an architecture might allow a few specific exceptions.

Patterns can be categorized by the dominant type of elements that they
show: module patterns show modules, component-and-connector (C&C) patterns
show components and connectors, and allocation patterns show a combination
of software elements (modules, components, connectors) and nonsoftware ele-
ments. Most published patterns are C&C patterns, but there are module patterns
and allocation patterns as well. We’ll begin with the granddaddy of module pat-
terns, the layered pattern.

Module Patterns

Layered Pattern
Context: All complex systems experience the need to develop and evolve por-
tions of the system independently. For this reason the developers of the system
need a clear and well-documented separation of concerns, so that modules of the
system may be independently developed and maintained.

206 Part two Quality attributes 13—Architectural Tactics and Patterns

Problem: The software needs to be segmented in such a way that the modules
can be developed and evolved separately with little interaction among the parts,
supporting portability, modifiability, and reuse.

Solution: To achieve this separation of concerns, the layered pattern divides the
software into units called layers. Each layer is a grouping of modules that offers a
cohesive set of services. There are constraints on the allowed-to-use relationship
among the layers: the relations must be unidirectional. Layers completely parti-
tion a set of software, and each partition is exposed through a public interface.
The layers are created to interact according to a strict ordering relation. If (A,B)
is in this relation, we say that the implementation of layer A is allowed to use any
of the public facilities provided by layer B. In some cases, modules in one layer
might be required to directly use modules in a nonadjacent lower layer; normally
only next-lower-layer uses are allowed. This case of software in a higher layer
using modules in a nonadjacent lower layer is called layer bridging. If many in-
stances of layer bridging occur, the system may not meet its portability and modi-
fiability goals that strict layering helps to achieve. Upward usages are not allowed
in this pattern.

Of course, none of this comes for free. Someone must design and build the
layers, which can often add up-front cost and complexity to a system. Also, if the
layering is not designed correctly, it may actually get in the way, by not provid-
ing the lower-level abstractions that programmers at the higher levels need. And
layering always adds a performance penalty to a system. If a call is made to a
function in the top-most layer, this may have to traverse many lower layers before
being executed by the hardware. Each of these layers adds some overhead of their
own, at minimum in the form of context switching.

Table 13.1 summarizes the solution of the layered pattern.
Layers are almost always drawn as a stack of boxes. The allowed-to-use

relation is denoted by geometric adjacency and is read from the top down, as in
Figure 13.1.

A

B

C

Key:

Layer

A layer is allowed to use
the next lower layer.

fIGurE 13.1 Stack-of-boxes notation for layered designs

13.2 Overview of the Patterns Catalog 207

tablE 13.1 Layered Pattern Solution

Overview The layered pattern defines layers (groupings of modules that offer
a cohesive set of services) and a unidirectional allowed-to-use
relation among the layers. The pattern is usually shown graphically
by stacking boxes representing layers on top of each other.

Elements Layer, a kind of module. The description of a layer should define
what modules the layer contains and a characterization of the
cohesive set of services that the layer provides.

Relations Allowed to use, which is a specialization of a more generic
depends-on relation. The design should define what the layer usage
rules are (e.g., “a layer is allowed to use any lower layer” or “a layer
is allowed to use only the layer immediately below it”) and any
allowable exceptions.

Constraints ■ Every piece of software is allocated to exactly one layer.
 ■ There are at least two layers (but usually there are three or

more).
 ■ The allowed-to-use relations should not be circular (i.e., a lower

layer cannot use a layer above).

Weaknesses ■ The addition of layers adds up-front cost and complexity to a
system.

 ■ Layers contribute a performance penalty.

Some Finer Points of Layers

A layered architecture is one of the few places where connections among
components can be shown by adjacency, and where “above” and “below”
matter. If you turn Figure 13.1 upside-down so that C is on top, this would
represent a completely different design. Diagrams that use arrows among
the boxes to denote relations retain their semantic meaning no matter the
orientation.

The layered pattern is one of the most commonly used patterns in all of
software engineering, but I’m often surprised by how many people still get
it wrong.

First, it is impossible to look at a stack of boxes and tell whether layer
bridging is allowed or not. That is, can a layer use any lower layer, or just
the next lower one? It is the easiest thing in the world to resolve this; all the
architect has to do is include the answer in the key to the diagram’s nota-
tion (something we recommend for all diagrams). For example, consider the
layered pattern presented in Figure 13.2 on the next page.

But I’m still surprised at how few architects actually bother to do this.
And if they don’t, their layer diagrams are ambiguous.

Second, any old set of boxes stacked on top of each other does not
constitute a layered architecture. For instance, look at the design shown
in Figure 13.3, which uses arrows instead of adjacency to indicate the

208 Part two Quality attributes 13—Architectural Tactics and Patterns

relationships among the boxes. Here, everything is allowed to use every-
thing. This is decidedly not a layered architecture. The reason is that if
Layer A is replaced by a different version, Layer C (which uses it in this fig-
ure) might well have to change. We don’t want our virtual machine layer to
change every time our application layer changes. But I’m still surprised at
how many people call a stack of boxes lined up with each other “layers” (or
think that layers are the same as tiers in a multi-tier architecture).

Key:

Applications

Services

Data Bank

Environmental Models

Environment Sensing

JVM

OS and Hardware

S
ec

ur
ity

layer

Software in a layer is allowed to use software
in the same layer, or any layer immediately
below or to the right.

fIGurE 13.2 A simple layer diagram, with a simple key answering the uses
question

Layer

Allowed to use

A

B

C

Key:

fIGurE 13.3 A wolf in layer’s clothing

13.2 Overview of the Patterns Catalog 209

Third, many architectures that purport to be layered look something
like Figure 13.4. This diagram probably means that modules in A, B, or C
can use modules in D, but without a key to tell us for sure, it could mean
anything. “Sidecars” like this often contain common utilities (sometimes
imported), such as error handlers, communication protocols, or database
access mechanisms. This kind of diagram makes sense only in the case
where no layer bridging is allowed in the main stack. Otherwise, D could
simply be made the bottom-most layer in the main stack, and the “sidecar”
geometry would be unnecessary. But I’m still surprised at how often I see
this layout go unexplained.

Sometimes layers are divided into segments denoting a finer-grained
decomposition of the modules. Sometimes this occurs when a preexisting
set of units, such as imported modules, share the same allowed-to-use
relation. When this happens, you have to specify what usage rules are in
effect among the segments. Many usage rules are possible, but they must
be made explicit. In Figure 13.5, the top and the bottom layers are

A

B

C

D

fIGurE 13.4 Layers with a “sidecar”

Key:

Layer

UI

Business Logic

Data Access

Local Data
Access

Remote Data
Access

Web UI Rich
Client

Command
Line

Layer
segment

Allowed to use

fIGurE 13.5 Layered design with segmented layers

210 Part two Quality attributes 13—Architectural Tactics and Patterns

segmented. Segments of the top layer are not allowed to use each other,
but segments of the bottom layer are. If you draw the same diagram with-
out the arrows, it will be harder to differentiate the different usage rules
within segmented layers. Layered diagrams are often a source of hidden
ambiguity because the diagram does not make explicit the allowed-to-use
relations.

Finally, the most important point about layering is that a layer isn’t
allowed to use any layer above it. A module “uses” another module when it
depends on the answer it gets back. But a layer is allowed to make upward
calls, as long as it isn’t expecting an answer from them. This is how the
common error-handling scheme of callbacks works. A program in layer A
calls a program in a lower layer B, and the parameters include a pointer to
an error-handling program in A that the lower layer should call in case of
error. The software in B makes the call to the program in A, but cares not in
the least what it does. By not depending in any way on the contents of A, B
is insulated from changes in A.

—PCC

Other Module Patterns

Designers in a particular domain often publish “standard” module decomposi-
tions for systems in that domain. These standard decompositions, if put in the
“context, problem, solution” form, constitute module decomposition patterns.

Similarly in the object-oriented realm, “standard” or published class/object
design solutions for a class of system constitute object-oriented patterns.

component-and-connector Patterns

Broker Pattern
Context: Many systems are constructed from a collection of services distributed
across multiple servers. Implementing these systems is complex because you
need to worry about how the systems will interoperate—how they will connect to
each other and how they will exchange information—as well as the availability of
the component services.

Problem: How do we structure distributed software so that service users do not
need to know the nature and location of service providers, making it easy to dy-
namically change the bindings between users and providers?

Solution: The broker pattern separates users of services (clients) from providers
of services (servers) by inserting an intermediary, called a broker. When a client
needs a service, it queries a broker via a service interface. The broker then for-
wards the client’s service request to a server, which processes the request. The ser-
vice result is communicated from the server back to the broker, which then returns

13.2 Overview of the Patterns Catalog 211

the result (and any exceptions) back to the requesting client. In this way the client
remains completely ignorant of the identity, location, and characteristics of the
server. Because of this separation, if a server becomes unavailable, a replacement
can be dynamically chosen by the broker. If a server is replaced with a different
(compatible) service, again, the broker is the only component that needs to know
of this change, and so the client is unaffected. Proxies are commonly introduced as
intermediaries in addition to the broker to help with details of the interaction with
the broker, such as marshaling and unmarshaling messages.

The down sides of brokers are that they add complexity (brokers and
possibly proxies must be designed and implemented, along with messaging
protocols) and add a level of indirection between a client and a server, which will
add latency to their communication. Debugging brokers can be difficult because
they are involved in highly dynamic environments where the conditions leading
to a failure may be difficult to replicate. The broker would be an obvious point of
attack, from a security perspective, and so it needs to be hardened appropriately.
Also a broker, if it is not designed carefully, can be a single point of failure for
a large and complex system. And brokers can potentially be bottlenecks for
communication.

Table 13.2 summarizes the solution of the broker pattern.

tablE 13.2 Broker Pattern Solution

Overview The broker pattern defines a runtime component, called a broker, that
mediates the communication between a number of clients and servers.

Elements Client, a requester of services
Server, a provider of services
Broker, an intermediary that locates an appropriate server to fulfill a
client’s request, forwards the request to the server, and returns the
results to the client
Client-side proxy, an intermediary that manages the actual
communication with the broker, including marshaling, sending, and
unmarshaling of messages
Server-side proxy, an intermediary that manages the actual
communication with the broker, including marshaling, sending, and
unmarshaling of messages

Relations The attachment relation associates clients (and, optionally, client-side
proxies) and servers (and, optionally, server-side proxies) with brokers.

Constraints The client can only attach to a broker (potentially via a client-side
proxy). The server can only attach to a broker (potentially via a server-
side proxy).

Weaknesses Brokers add a layer of indirection, and hence latency, between clients
and servers, and that layer may be a communication bottleneck.
The broker can be a single point of failure.
A broker adds up-front complexity.
A broker may be a target for security attacks.
A broker may be difficult to test.

212 Part two Quality attributes 13—Architectural Tactics and Patterns

The broker is, of course, the critical component in this pattern. The pattern
provides all of the modifiability benefits of the use-an-intermediary tactic
(described in Chapter 7), an availability benefit (because the broker pattern
makes it easy to replace a failed server with another), and a performance benefit
(because the broker pattern makes it easy to assign work to the least-busy server).
However, the pattern also carries with it some liabilities. For example, the use of
a broker precludes performance optimizations that you might make if you knew
the precise location and characteristics of the server. Also the use of this pattern
adds the overhead of the intermediary and thus latency.

The original version of the broker pattern, as documented by Gamma, Helm,
Johnson, and Vlissides [Gamma 94], is given in Figure 13.6.

The first widely used implementation of the broker pattern was in the
Common Object Request Broker Architecture (CORBA). Other common uses
of this pattern are found in Enterprise Java Beans (EJB) and Microsoft’s .NET
platform—essentially any modern platform for distributed service providers and
consumers implements some form of a broker. The service-oriented architecture
(SOA) approach depends crucially on brokers, most commonly in the form of an
enterprise service bus.

Model-View-Controller Pattern
Context: User interface software is typically the most frequently modified portion
of an interactive application. For this reason it is important to keep modifications

+pack_data()
+unpack_data()
+send_request()
+return()

Client-S ide Proxy

+initialize()
+enter_main_loop()
+run_service()
+use_Broker_API()

Server

+call_server()
+start_task()
+use_Broker_API()

Client

+pack_data()
+unpack_data()
+call_service()
+send_response()

Server-Side Proxy+locateServer()
+locateClient()
+registerServer()
+unregisterServer()

Broker

+pack_data()
+unpack_data()
+forward_message()
+transmit_message()

Bridge

-transfers * 1

*

-call1

-uses

*

1

0..1

-call 1

-transfers *1

*

-call1

-uses

*

1

fIGurE 13.6 The broker pattern

13.2 Overview of the Patterns Catalog 213

to the user interface software separate from the rest of the system. Users often
wish to look at data from different perspectives, such as a bar graph or a pie chart.
These representations should both reflect the current state of the data.

Problem: How can user interface functionality be kept separate from application
functionality and yet still be responsive to user input, or to changes in the under-
lying application’s data? And how can multiple views of the user interface be cre-
ated, maintained, and coordinated when the underlying application data changes?

Solution: The model-view-controller (MVC) pattern separates application func-
tionality into three kinds of components:

 ■ A model, which contains the application’s data
 ■ A view, which displays some portion of the underlying data and interacts

with the user
 ■ A controller, which mediates between the model and the view and manages

the notifications of state changes

MVC is not appropriate for every situation. The design and implementation
of three distinct kinds of components, along with their various forms of
interaction, may be costly, and this cost may not make sense for relatively
simple user interfaces. Also, the match between the abstractions of MVC and
commercial user interface toolkits is not perfect. The view and the controller split
apart input and output, but these functions are often combined into individual
widgets. This may result in a conceptual mismatch between the architecture and
the user interface toolkit.

Table 13.3 summarizes the solution of the MVC pattern.

tablE 13.3 Model-View-Controller Pattern Solution

Overview The MVC pattern breaks system functionality into three components: a
model, a view, and a controller that mediates between the model and
the view.

Elements The model is a representation of the application data or state, and it
contains (or provides an interface to) application logic.
The view is a user interface component that either produces a
representation of the model for the user or allows for some form of
user input, or both.
The controller manages the interaction between the model and the
view, translating user actions into changes to the model or changes to
the view.

Relations The notifies relation connects instances of model, view, and controller,
notifying elements of relevant state changes.

Constraints There must be at least one instance each of model, view, and
controller.
The model component should not interact directly with the controller.

Weaknesses The complexity may not be worth it for simple user interfaces.
The model, view, and controller abstractions may not be good fits for
some user interface toolkits.

214 Part two Quality attributes 13—Architectural Tactics and Patterns

There may, in fact, be many views and many controllers associated with
a model. For example, a set of business data may be represented as columns of
numbers in a spreadsheet, as a scatter plot, or as a pie chart. Each of these is a
separate view, and this view can be dynamically updated as the model changes
(for example, showing live transactions in a transaction processing system). A
model may be updated by different controllers; for example, a map could be
zoomed and panned via mouse movements, trackball movements, keyboard
clicks, or voice commands; each of these different forms of input needs to be
managed by a controller.

The MVC components are connected to each other via some flavor of
notification, such as events or callbacks. These notifications contain state updates.
A change in the model needs to be communicated to the views so that they may
be updated. An external event, such as a user input, needs to be communicated to
the controller, which may in turn update the view and/or the model. Notifications
may be either push or pull.

Because these components are loosely coupled, it is easy to develop and
test them in parallel, and changes to one have minimal impact on the others. The
relationships between the components of MVC are shown in Figure 13.7.

• Encapsulates application state
• Responds to state queries
• Exposes application functionality
• Notifies views of changes

Model

• Renders the models
• Requests updates from models
• Sends user gestures to controller
• Allows controller to select view

View

• Defines application behavior
• Maps user actions to model updates
• Selects view for response
• One for each functionality

Controller

State
Query State

Change

User Gestures

View Selection

Change
Notification

Key:

Events

Method
Invocations

fIGurE 13.7 The model-view-controller pattern

13.2 Overview of the Patterns Catalog 215

The MVC pattern is widely used in user interface libraries such as Java’s
Swing classes, Microsoft’s ASP.NET framework, Adobe’s Flex software
development kit, Nokia’s Qt framework, and many others. As such, it is common
for a single application to contain many instances of MVC (often one per user
interface object).

Pipe-and-Filter Pattern
Context: Many systems are required to transform streams of discrete data items,
from input to output. Many types of transformations occur repeatedly in practice,
and so it is desirable to create these as independent, reusable parts.

Problem: Such systems need to be divided into reusable, loosely coupled com-
ponents with simple, generic interaction mechanisms. In this way they can be
flexibly combined with each other. The components, being generic and loosely
coupled, are easily reused. The components, being independent, can execute in
parallel.

Solution: The pattern of interaction in the pipe-and-filter pattern is characterized
by successive transformations of streams of data. Data arrives at a filter’s input
port(s), is transformed, and then is passed via its output port(s) through a pipe to
the next filter. A single filter can consume data from, or produce data to, one or
more ports.

There are several weaknesses associated with the pipe-and-filter pattern. For
instance, this pattern is typically not a good choice for an interactive system, as
it disallows cycles (which are important for user feedback). Also, having large
numbers of independent filters can add substantial amounts of computational
overhead, because each filter runs as its own thread or process. Also, pipe-and-
filter systems may not be appropriate for long-running computations, without the
addition of some form of checkpoint/restore functionality, as the failure of any
filter (or pipe) can cause the entire pipeline to fail.

The solution of the pipe-and-filter pattern is summarized in Table 13.4.
Pipes buffer data during communication. Because of this property, filters can

execute asynchronously and concurrently. Moreover, a filter typically does not
know the identity of its upstream or downstream filters. For this reason, pipeline
pipe-and-filter systems have the property that the overall computation can be
treated as the functional composition of the computations of the filters, making it
easier for the architect to reason about end-to-end behavior.

Data transformation systems are typically structured as pipes and filters,
with each filter responsible for one part of the overall transformation of the input
data. The independent processing at each step supports reuse, parallelization, and
simplified reasoning about overall behavior. Often such systems constitute the
front end of signal-processing applications. These systems receive sensor data at
a set of initial filters; each of these filters compresses the data and performs initial
processing (such as smoothing). Downstream filters reduce the data further and

216 Part two Quality attributes 13—Architectural Tactics and Patterns

do synthesis across data derived from different sensors. The final filter typically
passes its data to an application, for example providing input to modeling or
visualization tools.

Other systems that use pipe-and-filter include those built using UNIX pipes,
the request processing architecture of the Apache web server, the map-reduce
pattern (presented later in this chapter), Yahoo! Pipes for processing RSS feeds,
many workflow engines, and many scientific computation systems that have to
process and analyze large streams of captured data. Figure 13.8 shows a UML
diagram of a pipe-and-filter system.

tablE 13.4 Pipe-and-Filter Pattern Solution

Overview Data is transformed from a system’s external inputs to its external
outputs through a series of transformations performed by its filters
connected by pipes.

Elements Filter, which is a component that transforms data read on its input
port(s) to data written on its output port(s). Filters can execute
concurrently with each other. Filters can incrementally transform
data; that is, they can start producing output as soon as they start
processing input. Important characteristics include processing rates,
input/output data formats, and the transformation executed by the
filter.
Pipe, which is a connector that conveys data from a filter’s output
port(s) to another filter’s input port(s). A pipe has a single source
for its input and a single target for its output. A pipe preserves the
sequence of data items, and it does not alter the data passing
through. Important characteristics include buffer size, protocol of
interaction, transmission speed, and format of the data that passes
through a pipe.

Relations The attachment relation associates the output of filters with the input
of pipes and vice versa.

Constraints Pipes connect filter output ports to filter input ports.
Connected filters must agree on the type of data being passed along
the connecting pipe.
Specializations of the pattern may restrict the association of
components to an acyclic graph or a linear sequence, sometimes
called a pipeline.
Other specializations may prescribe that components have certain
named ports, such as the stdin, stdout, and stderr ports of UNIX
filters.

Weaknesses The pipe-and-filter pattern is typically not a good choice for an
interactive system.
Having large numbers of independent filters can add substantial
amounts of computational overhead.
Pipe-and-filter systems may not be appropriate for long-running
computations.

13.2 Overview of the Patterns Catalog 217

capacity = 40
end-of-data = empty record
when-full = block for 2 sec and retry
when-empty = block for 30 sec and retry

capacity = 50
end-of-data = ”EOT” String
when-full = block for 2 sec and retry
when-empty = block for 20 sec and retry capacity = 10

end-of-data = empty record
when-full = block for 2 sec and retry
when-empty = block for 60 sec and retry

capacity = 40
end-of-data = empty record
when-full = block for 2 sec and retry
when-empty = block for 30 sec and retry

«pipe»
«pipe»

«pipe»

«pipe»

out in

out in

out

out

in

in

«filter»
:XmlToObject

«filter»
:Process
Payment

«filter»
:FormatRejected

Records

«filter»
:Calculate

DirectDeposit

«filter»
:Format

DirectDeposit

fIGurE 13.8 A UML diagram of a pipe-and-filter-based system

Client-Server Pattern
Context: There are shared resources and services that large numbers of distrib-
uted clients wish to access, and for which we wish to control access or quality of
service.

Problem: By managing a set of shared resources and services, we can promote
modifiability and reuse, by factoring out common services and having to modify
these in a single location, or a small number of locations. We want to improve
scalability and availability by centralizing the control of these resources and ser-
vices, while distributing the resources themselves across multiple physical servers.

Solution: Clients interact by requesting services of servers, which provide a set
of services. Some components may act as both clients and servers. There may be
one central server or multiple distributed ones.

The client-server pattern solution is summarized in Table 13.5; the
component types are clients and servers; the principal connector type for the
client-server pattern is a data connector driven by a request/reply protocol used
for invoking services.

Some of the disadvantages of the client-server pattern are that the server
can be a performance bottleneck and it can be a single point of failure. Also,
decisions about where to locate functionality (in the client or in the server) are
often complex and costly to change after a system has been built.

218 Part two Quality attributes 13—Architectural Tactics and Patterns

tablE 13.5 Client-Server Pattern Solution

Overview Clients initiate interactions with servers, invoking services as
needed from those servers and waiting for the results of those
requests.

Elements Client, a component that invokes services of a server
component. Clients have ports that describe the services they
require.
Server, a component that provides services to clients. Servers
have ports that describe the services they provide. Important
characteristics include information about the nature of the
server ports (such as how many clients can connect) and
performance characteristics (e.g., maximum rates of service
invocation).
Request/reply connector, a data connector employing a
request/reply protocol, used by a client to invoke services on a
server. Important characteristics include whether the calls are
local or remote, and whether data is encrypted.

Relations The attachment relation associates clients with servers.

Constraints Clients are connected to servers through request/reply
connectors.
Server components can be clients to other servers.
Specializations may impose restrictions:

 ■ Numbers of attachments to a given port
 ■ Allowed relations among servers

Components may be arranged in tiers, which are logical
groupings of related functionality or functionality that will share
a host computing environment (covered more later in this
chapter).

Weaknesses Server can be a performance bottleneck.
Server can be a single point of failure.
Decisions about where to locate functionality (in the client or
in the server) are often complex and costly to change after a
system has been built.

Some common examples of systems that use the client-server pattern are these:

 ■ Information systems running on local networks where the clients are GUI-
launched applications and the server is a database management system

 ■ Web-based applications where the clients are web browsers and the servers
are components running on an e-commerce site

The computational flow of pure client-server systems is asymmetric:
clients initiate interactions by invoking services of servers. Thus, the client must
know the identity of a service to invoke it, and clients initiate all interactions.
In contrast, servers do not know the identity of clients in advance of a service
request and must respond to the initiated client requests.

In early forms of client-server, service invocation is synchronous: the
requester of a service waits, or is blocked, until a requested service completes its

13.2 Overview of the Patterns Catalog 219

actions, possibly providing a return result. However, variants of the client-server
pattern may employ more-sophisticated connector protocols. For example:

 ■ Web browsers don’t block until the data request is served up.
 ■ In some client-server patterns, servers are permitted to initiate certain

actions on their clients. This might be done by allowing a client to register
notification procedures, or callbacks, that the server calls at specific times.

 ■ In other systems service calls over a request/reply connector are bracketed
by a “session” that delineates the start and end of a set of a client-server
interaction.

The client-server pattern separates client applications from the services they
use. This pattern simplifies systems by factoring out common services, which are
reusable. Because servers can be accessed by any number of clients, it is easy
to add new clients to a system. Similarly, servers may be replicated to support
scalability or availability.

The World Wide Web is the best-known example of a system that is based on
the client-server pattern, allowing clients (web browsers) to access information
from servers across the Internet using HyperText Transfer Protocol (HTTP).
HTTP is a request/reply protocol. HTTP is stateless; the connection between the
client and the server is terminated after each response from the server.

Figure 13.9 uses an informal notation to describe the client-server view of
an automatic teller machine (ATM) banking system.

server

Server
TCP socket connector with
client and server ports

FTX server
daemon

ATM OS/2
client process

Windows
application

clientclientclient

Client

client client

server server server server

Key:

Bank
transaction
authorizer

ATM
monitoring

server

ATM
reconfiguration

server

ATM main
process

Reconfigure
and update

process

Monitoring
station

program

fIGurE 13.9 The client-server architecture of an ATM banking system

220 Part two Quality attributes 13—Architectural Tactics and Patterns

Peer-to-Peer Pattern
Context: Distributed computational entities—each of which is considered
equally important in terms of initiating an interaction and each of which provides
its own resources—need to cooperate and collaborate to provide a service to a
distributed community of users.

Problem: How can a set of “equal” distributed computational entities be con-
nected to each other via a common protocol so that they can organize and share
their services with high availability and scalability?

Solution: In the peer-to-peer (P2P) pattern, components directly interact as
peers. All peers are “equal” and no peer or group of peers can be critical for
the health of the system. Peer-to-peer communication is typically a request/
reply interaction without the asymmetry found in the client-server pattern.
That is, any component can, in principle, interact with any other component by
requesting its services. The interaction may be initiated by either party—that
is, in client-server terms, each peer component is both a client and a server.
Sometimes the interaction is just to forward data without the need for a reply.
Each peer provides and consumes similar services and uses the same protocol.
Connectors in peer-to-peer systems involve bidirectional interactions, reflecting
the two-way communication that may exist between two or more peer-to-peer
components.

Peers first connect to the peer-to-peer network on which they discover other
peers they can interact with, and then initiate actions to achieve their computation
by cooperating with other peers by requesting services. Often a peer’s search for
another peer is propagated from one peer to its connected peers for a limited
number of hops. A peer-to-peer architecture may have specialized peer nodes
(called supernodes) that have indexing or routing capabilities and allow a regular
peer’s search to reach a larger number of peers.

Peers can be added and removed from the peer-to-peer network with no sig-
nificant impact, resulting in great scalability for the whole system. This provides
flexibility for deploying the system across a highly distributed platform.

Typically multiple peers have overlapping capabilities, such as providing
access to the same data or providing equivalent services. Thus, a peer acting as
client can collaborate with multiple peers acting as servers to complete a certain
task. If one of these multiple peers becomes unavailable, the others can still pro-
vide the services to complete the task. The result is improved overall availability.
There are also performance advantages: The load on any given peer component
acting as a server is reduced, and the responsibilities that might have required
more server capacity and infrastructure to support it are distributed. This can de-
crease the need for other communication for updating data and for central server
storage, but at the expense of storing the data locally.

13.2 Overview of the Patterns Catalog 221

The drawbacks of the peer-to-peer pattern are strongly related to its
strengths. Because peer-to-peer systems are decentralized, managing security,
data consistency, data and service availability, backup, and recovery are all more
complex. In many cases it is difficult to provide guarantees with peer-to-peer
systems because the peers come and go; instead, the architect can, at best, offer
probabilities that quality goals will be met, and these probabilities typically in-
crease with the size of the population of peers.

Table 13.6 on the next page summarizes the peer-to-peer pattern solution.
Peer-to-peer computing is often used in distributed computing applications

such as file sharing, instant messaging, desktop grid computing, routing, and
wireless ad hoc networking. Examples of peer-to-peer systems include file-shar-
ing networks such as BitTorrent and eDonkey, and instant messaging and VoIP
applications such as Skype. Figure 13.10 shows an example of an instantiation of
the peer-to-peer pattern.

A B

moldy
69.95.63.49

amidala
70.116.152.15

anakin
207.192.20.13

lambda
50.64.16.14 outrider

74.12.41.111
naboo

157.66.24.26

Key: Leaf peer

Ultrapeer

Gnutella port

HTTP file transfer
from A to B

Request/reply using Gnutella
protocol over TCP or UDP

fIGurE 13.10 A peer-to-peer view of a Gnutella network using an informal C&C
notation. For brevity, only a few peers are identified. Each of the identified leaf
peers uploads and downloads files directly from other peers.

222 Part two Quality attributes 13—Architectural Tactics and Patterns

tablE 13.6 Peer-to-Peer Pattern Solution

Overview Computation is achieved by cooperating peers that request service
from and provide services to one another across a network.

Elements Peer, which is an independent component running on a network
node. Special peer components can provide routing, indexing, and
peer search capability.
Request/reply connector, which is used to connect to the peer
network, search for other peers, and invoke services from other
peers. In some cases, the need for a reply is done away with.

Relations The relation associates peers with their connectors. Attachments
may change at runtime.

Constraints Restrictions may be placed on the following:
 ■ The number of allowable attachments to any given peer
 ■ The number of hops used for searching for a peer
 ■ Which peers know about which other peers

Some P2P networks are organized with star topologies, in which
peers only connect to supernodes.

Weaknesses Managing security, data consistency, data/service availability,
backup, and recovery are all more complex.
Small peer-to-peer systems may not be able to consistently achieve
quality goals such as performance and availability.

Service-Oriented Architecture Pattern
Context: A number of services are offered (and described) by service provid-
ers and consumed by service consumers. Service consumers need to be able
to understand and use these services without any detailed knowledge of their
implementation.

Problem: How can we support interoperability of distributed components run-
ning on different platforms and written in different implementation languages,
provided by different organizations, and distributed across the Internet? How can
we locate services and combine (and dynamically recombine) them into meaning-
ful coalitions while achieving reasonable performance, security, and availability?

Solution: The service-oriented architecture (SOA) pattern describes a collection
of distributed components that provide and/or consume services. In an SOA, ser-
vice provider components and service consumer components can use different
implementation languages and platforms. Services are largely standalone: service
providers and service consumers are usually deployed independently, and often
belong to different systems or even different organizations. Components have in-
terfaces that describe the services they request from other components and the
services they provide. A service’s quality attributes can be specified and guar-
anteed with a service-level agreement (SLA). In some cases, these are legally
binding. Components achieve their computation by requesting services from one
another.

13.2 Overview of the Patterns Catalog 223

The elements in this pattern include service providers and service consum-
ers, which in practice can take different forms, from JavaScript running on a
web browser to CICS transactions running on a mainframe. In addition to the
service provider and service consumer components, an SOA application may
use specialized components that act as intermediaries and provide infrastruc-
ture services:

 ■ Service invocation can be mediated by an enterprise service bus (ESB). An
ESB routes messages between service consumers and service providers. In
addition, an ESB can convert messages from one protocol or technology to
another, perform various data transformations (e.g., format, content, split-
ting, merging), perform security checks, and manage transactions. Using an
ESB promotes interoperability, security, and modifiability. Of course, com-
municating through an ESB adds overhead thereby lowering performance,
and introduces an additional point of failure. When an ESB is not in place,
service providers and consumers communicate with each other in a point-
to-point fashion.

 ■ To improve the independence of service providers, a service registry can be
used in SOA architectures. The registry is a component that allows services
to be registered at runtime. This enables runtime discovery of services,
which increases system modifiability by hiding the location and identity of
the service provider. A registry can even permit multiple live versions of the
same service.

 ■ An orchestration server (or orchestration engine) orchestrates the interac-
tion among various service consumers and providers in an SOA system. It
executes scripts upon the occurrence of a specific event (e.g., a purchase
order request arrived). Applications with well-defined business processes or
workflows that involve interactions with distributed components or systems
gain in modifiability, interoperability, and reliability by using an orches-
tration server. Many commercially available orchestration servers support
various workflow or business process language standards.

The basic types of connectors used in SOA are these:

 ■ SOAP. The standard protocol for communication in the web services tech-
nology. Service consumers and providers interact by exchanging request/
reply XML messages typically on top of HTTP.

 ■ Representational State Transfer (REST). A service consumer sends non-
blocking HTTP requests. These requests rely on the four basic HTTP com-
mands (POST, GET, PUT, DELETE) to tell the service provider to create,
retrieve, update, or delete a resource.

 ■ Asynchronous messaging, a “fire-and-forget” information exchange.
Participants do not have to wait for an acknowledgment of receipt, because
the infrastructure is assumed to have delivered the message successfully.
The messaging connector can be point-to-point or publish-subscribe.

224 Part two Quality attributes 13—Architectural Tactics and Patterns

In practice, SOA environments may involve a mix of the three connectors
just listed, along with legacy protocols and other communication alternatives
(e.g., SMTP). Commercial products such as IBM’s WebSphere MQ, Microsoft’s
MSMQ, or Apache’s ActiveMQ are infrastructure components that provide asyn-
chronous messaging. SOAP and REST are described in more detail in Chapter 6.

As you can see, the SOA pattern can be quite complex to design and im-
plement (due to dynamic binding and the concomitant use of metadata). Other
potential problems with this pattern include the performance overhead of the
middleware that is interposed between services and clients and the lack of perfor-
mance guarantees (because services are shared and, in general, not under control
of the requester). These weaknesses are all shared with the broker pattern, which
is not surprising because the SOA pattern shares many of the design concepts and
goals of broker. In addition, because you do not, in general, control the evolution
of the services that you use, you may have to endure high and unplanned-for
maintenance costs.

Table 13.7 summarizes the SOA pattern.
The main benefit and the major driver of SOA is interoperability. Because

service providers and service consumers may run on different platforms, ser-
vice-oriented architectures often integrate a variety of systems, including legacy
systems. SOA also offers the necessary elements to interact with external ser-
vices available over the Internet. Special SOA components such as the registry or
the ESB also allow dynamic reconfiguration, which is useful when there’s a need
to replace or add versions of components with no system interruption.

Figure 13.11 shows the SOA view of a system called Adventure Builder.
Adventure Builder allows a customer on the web to assemble a vacation by
choosing an activity and lodging at and transportation to a destination. The Ad-
venture Builder system interacts with external service providers to construct the
vacation, and with bank services to process payment. The central OPC (Order
Processing Center) component coordinates the interaction with internal and ex-
ternal service consumers and providers. Note that the external providers can be
legacy mainframe systems, Java systems, .NET systems, and so on. The nature of
these external components is transparent because SOAP provides the necessary
interoperability.

13.2 Overview of the Patterns Catalog 225

tablE 13.7 Service-Oriented Architecture Pattern Solution

Overview Computation is achieved by a set of cooperating components
that provide and/or consume services over a network. The
computation is often described using a workflow language.

Elements Components:
 ■ Service providers, which provide one or more services

through published interfaces. Concerns are often tied to
the chosen implementation technology, and include perfor-
mance, authorization constraints, availability, and cost. In
some cases these properties are specified in a service-level
agreement.

 ■ Service consumers, which invoke services directly or through
an intermediary.

 ■ Service providers may also be service consumers.
 ■ ESB, which is an intermediary element that can route and

transform messages between service providers and consum-
ers.

 ■ Registry of services, which may be used by providers to
register their services and by consumers to discover services
at runtime.

 ■ Orchestration server, which coordinates the interactions
between service consumers and providers based on
languages for business processes and workflows.

Connectors:
 ■ SOAP connector, which uses the SOAP protocol for

synchronous communication between web services, typically
over HTTP.

 ■ REST connector, which relies on the basic request/reply
operations of the HTTP protocol.

 ■ Asynchronous messaging connector, which uses a
messaging system to offer point-to-point or publish-subscribe
asynchronous message exchanges.

Relations Attachment of the different kinds of components available to the
respective connectors

Constraints Service consumers are connected to service providers, but
intermediary components (e.g., ESB, registry, orchestration
server) may be used.

Weaknesses SOA-based systems are typically complex to build.
You don’t control the evolution of independent services.
There is a performance overhead associated with the
middleware, and services may be performance bottlenecks, and
typically do not provide performance guarantees.

226 Part two Quality attributes 13—Architectural Tactics and Patterns

Key:

Adventure Builder

jdbc

jdbc

TBD

OpcOrder
TrackingService

OpcPurchase
OrderService

Web
Service
Broker

Web
browser

Consumer
Web site

OPC

Bank

Adventure
Catalog

DB

User’s
e-mail
client

Airline
Provider Lodging

Provider

Activity
Provider

Adventure
OPC DB

Service
Registry

ActivityPO
 Service

LodgingPO
Service

AirlinePO
Service

CreditCard
Service

Client-side
application

Java EE
application

Web services
endpoint

Data
repository

HTTP/HTTPS

SOAP call

Data access

SMTP

Scope of the
application (not
a component)

External Web
service provider

fIGurE 13.11 Diagram of the SOA view for the Adventure Builder system. OPC
stands for “Order Processing Center.”

Publish-Subscribe Pattern
Context: There are a number of independent producers and consumers of data
that must interact. The precise number and nature of the data producers and con-
sumers are not predetermined or fixed, nor is the data that they share.

13.2 Overview of the Patterns Catalog 227

Problem: How can we create integration mechanisms that support the ability to
transmit messages among the producers and consumers in such a way that they
are unaware of each other’s identity, or potentially even their existence?

Solution: In the publish-subscribe pattern, summarized in Table 13.8, compo-
nents interact via announced messages, or events. Components may subscribe
to a set of events. It is the job of the publish-subscribe runtime infrastructure to
make sure that each published event is delivered to all subscribers of that event.
Thus, the main form of connector in these patterns is an event bus. Publisher
components place events on the bus by announcing them; the connector then de-
livers those events to the subscriber components that have registered an interest in
those events. Any component may be both a publisher and a subscriber.

Publish-subscribe adds a layer of indirection between senders and receivers.
This has a negative effect on latency and potentially scalability, depending on
how it is implemented. One would typically not want to use publish-subscribe in
a system that had hard real-time deadlines to meet, as it introduces uncertainty in
message delivery times.

Also, the publish-subscribe pattern suffers in that it provides less control
over ordering of messages, and delivery of messages is not guaranteed (because
the sender cannot know if a receiver is listening). This can make the publish-sub-
scribe pattern inappropriate for complex interactions where shared state is critical.

tablE 13.8 Publish-Subscribe Pattern Solution

Overview Components publish and subscribe to events. When an event is
announced by a component, the connector infrastructure dispatches
the event to all registered subscribers.

Elements Any C&C component with at least one publish or subscribe port.
Concerns include which events are published and subscribed to, and
the granularity of events.
The publish-subscribe connector, which will have announce and listen
roles for components that wish to publish and subscribe to events.

Relations The attachment relation associates components with the publish-
subscribe connector by prescribing which components announce
events and which components are registered to receive events.

Constraints All components are connected to an event distributor that may be
viewed as either a bus—connector—or a component. Publish ports
are attached to announce roles and subscribe ports are attached to
listen roles. Constraints may restrict which components can listen to
which events, whether a component can listen to its own events, and
how many publish-subscribe connectors can exist within a system.
A component may be both a publisher and a subscriber, by having
ports of both types.

Weaknesses Typically increases latency and has a negative effect on scalability and
predictability of message delivery time.
Less control over ordering of messages, and delivery of messages is
not guaranteed.

228 Part two Quality attributes 13—Architectural Tactics and Patterns

There are some specific refinements of this pattern that are in common use.
We will describe several of these later in this section.

The computational model for the publish-subscribe pattern is best thought of
as a system of independent processes or objects, which react to events generated
by their environment, and which in turn cause reactions in other components as
a side effect of their event announcements. An example of the publish-subscribe
pattern, implemented on top of the Eclipse platform, is shown in Figure 13.12.

Typical examples of systems that employ the publish-subscribe pattern are
the following:

 ■ Graphical user interfaces, in which a user’s low-level input actions are
treated as events that are routed to appropriate input handlers

 ■ MVC-based applications, in which view components are notified when the
state of a model object changes

 ■ Enterprise resource planning (ERP) systems, which integrate many compo-
nents, each of which is only interested in a subset of system events

 ■ Extensible programming environments, in which tools are coordinated
through events

 ■ Mailing lists, where a set of subscribers can register interest in specific
topics

Key:

E
cl

ip
se

 U
I e

ve
nt

 m
an

ag
er

Register
action
handlers

UI
event

handle
UI event

CRUD
fact data

assert/modify/
retract fact

SEI.ArchE.UI
plug-in config

views and
editors

Fact
data in

memory

ArchE
core

listener

action
handler

ArchE
core

façade
Jess

new or
setField()

notify data

change

register views as

observer of facts

register to fact

data changesnotify fact

data change

Action
handler
object

UI screen
object

Java
object

External
program

XML file
Event manager
(part of Eclipse
platform)

Register to
listen for event

Event send/
receive

Java method
call

fIGurE 13.12 A typical publish-subscribe pattern realization

13.2 Overview of the Patterns Catalog 229

 ■ Social networks, where “friends” are notified when changes occur to a
person’s website

The publish-subscribe pattern is used to send events and messages to an un-
known set of recipients. Because the set of event recipients is unknown to the
event producer, the correctness of the producer cannot, in general, depend on
those recipients. Thus, new recipients can be added without modification to the
producers.

Having components be ignorant of each other’s identity results in easy mod-
ification of the system (adding or removing producers and consumers of data) but
at the cost of runtime performance, because the publish-subscribe infrastructure
is a kind of indirection, which adds latency. In addition, if the publish-subscribe
connector fails completely, this is a single point of failure for the entire system.

The publish-subscribe pattern can take several forms:

 ■ List-based publish-subscribe is a realization of the pattern where every
publisher maintains a subscription list—a list of subscribers that have
registered an interest in receiving the event. This version of the pattern is
less decoupled than others, as we shall see below, and hence it does not
provide as much modifiability, but it can be quite efficient in terms of
runtime overhead. Also, if the components are distributed, there is no single
point of failure.

 ■ Broadcast-based publish-subscribe differs from list-based publish-
subscribe in that publishers have less (or no) knowledge of the subscribers.
Publishers simply publish events, which are then broadcast. Subscribers
(or in a distributed system, services that act on behalf of the subscribers)
examine each event as it arrives and determine whether the published event
is of interest. This version has the potential to be very inefficient if there
are lots of messages and most messages are not of interest to a particular
subscriber.

 ■ Content-based publish-subscribe is distinguished from the previous two
variants, which are broadly categorized as “topic-based.” Topics are
predefined events, or messages, and a component subscribes to all events
within the topic. Content, on the other hand, is much more general. Each
event is associated with a set of attributes and is delivered to a subscriber
only if those attributes match subscriber-defined patterns.

In practice the publish-subscribe pattern is typically realized by some form
of message-oriented middleware, where the middleware is realized as a broker,
managing the connections and channels of information between producers and
consumers. This middleware is often responsible for the transformation of mes-
sages (or message protocols), in addition to routing and sometimes storing the
messages. Thus the publish-subscribe pattern inherits the strengths and weak-
nesses of the broker pattern.

230 Part two Quality attributes 13—Architectural Tactics and Patterns

Shared-Data Pattern
Context: Various computational components need to share and manipulate large
amounts of data. This data does not belong solely to any one of those components.

Problem: How can systems store and manipulate persistent data that is accessed
by multiple independent components?

Solution: In the shared-data pattern, interaction is dominated by the exchange of
persistent data between multiple data accessors and at least one shared-data store.
Exchange may be initiated by the accessors or the data store. The connector type is
data reading and writing. The general computational model associated with shared-
data systems is that data accessors perform operations that require data from the data
store and write results to one or more data stores. That data can be viewed and acted
on by other data accessors. In a pure shared-data system, data accessors interact only
through one or more shared-data stores. However, in practice shared-data systems
also allow direct interactions between data accessors. The data-store components of
a shared-data system provide shared access to data, support data persistence, man-
age concurrent access to data through transaction management, provide fault toler-
ance, support access control, and handle the distribution and caching of data values.

Specializations of the shared-data pattern differ with respect to the nature
of the stored data—existing approaches include relational, object structures, lay-
ered, and hierarchical structures.

Although the sharing of data is a critical task for most large, complex sys-
tems, there are a number of potential problems associated with this pattern. For
one, the shared-data store may be a performance bottleneck. For this reason,
performance optimization has been a common theme in database research. The
shared-data store is also potentially a single point of failure. Also, the producers
and consumers of the shared data may be tightly coupled, through their knowl-
edge of the structure of the shared data.

The shared-data pattern solution is summarized in Table 13.9.
The shared-data pattern is useful whenever various data items are persistent and

have multiple accessors. Use of this pattern has the effect of decoupling the producer
of the data from the consumers of the data; hence, this pattern supports modifiabil-
ity, as the producers do not have direct knowledge of the consumers. Consolidating
the data in one or more locations and accessing it in a common fashion facilitates
performance tuning. Analyses associated with this pattern usually center on qualities
such as data consistency, performance, security, privacy, availability, scalability, and
compatibility with, for example, existing repositories and their data.

When a system has more than one data store, a key architecture concern is the
mapping of data and computation to the data. Use of multiple stores may occur be-
cause the data is naturally, or historically, partitioned into separable stores. In other
cases data may be replicated over several stores to improve performance or availabil-
ity through redundancy. Such choices can strongly affect the qualities noted above.

Figure 13.13 shows the diagram of a shared-data view of an enterprise access
management system. There are three types of accessor components: Windows

13.2 Overview of the Patterns Catalog 231

applications, web applications, and headless programs (programs or scripts that
run in background and don’t provide any user interface).

tablE 13.9 Shared-Data Pattern Solution

Overview Communication between data accessors is mediated by a shared-
data store. Control may be initiated by the data accessors or the
data store. Data is made persistent by the data store.

Elements Shared-data store. Concerns include types of data stored, data
performance-oriented properties, data distribution, and number of
accessors permitted.
Data accessor component.
Data reading and writing connector. An important choice here is
whether the connector is transactional or not, as well as the read/
write language, protocols, and semantics.

Relations Attachment relation determines which data accessors are
connected to which data stores.

Constraints Data accessors interact with the data store(s).

Weaknesses The shared-data store may be a performance bottleneck.
The shared-data store may be a single point of failure.
Producers and consumers of data may be tightly coupled.

Key:

Password
synchronizer

Windows
AD

Microsoft
Exchange

Server

Authentication

Application

Web
sign-in

Web
application

Password
reset

Self
registration

HR database

Account
provisioning

centralized security realm

Rights
enablement

Entitlement
management

Delegated
administration

Request
tracking

Audit and
monitoring

Windows GUI
application

Headless
program

Web
application

Data
repository

Data
read

Data
write

Data
read & write

fIGurE 13.13 The shared-data diagram of an enterprise access management
system

232 Part two Quality attributes 13—Architectural Tactics and Patterns

allocation Patterns

Map-Reduce Pattern
Context: Businesses have a pressing need to quickly analyze enormous volumes
of data they generate or access, at petabyte scale. Examples include logs of inter-
actions in a social network site, massive document or data repositories, and pairs
of <source, target> web links for a search engine. Programs for the analysis of
this data should be easy to write, run efficiently, and be resilient with respect to
hardware failure.

Problem: For many applications with ultra-large data sets, sorting the data and
then analyzing the grouped data is sufficient. The problem the map-reduce pat-
tern solves is to efficiently perform a distributed and parallel sort of a large data
set and provide a simple means for the programmer to specify the analysis to be
done.

Solution: The map-reduce pattern requires three parts: First, a specialized infra-
structure takes care of allocating software to the hardware nodes in a massively
parallel computing environment and handles sorting the data as needed. A node
may be a standalone processor or a core in a multi-core chip. Second and third are
two programmer-coded functions called, predictably enough, map and reduce.

The map function takes as input a key (key1) and a data set. The purpose of
the map function is to filter and sort the data set. All of the heavy analysis takes
place in the reduce function. The input key in the map function is used to filter
the data. Whether a data record is to be involved in further processing is deter-
mined by the map function. A second key (key2) is also important in the map
function. This is the key that is used for sorting. The output of the map function
consists of a <key2, value> pair, where the key2 is the sorting value and the value
is derived from the input record.

Sorting is performed by a combination of the map and the infrastructure.
Each record output by map is hashed by key2 into a disk partition. The infra-
structure maintains an index file for key2 on the disk partition. This allows for the
values on the disk partition to be retrieved in key2 order.

The performance of the map phase of map-reduce is enhanced by having
multiple map instances, each processing a different portion of the disk file being
processed. Figure 13.14 shows how the map portion of map-reduce processes
data. An input file is divided into portions, and a number of map instances are
created to process each portion. The map function processes its portion into a
number of partitions, based on programmer-specified logic.

The reduce function is provided with all the sets of <key2, value> pairs emit-
ted by all the map instances in sorted order. Reduce does some programmer-spec-
ified analysis and then emits the results of that analysis. The output set is almost
always much smaller than the input sets, hence the name “reduce.” The term
“load” is sometimes used to describe the final set of data emitted. Figure 13.14
also shows one instance (of many possible instances) of the reduce processing,

13.2 Overview of the Patterns Catalog 233

called Reduce Instance 2. Reduce Instance 2 is receiving data from all of the
Partition 2s produced by the various map instances. It is possible that there are
several iterations of reduce for large files, but this is not shown in Figure 13.14.

A classic teaching problem for map-reduce is counting word occurrences
in a document. This example can be carried out with a single map function. The
document is the data set. The map function will find every word in the document
and output a <word, 1> pair for each. For example, if the document begins with
the words “Having a whole book . . . ,” then the first results of map will be

<Having, 1>
<a, 1>
<whole, 1>
<book, 1>

In practice, the “a” would be one of the words filtered by map.
Pseudocode for map might look like this:

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
Emit (w, “1”);

Portion i of
input file

Portion j of
input file

Reduce
instance 2

Output
from

instance 2

Map instance j

Partition 1 Partition 2 Partition 3

Partition 1 Partition 2 Partition 3

Component

Disk file

Output

Key:

Merge

Map instance i

fIGurE 13.14 A component-and-connector view of map-reduce showing how the
data processed by map is partitioned and subsequently processed by reduce

234 Part two Quality attributes 13—Architectural Tactics and Patterns

The reduce function will take that list in sorted order, add up the 1s for each
word to get a count, and output the result.

The corresponding reduce function would look like this:

reduce(List <key, value>):
// key: a word
// value: an integer
int result = 0;
sort input
for each input value:
for each input pair with same word
result ++ ;
Emit (word, result)
result = 0

Larger data sets lead to a much more interesting solution. Suppose we want
to continuously analyze Twitter posts over the last hour to see what topics are
currently “trending.” This is analogous to counting word occurrences in millions
of documents. In that case, each document (tweet) can be assigned to its own in-
stance of the map function. (If you don’t have millions of processors handy, you
can break the tweet collection into groups that match the number of processors
in your processor farm, and process the collection in waves, one group after the
other.) Or we can use a dictionary to give us a list of words, and each map func-
tion can be assigned its own word to look for across all tweets.

There can also be multiple instances of reduce. These are usually arranged
so that the reduction happens in stages, with each stage processing a smaller list
(with a smaller number of reduce instances) than the previous stage. The final
stage is handled by a single reduce function that produces the final output.

Of course, the map-reduce pattern is not appropriate in all instances. Some
considerations that would argue against adopting this pattern are these:

 ■ If you do not have large data sets, then the overhead of map-reduce is not
justified.

 ■ If you cannot divide your data set into similar sized subsets, the advantages
of parallelism are lost.

 ■ If you have operations that require multiple reduces, this will be complex to
orchestrate.

Commercial implementations of map-reduce provide infrastructure that
takes care of assignment of function instances to hardware, recovery and reas-
signment in case of hardware failure (a common occurrence in massively parallel
computing environments), and utilities like sorting of the massive lists that are
produced along the way.

Table 13.10 summarizes the solution of the map-reduce pattern.
Map-reduce is a cornerstone of the software of some of the most familiar

names on the web, including Google, Facebook, eBay, and Yahoo!

13.2 Overview of the Patterns Catalog 235

tablE 13.10 Map-Reduce Pattern Solution

Overview The map-reduce pattern provides a framework for analyzing a
large distributed set of data that will execute in parallel, on a set
of processors. This parallelization allows for low latency and high
availability. The map performs the extract and transform portions
of the analysis and the reduce performs the loading of the results.
(Extract-transform-load is sometimes used to describe the functions of
the map and reduce.)

Elements Map is a function with multiple instances deployed across multiple
processors that performs the extract and transformation portions of
the analysis.
Reduce is a function that may be deployed as a single instance or as
multiple instances across processors to perform the load portion of
extract-transform-load.
The infrastructure is the framework responsible for deploying map and
reduce instances, shepherding the data between them, and detecting
and recovering from failure.

Relations Deploy on is the relation between an instance of a map or reduce
function and the processor onto which it is installed.
Instantiate, monitor, and control is the relation between the
infrastructure and the instances of map and reduce.

Constraints The data to be analyzed must exist as a set of files.
The map functions are stateless and do not communicate with each
other.
The only communication between the map instances and the reduce
instances is the data emitted from the map instances as <key, value>
pairs.

Weaknesses If you do not have large data sets, the overhead of map-reduce is not
justified.
If you cannot divide your data set into similar sized subsets, the
advantages of parallelism are lost.
Operations that require multiple reduces are complex to orchestrate.

Multi-tier Pattern
The multi-tier pattern is a C&C pattern or an allocation pattern, depending on the
criteria used to define the tiers. Tiers can be created to group components of similar
functionality, in which case it is a C&C pattern. However, in many, if not most,
cases tiers are defined with an eye toward the computing environment on which
the software will run: A client tier in an enterprise system will not be running on
the computer that hosts the database. That makes it an allocation pattern, mapping
software elements—perhaps produced by applying C&C patterns—to computing
elements. Because of that reason, we have chosen to list it as an allocation pattern.

Context: In a distributed deployment, there is often a need to distribute a sys-
tem’s infrastructure into distinct subsets. This may be for operational or business
reasons (for example, different parts of the infrastructure may belong to different
organizations).

236 Part two Quality attributes 13—Architectural Tactics and Patterns

Problem: How can we split the system into a number of computationally inde-
pendent execution structures—groups of software and hardware—connected by
some communications media? This is done to provide specific server environ-
ments optimized for operational requirements and resource usage.

Solution: The execution structures of many systems are organized as a set of
logical groupings of components. Each grouping is termed a tier. The grouping
of components into tiers may be based on a variety of criteria, such as the type of
component, sharing the same execution environment, or having the same runtime
purpose.

The use of tiers may be applied to any collection (or pattern) of runtime
components, although in practice it is most often used in the context of cli-
ent-server patterns. Tiers induce topological constraints that restrict which com-
ponents may communicate with other components. Specifically, connectors may
exist only between components in the same tier or residing in adjacent tiers. The
multi-tier pattern found in many Java EE and Microsoft .NET applications is an
example of organization in tiers derived from the client-server pattern.

Additionally, tiers may constrain the kinds of communication that can take
place across adjacent tiers. For example, some tiered patterns require call-return
communication in one direction but event-based notification in the other.

The main weakness with the multi-tier architecture is its cost and complex-
ity. For simple systems, the benefits of the multi-tier architecture may not justify
its up-front and ongoing costs, in terms of hardware, software, and design and
implementation complexity.

Tiers are not components, but rather logical groupings of components. Also,
don’t confuse tiers with layers! Layering is a pattern of modules (a unit of imple-
mentation), while tiers applies only to runtime entities.

Table 13.11 summarizes the solution part of the multi-tier pattern.
Tiers make it easier to ensure security, and to optimize performance and

availability in specialized ways. They also enhance the modifiability of the sys-
tem, as the computationally independent subgroups need to agree on protocols
for interaction, thus reducing their coupling.

Figure 13.15 uses an informal notation to describe the multi-tier architecture
of the Consumer Website Java EE application. This application is part of the Ad-
venture Builder system. Many component-and-connector types are specific to the
supporting platform, which is Java EE in this case.

13.2 Overview of the Patterns Catalog 237

tablE 13.11 Multi-tier Pattern Solution

Overview The execution structures of many systems are organized as a
set of logical groupings of components. Each grouping is termed
a tier. The grouping of components into tiers may be based on a
variety of criteria, such as the type of component, sharing the same
execution environment, or having the same runtime purpose.

Elements Tier, which is a logical grouping of software components.
Tiers may be formed on the basis of common computing platforms,
in which case those platforms are also elements of the pattern.

Relations Is part of, to group components into tiers.
Communicates with, to show how tiers and the components they
contain interact with each other.
Allocated to, in the case that tiers map to computing platforms.

Constraints A software component belongs to exactly one tier.

Weaknesses Substantial up-front cost and complexity.

Key

Web
browser

S
ig

n
O

n
Fi

lt
er

*.do

*.screen

Main
Servlet

Template
Servlet

Screen
JSP

index.jsp

Sign On
Notifier

mappings.xml

screen
definitions.xml

sign-on-
config.xml

Order
Facade

EJB tier Back endWeb tierClient tier

Catalog
Facade OPC

Adventure
Catalog

DB

User
Mgmt
Facade

OpcOrder
TrackingService

OpcPurchase
OrderService

Client-side
application

Java
EE
filter

Stateless
session
bean

Java EE
application

Context
listener

Data
store

File
Servlet

ContainerWeb services
endpoint

SOAP
call

File
I/O

Java
call

HTTP/
HTTPS

JDBC

fIGurE 13.15 A multi-tier view of the Consumer Website Java EE application,
which is part of the Adventure Builder system

238 Part two Quality attributes 13—Architectural Tactics and Patterns

Other allocation Patterns. There are several published deployment styles.
Microsoft publishes a “Tiered Distribution” pattern, which prescribes a particular
allocation of components in a multi-tier architecture to the hardware they will run
on. Similarly, IBM’s WebSphere handbooks describe a number of what they call
“topologies” along with the quality attribute criteria for choosing among them.
There are 11 topologies (specialized deployment patterns) described for Web-
Sphere version 6, including the “single machine topology (stand-alone server),”
“reverse proxy topology,” “vertical scaling topology,” “horizontal scaling topol-
ogy,” and “horizontal scaling with IP sprayer topology.”

There are also published work assignment patterns. These take the form of
often-used team structures. For example, patterns for globally distributed Agile
projects include these:

 ■ Platform. In software product line development, one site is tasked with
developing reusable core assets of the product line, and other sites develop
applications that use the core assets.

 ■ Competence center. Work is allocated to sites depending on the technical
or domain expertise located at a site. For example, user interface design is
done at a site where usability engineering experts are located.

 ■ Open source. Many independent contributors develop the software product
in accordance with a technical integration strategy. Centralized control is
minimal, except when an independent contributor integrates his code into
the product line.

13.3 relationships between tactics and Patterns

Patterns and tactics together constitute the software architect’s primary tools of
the trade. How do they relate to each other?

Patterns comprise tactics

As we said in the introduction to this chapter, tactics are the “building blocks”
of design from which architectural patterns are created. Tactics are atoms and
patterns are molecules. Most patterns consist of (are constructed from) several
different tactics, and although these tactics might all serve a common purpose—
such as promoting modifiability, for example—they are often chosen to promote
different quality attributes. For example, a tactic might be chosen that makes an
availability pattern more secure, or that mitigates the performance impact of a
modifiability pattern.

Consider the example of the layered pattern, the most common pattern in all
of software architecture (virtually all nontrivial systems employ layering). The

13.3 Relationships between Tactics and Patterns 239

layered pattern can be seen as the amalgam of several tactics—increase semantic
coherence, abstract common services, encapsulate, restrict communication paths,
and use an intermediary. For example:

 ■ Increase semantic coherence. The goal of ensuring that a layer’s respon-
sibilities all work together without excessive reliance on other layers
is achieved by choosing responsibilities that have semantic coherence.
Doing so binds responsibilities that are likely to be affected by a change.
For example, responsibilities that deal with hardware should be allocated
to a hardware layer and not to an application layer; a hardware respon-
sibility typically does not have semantic coherence with the application
responsibilities.

 ■ Restrict dependencies. Layers define an ordering and only allow a layer to
use the services of its adjacent lower layer. The possible communication
paths are reduced to the number of layers minus one. This limitation has a
great influence on the dependencies between the layers and makes it much
easier to limit the side effects of replacing a layer.

Without any one of its tactics, the pattern might be ineffective. For example,
if the restrict dependencies tactic is not employed, then any function in any layer
can call any other function in any other layer, destroying the low coupling that
makes the layering pattern effective. If the increase semantic coherence tactic
is not employed, then functionality could be randomly sprinkled throughout the
layers, destroying the separation of concerns, and hence ease of modification,
which is the prime motivation for employing layers in the first place.

Table 13.12 shows a number of the architectural patterns described in the
book Pattern-Oriented Software Architecture Volume 1: A System of Patterns, by
Buschmann et al., and shows which modifiability tactics they employ.

using tactics to augment Patterns

A pattern is described as a solution to a class of problems in a general context.
When a pattern is chosen and applied, the context of its application becomes very
specific. A documented pattern is therefore underspecified with respect to apply-
ing it in a specific situation.

To make a pattern work in a given architectural context, we need to examine
it from two perspectives:

 ■ The inherent quality attribute tradeoffs that the pattern makes. Patterns exist
to achieve certain quality attributes, and we need to compare the ones they
promote (and the ones they diminish) with our needs.

 ■ Other quality attributes that the pattern isn’t directly concerned with, but
which it nevertheless affects, and which are important in our application.

240 Part two Quality attributes 13—Architectural Tactics and Patterns

tablE 13.12 Architecture Patterns and Corresponding Tactics ([Bachmann 07])

Pattern

Modifiability

Increase
cohesion reduce coupling

defer binding
time

In
cr

ea
se

 S
em

an
ti

c
c

o
h

er
en

ce

a
b

st
ra

ct
 c

o
m

m
o

n

S
er

vi
ce

s

E
n

ca
p

su
la

te

u
se

 a
 W

ra
p

p
er

r
es

tr
ic

t c
o

m
m

.
P

at
h

s

u
se

 a
n

In

te
rm

ed
ia

ry

r
ai

se
 t

h
e

a
b

st
ra

ct
io

n
 l

ev
el

u
se

 r
u

n
ti

m
e

r
eg

is
tr

at
io

n

u
se

 S
ta

rt
u

p
-t

im
e

b
in

d
in

g

u
se

 r
u

n
ti

m
e

b
in

d
in

g

Layered X X X X X X

Pipes and Filters X X X X X

Blackboard X X X X X X X

Broker X X X X X X X

Model View
Controller

X X X X

Presentation
Abstraction Control

X X X X

Microkernel X X X X X

Reflection X X

To illustrate these concerns in particular, and how to use tactics to augment
patterns in general, we’ll use the broker pattern as a starting point.

The broker pattern is widely used in distributed systems and dates back at
least to its critical role in CORBA-based systems. Broker is a crucial component
of any large-scale, dynamic, service-oriented architecture.

Using this pattern, a client requesting some information from a server does
not need to know the location or APIs of the server. The client simply contacts
the broker (typically through a client-side proxy); this is illustrated in the UML
sequence diagram in Figure 13.16.

Weaknesses of the broker Pattern. In Section 13.2 we enumerated sev-
eral weaknesses of the broker pattern. Here we will examine these weaknesses
in more detail. The broker pattern has several weaknesses with respect to certain
quality attributes. For example:

 ■ Availability. The broker, if implemented as suggested in Figure 13.6, is a
single point of failure. The liveness of servers, the broker, and perhaps even
the clients need to be monitored, and repair mechanisms must be provided.

13.3 Relationships between Tactics and Patterns 241

:Client :ClientProxy :ServerProxy :Server

process boundary

registerServer()

marshallRequest()

unmarshallRequest()

clientID

serverID

OK

resultA

resultA

sendRequest()

marshallResponse()

unmarshallResponse()

sendResponse()

performFunctionA()

performFunctionA()

locateServer()

locateClient()

process boundary

:Broker

fIGurE 13.16 A sequence diagram showing a typical client-server interaction
mediated by a broker

 ■ Performance. The levels of indirection between the client (requesting
the information or service) and the server (providing the information or
service) add overhead, and hence add latency. Also, the broker is a potential
performance bottleneck if direct communication between the client and
server is not desired (for example, for security reasons).

 ■ Testability. Brokers are employed in complex multi-process and multi-
processor systems. Such systems are typically highly dynamic. Requests
and responses are typically asynchronous. All of this makes testing and
debugging such systems extremely difficult. But the description of the
broker pattern provides no testing functionality, such as testing interfaces,
state or activity capture and playback capabilities, and so forth.

242 Part two Quality attributes 13—Architectural Tactics and Patterns

 ■ Security. Because the broker pattern is primarily used when the system
spans process and processor boundaries—such as on web-based systems—
security is a legitimate concern. However, the broker pattern as presented
does not offer any means to authenticate or authorize clients or servers, and
provides no means of protecting the communication between clients and
servers.

Of these quality attributes, the broker pattern is mainly associated with
poor performance (the well-documented price for the loose coupling it brings to
systems). It is largely unconcerned with the other quality attributes in this list;
they aren’t mentioned in most published descriptions. But as the other bullets
show, they can be unacceptable “collateral damage” that come with the broker’s
benefits.

Improving the broker Pattern with tactics. How can we use tactics to
plug the gaps between the “out of the box” broker pattern and a version of it that
will let us meet the requirements of a demanding distributed system? Here are
some options:

 ■ The increase available resources performance tactic would lead to multiple
brokers, to help with performance and availability.

 ■ The maintain multiple copies tactic would allow each of these brokers to
share state, to ensure that they respond identically to client requests.

 ■ Load balancing (an application of the scheduling resources tactic) would
ensure that one broker is not overloaded while another one sits idle.

 ■ Heartbeat, exception detection, or ping/echo would give the replicated
brokers a way of notifying clients and notifying each other when one of
them is out of service, as a means of detecting faults.

Of course, each of these tactics brings a tradeoff. Each complicates the de-
sign, which will now take longer to implement, be more costly to acquire, and
be more costly to maintain. Load balancing introduces indirection that will add
latency to each transaction, thus giving back some of the performance it was in-
tended to increase. And the load balancer is a single point of failure, so it too
must be replicated, further increasing the design cost and complexity.

13.4 using tactics together

Tactics, as described in Chapters 5–11, are design primitives aimed at managing
a single quality attribute response. Of course, this is almost never true in prac-
tice; every tactic has its main effect—to manage modifiability or performance
or safety, and so on—and it has its side effects, its tradeoffs. On the face of it,
the situation for an architect sounds hopeless. Whatever you do to improve one

13.4 Using Tactics Together 243

quality attribute endangers another. We are able to use tactics profitably because
we can gauge the direct and side effects of a tactic, and when the tradeoff is ac-
ceptable, we employ the tactic. In doing so we gain some benefit in our quality
attribute of interest while giving up something else (with respect to a different
quality attribute and, we hope, of a much smaller magnitude).

This section will walk through an example that shows how applying tactics
to a pattern can produce negative effects in one area, but how adding other tactics
can bring relief and put you back in an acceptable design space. The point is to
show the interplay between tactics that you can use to your advantage. Just as
some combinations of liquids are noxious whereas others yield lovely things like
strawberry lemonade, tactics can either make things worse or put you in a happy
design space. Here, then, is a walkthrough of tactic mixology.

Consider a system that needs to detect faults in its components. A common
tactic for detecting faults is ping/echo. Let us assume that the architect has de-
cided to employ ping/echo as a way to detect failed components in the system.
Every tactic has one or more side effects, and ping/echo is no different. Common
considerations associated with ping/echo are these:

 ■ Security. How to prevent a ping flood attack?
 ■ Performance. How to ensure that the performance overhead of ping/echo is

small?
 ■ Modifiability. How to add ping/echo to the existing architecture?

We can represent the architect’s reasoning and decisions thus far as shown
in Figure 13.17.

System

Ping/Echo

Add to
system

Ping
flood

Performance
overhead

fIGurE 13.17 Partial availability decisions

244 Part two Quality attributes 13—Architectural Tactics and Patterns

Suppose the architect determines that the performance tradeoff (the overhead
of adding ping/echo to the system) is the most severe. A tactic to address the
performance side effect is increase available resources. Considerations associated
with increase available resources are these:

 ■ Cost. Increased resources cost more.
 ■ Performance. How to utilize the increased resources efficiently?

This set of design decisions can now be represented as shown in Figure 13.18.
Now the architect chooses to deal with the resource utilization consequence

of employing increase available resources. These resources must be used efficiently
or else they are simply adding cost and complexity to the system. A tactic that can
address the efficient use of resources is the employment of a scheduling policy. Con-
siderations associated with the scheduling policy tactic are these:

 ■ Modifiability. How to add the scheduling policy to the existing architecture?
 ■ Modifiability. How to change the scheduling policy in the future?

System

Ping/Echo

Add to
system

Ping
flood

Performance
overhead

Cost Resource
utilization

Increase Available
Resources

fIGurE 13.18 More availability decisions

13.4 Using Tactics Together 245

The set of design decisions that includes the scheduling policy tactic can
now be represented as in Figure 13.19.

Next the architect chooses to deal with the modifiability consequence of
employing a scheduling policy tactic. A tactic to address the addition of the
scheduler to the system is to use an intermediary, which will insulate the choice
of scheduling policy from the rest of the system. One consideration associated
with use an intermediary is this:

 ■ Modifiability. How to ensure that all communication passes through the
intermediary?

System

Ping/Echo

Add to
system

Ping
flood

Performance
overhead

Cost Resource
utilization

Increase Available
Resources

Add to
system

Modify
policy

Scheduling
Policy

fIGurE 13.19 Still more availability decisions

246 Part two Quality attributes 13—Architectural Tactics and Patterns

We can now represent the tactics-based set of architectural design decisions
made thus far as in Figure 13.20.

A tactic to address the concern that all communication passes through the
intermediary is restrict dependencies. One consideration associated with the
restrict dependencies tactic is this:

 ■ Performance. How to ensure that the performance overhead of the
intermediary is not excessive?

This design problem has now become recursive! At this point (or in fact,
at any point in the tree of design decisions that we have described) the architect
might determine that the performance overhead of the intermediary is small
enough that no further design decisions need to be made.

System

Ping/Echo

Add to
system

Ping
flood

Performance
overhead

Cost Resource
utilization

Increase available
Resources

Add to
system

Modify
policy

Scheduling
Policy

Ensure usage

Use an intermediary

fIGurE 13.20 As far as we go with availability decisions

13.5 Summary 247

Applying successive tactics is like moving through a game space, and it’s a
little like chess: Good players are able to see the consequences of the move they’re
considering, and the very good players are able to look several moves ahead. In
Chapter 17 we’ll see the activity of design treated as an exercise of “generate and
test”: propose a design and test it to see if it’s satisfactory. Applying tactics to
an existing design solution, such as a pattern, is one technique for generating a
design for subsequent testing.

13.5 Summary

An architectural pattern

 ■ is a package of design decisions that is found repeatedly in practice,
 ■ has known properties that permit reuse, and
 ■ describes a class of architectures.

Because patterns are (by definition) found repeatedly in practice, one does
not invent them; one discovers them.

Tactics are simpler than patterns. Tactics typically use just a single structure
or computational mechanism, and they are meant to address a single architectural
force. For this reason they give more precise control to an architect when
making design decisions than patterns, which typically combine multiple design
decisions into a package. Tactics are the “building blocks” of design from which
architectural patterns are created. Tactics are atoms and patterns are molecules.

An architectural pattern establishes a relationship between:

 ■ A context. A recurring, common situation in the world that gives rise to a
problem.

 ■ A problem. The problem, appropriately generalized, that arises in the given
context.

 ■ A solution. A successful architectural resolution to the problem,
appropriately abstracted.

Complex systems exhibit multiple patterns at once.
Patterns can be categorized by the dominant type of elements that they show:

module patterns show modules, component-and-connector patterns show compo-
nents and connectors, and allocation patterns show a combination of software
elements (modules, components, connectors) and nonsoftware elements. Most
published patterns are C&C patterns, but there are module patterns and allocation
patterns as well. This chapter showed examples of each type.

A pattern is described as a solution to a class of problems in a general con-
text. When a pattern is chosen and applied, the context of its application becomes
very specific. A documented pattern is therefore underspecified with respect to

248 Part two Quality attributes 13—Architectural Tactics and Patterns

applying it in a specific situation. We can make a pattern more specific to our
problem by augmenting it with tactics. Applying successive tactics is like mov-
ing through a game space, and is a little like chess: the consequences of the next
move are important, and looking several moves ahead is helpful.

13.6 for further reading

There are many existing repositories of patterns and books written about patterns.
The original and most well-known work on object-oriented design patterns is by
the “Gang of Four” [Gamma 94].

The Gang of Four’s discussion of patterns included patterns at many levels
of abstraction. In this chapter we have focused entirely on architectural patterns.
The patterns that we have presented here are intended as representative examples.
This chapter’s inventory of patterns is in no way meant to be exhaustive. For
example, while we describe the SOA pattern, entire repositories of SOA patterns
(refinements of the basic SOA pattern) have been created. A good place to start is
www.soapatterns.org.

Some good references for pattern-oriented architecture are [Buschmann 96],
[Hanmer 07], [Schmidt 00], and [Kircher 03].

A good place to learn more about the map-reduce pattern is Google’s foun-
dational paper on it [Dean 04].

Map-reduce is the tip of the spear of the so-called “NoSQL” movement,
which seeks to displace the relational database from its venerable and taken-for-
granted status in large data-processing systems. The movement has some of the
revolutionary flavor of the Agile movement, except that NoSQL advocates are
claiming a better (for them) technology, as opposed to a better process. You can
easily find NoSQL podcasts, user forums, conferences, and blogs; it’s also dis-
cussed in Chapter 26.

[Bachmann 07] discusses the use of tactics in the layered pattern and is the
source for some of our discussion of that.

The passage in this chapter about augmenting ping/echo with other tactics
to achieve the desired combination of quality attributes is based on the work of
Kiran Kumar and TV Prabhakar [Kumar 10a] and [Kumar 10b].

[Urdangarin 08] is the source of the work assignment patterns described in
Section 13.2.

The Adventure Builder system shown in Figures 13.11 and 13.15 comes
from [AdvBuilder 10].

http://www.soapatterns.org

13.7 Discussion Questions 249

13.7 discussion Questions

1. What’s the difference between an architectural pattern, such as those de-
scribed in this chapter and in the Pattern-Oriented Software Architecture
series of books, and design patterns, such as those collected by the Gang of
Four in 1994 and many other people subsequently? Given a pattern, how
would you decide whether it was an architectural pattern, a design pattern,
a code pattern, or something else?

2. SOA systems feature dynamic service registration and discovery. Which
quality attributes does this capability enhance and which does it threaten?
If you had to make a recommendation to your boss about whether your
company’s SOA system should use external services it discovers at runtime,
what would you say?

3. Write a complete pattern description for the “competence center” work as-
signment pattern mentioned in Section 13.2.

4. For a data set that is a set of web pages, sketch a map function and a reduce
function that together provide a basic search engine capability.

5. Describe how the layered pattern makes use of these tactics: abstract com-
mon services, encapsulate, and use an intermediary.

This page intentionally left blank

251

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

14
Quality Attribute
Modeling and Analysis

Do not believe in anything simply because you have
heard it . . . Do not believe in anything merely on
the authority of your teachers and elders. Do not

believe in traditions because they have been handed
down for many generations. But after observation
and analysis, when you find that anything agrees

with reason and is conducive to the good and benefit
of one and all, then accept it and live up to it.

—Prince Gautama Siddhartha

In Chapter 2 we listed thirteen reasons why architecture is important, worth
studying, and worth practicing. Reason 6 is that the analysis of an architecture
enables early prediction of a system’s qualities. This is an extraordinarily pow-
erful reason! Without it, we would be reduced to building systems by choosing
various structures, implementing the system, measuring the system for its quality
attribute responses, and all along the way hoping for the best. Architecture lets
us do better than that, much better. We can analyze an architecture to see how
the system or systems we build from it will perform with respect to their quality
attribute goals, even before a single line of code has been written. This chapter
will explore how.

The methods available depend, to a large extent, on the quality attribute to
be analyzed. Some quality attributes, especially performance and availability,
have well-understood and strongly validated analytic modeling techniques. Other
quality attributes, for example security, can be analyzed through checklists. Still
others can be analyzed through back-of-the-envelope calculations and thought
experiments.

Our topics in this chapter range from the specific, such as creating models
and analyzing checklists, to the general, such as how to generate and carry out the
thought experiments to perform early (and necessarily crude) analysis. Models

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

252 Part two Quality attributes 14—Quality Attribute Modeling and Analysis

and checklists are focused on particular quality attributes but can aid in the anal-
ysis of any system with respect to those attributes. Thought experiments, on the
other hand, can consider multiple quality attributes simultaneously but are only
applicable to the specific system under consideration.

14.1 Modeling architectures to Enable
Quality attribute analysis

Some quality attributes, most notably performance and availability, have well-un-
derstood, time-tested analytic models that can be used to assist in an analysis.
By analytic model, we mean one that supports quantitative analysis. Let us first
consider performance.

analyzing Performance

In Chapter 12 we discussed the fact that models have parameters, which are val-
ues you can set to predict values about the entity being modeled (and in Chap-
ter 12 we showed how to use the parameters to help us derive tactics for the
quality attribute associated with the model). As an example we showed a queuing
model for performance as Figure 12.2, repeated here as Figure 14.1. The parame-
ters of this model are the following:

 ■ The arrival rate of events
 ■ The chosen queuing discipline
 ■ The chosen scheduling algorithm
 ■ The service time for events
 ■ The network topology
 ■ The network bandwidth
 ■ The routing algorithm chosen

In this section, we discuss how such a model can be used to understand the
latency characteristics of an architectural design.

To apply this model in an analytical fashion, we also need to have previ-
ously made some architecture design decisions. We will use model-view-control-
ler as our example here. MVC, as presented in Section 13.2, says nothing about
its deployment. That is, there is no specification of how the model, the view, and
the controller are assigned to processes and processors; that’s not part of the pat-
tern’s concern. These and other design decisions have to be made to transform
a pattern into an architecture. Until that happens, one cannot say anything with
authority about how an MVC-based implementation will perform. For this exam-
ple we will assume that there is one instance each of the model, the view, and the
controller, and that each instance is allocated to a separate processor. Figure 14.2
shows MVC following this allocation scheme.

14.1 Modeling Architectures to Enable Quality Attribute Analysis 253

Results

Routing of
messages

Arrivals

Queue

Server

Scheduling
algorithm

fIGurE 14.1 A queuing model of performance

Internet intranet

<<deploy>> <<deploy>> <<deploy>>

Database
host

<<component>>

Model

User’s
machine

<<component>>

View

App
server

<<component>>

Controller

Key: UML 2.0

fIGurE 14.2 An allocation view, in UML, of a model-view-controller architecture

Given that quality attribute models such as the performance model shown
in Figure 14.1 already exist, the problem becomes how to map these allocation
and coordination decisions onto Figure 14.1. Doing this yields Figure 14.3.
There are requests coming from users outside the system—labeled as 1 in Fig-
ure 14.3—arriving at the view. The view processes the requests and sends some

254 Part two Quality attributes 14—Quality Attribute Modeling and Analysis

transformation of the requests on to the controller—labeled as 2. Some actions of
the controller are returned to the view—labeled as 3. The controller sends other
actions on to the model—labeled 4. The model performs its activities and sends
information back to the view—labeled 5.

To analyze the model in Figure 14.3, a number of items need to be known
or estimated:

 ■ The frequency of arrivals from outside the system
 ■ The queuing discipline used at the view queue
 ■ The time to process a message within the view
 ■ The number and size of messages that the view sends to the controller
 ■ The bandwidth of the network that connects the view and the controller
 ■ The queuing discipline used by the controller
 ■ The time to process a message within the controller
 ■ The number and size of messages that the controller sends back to the view
 ■ The bandwidth of the network used for messages from the controller to the

view
 ■ The number and size of messages that the controller sends to the model
 ■ The queuing discipline used by the model
 ■ The time to process a message within the model
 ■ The number and size of messages the model sends to the view
 ■ The bandwidth of the network connecting the model and the view

Users
generate
requests

1

2

3 4

5

Controller

Model

View

fIGurE 14.3 A queuing model of performance for MVC

14.1 Modeling Architectures to Enable Quality Attribute Analysis 255

Given all of these assumptions, the latency for the system can be estimated.
Sometimes well-known formulas from queuing theory apply. For situations where
there are no closed-form solutions, estimates can often be obtained through sim-
ulation. Simulations can be used to make more-realistic assumptions such as the
distribution of the event arrivals. The estimates are only as good as the assump-
tions, but they can serve to provide rough values that can be used either in design
or in evaluation; as better information is obtained, the estimates will improve.

A reasonably large number of parameters must be known or estimated to
construct the queuing model shown in Figure 14.3. The model must then be
solved or simulated to derive the expected latency. This is the cost side of the
cost/benefit of performing a queuing analysis. The benefit side is that as a result
of the analysis, there is an estimate for latency, and “what if” questions can be
easily answered. The question for you to decide is whether having an estimate of
the latency and the ability to answer “what if” questions is worth the cost of per-
forming the analysis. One way to answer this question is to consider the impor-
tance of having an estimate for the latency prior to constructing either the system
or a prototype that simulates an architecture under an assumed load. If having a
small latency is a crucial requirement upon which the success of the system re-
lies, then producing an estimate is appropriate.

Performance is a well-studied quality attribute with roots that extend beyond
the computer industry. For example, the queuing model given in Figure 14.1
dates from the 1930s. Queuing theory has been applied to factory floors, to bank-
ing queues, and to many other domains. Models for real-time performance, such
as rate monotonic analysis, also exist and have sophisticated analysis techniques.

analyzing availability

Another quality attribute with a well-understood analytic framework is availability.
Modeling an architecture for availability—or to put it more carefully, mod-

eling an architecture to determine the availability of a system based on that archi-
tecture—is a matter of determining the failure rate and the recovery time. As you
may recall from Chapter 5, availability can be expressed as

MTBF
(MTBF + MTTR)

This models what is known as steady-state availability, and it is used to
indicate the uptime of a system (or component of a system) over a sufficiently
long duration. In the equation, MTBF is the mean time between failure, which is
derived based on the expected value of the implementation’s failure probability
density function (PDF), and MTTR refers to the mean time to repair.

Just as for performance, to model an architecture for availability, we need
an architecture to analyze. So, suppose we want to increase the availability of a
system that uses the broker pattern, by applying redundancy tactics. Figure 14.4

256 Part Two Quality Attributes 14—Quality Attribute Modeling and Analysis

illustrates three well-known redundancy tactics from Chapter 5: active redun-
dancy, passive redundancy, and cold spare. Our goal is to analyze each redun-
dancy option for its availability, to help us choose one.

As you recall, each of these tactics introduces a backup copy of a compo-
nent that will take over in case the primary component suffers a failure. In our
case, a broker replica is employed as the redundant spare. The difference among
them is how up to date with current events each backup keeps itself:

 ■ In the case of active redundancy, the active and redundant brokers both
receive identical copies of the messages received from the client and server
proxies. The internal broker state is synchronously maintained between the
active and redundant spare in order to facilitate rapid failover upon detec-
tion of a fault in the active broker.

 ■ For the passive redundancy implementation, only the active broker receives
and processes messages from the client and server proxies. When using this
tactic, checkpoints of internal broker state are periodically transmitted from
the active broker process to the redundant spare, using the checkpoint-based
rollback tactic.

 ■ Finally, when using the cold spare tactic, only the active broker receives
and processes messages from the client and server proxies, because the
redundant spare is in a dormant or even powered-off state. Recovery strate-
gies using this tactic involve powering up, booting, and loading the broker
implementation on the spare. In this scenario, the internal broker state is
rebuilt organically, rather than via synchronous operation or checkpointing,
as described for the other two redundancy tactics.

Suppose further that we will detect failure with the heartbeat tactic, where
each broker (active and spare) periodically transmits a heartbeat message to a
separate process responsible for fault detection, correlation, reporting, and recov-
ery. This fault manager process is responsible for coordinating the transition of
the active broker role from the failed broker process to the redundant spare.

You can now use the steady state model of availability to assign values for
MTBF and MTTR for each of the three redundancy tactics we are considering.
Doing so will be an exercise left to the reader (as you’ll see when you reach the
discussion questions for this chapter). Because the three tactics differ primarily in
how long it takes to bring the backup copy up to speed, MTTR will be where the
difference among the tactics shows up.

More sophisticated models of availability exist, based on probability. In
these models, we can express a probability of failure during a period of time.
Given a particular MTBF and a time duration T, the probability of failure R is
given by

R(T) = e()–T
MTBF

14.1 Modeling Architectures to Enable Quality Attribute Analysis 257

Broker
ACTIVE

Broker
SPARE

(Cold) Spare
Client-Server
Proxy Traffic

Broker
ACTIVE

Broker
SPARE

Passive
Redundancy

Client-Server
Proxy Traffic

Periodic
Checkpoint Data

Key:

message

processBroker
ACTIVE

Broker
SPARE

Active
Redundancy

Client-Server
Proxy Traffic

State
Synchronization

fIGurE 14.4 Redundancy tactics, as applied to a broker pattern

You will recall from Statistics 101 that:

 ■ When two events A and B are independent, the probability that A or B will
occur is the sum of the probability of each event: P(A or B) = P(A)
+ P(B).

 ■ When two events A and B are independent, the probability of both occur-
ring is P(A and B) = P(A) • P(B).

 ■ When two events A and B are dependent, the probability of both occurring
is P(A and B) = P(A) • P(B|A), where the last term means “the
probability of B occurring, given that A occurs.”

258 Part Two Quality Attributes 14—Quality Attribute Modeling and Analysis

We can apply simple probability arithmetic to an architecture pattern for
availability to determine the probability of failure of the pattern given the proba-
bility of failure of the individual components (and an understanding of their de-
pendency relations). For example, in an architecture pattern employing the pas-
sive redundancy tactic, let’s assume that the failure of a component (which at any
moment might be acting as either the primary or backup copy) is independent of
a failure of its counterpart, and that the probability of failure of either is the same.
Then the probability that both will fail is F = (1 – a) **2, where a is the
availability of an individual component (assuming that failures are independent).

Still other models take into account different levels of failure severity and
degraded operating states of the system. Although the derivation of these for-
mulas is outside the scope of this chapter, you end up with formulas that look
like the following for the three redundancy tactics we’ve been discussing, where
the values C2 through C5 are references to the MTBF column of Table 14.1, D2
through D4 refer to the Active column, E2 through E3 refer to the Passive col-
umn, and F2 through F3 refer to the Spare column.

 ■ Active redundancy:

 ■ Availability(MTTR): 1 –((SUM(C2:C5) + D3) × D2)/((C2 × (C2 + C4 +
D3) + ((C2 + C4 + D2) × (C3 + C5)) + ((C2 + C4) × (C2 + C4 + D3))))

 ■ P(Degraded) = ((C3 + C5) × D2)/((C2 × (C2 + C4 + D3) + ((C2 + C4 +
D2) × (C3 + C5)) + ((C2 + C4) × (C2 + C4 + D3))))

 ■ Passive redundancy:

 ■ Availability(MTTR_passive) = 1 – ((SUM(C2:C5) + E3) × E2)/((C2 ×
(C2 + C4 + E3) + ((C2 + C4 + E2) × (C3 + C5)) + ((C2 + C4) × (C2 +
C4 + E3))))

 ■ P(Degraded) = ((C3 + C5) × E2)/((C2 × (C2 + C4 + E3) + ((C2 + C4 +
E2) × (C3 + C5)) + ((C2 + C4) × (C2 + C4 + E3))))

 ■ Spare:

 ■ Availability(MTTR) = 1 – ((SUM(C2:C5) + F3) × F2)/((C2 × (C2 + C4 +
F3) + ((C2 + C4 + F2) × (C3 + C5)) + ((C2 + C4) × (C2 + C4 + F3))))

 ■ P(Degraded) = ((C3 + C5) × F2)/((C2 × (C2 + C4 + F3) + ((C2 + C4 +
F2) × (C3 + C5)) + ((C2 + C4) × (C2 + C4 + F3))))

Plugging in these values for the parameters to the equations listed above
results in a table like Table 14.1, which can be easily calculated using any spread-
sheet tool. Such a calculation can help in the selection of tactics.

14.1 Modeling Architectures to Enable Quality Attribute Analysis 259

 TABLE 14.1 Calculated Availability for an Availability-Enhanced Broker
Implementation

Function
Failure
Severity

MTBF
(Hours)

MTTR (Seconds)

Active
Redundancy
(Hot Spare)

Passive
Redundancy
(Warm Spare)

Spare
(Cold Spare)

Hardware 1 250,000 1 5 900

2 50,000 30 30 30

Software 1 50,000 1 5 900

2 10,000 30 30 30

Availability 0.9999998 0.999990 0.9994

The Analytic Model Space

As we discussed in the preceding sections, there are a growing number of analytic
models for some aspects of various quality attributes. One of the quests of software
engineering is to have a sufficient number of analytic models for a sufficiently large
number of quality attributes to enable prediction of the behavior of a designed sys-
tem based on these analytic models. Table 14.2 shows our current status with respect
to this quest for the seven quality attributes discussed in Chapters 5–11.

TABLE 14.2 A Summary of the Analytic Model Space

Quality
Attribute Intellectual Basis Maturity/Gaps

Availability Markov models;
statistical models

Moderate maturity; mature in the
hardware reliability domain, less mature
in the software domain. Requires models
that speak to state recovery and for which
failure percentages can be attributed to
software.

Interoperability Conceptual framework Low maturity; models require substantial
human interpretation and input.

Modifiability Coupling and cohesion
metrics; cost models

Substantial research in academia; still
requires more empirical support in real-
world environments.

Performance Queuing theory; real-
time scheduling theory

High maturity; requires considerable
education and training to use properly.

Security No architectural models

Testability Component interaction
metrics

Low maturity; little empirical validation.

Usability No architectural models

260 Part two Quality attributes 14—Quality Attribute Modeling and Analysis

As the table shows, the field still has a great deal of work to do to achieve
the quest for well-validated analytic models to predict behavior, but there is a
great deal of activity in this area (see the “For Further Reading” section for ad-
ditional papers). The remainder of this chapter deals with techniques that can be
used in addition to analytic models.

14.2 Quality attribute checklists

For some quality attributes, checklists exist to enable the architect to test com-
pliance or to guide the architect when making design decisions. Quality attribute
checklists can come from industry consortia, from government organizations,
or from private organizations. In large organizations they may be developed in
house.

 These checklists can be specific to one or more quality attributes; checklists
for safety, security, and usability are common. Or they may be focused on a par-
ticular domain; there are security checklists for the financial industry, industrial
process control, and the electric energy sector. They may even focus on some
specific aspect of a single quality attribute: cancel for usability, as an example.

For the purposes of certification or regulation, the checklists can be used by
auditors as well as by the architect. For example, two of the items on the checklist
of the Payment Card Industry (PCI) are to only persist credit card numbers in an
encrypted form and to never persist the security code from the back of the credit
card. An auditor can ask to examine stored credit card data to determine whether
it has been encrypted. The auditor can also examine the schema for data being
stored to see whether the security code has been included.

This example reveals that design and analysis are often two sides of the
same coin. By considering the kinds of analysis to which a system will be sub-
jected (in this case, an audit), the architect will be led into making important
early architectural decisions (making the decisions the auditors will want to find).

Security checklists usually have heavy process components. For example, a
security checklist might say that there should be an explicit security policy within
an organization, and a cognizant security officer to ensure compliance with the
policy. They also have technical components that the architect needs to examine
to determine the implications on the architecture of the system being designed or
evaluated. For example, the following is an item from a security checklist gener-
ated by a group chartered by an organization of electric producers and distribu-
tors. It pertains to embedded systems delivering electricity to your home:

A designated system or systems shall daily or on request obtain current
version numbers, installation date, configuration settings, patch level
on all elements of a [portion of the electric distribution] system,

14.1 Modeling Architectures to Enable Quality Attribute Analysis 261

In Search of a Grand Unified Theory for Quality Attributes

How do we create analytic models for those quality attribute aspects for
which none currently exist? I do not know the answer to this question, but
if we had a basis set for quality attributes, we would be in a better position
to create and validate quality attribute models. By basis set I mean a set
of orthogonal concepts that allow one to define the existing set of quality
attributes. Currently there is much overlap among quality attributes; a
basis set would enable discussion of tradeoffs in terms of a common set
of fundamental and possibly quantifiable concepts. Once we have a basis
set, we could develop analytic models for each of the elements of the set,
and then an analytic model for a particular quality attribute becomes a
composition of the models of the portions of the basis set that make up
that quality attribute.

What are some of the elements of this basis set? Here are some of my
candidates:

 ■ Time. Time is the basis for performance, some aspects of availability,
and some aspects of usability. Time will surely be one of the fundamen-
tal concepts for defining quality attributes.

 ■ Dependencies among structural elements. Modifiability, security, avail-
ability, and performance depend in some form or another on the strength
of connections among various structural elements. Coupling is a form
of dependency. Attacks depend on being able to move from one com-
promised element to a currently uncompromised element through some
dependency. Fault propagation depends on dependencies. And one of
the key elements of performance analysis is the dependency of one
computation on another. Enumeration of the fundamental forms of de-
pendency and their properties will enable better understanding of many
quality attributes and their interaction.

 ■ Access. How does a system promote or deny access through various
mechanisms? Usability is concerned with allowing smooth access for
humans; security is concerned with allowing smooth access for some set
of requests but denying access to another set of requests. Interoperabili-
ty is concerned with establishing connections and accessing information.
Race conditions, which undermine availability, come about through un-
mediated access to critical computations.

These are some of my candidates. I am sure there are others. The
general problem is to define a set of candidates for the basis set and then
show how current definitions of various quality attributes can be recast in
terms of the elements of the basis set. I am convinced that this is a problem
that needs to be solved prior to making substantial progress in the quest for
a rich enough set of analytic models to enable prediction of system behav-
ior across the quality attributes important for a system.

—LB

262 Part two Quality attributes 14—Quality Attribute Modeling and Analysis

compare these with inventory and configuration databases, and log all
discrepancies.

This kind of rule is intended to detect malware masquerading as legitimate
components of a system. The architect will look at this item and conclude the
following:

 ■ The embedded portions of the system should be able to report their version
number, installation date, configuration settings, and patch levels. One tech-
nique for doing this is to use “reflection” for each component in the system.
Reflection now becomes one of the important patterns used in this system.

 ■ Each software update or patch should maintain this information. One tech-
nique for doing this is to have automated update and patch mechanisms.
The architecture could also realize this functionality through reflection.

 ■ A system must be designated to query the embedded components and per-
sist the information. This means

 ■ There must be overall inventory and configuration databases.
 ■ Logs of discrepancies between current values and overall inventory must

be generated and sent to appropriate recipients.
 ■ There must be network connections to the embedded components. This

affects the network topology.

The creation of quality attribute checklists is usually a time-consuming ac-
tivity, undertaken by multiple individuals and typically refined and evolved over
time. Domain specialists, quality attribute specialists, and architects should all
contribute to the development and validation of these checklists.

The architect should treat the items on an applicable checklist as require-
ments, in that they need to be understood and prioritized. Under particular cir-
cumstances, an item in a checklist may not be met, but the architect should have a
compelling case as to why it is not.

14.3 thought Experiments and
back-of-the-Envelope analysis

A thought experiment is a fancy name for the kinds of discussions that develop-
ers and architects have on a daily basis in their offices, in their meetings, over
lunch, over whiteboards, in hallways, and around the coffee machine. One of the
participants might draw two circles and an arrow on the whiteboard and make an
assertion about the quality attribute behavior of these two circles and the arrow in
a particular context; a discussion ensues. The discussion can last for a long time,
especially if the two circles are augmented with a third and one more arrow, or if
some of the assumptions underlying a circle or an arrow are still in flux. In this
section, we describe this process somewhat more formally.

14.3 Thought Experiments and Back-of-the-Envelope Analysis 263

The level of formality one would use in performing a thought experiment
is, as with most techniques discussed in this book, a question of context. If two
people with a shared understanding of the system are performing the thought ex-
periment for their own private purposes, then circles and lines on a whiteboard
are adequate, and the discussion proceeds in a kind of shorthand. If a third person
is to review the results and the third person does not share the common under-
standing, then sufficient details must be captured to enable the third person to un-
derstand the argument—perhaps a quick legend and a set of properties need to be
added to the diagram. If the results are to be included in documentation as design
rationale, then even more detail must be captured, as discussed in Chapter 18.
Frequently such thought experiments are accompanied by rough analyses—back-
of-the-envelope analyses—based on the best data available, based on past expe-
riences, or even based on the guesses of the architects, without too much concern
for precision.

The purpose of thought experiments and back-of-the-envelope analysis is
to find problems or confirmation of the nonexistence of problems in the quality
attribute requirements as applied to sunny-day use cases. That is, for each use
case, consider the quality attribute requirements that pertain to that use case and
analyze the use case with the quality attribute requirements in mind. Models and
checklists focus on one quality attribute. To consider other quality attributes, one
must model or have a checklist for the second quality attribute and understand
how those models interact. A thought experiment may consider several of the
quality attribute requirements simultaneously; typically it will focus on just the
most important ones.

The process of creating a thought experiment usually begins with listing the
steps associated with carrying out the use case under consideration; perhaps a se-
quence diagram is employed. At each step of the sequence diagram, the (mental)
question is asked: What can go wrong with this step with respect to any of the
quality attribute requirements? For example, if the step involves user input, then
the possibility of erroneous input must be considered. Also the user may not have
been properly authenticated and, even if authenticated, may not be authorized to
provide that particular input. If the step involves interaction with another system,
then the possibility that the input format will change after some time must be
considered. The network passing the input to a processor may fail; the processor
performing the step may fail; or the computation to provide the step may fail,
take too long, or be dependent on another computation that may have had prob-
lems. In addition, the architect must ask about the frequency of the input, and the
anticipated distribution of requests (e.g., Are service requests regular and predict-
able or irregular and “bursty”?), other processes that might be competing for the
same resources, and so forth. These questions go on and on.

For each possible problem with respect to a quality attribute requirement,
the follow-on questions consist of things like these:

 ■ Are there mechanisms to detect that problem?

264 Part two Quality attributes 14—Quality Attribute Modeling and Analysis

 ■ Are there mechanisms to prevent or avoid that problem?
 ■ Are there mechanisms to repair or recover from that problem if it occurs?
 ■ Is this a problem we are willing to live with?

The problems hypothesized are scrutinized in terms of a cost/benefit analy-
sis. That is, what is the cost of preventing this problem compared to the benefits
that accrue if the problem does not occur?

As you might have gathered, if the architects are being thorough and if the
problems are significant (that is, they present a large risk for the system), then
these discussions can continue for a long time. The discussions are a normal por-
tion of design and analysis and will naturally occur, even if only in the mind of a
single designer. On the other hand, the time spent performing a particular thought
experiment should be bounded. This sounds obvious, but every grey-haired archi-
tect can tell you war stories about being stuck in endless meetings, trapped in the
purgatory of “analysis paralysis.”

Analysis paralysis can be avoided with several techniques:

 ■ “Time boxing”: setting a deadline on the length of a discussion.
 ■ Estimating the cost if the problem occurs and not spending more than that

cost in the analysis. In other words, do not spend an inordinate amount of
time in discussing minor or unlikely potential problems.

Prioritizing the requirements will help both with the cost estimation and
with the time estimation.

14.4 Experiments, Simulations, and Prototypes

In many environments it is virtually impossible to do a purely top-down architec-
tural design; there are too many considerations to weigh at once and it is too hard
to predict all of the relevant technological barriers. Requirements may change in
dramatic ways, or a key assumption may not be met: We have seen cases where a
vendor-provided API did not work as specified, or where an API exposing a criti-
cal function was simply missing.

Finding the sweet spot within the enormous architectural design space of
complex systems is not feasible by reflection and mathematical analysis alone;
the models either aren’t precise enough to deal with all of the relevant details or
are so complicated that they are impractical to analyze with tractable mathemat-
ical techniques.

The purpose of experiments, simulations, and prototypes is to provide al-
ternative ways of analyzing the architecture. These techniques are invaluable in

14.5 Analysis at Different Stages of the Life Cycle 265

resolving tradeoffs, by helping to turn unknown architectural parameters into
constants or ranges. For example, consider just a few of the questions that might
occur when creating a web-conferencing system—a distributed client-server in-
frastructure with real-time constraints:

 ■ Would moving to a distributed database from local flat files negatively im-
pact feedback time (latency) for users?

 ■ How many participants could be hosted by a single conferencing server?
 ■ What is the correct ratio between database servers and conferencing

servers?

These sorts of questions are difficult to answer analytically. The answers to
these questions rely on the behavior and interaction of third-party components
such as commercial databases, and on performance characteristics of software for
which no standard analytical models exist. The approach used for the web-con-
ferencing architecture was to build an extensive testing infrastructure that sup-
ported simulations, experiments, and prototypes, and use it to compare the per-
formance of each incremental modification to the code base. This allowed the
architect to determine the effect of each form of improvement before committing
to including it in the final system. The infrastructure includes the following:

 ■ A client simulator that makes it appear as though tens of thousands of cli-
ents are simultaneously interacting with a conferencing server.

 ■ Instrumentation to measure load on the conferencing server and database
server with differing numbers of clients.

The lesson from this experience is that experimentation can often be a criti-
cal precursor to making significant architectural decisions. Experimentation must
be built into the development process: building experimental infrastructure can
be time-consuming, possibly requiring the development of custom tools. Carry-
ing out the experiments and analyzing their results can require significant time.
These costs must be recognized in project schedules.

14.5 analysis at different Stages of the life cycle

Depending on your project’s state of development, different forms of analysis are
possible. Each form of analysis comes with its own costs. And there are different
levels of confidence associated with each analysis technique. These are summa-
rized in Table 14.3.

266 Part two Quality attributes 14—Quality Attribute Modeling and Analysis

tablE 14.3 Forms of Analysis, Their Life-Cycle Stage, Cost, and Confidence in
Their Outputs

life-cycle Stage form of analysis cost confidence

Requirements Experience-based analogy Low Low–High

Requirements Back-of-the-envelope Low Low–Medium

Architecture Thought experiment Low Low–Medium

Architecture Checklist Low Medium

Architecture Analytic model Low–Medium Medium

Architecture Simulation Medium Medium

Architecture Prototype Medium Medium–High

Implementation Experiment Medium–High Medium–High

Fielded System Instrumentation Medium–High High

The table shows that analysis performed later in the life cycle yields results that
merit high confidence. However, this confidence comes at a price. First, the cost of
performing the analysis also tends to be higher. But the cost of changing the system
to fix a problem uncovered by analysis skyrockets later in the life cycle.

Choosing an appropriate form of analysis requires a consideration of all of
the factors listed in Table 14.3: What life-cycle stage are you currently in? How
important is the achievement of the quality attribute in question and how worried
are you about being able to achieve the goals for this attribute? And finally, how
much budget and schedule can you afford to allocate to this form of risk miti-
gation? Each of these considerations will lead you to choose one or more of the
analysis techniques described in this chapter.

14.6 Summary

Analysis of an architecture enables early prediction of a system’s qualities. We can
analyze an architecture to see how the system or systems we build from it will per-
form with respect to their quality attribute goals. Some quality attributes, most nota-
bly performance and availability, have well-understood, time-tested analytic models
that can be used to assist in quantitative analysis. Other quality attributes have less
sophisticated models that can nevertheless help with predictive analysis.

For some quality attributes, checklists exist to enable the architect to test
compliance or to guide the architect when making design decisions. Quality at-
tribute checklists can come from industry consortia, from government organiza-
tions, or from private organizations. In large organizations they may be devel-
oped in house. The architect should treat the items on an applicable checklist as
requirements, in that they need to be understood and prioritized.

14.7 For Further Reading 267

Thought experiments and back-of-the-envelope analysis can often quickly
help find problems or confirm the nonexistence of problems with respect to qual-
ity attribute requirements. A thought experiment may consider several of the
quality attribute requirements simultaneously; typically it will focus on just the
most important ones. Experiments, simulations, and prototypes allow the explo-
ration of tradeoffs, by helping to turn unknown architectural parameters into con-
stants or ranges whose values may be measured rather than estimated.

Depending on your project’s state of development, different forms of analy-
sis are possible. Each form of analysis comes with its own costs and its own level
of confidence associated with each analysis technique.

14.7 for further reading

There have been many papers and books published describing how to build and
analyze architectural models for quality attributes. Here are just a few examples.

availability

Many availability models have been proposed that operate at the architecture
level of analysis. Just a few of these are [Gokhale 05] and [Yacoub 02].

A discussion and comparison of different black-box and white-box models
for determining software reliability can be found in [Chandran 10].

A book relating availability to disaster recovery and business recovery is
[Schmidt 10].

Interoperability

An overview of interoperability activities can be found in [Brownsword 04].

Modifiability

Modifiability is typically measured through complexity metrics. The classic work
on this topic is [Chidamber 94].

More recently, analyses based on design structure matrices have begun to
appear [MacCormack 06].

Performance

Two of the classic works on software performance evaluation are [Smith 01] and
[Klein 93].

268 Part two Quality attributes 14—Quality Attribute Modeling and Analysis

A broad survey of architecture-centric performance evaluation approaches
can be found in [Koziolek 10].

Security

Checklists for security have been generated by a variety of groups for different
domains. See for example:

 ■ Credit cards, generated by the Payment Card Industry: www.pcisecurity-
standards.org/security_standards/

 ■ Information security, generated by the National Institute of Standards and
Technology (NIST): [NIST 09].

 ■ Electric grid, generated by Advanced Security Acceleration Project for the
Smart Grid: www.smartgridipedia.org/index.php/ASAP-SG

 ■ Common Criteria. An international standard (ISO/IEC 15408) for computer
security certification: www.commoncriteriaportal.org

testability

Work in measuring testability from an architectural perspective includes measur-
ing testability as the measured complexity of a class dependency graph derived
from UML class diagrams, and identifying class diagrams that can lead to code
that is difficult to test [Baudry 05]; and measuring controllability and observabil-
ity as a function of data flow [Le Traon 97].

usability

A checklist for usability can be found at www.stcsig.org/usability/topics/articles/
he-checklist.html

Safety

A checklist for safety is called the Safety Integrity Level: en.wikipedia.org/wiki/
Safety_Integrity_Level

applications of Modeling and analysis

For a detailed discussion of a case where quality attribute modeling and analysis
played a large role in determining the architecture as it evolved through a number
of releases, see [Graham 07].

http://www.pcisecuritystandards.org/security_standards/
http://www.pcisecuritystandards.org/security_standards/
http://www.smartgridipedia.org/index.php/ASAP-SG
http://www.commoncriteriaportal.org
http://www.stcsig.org/usability/topics/articles/he-checklist.html
http://www.stcsig.org/usability/topics/articles/he-checklist.html

14.8 Discussion Questions 269

14.8 discussion Questions

1. Build a spreadsheet for the steady-state availability equation MTBF /
(MTBF + MTTR). Plug in different but reasonable values for MTBF and
MTTR for each of the active redundancy, passive redundancy, and cold
spare tactics. Try values for MTBF that are very large compared to MTTR,
and also try values for MTBF that are much closer in size to MTTR.
What do these tell you about which tactics you might want to choose for
availability?

2. Enumerate as many responsibilities as you can that need to be carried out
for providing a “cancel” operation in a user interface. Hint: There are at
least 21 of them, as indicated in a publication by (strong hint!) one of the
authors of this book whose last name (unbelievably strong hint!) begins
with “B.”

3. The M/M/1 (look it up!) queuing model has been employed in computing
systems for decades. Where in your favorite computing system would this
model be appropriate to use to predict latency?

4. Suppose an architect produced Figure 14.5 while you were sitting watching
him. Using thought experiments, how can you determine the performance
and availability of this system? What assumptions are you making and what
conclusions can you draw? How definite are your conclusions?

fIGurE 14.5 Capture of a whiteboard sketch from an architect

This page intentionally left blank

	Cover
	Copyright
	Contents
	Preface
	Reader's Guide
	Acknowledgments
	PART ONE: INTRODUCTION
	1 What Is Software Architecture?
	1.1 What Software Architecture Is and What It Isn't
	1.2 Architectural Structures and Views
	1.3 Architectural Patterns
	1.4 What Makes a "Good" Architecture?
	1.5 Summary
	1.6 For Further Reading
	1.7 Discussion Questions

	2 Why Is Software Architecture Important?
	2.1 Inhibiting or Enabling a System's Quality Attributes
	2.2 Reasoning About and Managing Change
	2.3 Predicting System Qualities
	2.4 Enhancing Communication among Stakeholders
	2.5 Carrying Early Design Decisions
	2.6 Defining Constraints on an Implementation
	2.7 Influencing the Organizational Structure
	2.8 Enabling Evolutionary Prototyping
	2.9 Improving Cost and Schedule Estimates
	2.10 Supplying a Transferable, Reusable Model
	2.11 Allowing Incorporation of Independently Developed Components
	2.12 Restricting the Vocabulary of Design Alternatives
	2.13 Providing a Basis for Training
	2.14 Summary
	2.15 For Further Reading
	2.16 Discussion Questions

	3 The Many Contexts of Software Architecture
	3.1 Architecture in a Technical Context
	3.2 Architecture in a Project Life-Cycle Context
	3.3 Architecture in a Business Context
	3.4 Architecture in a Professional Context
	3.5 Stakeholders
	3.6 How Is Architecture Influenced?
	3.7 What Do Architectures Influence?
	3.8 Summary
	3.9 For Further Reading
	3.10 Discussion Questions

	PART TWO: QUALITY ATTRIBUTES
	4 Understanding Quality Attributes
	4.1 Architecture and Requirements
	4.2 Functionality
	4.3 Quality Attribute Considerations
	4.4 Specifying Quality Attribute Requirements
	4.5 Achieving Quality Attributes through Tactics
	4.6 Guiding Quality Design Decisions
	4.7 Summary
	4.8 For Further Reading
	4.9 Discussion Questions

	5 Availability
	5.1 Availability General Scenario
	5.2 Tactics for Availability
	5.3 A Design Checklist for Availability
	5.4 Summary
	5.5 For Further Reading
	5.6 Discussion Questions

	6 Interoperability
	6.1 Interoperability General Scenario
	6.2 Tactics for Interoperability
	6.3 A Design Checklist for Interoperability
	6.4 Summary
	6.5 For Further Reading
	6.6 Discussion Questions

	7 Modifiability
	7.1 Modifiability General Scenario
	7.2 Tactics for Modifiability
	7.3 A Design Checklist for Modifiability
	7.4 Summary
	7.5 For Further Reading
	7.6 Discussion Questions

	8 Performance
	8.1 Performance General Scenario
	8.2 Tactics for Performance
	8.3 A Design Checklist for Performance
	8.4 Summary
	8.5 For Further Reading
	8.6 Discussion Questions

	9 Security
	9.1 Security General Scenario
	9.2 Tactics for Security
	9.3 A Design Checklist for Security
	9.4 Summary
	9.5 For Further Reading
	9.6 Discussion Questions

	10 Testability
	10.1 Testability General Scenario
	10.2 Tactics for Testability
	10.3 A Design Checklist for Testability
	10.4 Summary
	10.5 For Further Reading
	10.6 Discussion Questions

	11 Usability
	11.1 Usability General Scenario
	11.2 Tactics for Usability
	11.3 A Design Checklist for Usability
	11.4 Summary
	11.5 For Further Reading
	11.6 Discussion Questions

	12 Other Quality attributes
	12.1 Other Important Quality Attributes
	12.2 Other Categories of Quality Attributes
	12.3 Software Quality Attributes and System Quality Attributes
	12.4 Using Standard Lists of Quality Attributes— or Not
	12.5 Dealing with "X-ability": Bringing a New Quality Attribute into the Fold
	12.6 For Further Reading
	12.7 Discussion Questions

	13 Architectural Tactics and Patterns
	13.1 Architectural Patterns
	13.2 Overview of the Patterns Catalog
	13.3 Relationships between Tactics and Patterns
	13.4 Using Tactics Together
	13.5 Summary
	13.6 For Further Reading
	13.7 Discussion Questions

	14 Quality Attribute Modeling and Analysis
	14.1 Modeling Architectures to Enable Quality Attribute Analysis
	14.2 Quality Attribute Checklists
	14.3 Thought Experiments and Back-of-the-Envelope Analysis
	14.4 Experiments, Simulations, and Prototypes
	14.5 Analysis at Different Stages of the Life Cycle
	14.6 Summary
	14.7 For Further Reading
	14.8 Discussion Questions

	PART THREE: ARCHITECTURE IN THE LIFE CYCLE
	15 Architecture in Agile Projects
	15.1 How Much Architecture?
	15.2 Agility and Architecture Methods
	15.3 A Brief Example of Agile Architecting
	15.4 Guidelines for the Agile Architect
	15.5 Summary
	15.6 For Further Reading
	15.7 Discussion Questions

	16 Architecture and Requirements
	16.1 Gathering ASRs from Requirements Documents
	16.2 Gathering ASRs by Interviewing Stakeholders
	16.3 Gathering ASRs by Understanding the Business Goals
	16.4 Capturing ASRs in a Utility Tree
	16.5 Tying the Methods Together
	16.6 Summary
	16.7 For Further Reading
	16.8 Discussion Questions

	17 Designing an Architecture
	17.1 Design Strategy
	17.2 The Attribute-Driven Design Method
	17.3 The Steps of ADD
	17.4 Summary
	17.5 For Further Reading
	17.6 Discussion Questions

	18 Documenting Software Architectures
	18.1 Uses and Audiences for Architecture Documentation
	18.2 Notations for Architecture Documentation
	18.3 Views
	18.4 Choosing the Views
	18.5 Combining Views
	18.6 Building the Documentation Package
	18.7 Documenting Behavior
	18.8 Architecture Documentation and Quality Attributes
	18.9 Documenting Architectures That Change Faster Than You Can Document Them
	18.10 Documenting Architecture in an Agile Development Project
	18.11 Summary
	18.12 For Further Reading
	18.13 Discussion Questions

	19 Architecture, Implementation, and Testing
	19.1 Architecture and Implementation
	19.2 Architecture and Testing
	19.3 Summary
	19.4 For Further Reading
	19.5 Discussion Questions

	20 Architecture Reconstruction and conformance
	20.1 Architecture Reconstruction Process
	20.2 Raw View Extraction
	20.3 Database Construction
	20.4 View Fusion
	20.5 Architecture Analysis: Finding Violations
	20.6 Guidelines
	20.7 Summary
	20.8 For Further Reading
	20.9 Discussion Questions

	21 Architecture Evaluation
	21.1 Evaluation Factors
	21.2 The Architecture Tradeoff Analysis Method
	21.3 Lightweight Architecture Evaluation
	21.4 Summary
	21.5 For Further Reading
	21.6 Discussion Questions

	22 Management and Governance
	22.1 Planning
	22.2 Organizing
	22.3 Implementing
	22.4 Measuring
	22.5 Governance
	22.6 Summary
	22.7 For Further Reading
	22.8 Discussion Questions

	PART FOUR: ARCHITECTURE AND BUSINESS
	23 Economic Analysis of Architectures
	23.1 Decision-Making Context
	23.2 The Basis for the Economic Analyses
	23.3 Putting Theory into Practice: The CBAM
	23.4 Case Study: The NASA ECS Project
	23.5 Summary
	23.6 For Further Reading
	23.7 Discussion Questions

	24 Architecture Competence
	24.1 Competence of Individuals: Duties, Skills, and Knowledge of Architects
	24.2 Competence of a Software Architecture Organization
	24.3 Summary
	24.4 For Further Reading
	24.5 Discussion Questions

	25 Architecture and Software Product Lines
	25.1 An Example of Product Line Variability
	25.2 What Makes a Software Product Line Work?
	25.3 Product Line Scope
	25.4 The Quality Attribute of Variability
	25.5 The Role of a Product Line Architecture
	25.6 Variation Mechanisms
	25.7 Evaluating a Product Line Architecture
	25.8 Key Software Product Line Issues
	25.9 Summary
	25.10 For Further Reading
	25.11 Discussion Questions

	PART FIVE: THE BRAVE NEW WORLD
	26 Architecture in the Cloud
	26.1 Basic Cloud Definitions
	26.2 Service Models and Deployment Options
	26.3 Economic Justification
	26.4 Base Mechanisms
	26.5 Sample Technologies
	26.6 Architecting in a Cloud Environment
	26.7 Summary
	26.8 For Further Reading
	26.9 Discussion Questions

	27 Architectures for the Edge
	27.1 The Ecosystem of Edge-Dominant Systems
	27.2 Changes to the Software Development Life Cycle
	27.3 Implications for Architecture
	27.4 Implications of the Metropolis Model
	27.5 Summary
	27.6 For Further Reading
	27.7 Discussion Questions

	28 Epilogue

	References
	About the Authors
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

