CONSTRUCTING THE DIGITAL SIGNATURE SCHEME BASED ON THE DISCRETE LOGARITHMIC PROBLEM

Le Van Tuan ${ }^{1, *}$, Bui The Truyen ${ }^{2}$, Leu Duc Tan ${ }^{3}$
Abstract: In this report, the DSA digital signature scheme has been introduced. Based on these digital signature scheme, a new digital signature scheme on the ring of Z_{n} is developed. Its computing complexity is similar to the DSA and getting rid of some unwanted disadvantages of the DSA digital signature scheme and can be applied in practice.

Keywords: Digital Signature Scheme, Discrete logarithmic problem, Hash Function.

1. INTRODUCTION

Nowadays, the digital signature plays an important role for authentication, integrity, information security. Therefore, it has been being applied in many organizations and countries over the world, such as the DSA digital signature scheme of US [7], the GOST digital signature scheme of Russia, or Okamoto's key distribute system based on the identification information [8]... However, these schemes' standards of parameters are often published and they are applied for commercial purpose, if they are used in defense security area, the information highly runs the risk of being unsafe. So, developing the digital signature schemes is a researching trend of many countries and the code scientists in the world. [1], [2], [8]. In this study, we have studied and developed the digital signature scheme based on the ring of Z_{n} safe based on the complication of discrete logarithmic problem on ring Z_{n}. This new digital signature scheme can be applied in practice.

2. THE DEFINITION OF FUNCTIONS

Definition 2.1. The Number function converts a binary string into an integer that does not exceed T bits, notated Number: $\mathbb{N} \times\{0,1\}^{\mathrm{H}} \rightarrow \mathbb{Z}$.

Definition 2.2. Random function: The random function is a function that randomly takes an integer in $[\mathrm{a}, \mathrm{b}]$, a random number (a, b).

Definition 2.3. The bitlength (m) function returns the size of m as how many bits

Definition 2.4. $\mathrm{A} \mid \mathrm{B}$ is a connection between the string A with the string B .

3. DSA DIGITAL SIGNATURE SCHEME

3.1. DSA parameters

p is a prime, its length is bit, bitlength $(\mathrm{p})=\mathrm{L}$.
q is a divisor prime of $\mathrm{p}-1$, bitlength $(\mathrm{q})=\mathrm{N}$.
g is a primitive element of subgroup q on $\mathrm{Zp}, 0<\mathrm{g}<\mathrm{p}$
x is the private key that must be kept in secret; x is randomly chosen or pseudorandomly in [1, q-1].
y is the public key, where $y=g^{x} \bmod p$.
k is a secret number for each message (another name is session key); k is randomly chosen or pseudorandomly in [1, q-1].

Set of ($\mathrm{p}, \mathrm{q}, \mathrm{g}, \mathrm{x}$) is also called private key and set of $(\mathrm{p}, \mathrm{q}, \mathrm{g}, \mathrm{y})$ is a public key of signer.

3.2. Signature generation algorithm

Algorithm 3.1[7][10]:
Input: (p, q, g, x), k, M.
Output: (r,s).

1. $\mathrm{z} \leftarrow \operatorname{Number}(\mathrm{N}, \operatorname{Hash}(\mathrm{M}))$.
2. $\mathrm{k} \leftarrow \operatorname{Random}(1, \mathrm{q})$.
3. $\mathrm{r} \leftarrow\left(\mathrm{g}^{\mathrm{k}} \bmod \mathrm{p}\right) \bmod \mathrm{q}$.
4. $\mathrm{w} \leftarrow(\mathrm{z}+\mathrm{x} . \mathrm{r}) \bmod \mathrm{q}$.
5. if $(r=0)$ or $(w=0)$, then go to 2 .
6. $\mathrm{s} \leftarrow\left(\mathrm{k}^{-1} .(\mathrm{z}+\mathrm{x} . \mathrm{r})\right) \bmod \mathrm{q}$.
7. return (r, s).

3.3. Signature verification algorithm

Algorithm 3.2 [7], [10]
Input: (p, q, g, y), (r,s), M.
Output: "accept" or "reject".

1. $\mathrm{w} \leftarrow \mathrm{s}^{-1} \bmod \mathrm{q}$.
2. $\mathrm{z} \leftarrow \operatorname{Number}(\mathrm{N}, \operatorname{Hash}(\mathrm{M}))$.
3. u1 \leftarrow (z.w) \bmod q.
4. $\mathrm{u} 2 \leftarrow$ (r.w) $\bmod \mathrm{q}$.
5. $\mathrm{v} \leftarrow\left(\left(\mathrm{g}^{\mathrm{u} 1} \cdot \mathrm{y}^{\mathrm{u} 2}\right) \bmod \mathrm{p}\right) \bmod \mathrm{q}$.
6. if $(\mathrm{v}=\mathrm{r})$ then return "accept" Else return "reject".

3.4. Computing complexity

The computing complexity of the algorithm 3.1 is focused on method $\mathrm{g}^{\mathrm{k}} \bmod$ p. According to $[6, p 176]$, if bitlength $(p)=L$, bitlength $(q)=N$, the computing complexity of $\mathrm{g}^{\mathrm{k}} \bmod \mathrm{p} \approx \mathrm{O}\left(\operatorname{logk} . \mathrm{L}^{2}\right)$. If M_{L} is a computing complexity for a multiplication on the field Z_{p} with bitlength $(p)=L$ and M_{N} the computing complexity for a multiplication on the field Z_{q} with bitlength $(\mathrm{p})=\mathrm{N}$. If bitlength (k) $\approx \mathrm{N}$, the charge of the algorithm 3.1 is estimated as below:

$$
\begin{equation*}
\mathrm{C}_{\mathrm{G}} \approx \mathrm{~N} .\left(\mathrm{M}_{\mathrm{L}}+\mathrm{M}_{\mathrm{N}}\right) \tag{3.1}
\end{equation*}
$$

The computing complexity of algorithm 3.2 is centered on the statement of step 5 with two powers $\left(\left(g^{\mathrm{ul}} \cdot \mathrm{y}^{\mathrm{u2}}\right) \bmod \mathrm{p}\right)$ mod q . If bitlength $\left(\mathrm{u}_{1}\right) \approx \mathrm{N}$ bitlength (u2) $\approx \mathrm{N}$, total charge for algorithm 3.2 is estimated as below:

$$
\begin{equation*}
\mathrm{C}_{\mathrm{V}} \approx 2 \mathrm{~N}\left(\mathrm{M}_{\mathrm{L}}+\mathrm{M}_{\mathrm{N}}\right) \tag{3.2}
\end{equation*}
$$

3.5. The security of DSA digital signature scheme

The security of DSA digital signature scheme is displayed on the difficulty that generates the valid signature not for the owner of parameter x or that called "forging signature". Indicatively, signature forging is generated when a discrete logarithm problem is solved on Zp or Hash function is collided, so FIPS_186-4 standard [7] proposed the size of bit of the L and N parameter that would allow the DSA to be safe until 2030 as follows: $(\mathrm{L}, \mathrm{N})=(2048,224),(\mathrm{L}, \mathrm{N})=(2048,256)$ and $(\mathrm{L}, \mathrm{N})=(3072,256)$. However, when the primitive element g is published, that makes the DSA digital signature scheme unsafe in some of the situations as following:

The first situation: While signing the message M, if the session key is revealed, the secret key x is calculated by the following formula:
$\mathrm{s}=\left(\mathrm{k}^{-1}(\mathrm{z}+\mathrm{r} . \mathrm{x})\right) \bmod \mathrm{q}$
The secret key x is computed easily using the following formula:
$\mathrm{x}=\left((\mathrm{s} . \mathrm{k}-\mathrm{z}) \cdot \mathrm{r}^{-1}\right) \bmod \mathrm{q}$
This situation is illustrated as follows: The message m is considered, which is transformed by the Hash function SHA-512 and the output is M as follows:
$\mathbf{M}=97975747105107409187956387180507750847513881963918549765479$ 880765663033851160001447900781761796849869035947103240517957798729 04918107245447649435608188242

The value of the prime number p is:
$\mathbf{p}=11242439595922330094500086844804966357759313431812385371494$ 511369847330693855087879539343469849551078435848382192561802575175 142455951043851140468418943323

The value of prime q is as follows:
$\mathbf{q}=1533291864970491990937935102336166269334618134678016648433$
The value of the primitive element g is:
$\mathbf{g}=10078664070544453678464709258084804131491365192204951024927$ 548083774068483673108796539309434316671809670409438483987936673806 832475458540206862060143901544

The secret key x is: $\mathbf{x}=74679656459306509739026621399$
The public key is calculated by the formula $y=g^{x} \bmod p$, the value y is:
$\mathbf{y}=25356434363194005296219381386234511997842772125732011576745$ 964039509236125101457653326120201899969767766769245813695835554616 78797023907419768950517837742

Session key k=36914925716335327919902465072.
The signature (r, s) is calculated as follows:
$\mathbf{r}=182506323373540150306991765601851814823939026112244878180$
$\mathbf{s}=1364155657594448977789831809839374109626537375756543450808$
If the session key k is revealed, the secret key x is calculated as follows:
$\mathrm{x}=\left((\mathrm{s} . \mathrm{k}-\mathrm{z}) \cdot \mathrm{r}^{-1}\right) \bmod \mathrm{q}$. The value $\mathrm{z}=\operatorname{Number}(\mathrm{N}, \operatorname{Hash}(\mathrm{M}))$.

While
$\mathrm{z}=1718579994752701761185453037319519709545839390727609025874$
s.k=5035770476561765474814810107577845641249213573792850649717 0831890443345548356570178176
(s.k-z) $\bmod \mathrm{q}=$

524050766533797319315236385558804362401516138504649902691
$\mathrm{r}^{-1} \bmod \mathrm{q}=$
997958988071514117853806215293691244299223701750102569501
$\mathrm{x}=74679656459306509739026621399$.
The second situation: two different messages are signed with the same session key k (using the same key). If the session key of the message M and M is k and the two signatures corresponding to M and M^{\prime} are respectively (r, s) and ($\mathrm{r}, \mathrm{s}^{\prime}$). The secret key x will be found by the attacker as follows: The first z and z 'values are calculated from the formula $\mathrm{z}=$ Number (N, Hash (M)) và $\mathrm{z}^{\prime}=$ Number (N , Hash (M^{\prime})), then s and s^{\prime} are calculated as follows:

$$
\begin{gather*}
\mathrm{s}=\left(\mathrm{k}^{-1}(\mathrm{z}+\mathrm{r} \cdot \mathrm{x})\right) \bmod \mathrm{q} \leftrightarrow \mathrm{k}=\mathrm{s}^{-1}(\mathrm{z}+\mathrm{r} \cdot \mathrm{x}) \bmod \mathrm{q} \tag{*}\\
\mathrm{~s}^{\prime}=\left(\mathrm{k}^{-1}\left(\mathrm{z}^{\prime}+\mathrm{r} \cdot \mathrm{x}\right)\right) \bmod \mathrm{q} \leftrightarrow \mathrm{k}=\mathrm{s}^{\prime-1}\left(\mathrm{z}^{\prime}+\mathrm{r} \cdot \mathrm{x}\right) \bmod \mathrm{q} \tag{**}
\end{gather*}
$$

From $\left(^{*}\right.$) and $\left.{ }^{(* *}\right)$ the equation is as following:
$s^{-1}(z+r . x)=s^{\prime-1}\left(z^{\prime}+r \cdot x\right) \operatorname{modq} \leftrightarrow \mathrm{s}^{-1} \mathrm{z}-\mathrm{s}^{,-1} \mathrm{z}^{\prime}=\left(\mathrm{s}^{{ }^{-1}}-\mathrm{s}^{-1}\right)$.r. $\mathrm{x} \bmod \mathrm{q}$, from this equation it is easy to calculate the secret key x as follows: $x=r^{-1}\left(s^{-1} \cdot z-s^{\prime-1} z^{\prime}\right)\left(s^{\prime-1}-\right.$ $\left.\mathrm{s}^{-1}\right)^{-1} \bmod \mathrm{q}$.

This situation is illustrated as follows: when the message is m, which is transformed by the Hash function SHA-512 and the output is M as follows:
$\mathbf{M}=97975747105107409187956387180507750847513881963918549765479$ 880765663033851160001447900781761796849869035947103240517957798729 04918107245447649435608188242
$\mathbf{z}=1718579994752701761185453037319519709545839390727609025874$
$\mathbf{p}=11242439595922330094500086844804966357759313431812385371494$ 511369847330693855087879539343469849551078435848382192561802575175 142455951043851140468418943323
$\mathbf{q}=1533291864970491990937935102336166269334618134678016648433$
$\mathbf{g}=10078664070544453678464709258084804131491365192204951024927$ 548083774068483673108796539309434316671809670409438483987936673806 832475458540206862060143901544
$\mathrm{x}=74679656459306509739026621399$
$\mathrm{y}=25356434363194005296219381386234511997842772125732011576745$ 964039509236125101457653326120201899969767766769245813695835554616 78797023907419768950517837742
$\mathbf{k}=36914925716335327919902465072$
$\mathrm{r}=182506323373540150306991765601851814823939026112244878180$
$\mathrm{s}=1364155657594448977789831809839374109626537375756543450808$
When the message is m', which is transformed by the Hash function SHA512, its output is M as follows:
\mathbf{M} '=1555457977903788052707047276246170107839826966119437765908 551907661193845442947767748147758127032282855927340310116634922731 918069707272168480196212609551
Z^{\prime} is calculated by the formula as follow: $\mathrm{z}^{\prime}=$ Number (N, Hash (M^{\prime}))
$\mathbf{z}^{\prime}=2686783626449795392261088445951789906711383394607353090575$
$\mathbf{p}=11242439595922330094500086844804966357759313431812385371494$ 511369847330693855087879539343469849551078435848382192561802575175 142455951043851140468418943323
$\mathbf{q}=1533291864970491990937935102336166269334618134678016648433$
$\mathbf{g}=10078664070544453678464709258084804131491365192204951024927$ 548083774068483673108796539309434316671809670409438483987936673806 832475458540206862060143901544
$\mathrm{x}=74679656459306509739026621399$
$\mathrm{y}=25356434363194005296219381386234511997842772125732011576745$ 964039509236125101457653326120201899969767766769245813695835554616 78797023907419768950517837742
$\mathrm{k}=36914925716335327919902465072$
$\mathrm{r}=\mathrm{r}{ }^{\prime}=182506323373540150306991765601851814823939026112244878180$
$s^{\prime}=419930701966257575864048550021807565165401949643752549481$
In this situation, the secret key x is calculated by the formula as follow:
$x=r^{-1}\left(s^{-1} \cdot z-s^{\prime-1} z^{\prime}\right)\left(s^{\prime-1}-s^{-1}\right)^{-1} \bmod q$. Where:
$\mathrm{s}^{\text {,-1 }} \bmod$
$\mathrm{q}=1104369623657571975932291813648449955114049489078722571641$
$\mathrm{s}^{,-1} \mathrm{z}$ 'mod
$\mathrm{q}=606082038342155792558174208526507093346465357060780120714$
$\mathrm{s}^{-1} \bmod \mathrm{q}$
$=1451278297840009702777459600785951165698531270580902059174$
$\mathrm{s}^{-1} . \mathrm{z} \bmod \mathrm{q}=$
1313713634264547240570981004522210825585496954765626822777
$\left(\mathrm{s}^{-1} . \mathrm{z}-\mathrm{s}^{\mathrm{s}-1} \mathrm{z}^{\prime}\right) \bmod \mathrm{q}=$
707631595922391448012806795995703732239031597704846702063
$\mathrm{r}^{-1} \bmod \mathrm{q}=$
997958988071514117853806215293691244299223701750102569501
$\mathrm{r}^{-1}\left(\mathrm{~s}^{-1} \cdot \mathrm{z}-\mathrm{s}^{-1} \mathrm{z}^{\prime}\right) \bmod \mathrm{q}$,
where $\quad \mathrm{q}=12536132561166344302362245931756388805698010284$ 71374370307
$\left(\mathrm{s}^{-1}-\mathrm{s}^{-1}\right) \bmod \mathrm{q}=$
1186383190788054264092767315198665058750136353175837160900
$\left(\mathrm{s}^{\mathrm{s}-1}-\mathrm{s}^{-1}\right)^{-1} \bmod \mathrm{q}=$
1004917863501878505091781121120933399705847132586335489436
The secret x can be easily calculated as follows:
$\mathrm{x}=74679656459306509739026621399$.
It's noted that if a session key is used for both signatures, both signatures of the component r will be the equal value, but if the both signatures of value r are of the equal value, the session key for both signatures may not be of the equal value.

4. CONSTRUCTION THE NEW SIGNATURE SCHEME

4.1. Parameters domain

$\mathrm{n}=\mathrm{p} . \mathrm{q}$ with p, q are primes and n -factorization is a difficult problem; m is private, $\mathrm{m}=\mathrm{p}_{1} \cdot \mathrm{q}_{1}$ where $\mathrm{p}_{1}, \mathrm{q}_{1}$ are primes and $\mathrm{p}_{1}\left|(\mathrm{p}-1), \mathrm{q}_{1}\right|(\mathrm{q}-1), \mathrm{p}_{1} \nmid(\mathrm{q}-1), \mathrm{q}_{1}$ $\nmid(\mathrm{p}-1)$; mbit= bitlength (m).
g is a primitive element, $0<\mathrm{g}<\mathrm{n}$ ord ${ }_{\mathrm{g}}=\mathrm{m}$; $<\mathrm{g}>$ is cyclic subgroup on Z_{n}.
x is chosen randomly in $(1, \mathrm{~m}-1)$ and x is private.
y is public, where $\mathrm{y}=\mathrm{g}^{\mathrm{x}} \bmod \mathrm{n}$.
k is chosen randomly in $(1, \mathrm{~m}-1), \mathrm{k}$ is the unique private number for each message (also known as session key)
the set of five values ($\mathrm{n}, \mathrm{m}, \mathrm{g}, \mathrm{x}, \mathrm{m}$) are the secret key and set of four values ($\mathrm{n}, \mathrm{g}, \mathrm{y}, \mathrm{mbit}$) are the public key.

4.2. Generation signature

Algorithm 4.1.

Input: ($\mathrm{n}, \mathrm{m}, \mathrm{g}, \mathrm{x}$, mbit), M.//mbit= bitlength (m)
Output: (r,s).

1. $\mathrm{z} \leftarrow 0 ; \operatorname{tg} \leftarrow 0$;
2. While $(\mathrm{z}=0)$ or $((\mathrm{tg}, \mathrm{m})<>1)$
3. $\mathrm{k} \leftarrow \operatorname{Random}(1, \mathrm{~m}-1)$
4. $\mathrm{r} \leftarrow \mathrm{g}^{\mathrm{k}} \bmod \mathrm{n}$.
5. $\mathrm{z} \leftarrow$ number $(\mathbf{m b i t}, \mathrm{H}(\mathrm{M} \mid \mathrm{r})$)// The output is the value z , its size is not more than mbit
6. $\operatorname{tg} \leftarrow(\mathrm{z}+\mathrm{x}) \bmod \mathrm{m}$

End while // The loop stops when $z+x$ exists the inverse value
7. $\left.\mathrm{s} \leftarrow\left(\mathrm{k} .(\mathrm{z}+\mathrm{x})^{-1}\right) \bmod \mathrm{m}\right)$
8. return (r, s).

4.3. Verifying signature

Algorithm 4.2.

Input: $\mathrm{M},(\mathrm{r}, \mathrm{s}),(\mathrm{n}, \mathrm{g}, \mathrm{y}, \mathbf{m b i t}) / / \mathbf{m b i t}=$ bitlength (m).
Output: "True" hoặc "False".

1. $\mathrm{z} \leftarrow$ number $(\mathbf{m b i t}, \mathrm{H}(\mathrm{M} \| \mathrm{r})$)// value of $\mathrm{z}<$ a mbit number.
2. $\mathrm{u} \leftarrow\left(\mathrm{g}^{\mathrm{s.z}} \cdot \mathrm{y}^{\mathrm{s}}\right) \bmod \mathrm{n}$.
3. if ($\mathbf{u}=\mathrm{r}$) return "True" else return "False".

4.4. Correctness of the algorithm

It's easy to see that:

$$
\begin{aligned}
& \left(\mathrm{g}^{\mathrm{s} \cdot \mathrm{Z}} \cdot \mathrm{y}^{\mathrm{s}}\right) \bmod \mathrm{n}=\left(g^{\left(k(z+x)^{-1} z\right) \bmod m} y^{\left(k(z+x)^{-1}\right) \bmod m}\right) \bmod \mathrm{n} \\
& \left(g^{\left(k(z+x)^{-1} z\right) \bmod m} g^{\left(x \cdot k(z+x)^{-1}\right) \bmod m}\right) \bmod \mathrm{n}=g^{\left(k(z+x)(z+x)^{-1}\right) \bmod m} \bmod \mathrm{n} \\
= & \mathrm{g}^{\mathrm{k}} \bmod \mathrm{n}=\mathrm{r} \text { and the correctness of the digital signature scheme is proven. }
\end{aligned}
$$

4.5. Example

Algorithms 4.1 and 4.2 are illustrated by the following example:

Parameter generation:

If the set of parameters of the new digital signature scheme are as following:
The value of the prime number p is:
11242439595922330094500086844804966357759313431812385371494511 369847330693855087879539343469849551078435848382192561802575175142 455951043851140468418943323
p_{1} is a prime divisor of $\mathrm{p}-1$ and its value is as follows:

$$
1533291864970491990937935102336166269334618134678016648433
$$

The value of prime q is:
13000056097250407151278816580424694762126189598035228608160655 285286101077083814637602139866821888168231129087200207881652034129 346833758707500099753756233
q_{1} is a prime divisor of $\mathrm{q}-1$ and its value is as follows:
693542050471501789153827056172377247128936626662022537753
$\mathrm{n}=\mathrm{p} . \mathrm{q}$ and its value is as follows:
14615234541693949095609152061384787442361691672134939078054914 055679365597736560216223659339938656710844125398866980864339936146 676123711815535232083000016596755394644166264672320085434477785326 142760988239038546633490482735589595127349439001902078113883338170 6728100718302316964348020060060727207161984982259

The value of the primitive element g is as follows:
13842455697058353097307630854947301896596179241034192521246818 029097994496972611578658769231921323332422390782921780701310024839 006077658293470388919994031736897350400418010831205276117348900655 500094697320878687677035834861273949911065633867432044330673823599 1077062669737065186351843811074484096101625162002
$\mathrm{m}=\mathrm{p}_{1} \cdot \mathrm{q}_{1}$ and is the order of g . The value of m is as follow:
10634023840029080625322721134200576728589515343869740251998541
32745719623145728624346706867226494922194398270791049

The value of the private key x is as follows:
38980919841877720028126597041593821048381262206683380473759156 9778957938885573951169495
$\mathbf{y}=\mathbf{g}^{\mathbf{x}} \bmod \mathbf{n}$ and is the public key. Its value is as follows:
18081314126463681707208105600531354803219444942937364226766655 862136409936345298373098164575398685336030305202707520919329530142 743066526126436645106579246757152798713274411382431562410098563222 366335577278553026548503978941730278481202144166631848019867446163 313952951531181009401297673693032623866599834593

Note: The prime numbers are used in this example that will be generated by the algorithm in [3] [5]. With the set of the parameter above, the result of signature generation and signature verification is as follows:

Signature generation (algorithm 4.1)
Input: Message M

Output: (r, s) is signature of M

Step 1: If the size of the message T is 13.87 Mb . Hash function used in example is SHA-512, denoted H and $M=H(T) . M$ is represented by the Hex number as follows:

BB118C3045EB6214275894575B6CD7036504379792BAB744E3B6EB6F DF4213D0921E67819974A7654616CFF6214A056398C026848CD131C757907D 280EE88552.

The decimal value of M is as follow:
97975747105107409187956387180507750847513881963918549765479880 765663033851160001447900781761796849869035947103240517957798729049 18107245447649435608188242

Step 2: Number k is randomly selected in ($1, \mathrm{~m}-1$), the result is as follows:
$\mathrm{k}=65559053911122334369117687706$
Step 3: The value of \mathbf{r} is calculated by the formula below:
$\mathrm{r} \leftarrow \mathrm{g}^{\mathrm{k}} \bmod \mathrm{n}$, the result is as follows:
$\mathrm{r}=700075376919223825896662238446486887192303123740882929410199$ 049353139983819732156200176461364426777339235615578940280578869971 077324767508786541362979546740656434723749239588803228906749181225 476240293095750593205272535388486577819602972736032978332611470815 35121991155908427229286352961144505949844357743176

Step 4: $\mathrm{z}=$ number ($\mathrm{N}, \mathrm{M} \mid \mathrm{r}$), the result is follows:
$\mathrm{z}=155478582251494173649984772551104614294175933861221891771125$ 74402314481921039872402872063159318107139103701961573714

Step 5: s is calculated by formula as follow: $\mathrm{s}=\left(\mathrm{k} .(\mathrm{z}+\mathrm{x})^{-1}\right) \bmod \mathrm{m}$. If s does not exist (because there is no inverse of $(z+x)$) then goes to step 2), value of s is:
$\mathrm{s}=577507141296403366601531541536948842155948696090904353917855$ 626403078896511057634111000995527913016381540600291993

The result of signature verification (Algorithm 4.2):
Input:
Pair of (r, s) is computed in algorithm 4.1
$\mathrm{M}=97975747105107409187956387180507750847513881963918549765479$ 880765663033851160001447900781761796849869035947103240517957798729 04918107245447649435608188242

Step 1: computed $\mathrm{z}=$ number (mbit, $\mathrm{M} \| \mathrm{r}$), the result is follows:
$\mathrm{Z}=15547858225149417364998477255110461429417593386122189177112$ 574402314481921039872402872063159318107139103701961573714

Step 2: u is computed by formula as follow: $u \leftarrow\left(g^{t} \cdot y^{s}\right) \bmod n$, where $t=(s . z)$ $\bmod \mathrm{m}$. Value of t is as follow:
$\mathbf{t}=520438263576991435816449931563023825609689069787196582958685$ 56660326006851318852877557879289120311977248897224820 . Then value of $\mathrm{g}^{\mathrm{t}} \bmod \mathrm{n}$ is:

13844681836188787050490416867068509771590285902016616400783650 957734311355486486435527647703334553405840029394487960028532497459 814389197572124605811554459426661757447249592896271588855957968225 033434748506994886694757244516753159045582211664278264328337982381 9411858385451221424397855113087868438435419833685.

With value of s is:
$\mathrm{s}=577507141296403366601531541536948842155948696090904353917855$ 626403078896511057634111000995527913016381540600291993.

The value of $y^{s} \bmod n$ is as follow:
12816170749087009435477966847753686635354362533420059134229242 260063485426448713694511362952689978278402176620915385550216450289 169708686105622979392488244289452879294305003689544189051410160007 820070589877996495733249044611900436776739808890379714645276294533 6041348138585462065519811954121693711426715412552

Then value of u with $\mathrm{u} \leftarrow\left(\mathrm{g}^{\mathrm{t}} \cdot \mathrm{y}^{\mathrm{s}}\right) \bmod \mathrm{n}$ as follow:
$\mathbf{u}=70007537691922382589666223844648688719230312374088292941019$ 904935313998381973215620017646136442677733923561557894028057886997 107732476750878654136297954674065643472374923958880322890674918122 547624029309575059320527253538848657781960297273603297833261147081 535121991155908427229286352961144505949844357743176

Step 3: Check both values: u and r show that $u=r$, so the pair of (r, s) is the signature of the message M.

4.6. Computing complexity

There is at least one loop in the algorithm 4.1. The computing complexity for each of these loops is the total of the computing complexity of $\mathrm{g}^{\mathrm{k}} \bmod \mathrm{n}$ and the computing complexity of $(x+z)^{-1} \bmod m$. According to [6], the computing complexity of $\mathrm{g}^{\mathrm{k}} \bmod \mathrm{n}$ is approximately $\mathrm{O}\left(\operatorname{logk} . \mathrm{L}^{2}\right.$), where $\mathrm{L}=$ bitlength (n). Because of $(x+z)^{-1} \bmod m=(x+z)^{\varphi(m)-1} \bmod m$, where $\varphi(m)=\left(p_{1}-1\right)\left(q_{1}-1\right)$, so the computing complexity of $(x+z)^{-1} \bmod m$ is approximately $\mathrm{O}\left(\log \varphi(\mathrm{m}) \cdot \mathrm{N}^{2}\right)$, in which $\mathrm{N}=$ bitlength (m). If M_{L} denotes for the computing complexity of a multiplication on ring Z_{n}, where bitlength $(n)=L$ and M_{N} denote for the computing complexity of a multiplication on Z_{m}, where bitlength $(m)=N$, then the computing complexity for each of these loops is as follow:

$$
\mathrm{N}\left(\mathrm{M}_{\mathrm{L}}+\mathrm{M}_{\mathrm{N}}\right)
$$

The loop will exit if $\operatorname{gcd}(z+x, m)=1$ or $(z+x)$ must be have an inverse in Z_{m}. Probability $(\mathrm{z}+\mathrm{x})$ exists its inverse element is as follow:

$$
\operatorname{Prob}_{(\operatorname{gcd}(\mathrm{z}+\mathrm{x}, \mathrm{~m})=1)}=\frac{\varphi(\mathrm{m})}{\mathrm{m}}=\frac{\left(p_{1}-1\right)\left(q_{1}-1\right)}{m}
$$

If the m is a large enough number, then $\operatorname{Prob}(\operatorname{gcd}(z+x, m)=1) \approx 1$, so the computing complexity of the signature generation algorithm denoted by C_{G} is as follows:

$$
\begin{equation*}
\mathrm{C}_{\mathrm{G}} \approx \mathrm{NM}_{\mathrm{L}}+\mathrm{NM}_{\mathrm{N}} \tag{4.1}
\end{equation*}
$$

The complexity of algorithm 4.2 is mainly focused on the complexity of exponentiation $g^{s . Z} \cdot y^{s} \bmod n$, so $g^{s . Z} \cdot y^{s} \bmod n=g^{s . Z} \cdot g^{\text {s.X }} \bmod n$. If M_{L} denotes for the computing complexity of a multiplication on ring Z_{n}, where bitlength (n) $=L$ and M_{N} denotes for the computing complexity of a multiplication on Z_{m}, where bitlength $(\mathrm{m})=\mathrm{N}$, then the computing complexity of algorithm 4.2 is as follow:

$$
\begin{equation*}
\mathrm{C}_{\mathrm{v}} \approx 2 \mathrm{NM}_{\mathrm{L}} . \tag{4.2}
\end{equation*}
$$

4.7. Some comparisons of the new digital signature scheme and the DSA Comparison about the security:

Scheme the new digital signature scheme is similar to scheme DSA, so the analysis of abilities to forge signatures can be displayed similarly to DSA. However, there is a basic difference between the DSA digital signature scheme and the new digital signature scheme as follow: the order of g is published on the DSA digital signature scheme, but on the new digital signature scheme, the order of g is not published. From this difference, when the new digital signature scheme is displayed there's no revealing or coinciding session key as using DSA. Moreover, when key session of the new digital signature scheme is revealed, it's difficult to forge the signatures.

Charge of computing:

Basing on formula 3.1 and formula 4.1, the charge of computing of DSA signature generation algorithm is similar to the new digital signature scheme. Similarly, the computing charge of signature verification algorithm on the new digital signature scheme is similar to the DSA scheme (based on formula 3.2 and 4.2).

5. EXPERIMENT

In this experiment, the length of keys on the scheme the new digital signature scheme and the DSA scheme gradually is $1024,1280,1536,1792,2048$ (bits). The message's size of the testing is 18.87 MB . The time of experiment for each set of parameter is 1000 times. The Hash function SHA 512 used in signing and confirms algorithm of DSA digital signing scheme and the new digital signature scheme digital signing scheme. The test program is written by $\mathrm{C}++$ programming language, compiled by QT Creater and installed on Laptop in which its processor is a Core2 Duo 2.2 GHz and its memory is 2 GB . The experimental parameter of the DSA signature scheme and the new digital signature scheme are generated by the algorithm [5], results are listed in the following table:

Table 1. Consulting table of signing generation and verification.

Key size(bit)	Generation time		Verification time	
	DSA	New	DSA	New
1024	1.416	1.539	6.836	5.527
1280	1.814	1.953	10.765	8.931
1536	2.89	3.182	14.813	13.3
1792	3.5	4.916	19.18	17.13
2048	5.138	5.929	22.59	26.398

In order to compare the signing speed between the DSA scheme and the new signing scheme. The test results in table 1 is illustrated by the following graph.

Figure 1. The signature generation graph of the DSA and the new digital signature scheme.
Similarly, based on Table 1, the relationship between the wasting time and key size to verify the digital signature scheme DSA and the new digital signature scheme is depicted by graph as follow:

Figure 2. The signature verification graph of the DSA scheme and the new digital signature scheme.
Figure 1 and Figure 2 shows that the computing complexity of the signature generation algorithm and the signature verification algorithm of the the new digital signature scheme and the DSA digital signature scheme is equivalent. The graphs (Figure 1 and Figure 2) show that the results of the test and the results of the mathematical analysis shown in formula (3.1), (3.2), (4.1) and (4.2) is similar.

6. CONCLUSIONS

The authors' research results are a new digital signature scheme, in which its security is based on discrete logarithm problem in the ring of Z_{n}. This new digital signature scheme has overcome some of the defect of the DSA the digital signature scheme (shown in 3.5). Based on the mathematical theoretical analysis and the test results, the computing complexity of the new digital signature scheme and the computing complexity of the DSA digital signature scheme are equivalent. However, if this digital signature scheme can be applied in practice, it should be estimated the security and the computing complexity, these research problems will be introduced in the next article.

REFERENCES

[1]. Lưu Hồng Dũng "Phát triển một dạng lược đồ chũ ký số mới", Hội thảo quốc gia lần thứ XVI, 13-14-11-2013.
[2]. Lưu Hồng Dũng "Phát triển lược đồ chũ ký số tập thể", Luận án tiến sỹ, Hà nội - 2014.
[3]. Lều Đức Tân "Số nguyên tố và đa thức nguyên thủy", Hà nội - 2002.
[4]. Lê Văn Tuấn, Lưu Hồng Dũng, Nguyễn Tiền Giang, "Phát triển lược đồ chũ ký trên bài toán phân tich số," Tạp chí Nghiên cứu KH\& CNQS - Đặc san CNTT, 04 -2014, ISSN 1859 - 1043.
[5]. Lê Văn Tuấn, Bùi thế truyền "Xây dựng thuật toán sinh số nguyên tố tất định", Tạp chí Nghiên cứu KH\& CNQS, Số 42, 4- 2016.
[6]. D.R Stinson, Cryptography: Theory and Practice, CRC Press 2003.
[7]. FIPS PUB 186-4,"Digital Signature Standard (DSS)", 2013.
[8]. OKAMOTO E, Key distribution systems based on identification information. Proc. Of Crypto - 1987.
[9]. Richard Crandall, Carl Pomerance. "Prime Numbers, A Computational Perspective", Second Edition, Springer Science + Business Media, Inc, 2005.
[10]. https://en.wikipedia.org/wiki/Digital_Signature_Algorithm.

TÓM TȦT
 XÂY DỬNG LƯỢC ĐỒ CHŨ KÝ SỐ MỚI DƯ’A TRÊN BÀI TOÁN LOGARIT RỜI RAC

Bài viết này giới thiệu lược đồ chũ ký số DSA. Dưa trên luợc đồ chũ ký số $D S A$, chúng tôi phát triển một luợc đồ chư ký số mới trên vành Z_{n} có độ phức tạp tính toán tương đuơng với lược đồ chũ ký số DSA, khắc phục được một số nhược điểm của lược đồ chũ ký số DSA và có thể ưng dụng trên thực tế.

Từ khóa: Lược đồ chữ ký số, Hàm băm.

Received date, $13^{\text {th }}$ Sep., 2017
Revised manuscript, $10^{\text {th }}$ Oct., 2017
Published, $1^{\text {st }}$ Nov., 2017

Author affiliations:
${ }^{1}$ Academy of Military Science ;
${ }^{2}$ Military Technical Academy;
${ }^{3}$ Academy of Cryptography Technique.
*Corresponding author: levantuan71@yahoo.com.

