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Abstract: In this paper, a genetic algorithm for making music compositions is presented. 
Position based representation of rhythm and relative representation of pitches, based on 
measuring relation from starting pitch, allow for a flexible and robust way for encoding 
music compositions. This approach includes a pre-defined rhythm applied to initial 
population, giving good starting solutions. Modified genetic operators enable 
significantly changing scheduling of pitches and breaks, which can restore good genetic 
material and prevent from premature convergence in bad suboptimal solutions. Beside 
main principles of the algorithm and methodology of development, in this paper the 
analysis of solutions in general is also presented, as well as the analysis of the obtained 
solutions in relation to the key parameters. Some solutions are presented in the musical 
score. 

Keywords: Music generation, evolutionary approach, combinatorial optimization, algorithm 
composing.  

1. INTRODUCTION 

Algorithms in music are used when the implementation of a set of rules or 
instructions can lead to adequate solutions. We can use algorithms for sound synthesis, 
sampling, recognition of musical works, as well as for music composition. The first three 
activities naturally impose algorithms as a way of solving the problem (searching the 
trees, series or disordered structures, and strict application of rules that describe the steps 
of the algorithm). In music composition, algorithms attempt to replace what so far has 
been considered to fall into the exclusive domain of human activity. Composing, as well 
as any other artistic activity includes free choice (of tones) by which a composer 
expresses his feelings, moods, intentions or inspiration. Proponents of algorithmic music 
consider that the free choice of the prescribed rules may be relatively easy to interpret as 
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the relevant series of instructions. Most composers apply certain rules when composition, 
i.e. series or sets of instructions, and thus any composing process in some way can be 
considered as algorithm. On the other hand, the lack of human factors in the (automatic) 
algorithmic composition leads to the appearance of large amounts of objectively bad and 
useless music. 

Therefore, many proponents of algorithmic composition decide to, during the 
execution of the algorithm, include human factors in determining the quality of the 
compositions. This kind of composition is called interactive composing, whereby, in a 
critical moment for assessing quality of composition (or its part), human opinion is 
involved. Sometimes, it can be shown that this approach often gives better results in 
comparison to the automatic composition, due to the fact that even a large number of 
rules and restrictions in algorithms cannot be good enough to assess the quality of the 
melody. 

Genetic algorithms (GA) seems to be a suitable approach for generating musical 
compositions. Combination of genetic operators (mutation, selection and crossover) in 
some way simulates the innovative process (as real composing is), enabling continuous 
"improvement" of the obtained results. 
1.1. Music terminology 

This section describes the basic definitions for music terms. They do not cover 
complete music terminology used in this paper and some very common and less 
important terms are not listed. 

Pitch is a basic concept in music. Pitch can be considered as a subjective feeling 
that the human ear hears, but also as an objective value (for example, the frequency of an 
appropriate sound wave). There are relative and absolute pitch determination. The 
relative one is based on the determination of the height in relation to some initial tone 
(for example, the tone of D4 is higher than the tone of C4). The absolute one is the 
objective and constant value (for example, the frequency of the tone A4 is 440Hz). 

Pitches are written as notes, which represent the European standard system of 12 
equally distributed semitones. Semitone is the smallest practically usable space between 
the two tones. In 12 equally tempered scale, the standard ratio between two consecutive 
semitones is 12 2 . In the scale, we have seven basic pitches  („c“, „d“, „e“, „f“, „g“, „a“, 
„b“)  plus five additional („cis”, „dis“, „fis“, „gis“, „ais“). After note "b", note "c" with 
the frequency 2f comes again, where f is the frequency of the starting tone „c“.  

An octave is the interval between one musical pitch and another with half or 
double its frequency. To distinguish each tone series, the corresponding number of notes 
added to the numerical indices, e.g. "C1", "C2", "c3", etc. An octave is, therefore, a series 
of eight tones (e.g. "c1-c2), consisting of twelve semitones. 

Melody is represented by pitches arranged in a horizontal sequence, one 
sounding after another.  

Pitch duration is also an essential part of any musical composition. The timing 
and length of each pitch in a melody defines that melody’s rhythm. Rhythm refers to 
timing, both in terms of how long sound events last and when they are scheduled to 
occur.  

The system of organizing durations, which is now commonly used, is such that 
the first shorter duration of each tone is half of the previous one. Thus, the system notes 
the duration consists of geometrical progression with a quotient of two (whole notes, half 
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notes, quarter, eighth, sixteenth notes, etc.). The rhythm is associated with the duration as 
the duration of pitches and pauses, and disposition of their occurrence. The duration of 
the tone and frequency of these durations in the melody defines rhythm and basic unit of 
measurement - bar. Usually, the music works are organized in a way that they have their 
own rhythm and tempo, but there are works in which the bar is not constant, as well as 
works that have no bars. 

Each basic note can be increased for a semitone, where the prefix "-is", or 
symbol #  is added or decreased (for a semitone - half of a degree), where the symbol ♭ 
is added (e.g. "CIS", "D#", "E♭", etc.). In standard diatonic scales, the increased note of 
"e" or "eis" is equal to the note "f", as well as the increased note of "b" is equal to „c“. 
Analogously, the decreased notes "f" and "c" are "e" and "b". When writing increased 
pitches we use the sharp sign (#), to write down decreased pitch we use the sign (♭), and 
to “abolish” them we use sign (♮). Also, there are other symbols for multiple increasing 
(decreasing). 

Tonality is a system of notes in which specific hierarchical pitch relationships 
are based on a key "center" or tonic. 

The distance between the two notes, either when they sound simultaneously or 
one after the other, is called the interval. They are classified to consonant intervals, 
sounding pleasant to the human ear, and dissonant intervals, creating a subjective feeling 
of tension during the hearing. In the standard European system eight intervals are 
defined, between eight (plus one) of basic notes in octave, unison (also called prime), 
second, third, fourth, fifth, sixth, seventh and octave. Unison interval is trivial, because it 
applies the same tone. Intervals are further classified into:  

• perfect, which occur in only one size of the spacing between tones (with one 
exception) 

• minor and major, which often occur equally in two different sizes for a half 
degree,  

• augmented and diminished which are different from perfect intervals for a half 
degree. 
In Table 1 intervals and their size in semitones are listed. 
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Table 1: Overview of the intervals between the tones 
Interval Interval size Name 

unison 0 perfect 

second 
1

2  minor 
1 major 

third 
11 2  minor 
2 major 

fourth 
12 2  perfect 
3 augmented 

fifth 
3 diminished 
13 2  perfect 

sixth 
4 minor 
14 2  major 

seventh 
5  minor 
15 2  major 

octave 6 perfect 
 

1.2. Genetic Algorithms 

GAs are complex and adaptive algorithms usually used in solving robust 
optimization problems. Basically, they involve working with population of individuals 
where each individual represents a potential (optimal) solution, and each population is a 
subset of the total search space. Population in the iterative process is changing (old 
individuals are changing to new, potentially better ones).  

Each individual is assigned a value called fitness, which indicates the quality of 
the observed individual. During the iteration process, good individuals are selected to 
(re)produce better ones, while applying genetic operators crossover and mutation. Old 
generation (in some way) is replaced by a new one. Detailed description of GA is out of 
this paper's scope and can be found in [7,23,30]. 

Some recent works in GA on various optimization problems show that GA often 
produces high quality solutions in a reasonable time [16-19].  

In general, each individual is represented by a genetic code on some finite 
alphabet. In the wide use of GAs, usually binary coding is used, where genetic code 
consists of bit sequence. Number of individuals in the whole population is usually 
between 10 and 200. 

The starting population is generated either randomly or by some other heuristic 
method where the only prerequisite to the usage of the second method is to be relatively 
fast. 
1.3. Existing work of genetic algorithms in composing music 

The first published record of the use of genetic algorithms (GA) for music 
composition is [11]. In the following years, GA has been widely used in this field by 
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many researchers, and their works fall between music, mathematics and computer 
science.  Description of all contributions in this area is out of this paper’s scope and 
surveys can be found in [3,4,6,8,9]. A survey of the usage of different AI methods for 
algorithmic composition was made in [27].  

Among many recent works, several directions of GA application for composing 
music melodies can be identified. In often cases, short and monophonic melodic 
fragments or motifs are composed, which typically range from one to eight or so bars in 
length. Some directions are:  

• Making variations on existing composition or motif, [13,14,29 ]; 
• Making compositions similar to reference one, [10,22]; 
• Making solos or improvised melodies over or by existing templates (proposed 

rhythm and schedule of chords), [13,14,25]; 
• Considering both melody and rhythm: concurrently, [1,14,20], or separately, 

[28];  
• Considering only melody composition without rhythm [15,29], or only rhythm 

generation without melody [5,12,31]; 
The interactive GA approach, where human opinion is used for evaluating the 

quality of the composition can be seen in [13,14,24,31]. One of the most famous software 
for generating music using interactive GA is GenJam, described in [1]. Meanwhile, 
various upgrades have been made on this software, last presented in [2]. The main two 
drawbacks associated with all interactive GAs are subjectivity and efficiency problem, 
referred to as “the fitness bottleneck”, where the user must hear each potential solution in 
order to evaluate its quality. 

Automatic calculating of the quality of the composition eliminates direct 
influence of the human factor, but involves two additional processes: a mapping of 
compositional rules to a numerical model, which is suitable for automatic optimization 
and re-mapping from the numerical optimization result to a musical. Among others, GAs 
using automatic calculating can be found in [10,22,25,26]. 

Current trends of GA applications to music are also described in [21]. In this 
book, some tools with computer simulations for creating and studying these systems are 
also presented: GenDesh, GenJam and CAMUS.  
 

2. GA IMPLEMENTATION 

Before the detailed analysis of the algorithm is performed, the aim and the basic 
idea should be stated: 

1. The aim of the algorithm is to compose relatively short compositions (e.g. four 
4/4 bars).  

2. Compositions are represented by one array (of numbers) that carries information 
about the pitches and their duration.  

3. The general input parameters determine: the length of the composition, tonality, 
number and range of tones allowed, the number of iterations, criteria for the 
completion of the algorithm, the method of interpretation of the results of the 
algorithm and so on.  

4. The input parameters that affect the quality assessment of the composition are: 
the values that indicate the similarity of the composition with the referred 
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composition of the baseline (or reference values), the values of the intervals, the 
set of the "good" and "bad" tones, allowed deviation (variance) of the prescribed 
reference values, and weight factors that influence the importance of different 
assessment criteria 

5. An important part of the algorithm is to establish criteria that determine the 
quality of the composition. These criteria are related to the evaluation of the 
intervals between successive tones, the deviation from the reference values and 
number of “bad” tones. 

6. The composition search space is being searched by the principles of GAs in 
order to find composition which is “good enough”. It starts from the set of 
randomly generated individuals (compositions). This process of generating 
random composition is partially controlled by input parameters. Applying GA 
operators, from iteration to iteration, the algorithm tries to find the individual 
which meets the criteria to stop the iteration process. Algorithm stops either 
when it reaches the maximum number of iterations, or when the (best) 
individual is formed with good enough fitness. The quality of the individual is 
reversed in relation to the size of the fitness. The individual becomes "better" as 
its fitness (considering as number) decreases.  

7. The fitness of all individuals of the population is computed in each iteration and 
new individuals are created by mutations of currently best ones. Then, the 
selection is performed among all new individuals and the individuals from the 
previous generation. 

8. Output data from the algorithm is a composition, which, depending on the preset 
parameters and iteration process is considered as optimal. 
The algorithm is implemented in the Java programming language.  
The output of the algorithm is a music record, which can produce some of the 

standard musical outputs. JCreator (http://www.jcreator.com) is used for writing source 
code and compiling. 

As the musical interface (for production audio files) JFugue 
(http://www.jfugue.org) Java API is used and for creation notation, Notation Musician 
(http://www.notation.com). 
2.1. Population initialization and algorithm flow 

In the algorithm the initial population is formed, containing individuals which 
have predefined rhythm, similar to the reference individual (distribution of beats at each 
individual is exactly the same as the reference, and possible "disorder" in the rhythm may 
arise due to breaks, generated in different places). Each individual is a complete 
composition. Fitness function is calculated for each individual, and population is sorted 
by fitness.  

Usage of reference individual is optional and may be considered useful and 
practical if we would prefer that our composition has a distinctive rhythm (the schedule 
length of notes and pauses), or, as often the case, if we do not want the duration of notes 
to depend on random generator (it is much more likely that random generation would 
result in quite an irregular and awkward rhythm). In addition, the reference individual 
can have an impact on fitness, if predefined values (of intervals and their schedule) refer 
to that individual. In other cases, these predefined values can be entered independently. 
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The main elements of the algorithm are presented in Figure 4. Based on the 
initial parameters, the initial population is generated containing a total of n individuals. 
After this, an iterative process begins. Fitness is calculated in each iteration for each 
individual of the current population. After this, the list of individuals of the population is 
sorted by fitness. Based on the best individual (individual with best fitness), it is 
examined whether the condition is met for the end of the algorithm. If so, the algorithm 
stops and the corresponding best individual (composition) is pronounced as the result of 
execution of the algorithm. If not, the algorithm enters into the process of creating new 
individuals. Of all the individuals of the current population, the best individuals are 
chosen (namely, one-third of the total). Then, mutation operators are applied on them, 
thus obtaining new individuals. Each new individual is then added to the old list of 
individuals. After applying the mutations on selected individuals, the new list of 
individuals is re-sorted (by fitness). After that, duplicates (individual with the same 
fitness) are removed, and then the "excess" individuals are removed, in order to remain 
exactly n individuals. Iterative process is repeated until it fulfills the criteria for 
termination – the best individual has good enough fitness, or when the algorithm reaches 
the maximum number of iterations. 

 
Figure 4: Scheme of GA used for music composing 

 
2.2. Creating an individual 

The system of representation of an individual is as follows: 
Let us assume that the set of allowed tones is a subset of standard diatonic set 

(each tone can be played with the appropriate piano key). Then, let us choose relative 
representation of the tones and let the total number of pitches be n. We should assign 
number 1 to the reference pitch, to the following (in height) - tone number 2, next one, 3, 
etc. Further, let the greatest common divisor of the durations be k. Let us call it „the 
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shortest length“. Also, let the whole composition consists of m bars, each bar of the p 
pulses. Let one pulse have q „shortest lengths“. From here we conclude and state: 

1. every bar has pq „shortest lengths“; 
2. any tone duration is of tk „shortest lengths“, for some t; 
3. whole composition is of mpq „shortest lengths“; 
4. a break with „shortest length“ is represented by the number 0; 
5. the shortest length is represented by the number of n+1; 
6. in order to represent the whole composition, it is enough to use one array of the 

numbers, with the length of mpq, where all elements are from [0,n+1]. If the 
element is from [1,n], it is (real) tone with appropriate pitch, if the element is 0, 
it is a break, and if the element is equal to n+1, it means that the duration of the 
first preceding tone (or break) to the left is increased by one „ the shortest 
length“; 

7. each composition that satisfies these conditions can be assigned one and only 
one series; 

8. Any series, except those that begin with the number of n +1 (we do not know 
what tone is of „shortest length“) corresponds to exactly one composition. 
With this system a relatively simple representation of simple compositions is 

achieved, while for more a complex composition this system can be used with some 
improvements. For example, the basic setting does not allow presentation of multiple 
tones at one time, and practically, for each such situation we must take more than one 
series. Furthermore, such a system, although theoretically possible, is not practical for 
representation of polyrhythmic compositions, i.e., those that have a wide range of 
different durations (for example, if, in addition to the usual duration of the fourths, 
eighths, sixteenths, also exists durations of the thirds, fifths or sixths). 

 
Example 1. 
Let us see how such a representation can be applied to the concrete composition. 

In Figure 1, one composition is represented by musical notation and appropriate series. 

 
Figure 1: Representation of notes in a composition 

Let the tone of C4 be selected for a reference pitch (composition is written in a 
minor). Let two octaves be available for tones. Tones that do not belong to the C major 
scale (i.e. a minor) are not considered (in this example), and for them there is no 
adequate representation. The numbers above the notes indicate the distance from the 
reference tone. 

We have a total of 14 different tones and we can choose for the representation 
shown in Figure 2. We see that the number of zero represents the break. 
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Figure 2: Coding in C major scale 

It is now necessary to introduce the duration of tones. Based on the composition 
(Figure 1) the following facts are noted: Time signature of the composition is 4/4. Since 
the total number of allowed tones is 14, all the elements of array are from the interval 
[0,15], where zero indicates a break, and number 15 we use to add one “shortest 
duration” of the previous note. The greatest common divisor of all durations is eighth. 
Therefore, for the shortest length we use one eighth (of beat). Given that the composition 
has a total of four bars, in each bar we have eight of the shortest lengths, for the 
presentation of this composition, we need a series of length 32. Break (that is length of 
one eights) is represented by zero, each tone is represented by a number that represents 
the duration of one eighth. Any longer duration is indicated by the number of 15. 
Therefore, the first tone C, which occurs in the composition, lasts three eighths, and is 
represented by 8 15 15. The whole series is as presented in Table 2: 

 
Table 2: Coding of the composition shown on Figure 3  
Indexes and values of the elements of series 

1 2 3 4 5 6 7 8 9 10 111213 14 15 16 171819202122 23 2425262728 29 30 31 32 
0 3 6 7 8 15 15 7 8 7 6 5 4 15 15 15 0 4 5 6 7 15 15 6 7 6 5 4 3 15 15 15 

 
Distribution of numbers and tones are shown on Figure 3.  

 
Figure 3: Coding composition with breaks and different durations  

Initially, a reference individual is chosen, which determines the general 
parameters: size, tonality, number and a list of allowed (half) tones, the overall 
duration of an individual (the number of beats or bars), the shortest length (greatest 
common divisor of all durations), the number of the shortest lengths in one beat, as 
well as the distribution of beats in individuals.  

Each individual (array) is generated in an arbitrary way, with two 
restrictions (n is total number of pitches): 
• all elements of the series are from [0,n+1], 
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• i –th element is equal to n+1 (meaning prolongation) if and only if the 
appropriate element of  the series of the reference individual is equal to n+1. 
With this feature, we hold the same rhythm for individuals. 
 

2.3. Determining fitness 

The fitness function is used to determine the criterion for comparison of quality 
of individuals. Determining the fitness function in the theory of GAs is often a critical 
point in the design of the algorithm. Here, we must take into account the additional 
parameter, that music is a subjective sensory event (for instance, what one person likes, 
may not be pleasant to others, and otherwise). Therefore, however the fitness is 
computed, the possibility of subjective opinions about the quality of the individual still 
remains. It is clear that the determination of fitness function of GA is the most important 
but also the most complicated single step. According to the current state of the art, a 
reliable and efficient way to determine the fitness function that will directly refer to the 
desired solution is not yet defined [33]. In most cases, a function which computes the 
total fitness based on different criteria is used. List of potential measurable musical 
elements in the composition is given in [32]. 

Thus, the total fitness f is defined as 

1

 
n

i i
i

f fλ
=

= ∑  (1) 

where iλ  represents the weight (influence) of the value if  to the total fitness, 
and n is the total number of criteria. For example, for different i, if  may be a ratio 
between the number of tones out of a given tonality and the total number of tones, the 
ratio between the number of dissonant intervals and all intervals, the ratio between the 
number (or total) appearances of some pattern in relation to the total number of notes, 
density of tones etc. Parameters iλ  give appropriate weight to the value. 

In [22], a more general approach is used, where fitness is calculated from one to 
another bar, and the total fitness is the sum of those values. This approach is also used in 
algorithm presented in this paper.  

Therefore, the total fitness is calculated as 

1 1

k n

ij i
j i

f fλ
= =

= ∑∑
 (2) 

where ijλ  is weighted factor of value if  u j-th bar, n is the total number of 
criteria, and k is the total number of bars. 

As we have a reference individual (or reference values), determination of fitness 
is (not entirely) related to the assessment of how our individual „looks like" the reference 
one. In addition, given that all semitones from the observed interval are allowed, it is 
possible that, while generating individuals we get „good“ intervals, but with tones that do 
not belong to the desired tonality. It is therefore necessary that the final fitness value is 
affected by the number of tones out of tonality. The quality of an individual is inversely 
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proportional to the number. Therefore, tones out of a given tonality are allowed, but the 
individual is still better as it has less of those tones. 

The similarity with the reference individual is determined on the basis of the 
defined "distance" of an individual to the reference one. The distance is calculated bar by 
bar. Roughly speaking, the distance between individuals, and appropriate bars is based on 
the number and type of "good" intervals, as well as their distribution by bars. In the case 
that the reference individual is not used, the parameters that affect the comparison must 
be "manually" defined. From the mathematical perspective, the similarity is based on 
determining the arithmetic mean value of the intervals in the bar and the corresponding 
variance of the two compositions, for each bar. After that, differences between the 
corresponding values are considered, which are then gathered together (with possibly 
some weight multiplication factors). The process of determining the fitness is as follows: 

Determining the (number) values of each note. According to the system of 
representing the composition, each note corresponds to the appropriate number, i.e. the 
distance from the reference note. 

Determination and evaluation of the interval (in bar). Interval consists of two 
consecutive notes (breaks are skipped). If we observe the appropriate series, all intervals 
are the subtractions between the two consecutive elements which are different from zero 
and the total length (which does not denote a note, but the extension period). Thus, in 
relation to the total number of notes, there is one interval less, in the first bar. Intervals 
that are "on the border” between two bars are tied for the second tone of the interval, i.e., 
the second of the two bars. The rule for evaluation of the intervals is carried out by the 
"quality" of intervals, giving the lower value to the „better“ intervals. Table 3 gives two 
proposals for evaluating intervals. It should be noted that, due to the functioning of the 
algorithm (computing fitness function), the lower value of the interval actually says that 
that interval is „better“. Examples of evaluation of intervals are given in the last two 
columns of Table 3. 
Table 3: Proposals for evaluation of intervals 

Categories of 
intervals Intervals Values (proposals) 

I proposal II proposal 
perfect consonants unison, perfect fourth, 

perfect fifth, octave 1 1 

imperfect 
consonants 

minor and major thirds 
and sixths 2 3 

seconds minor and major seconds 3 1 
sevenths minor and major sevenths 3 3 
intervals greater 
than octave 

all intervals greater than 
octave 5 5 

 
Determine the arithmetic mean and variance. Arithmetic mean and variance are 

calculated for each bar. Arithmetic mean is the average value of the interval values that 
are present in the bar. 

1

1 n

i
i

a x
n =

= ∑  (3) 
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where ix  is value of i-th interval, n is the total number of intervals (in the bar). 
For example, according to data from Table 3, if all intervals in the bar are perfect 
consonants, the arithmetic mean is equal to 1.  

Variance is calculated as the mean of sum of squares of all deviations in the 
interval, from arithmetic mean, given by formula: 

2 2

1

1 ( )
n

i
i

x a
n

σ
=

= −∑  (4) 

From this formula we see that the variance is greater when we have more 
„different“ types of intervals. 

Therefore, these values are calculated for each bar of the reference and observed 
individuals. Information about the similarities between these two individuals are given by 
formulas, 

1
1

( )
m

i i i
i

f aζ μ
=

= −∑  (5) 

2 2
2

1

( )
m

i i i
i

f bη σ
=

= −∑  (6) 

where iζ  is influence of the difference of arithmetic means in i-th bar, iμ  is the 
arithmetic mean of i- th bar of reference melody (or predefined value if reference 
individual is not used), ia  is arithmetic mean of i- th bar of arbitrary individual, iη  is 

influence of i –th deviation, 2
iσ variance of i-th bar of reference individual, (again if we 

do not use it, it is predefined value), and 2
ib  variance of i-th bar of arbitrary composition. 

The number m is the total number of bars. An opportunity for (manually) setting the 
values of iζ  and iη  for any bar, gives the possibility of „balancing“ intervals in the 
melody.  

For example, at the beginning and at the end of the composition, lower values 
can be given to these numbers, and greater in the middle, which means that at the 
beginning and the end we emphasize the similarity, with the reference individual (or pre-
defined values). In the examples presented in this paper, all values weight factors are 
equal to one. 

Total similarity is defined as 1 2f f fα β= + . 
α  and β  are global weighted factors. In the examples in this paper, both 

factors are equal to one. 
It is clear that if the reference and arbitrary individual are the same, the value of 

f will be zero. The opposite is not true, the value of f can be zero if individuals are not 
equal. It justifies that the usage of reference individual is optional. What this information 
suggests, then, is that individuals, from bar to bar, have a similar (or same) distribution of 
intervals with the same given value. 

Furthermore, in the algorithm an additional factor that affects the fitness is 
considered: the number of tones that are outside of the prescribed tonality. In general, this 
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algorithm uses a set of “bed” tones, where the total number of „bad“ tones are counted. 
Breaks are ignored (considered as "good" tones). Thus we get the value: 

1g
bl

γ=  (7) 

where bl  is the total number of „bad“ tones. γ  is weighted factor , in this 
solution, it is equal to one. 

Thus, the total fitness of an individual is calculated by the formula: 
2 2

1 1

1( ) ( )
m m

i i i i i i
i i

TotalFitnes f g a b
bl

α ζ μ β η σ γ
= =

= + = − + − +∑ ∑  (8) 

2.4. Genetic operators  

In the algorithm three types of mutation and selection are used, while crossover  
omitted. The reasons for the lack of crossover operator are:  

• the algorithm is to generate relatively short compositions and it makes no sense 
to crossover so short pieces; 

• using three types of mutations and good balancing parameters that affect the 
fitness attained adequate results (not always, but in many cases algorithm 
generated individual with fitness equal to zero) and crossover (or any other 
operator) cannot further optimize already the optimal solution;  

• Obtained best individuals represent good "samples" to create a new larger 
(longer) composition and the upgrade of this algorithm should go in the 
direction of the crossing over whole individuals within these longer 
compositions. This idea is out of the scope of this paper;  

• Since the goal is not to develop a fast algorithm, but one which can identify an 
individual which is good enough, for each generation the possibility of 
generating a huge number of individuals has been left, of which a very large 
number of these are abandoned. In this manner, we prefer exploitation of the set 
of all individuals rather than optimization. 
 
According to the models used in the literature, three different mutations are 

implemented. Probability (relative to other mutations) of occurrence for  each mutation is 
determined. Furthermore, there is a choice on what individuals (and how many times) 
mutation will be applied. Since there is no crossover operator, the idea is to apply 
mutations on better individuals multiple times. In this way, the good individuals are 
“striving” to become better. On the other hand, it is possible that the application of 
mutation does not change fitness at all (although the individual changes), so it is possible 
that different individuals with the same fitness appear. This problem is solved by the 
appropriate selection. 

Mutation 1: Changing tone for an octave. This mutation potentially reduces the 
number of "large intervals", i.e. those that are larger than one octave, which in a standard 
algorithm setting are given very high value (they are considered as „bad“ intervals). 

Mutation 2: Changing one tone. This mutation allows the "correction" of the 
fitness of the old individual, in the case when the tone which is not in a "harmonious" 
relationship with its neighbors changes. In this case, with substitution to some other tone, 
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there is a chance to improve fitness. According to the functioning of the selection, 
"distortion" of fitness (getting worse in the new individual) does not affect the overall 
quality, because in this case the old individuals will survive. 

Mutation 3: Swapping two consecutive notes. The index of the note is chosen 
randomly and the note swaps with the neighboring note. This mutation can improve 
fitness by changing and potentially correcting the "surrounding intervals". 

 
Selection plays an important role, given that a large number of new individuals 

is generated in each iteration. The elimination selection is used (individuals who have 
low fitness are removed), along with additional elements: before removing poor 
individuals, potential duplicates are removed, and of all individuals who have the same 
fitness (this can occur by applying appropriate mutations) only one copy is left. 
Furthermore, if the defined number of iterations, runs the best individual that has no 
satisfactory fitness (not good enough), then it is also removed, and the second one 
becomes the current best individual. Experiments show that this phenomenon usually 
happens in the case of an "unfortunate" definition of extremely poor initial population, 
where individuals are so bad that the mutations can not sufficiently improve them. On the 
other hand, the objective of the algorithm justifies and allows these effects and so it is not 
considered as error in the algorithm, but rather as "poor inspiration" of the random 
generator. Elitist strategy is not applied directly (with no pre-defined number of 
individuals that are going into the next generation), but the assumption is that the 
mutation operators can not decrease or increase the fitness in such a way that old 
outstanding individuals do not survive at least until the next generation. (Each mutation 
can change only two intervals.). 

 
3. EXPERIMENTAL RESULTS 

In this section the compositions obtained by variations of parameters are 
presented. By an analysis of the parameters and the obtained composition the conclusion 
is that results can be categorized into classes of „similar“ compositions.  

Some compositions obtained by GA can be downloaded from 
http://www.pmfbl.org/matematika/zaposleni/dmatic/files/music.html.  

Some of these compositions, especially the “mainstream” ones, sound pleasant. 
Comparison of the quality of the compositions can be done only for those represented by 
the same mathematical model. As it is hard to define the function which naturally 
determines the quality of a composition, there are large numbers of mathematical models, 
that are incompatible and (mathematically stated) incomplete. Since this model uses 
characteristics of various different models, direct comparison is not possible. 

 
Tests have shown that the combination of a large number of different parameters 

can significantly affect the quality and the concept of melody. For example, giving lower 
value to minor and major seconds (compared to the others) we get the composition of 
which the successive tones (or intervals) are relatively close. Mostly, the situation when 
the lowest value is assigned to the perfect consonants is tested (they are considered as 
best intervals). In the opinion of the author, in this case, the best solutions are obtained. 

In this solution, the author opted for the following limitations: 
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1. Tones are taken from two octaves. There is a possibility of defining a set of 
"good" or „bad“ tones. By default, the algorithm declares tones from G major 
scale as good, while the tones out of G major scale are considered as bad. This 
does not mean that they are completely excluded, but only that their appearance 
spoils the overall fitness. 

2. Perfect consonants are given lower value than the other intervals. Interval values 
are identical to the values from Table 3 (I proposal) 

3. It is chosen that the composition consists of four bars and a total of 32 shortest 
lengths. Thus, each bar has 8 shortest lengths. 

4. The reference arithmetic means and deviations of each individual bar are 
defined. Depending on the defined means and deviations, we get different 
distribution of consonant and dissonant intervals. We get quite a nice solution 
when we require more perfect consonants in the first and fourth bars, while we 
allow freedom for the appearance of other intervals in the middle bars. 

5. The algorithm was tested for a population size of several dozen (mostly 30) of 
individuals. It turned out that for obtaining good (and often optimal) solutions 
100 generations are enough. 

6. The solutions are series of tones with different durations, with rather frequent 
breaks. Generally, the algorithm seeks to produce breaks, because that reduces 
the potential bad intervals; the bed intervals have a greater impact on decreasing 
the quality of the individual, than the good ones have on increasing that quality. 
Hence, the obtained individuals sound more like good improvisations than 
melodic composition. Ultimately, they are too short in order to form a longer 
melody. Given that, the author has decided to present the results arranged in the 
basic arrangement, where the generated individuals are associated with slightly 
adjusted elementary chords and rhythm of drums.  

3.1. Examples of „mainstream“ compositions 

This section presents a combination of parameters which determine the best 
composition. 

The interval values are shown in Table 4. The interval is „better“ as its value 
diminishes. 
Table 4: Concrete values of the intervals in the mainstream compositions 

Intervals Values 
unisons, perfect fourths and fifths, octaves 1 
minor and major thirds and sixths 2 
minor and major seconds and sevenths 3 
intervals greater than octave and augmented  fourths 5 
 

From data from Table 4 we conclude:  
• The perfect consonant intervals are the best, and  
• Thirds and sixths are good enough that the probability that they will appear is 

relatively high  
• seconds and sevenths are not welcome, and are likely to occur less than 

consonant intervals 
• intervals larger than one octave are extremely undesirable. 
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For a set of "good" tones we declare the set of tones belonging to G major scale. 
Tones out of G major scale are considered as bad. 

Since the composition consists of four bars, we define four reference values for 
the arithmetic mean of the interval and variance. The values are shown in Table 5. The 
algorithm combines data from Table 4 and Table 5 and so estimates the quality of the 
intervals. 
 
Table 5: Reference values for arithmetic mean and variance 
Reference values Bars 

I bar II bar III bar IV bar 
Arithmetic mean 1 1 1 1 
Variance 0 0.2 0.2 0 

 
Based on data from Table 5, we can conclude:  

• Perfect consonant intervals are required for all four bars, 
• Any deviation will happen before in the second and third bar, rather than in the 

first and fourth. 
It should be repeated that such preferences do not exclude the occurrence of 

other intervals, but only reduces the probability of their occurrence.  
All weighting factors that affect fitness are the same unit. 
Figures 5-8 shows four individuals obtained under these conditions. 

 
Figure 5:  The first individual. Almost all intervals are perfect consonants 

 
Figure 6: The second individual. Appearance of thirds and sixths 

 
Figure 7:  The third individual. A greater number of thirds and sixths in the second, third 

and fourth bar 

 
Figure 8: The fourth individual. Again, we have mostly perfect consonants 
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3.2. Special individuals 

In this section we can see how the changing values of the intervals, as well as 
reference values for the mean of the interval and variance, can "manage" the composing 
process. 

Individual 1.  
Perfect consonant are the most desirable (table of interval values is identical to 

Table 4), and for the reference values we requested that the entire composition consists of 
the intervals with a value of 1 (Table 6). 
Table 6: Reference values for arithmetic mean and variance 

Reference values 
` 

I bar II bar III bar IV bar 
Arithmetic mean 1 1 1 1 
Variance 0 0 0 0 

 
Other parameters are the same as in the previous example. 
Under these conditions, in 47th iteration, the algorithm determined the melody 

(shown in Figure 9) as the best result. The fitness of this composition is zero (optimal), 
because, in addition to all the intervals being optimal, composition does not contain any 
tone out of G major scale. 

 
Figure 9: All intervals are unisons, perfect fourths and fifths. 

Individual 2. In this example, seconds (minor and major) are declared as the best 
intervals. Interval values are shown in Table 7. Variances are equal to those of Table 6 
(We do not allow deviations from the reference value). This indicates that the algorithm 
will seek to put all the intervals to those who have a value of 1. 

 
Table 7: Seconds are best intervals 
Intervals Values 
unisons, perfect fourths and fifths 2 
sevenths and augmented  fourths 4 
minor and major thirds and sixths 3 
minor and major seconds 1 
all intervals greater than octave 5 

 
In the 100th iteration, the algorithm brought out the melody shown in Figure 10. 

We see two interesting things: The algorithm aims to delete tones (composition contains 
a long break) and the „bad“ tone of Cis retained, which does not belong to G major scale. 
Therefore, the fitness of this composition is greater than zero and the algorithm is not 
terminated in earlier iterations (it performed the maximum number of iterations which 
was a criterion to stop the algorithm). The occurrence of the tone Cis affects the 
"deterioration" of fitness. Hence, we conclude that this individual could mutate into a 
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“better” one only if mutation changed the tone Cis to C (any other tone would undermine 
the interval). The probability that this will happen is very small. Therefore, it is assumed 
that in additional number of iterations the fitness of that individual will not be better. 
Another possibility is that the individual "dies of young age", and the algorithm finds the 
optimal solution based on other individuals. 

 
Figure 10: All intervals are minor and major seconds 

Individual 3: For reference values we demand that the entire composition 
consists of thirds, sixths or octave. Interval values are shown in Table 8, and reference 
data are again the same as in Table 6 

 
Table 8: Best intervals are thirds, sixths and octaves 

Intervals Values 
unisons, perfect fourths and fifths 3 
minor and major thirds and sixths, octave 1 
minor and major seconds and sevenths 3 
all intervals greater than octave and augmented  fourths 5 

 
In the 50th iteration, the algorithm gave the composition shown in Figure 15. 

We can see that all the intervals are thirds, sixths or octaves and there are no tones out of 
G major scale. This means that the fitness of this individual is zero. 

 

 
Figure 11: All intervals are thirds, sixths or octaves 

Individual 4, 5 and 6 show that by increasing the allowed variance, step by step, 
we lose control over the tones. 

Individual 4: If we favor minor and major seconds, and allow a relatively small 
variance (10%), the algorithm, (after some less successful attempts) brought out an 
individual shown in Figure 12. We see that allowing deviations reduces the probability 
that breaks will appear. Given that, fitness is not optimal, the algorithm was carried out 
"to the end", i.e. made a maximum 100 iterations. 

 
Figure 12: Greater deviance decreases probability that break will appear 

Individual 5: If we allow a slightly larger deviation (we can consider deviance 
up to 30%), the algorithm results in the composition which is still „kept under control“, 
although deviation allows greater freedom in the distribution of intervals. Still, a large 
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number of the preferred intervals (large and small seconds) exists. The composition is 
shown in Figure 13. 

 
Figure 13: Greater deviance allows more freedom in intervals 

Individual 6: If we allow a large deviation (practically we remove restrictions), 
keeping the values of the other parameters, we are given the composition that makes no 
sense at all. Here is listed only as a marginal case, which further justifies the control of 
parameters. The composition is shown in Figure 14. 

 
Figure 14: Deviance caused by large variance 

4. CONCLUSION 

A genetic approach for generating music compositions is presented in this paper. 
Results that can be obtained by the algorithm meet some objective criteria of "beautiful" 
compositions: they contain intervals that are pleasant to the human ear, the rhythm is 
meaningful, and, with a slight adjustment to the appropriate arrangement, the 
compositions sound unusual, but pleasant. 

From a practical point of view, this algorithm gives the possibility to control the 
various parameters that affect the quality and form of the composition. The existence of 
reference individuals (or pre-defined parameters) improves the process of selecting and 
obtaining a relatively rhythmic and harmonious composition.  

By coding the composition by an array of tones and breaks (with additional 
information about the length), an effective and quick control of the composition, tones 
and its rhythm is provided. This coding system enables the application of appropriate 
mathematical functions to tones, intervals and other "musical" parameters. It gives 
numerical values that can perform arithmetic and logical operations necessary for the 
operation of any algorithm.  

This research can be extended in several ways. It would be interesting to 
implement some other metaheuristic for comparison or hybridization with GA. By 
adjusting parameters in an appropriate way, it can be investigated how presented GA 
could generate compositions that all belongs to one particular music gender. 
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