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ULTIMATE STABILITY OF NONLINEAR TIME-VARYING SYSTEMS
WITH MULTIPLE DELAYS

Do Thu Phuong
Faculty of Fundamental Sciences, Hanoi University of Industry

Abstract. The ultimate stability of nonlinear time-varying systems with multiple
delays and bounded disturbances are investigated in this paper. Based on some
comparison techniques via differential inequalities, explicit delay-independent
conditions are derived for determining an ultimate bound such that all state
trajectories of the system converge exponentially within that bound. The obtained
results also guarantee exponential stability of the systemwhen the input
disturbance vector is ignored. Numerical simulations are given to illustrate the
effectiveness of the obtained results.
Keywords: Ultimate stability, exponential convergence, time-varying systems,
bounded disturbances, M-matrix.

1. Introduction

In practical systems, there usually exists an interval of time between stimulation
and the system response [1]. This interval of time is often known as the time delay of
a system. Since time-delay unavoidably occurs in engineering systems and usually is a
source of bad performance, oscillations or instability [2], stability analysis and control
of time-delay systems are essential and of great importancefor theoretical and practical
reasons [3]. This problem has attracted considerable attention from the mathematics and
control communities, see, for example, [4-9].

When considering the long-time behavior of a system, the framework of Lyapunov
stability theory and its extensions for time-delay systems, the Lyapunov-Krasovskii and
Lyapunov-Razumikhin, have been extensively developed [3]. However, realistic systems
usually exhibit nonlinear characteristics for which the theoretical definitions in the sense
of Lyapunov can be quite restrictive [10]. Namely, the desired state of a system may
be mathematically unstable in the sense of Lyapunov, but theresponse of the system
oscillates close enough to this state for its performance tobe considered as acceptable.
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Furthermore, in many stabilization problems, especially for systems that may lack an
equilibrium point due to the presence of disturbances or constrained states, the aim is
to bring those states close to certain sets rather than to a particular state [11-15]. In
such situations, the concept of ultimate stability, also known as practical stability is more
suitable and meaningful. Ultimate stability with a fixed bound [16] was first proposed
in [17], retaken and systematically introduced in [18] to address some potential practical
limitations of Lyapunov stability. These stability notions not only provide information on
the stability of the system, but also characterize its transient behavior with estimations of
the bounds on the system trajectories. During the past decade, considerable research
efforts have been devoted to study the practical stability of dynamical systems. To
this point, we refer the reader to some recent papers [10,13-15,19-23] and the cited
references therein.

Although ultimate stability provides a more relaxed concept of stability, only a few
results concerning this problem have been reported especially for nonlinear time-varying
systems with multiple delays. Furthermore, when dealing with time-varying systems with
delays, the developed methodologies such as Lyapunov-Krasovskii functional method and
its variants either lead to matrix Riccati differential equations (RDEs) or indefinite linear
matrix inequalities (LMIs). So far, there has been no efficient computational tool available
to solve RDEs or indefinite LMIs. In addition, the constructive approaches proposed
in the aforementioned works seem not applicable to time-varying systems. Therefore,
an alternative and efficient approach to address the problemof ultimate stability of
time-varying systems with delays is necessary and motivation for our present research.

In this paper, we consider the problem of ultimate stabilityfor a class of nonlinear
time-varying systems with multiple time-varying delays and bounded disturbances. A
constructive approach based on some comparison techniquesis presented to derive
explicit delay-independent conditions for determining anultimate bound ensuring that all
state trajectories of the system converge exponentially within that bound after an initial
transient period. The derived conditions also guarantee exponential stability in the sense
of Lyapunov when the input disturbance vector is ignored.

2. Preliminaries

Notation: n = {1, 2, . . . , n} for a positive integern. R
n andR

m×n denote the
n-dimensional vector space with the norm‖x‖∞ = maxi∈n |xi| and the set ofm× n real
matrices, respectively. A comparison between vectors willbe understood componentwise.
Specifically, foru = (ui) andv = (vi) in R

n, u ≥ v meansui ≥ vi for all i ∈ n and if
ui > vi for all i ∈ n then we writeu ≫ v instead ofu > v. Rn

+ = {x ∈ R
n : x ≥ 0}

andint(Rn
+) = {x ∈ R

n : x ≫ 0}. By denotingvmin = mini∈nvi thenvmin > 0 for any
vectorv = (vi) ∈ int(Rn

+). We also specifically use the notationα+ = max{α, 0} for a
real numberα, that meansα+ = α if and only if α > 0, otherwiseα+ = 0.

Consider a class of nonlinear time-varying systems with multiple time-varying
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delays of the form

ẋ(t) = A(t)x(t) +W0(t)F (x(t))

+W1(t)G(x(t− τ(t))) + d(t), t ≥ 0,

x(t) = φ(t), t ∈ [−τmax, 0].

(2.1)

System (2.1) can be written explicitly as follows:

ẋi(t) = ai(t)xi(t) +
n
∑

j=1

w0
ij(t)fj(xj(t))

+

n
∑

j=1

w1
ij(t)gj(xj(t− τij(t))) + di(t), t ≥ 0,

xi(t) = φi(t), t ∈ [−τmax, 0], i ∈ n,

(2.2)

where x(t) = (xi(t)) ∈ R
n and d(t) = (di(t)) ∈ R

n are the state vector and
exogenous disturbance vector, respectively,A(t) = diag(ai(t)), W0(t) = (w0

ij(t)) and
W1(t) = (w1

ij(t)) are time-varying system matrices whose elements are assumed to be
continuous onR+, nonlinear functionsfj(.), gj(.) : R → R, j ∈ n, are continuous,τij(t)
are heterogeneous time-varying delays andφ(.) ∈ C([−τmax, 0],R

n) is the vector-valued
initial function specifying the initial state of the system, φ(t) = (φi(t)) ∈ R

n. Let us
denote|φi| = sup−τmax≤t≤0 |φi(t)| and‖φ‖∞ = maxi∈n |φi|.

Note that the system (2.1) is quite general which includes LTI systems with
delays [10], linear time-varying systems with time-varying delays [24] or neural
networks [25] as some special cases.

Definition 2.1. System(2.1) is said to be ultimately stable if there exists a boundµ > 0
such that for anyφ(.) ∈ C([−τmax, 0],R

n), there exists a transient timeT = T (µ, φ) ≥ 0
such that‖x(t, φ)‖∞ ≤ µ for all t ≥ T .

Our aim in this paper is to derive explicit conditions for determining an ultimate
boundµ∗ by which system (2.1) is ultimately stable forµ > µ∗. By utilizing the approach
of [24], we derive delay-independent conditions in terms ofsome matrix inequalities
ensuring ultimate exponential convergence of state trajectories of the system.

At first, we recall here some properties of M-matrix [26]. A matrix A = (aij) ∈
R

n×n is said to be M-matrix ifaij ≤ 0 wheneveri 6= j and all principal minors ofA are
positive. The following proposition is used in stating our main result.

Proposition 2.1. LetA ∈ R
n×n be an off-diagonal non-positive matrix,aii > 0, i ∈ n.

The following statements are equivalent.

(i) A is a nonsingular M-matrix.

(ii) Reλk(A) > 0 for all eigenvaluesλk(A) ofA.
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(iii) There exists a vectorξ ≫ 0 such thatAξ ≫ 0.

(iv) There exists a vectorη ≫ 0 such thatATη ≫ 0.

From Proposition 2.1we obtain the following result.

Proposition 2.2. Let A ∈ R
n×n be a nonsingular M-matrix, then there exists a vector

ξ ∈ int(Rn
+), ‖ξ‖∞ = 1, such thatAξ ≫ 0.

3. Main results

To facilitate the statement of our results, we consider the following assumptions:

(A1) The matricesA(t) = diag(ai(t)), W0(t) = (w0
ij(t)) andW1(t) = (w1

ij(t)) satisfy
the following conditions

ai(t) ≤ ai, |w0
ij(t)| ≤ w0

ij, |w1
ij(t)| ≤ w1

ij.

(A2) There exist constantsFi ≥ 0, Gi ≥ 0, such that

|fi(u)− fi(v)| ≤ Fi|u− v|, |gi(u)− gi(v)| ≤ Gi|u− v|

for all u, v ∈ R andfi(0) = 0, gi(0) = 0, i ∈ n.

(A3) The disturbance vectord(t) = (di(t)) is bounded, that is, there exists a positive
constantd∞ such that

|di(t)| ≤ d∞ for all t ≥ 0, i ∈ n.

Remark 3.1. By assumptions(A1)-(A3), for each initial function φ(.) ∈
C([−τmax, 0],R

n), there exists a unique solutionx(t, φ) of (2.1) defining on[−τmax,∞)
[1]. On the other hand, although assumption(A2) impliesF (0) = 0, G(0) = 0, system
(2.1) may not have an equilibrium point. Particularly,x = 0 is neither an equilibrium
point of(2.1)due to not vanished disturbance nor a necessarily stable motion.

Let us denote the following matrices:

A = diag{−a1,−a2, . . . ,−an}, W0 = (w0
ij), W1 = (w1

ij),

F = diag{F1, F2, . . . , Fn}, G = diag{G1, G2, . . . , Gn},
M = A−W0F −W1G.

The matrixM is obvious an M-matrix. Therefore, ifM satisfies one of the
equivalent conditions in Proposition 2.1 then, by Proposition 2.2, there exists a vector
ξ ∈ int(Rn

+), ‖ξ‖∞ = 1, such thatMξ ≫ 0. Now, we are in the position to present our
main result in the following theorem.
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Theorem 3.1. Let assumptions(A1)-(A3) hold. Assume thatM is a nonsingular
M-matrix. Then, system(2.1) is ultimately stable. More precisely, letξ ∈ int(Rn

+) be a

vector satisfying‖ξ‖∞ = 1 andMξ ≫ 0, m∗ = (Mξ)min, δ∗ =
m∗

ξmin
andσ = mini∈nσi,

whereσi is the unique positive solution of the scalar equation

σξi +
n
∑

j=1

Gjw
1
ijξj (e

στmax − 1)−m∗ = 0, i ∈ n.

Then, every solutionx(t, φ) of system(2.1)satisfies the following bound

‖x(t, φ)‖∞ ≤ d∞
m∗

+ κ∗

(

‖φ‖∞ − d∞
δ∗

)+

e−σt, t ≥ 0,

whereκ∗ = 1/ξmin.

Proof. We divide the proof into several steps.
Step 1.By Proposition 2.2, there existsξ ∈ int(Rn

+), ‖ξ‖∞ = 1, such thatMξ ≫ 0,
and thus

aiξi +
n
∑

j=1

(

Fjw
0
ij +Gjw

1
ij

)

ξj < 0, i ∈ n. (3.1)

Observe that,

m∗ = (Mξ)min = mini∈n

{

−aiξi −
n
∑

j=1

(

Fjw
0
ij +Gjw

1
ij

)

ξj

}

.

Hencem∗ > 0 and from (3.1) we have

aiξi +
n
∑

j=1

(

Fjw
0
ij +Gjw

1
ij

)

ξj ≤ −m∗. (3.2)

Step 2.We will prove that‖x(t, φ)‖ ≤ d∞
m∗

for t ≥ 0 if ‖φ‖∞ ≤ d∞
δ∗

. In the following,

we will usex(t) to denote the solutionx(t, φ) if it does not cause any confusion. Let

‖φ‖∞ ≤ d∞
δ∗

then we have|xi(t)| ≤ |φi| ≤ ξi
d∞
m∗

for t ∈ [−τmax, 0], i ∈ n. For any

q > 1, assume that there exists an indexi ∈ n andt > 0 such that|xi(t̄)| = qξi
d∞
m∗

and

|xj(t)| ≤ qξj
d∞
m∗

, ∀t ≤ t, j ∈ n. ThenD+
∣

∣xi(t)
∣

∣ ≥ 0. On the other hand, it follows from
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(2.2) that

D+|xi(t)| = sgn(xi(t))ẋi(t)

≤ ai(t)|xi(t)|+
n
∑

j=1

|w0
ij(t)||fj(xj(t))|

+

n
∑

j=1

|w1
ij(t)||gj(xj(t− τij(t)))|+ |di(t)|

≤ ai|xi(t)|+
n
∑

j=1

Fjw
0
ij |xj(t)|

+

n
∑

j=1

Gjw
1
ij|xj(t− τij(t))|+ d∞, t ∈ [0, t]. (3.3)

Thus,

D+
∣

∣xi(t)
∣

∣ ≤ qd∞
m∗

(

aiξi +
n
∑

j=1

(

Fjw
0
ij +Gjw

1
ij

)

ξj

)

+ d∞

≤ (1− q)d∞ < 0 (3.4)

which yields a contradiction. Therefore,|xi(t)| ≤ qξi
d∞
m∗

for all t ≥ 0. Let q → 1+ we

obtain|xi(t)| ≤ ξi
d∞
m∗

for all i ∈ n and hence,‖x(t)‖∞ ≤ d∞
m∗

‖ξ‖∞ =
d∞
m∗

.

Step 3.Now, assume that‖φ‖∞ >
d∞
δ∗

. Then it is easy to verify that

|φi| − ξi
d∞
m∗

≤ κ∗

(

‖φ‖∞ − d∞
δ∗

)

ξi, i ∈ n.

For eachi ∈ n, consider the following scalar equation inσ ∈ [0,∞)

Hi(σ) = σξi +

n
∑

j=1

Gjw
1
ijξj
(

eστ − 1
)

−m∗ = 0. (3.5)

Since the functionHi(σ) is continuous and strictly increasing on[0,∞), Hi(0) < 0,
Hi(σ) → ∞, σ → ∞, equation (3.5) has a unique positive solutionσi. In addition,
Hi(σ) ≤ 0 for all σ ∈ (0, σi]. Letσ = mini∈nσi thenHi(σ) ≤ 0 for all i ∈ n.

Let us consider the functionsvi(t), i ∈ n, as follows:

vi(t) = κ∗

(

‖φ‖∞ − d∞
δ∗

)

ξie
−σt, t ∈ [−τmax,∞). (3.6)
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Observing that, fort ≥ 0 andj ∈ n, we have

vj(t− τij(t)) = κ∗

(

‖φ‖∞ − d∞
δ∗

)

ξje
−σ(t−τij (t))

≤ κ∗

(

‖φ‖∞ − d∞
δ∗

)

ξje
−σteστmax

≤ eστmaxvj(t).

Therefore, using (3.2) and (3.6), we have

aivi(t) +

n
∑

j=1

Fjw
0
ijvj(t) +

n
∑

j=1

Gjw
1
ijvj(t− τij(t))

≤ βe−σt

(

aiξi +
n
∑

j=1

Fjw
0
ijξj +

n
∑

j=1

Gjw
1
ijξje

στmax

)

≤ βe−σt
[

aiξi +

n
∑

j=1

(

Fjw
0
ij +Gjw

1
ij

)

ξj +

n
∑

j=1

Gjw
1
ijξj (e

στmax − 1)
]

≤ βe−σt
[

−m∗ +
n
∑

j=1

Gjw
1
ijξj (e

στmax − 1)
]

≤ −βσξie
−σt, t ≥ 0, i ∈ n,

whereβ = κ∗

(

‖φ‖∞ − d∞
δ∗

)

. This leads to

v̇i(t) ≥ aivi(t) +
n
∑

j=1

Fjw
0
ijvj(t) +

n
∑

j=1

Gjw
1
ijvj(t− τij(t)). (3.7)

Next, by using the following transformations:

ui(t) = |xi(t)| − ξi
d∞
m∗

, t ≥ −τmax, i ∈ n,

and by the same argument used in (3.3), we have

D+ui(t) ≤ aiui(t) +

n
∑

j=1

Fjw
0
ijuj(t) +

n
∑

j=1

Gjw
1
ijuj(t− τij(t))

+
d∞
m∗

[

aiξi +
n
∑

j=1

(

Fjw
0
ij +Gjw

1
ij

)

ξj

]

+ d∞

≤ aiui(t) +

n
∑

j=1

Fjw
0
ijuj(t) +

n
∑

j=1

Gjw
1
ijuj(t− τij(t)). (3.8)
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We now prove thatui(t) ≤ vi(t). Let ρi(t) = ui(t) − vi(t), then, fort ∈ [−τmax, 0]
we have

ui(t) ≤ |φi| − ξi
d∞
m∗

≤ κ∗

(

‖φ‖∞ − d∞
δ∗

)

ξi

≤ κ∗

(

‖φ‖∞ − d∞
δ∗

)

ξie
−σt = vi(t).

Thus,ρi(t) ≤ 0, for all t ∈ [−τmax, 0], i ∈ n. Assume that there exist an indexi ∈ n
and at1 > 0 such thatρi(t1) = 0, ρi(t) > 0, t ∈ (t1, t1 + δ) for someδ > 0 and
ρj(t) ≤ 0, ∀t ∈ [−τmax, t1]. ThenD+ρi(t1) > 0. However, fort ∈ [0, t1), it follows from
(3.7) and (3.8) that

D+ρi(t) ≤ aiρi(t) +

n
∑

j=1

Fjw
0
ijρj(t)

+
n
∑

j=1

Gjw
1
ijρj(t− τij(t))

≤ aiρi(t),

and therefore,D+ρi(t1) ≤ 0 which yields a contradiction. This shows thatρi(t) ≤ 0 for
all t ≥ 0, i ∈ n. Consequently,

|xi(t)| ≤ ξi
d∞
m∗

+ κ∗

(

‖φ‖∞ − d∞
δ∗

)

ξie
−σt

≤ d∞
m∗

‖ξ‖∞ + κ∗

(

‖φ‖∞ − d∞
δ∗

)

‖ξ‖∞e−σt

≤ d∞
m∗

+ κ∗

(

‖φ‖∞ − d∞
δ∗

)

e−σt, ∀t ≥ 0, i ∈ n.

Finally, we obtain

‖x(t)‖∞ ≤ d∞
m∗

+ κ∗

(

‖φ‖∞ − d∞
δ∗

)+

e−σt, t ≥ 0. (3.9)

Step 4.Let µ >
d∞
m∗

andx(t, φ) be a solution of system (2.1). If‖φ‖∞ ≤ d∞
δ∗

then, by

Step 2, ‖x(t, φ)‖∞ ≤ µ holds for allt ≥ T (µ, φ) = 0. Assume‖φ‖∞ >
d∞
δ∗

then from

(3.9) we have

‖x(t, φ)‖∞ ≤ d∞
m∗

+

(‖φ‖∞
ξmin

− d∞
m∗

)

e−σt

≤ d∞
m∗

(

1− e−σt
)

+
‖φ‖∞
ξmin

e−σt.
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Therefore, if‖φ‖∞ ≤ µξmin, note thatµ >
d∞
m∗

, then

‖x(t, φ)‖∞ ≤ µ
(

1− e−σt
)

+ µe−σt = µ.

If ‖φ‖∞ > µξmin then

T (µ, φ) :=
1

σ
ln

(

‖φ‖∞
ξmin

− d∞
m∗

µ− d∞
m∗

)

> 0

and‖x(t, φ)‖∞ ≤ µ for t ≥ T (µ, φ). This shows that system (2.1) is ultimately stable.
The proof is completed.

Remark 3.2. The result of Theorem3.1ensures that all state trajectories of system(2.1)

will converge to a common thresholdµ∗ =
d∞
m∗

as the time tends to infinity. In other

words, for any solutionx(t, φ) of system(2.1), it holds that

lim sup
t→∞

‖x(t, φ)‖∞ ≤ d∞
m∗

.

Remark 3.3. It can be seen in the proof of Theorem3.1 that (using(3.2)and(3.5)), for a
fixed vectorξ ∈ int(Rn

+) satisfying
(

A−W 0F −W 1G
)

ξ ≫ 0, (3.10)

the exponential convergence rateσ can be defined asσ = mini∈nσi, whereσi is the
unique positive solution of the scalar equation

(ai + σ) ξi +
n
∑

j=1

(

Fjw
0
ij +Gjw

1
ije

στmax

)

ξj = 0. (3.11)

Thus, Theorem3.1 provides an explicit delay-independent criterion for the
ultimately exponential convergence of system(2.1). Moreover, the impact of delays on
the decay rate is also explicit provided by computing the associatedσ in (3.11) for any
ξ ∈ int(Rn

+) satisfying(3.10).

Remark 3.4. As an application to the nonlinear time-varying system(2.1) without
disturbances (i.e.d(t) = 0), the proposed conditions in Theorem3.1 guarantee the
Lyapunov exponential stability of the system.

Corollary 3.1. Let assumptions(A1)-(A2) hold. Assume that there exists a vectorξ ∈
int(Rn

+) satisfying(3.10), then system(2.1)without disturbance is exponentially stable in
the sense of Lyapunov. Moreover, every solutionx(t, φ) of (2.1)satisfies

‖x(t, φ)‖∞ ≤ ‖ξ‖∞
ξmin

‖φ‖∞e−σt, t ≥ 0,

whereσ = mini∈nσi andσi is the unique positive solution of(3.11).
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From Corollary 3.1, we now discuss the global exponential stability of a special
class of (2.1), namely the linear time-varying systems withtime-varying delay

ẋ(t) = A(t)x(t) +B(t)x(t− τ(t)), t ≥ 0,

x(t) = φ(t), t ∈ [−τmax, 0],
(3.12)

whereA(t) = (aij(t)) ∈ R
n×n, B(t) = (bij(t)) ∈ R

n×n are given continuous matrix
functions,0 ≤ τ(t) ≤ τmax.

Corollary 3.2. System(3.12) is globally exponentially stable if there exists a vectorξ ∈
int(Rn

+) such that
(A+ B) ξ ≪ 0,

whereaii(t) ≤ ãii, |aij(t)| ≤ ãij , i 6= j, |bij(t)| ≤ b̃ij , A = (ãij) and B = (b̃ij).
Moreover, every solutionx(t, φ) of (3.12)satisfies

‖x(t, φ)‖∞ ≤ ‖ξ‖∞
ξmin

‖φ‖∞e−σt, t ≥ 0,

whereσ = mini∈nσi andσi, i ∈ n, be the unique positive solution of the equation
(

ãii +
∑

j 6=i

1

ξi
ãijξj

)

+

(

n
∑

j=1

1

ξi
b̃ijξj

)

eστmax + σ = 0.

Remark 3.5. Corollary 3.2 gives a delay-independent condition for the exponential
stability of linear time-varying systems with delay. This corollary extends some recent
results, for example, in[27, 28], to time-varying systems.

As a brief discussion, we would like to mention here that, it is possible to derive
the exponential decay rateσ, theµ-neighborhood and the transient timeT by imposing in
one condition is that the matrix−Mσ = −A+ σI +W 0F + eστmaxW 1G is Hurwitz for
someσ > 0. Thenµ andT can be determined as follows:

Step 1.Find a vectorξ ∈ int(Rn
+) such thatMσξ ≫ 0.

Step 2.Computem∗ = (Nσξ)min andδ∗ = m∗/ξmin, where

Nσ = σI + (eστmax − 1)W 1G.

Step 3.Transient timeT (µ, φ) for µ >
d∞‖ξ‖∞

m∗
is determined by

T (µ, φ) =
1

σ
ln









[‖φ‖∞
ξmin

− d∞
m∗

]

‖ξ‖∞

µ− d∞
m∗

‖ξ‖∞









if ‖φ‖∞ >
ξmin

‖ξ‖∞
µ.
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4. An illustrative example

Consider the following nonlinear time-varying system

ẋi(t) = ai(t)xi(t) +

2
∑

j=1

w0
ij(t)fj(xj(t))

+

2
∑

j=1

w1
ij(t)gj(xj(t− τij(t))) + di(t)

(4.1)

wherea1(t) = −5(1 + | sin t|), a2(t) = −6(1 + e−t cos2 t),

W 0(t) =

[

2 sin 3t cos 2t
−e−t 0.5 cos2 t

]

,

W 1(t) =





cos 3t 2 sin t
sin t

1 + | cos t|
t sin t

1 + t2



 ,

f1(x1) =
√

1 + x2
1 − 1, f2(x2) = ln(1 + |x2|),

gi(xi) = tanh(xi), ‖d(t)‖∞ ≤ 0.1, τij(t) = | sin(
√
t)|.

Assumptions (A1) and (A2) are satisfied and we have

A = diag{5, 6}, W 0 =

[

2 1
1 0.5

]

, W 1 =

[

1 2
1 0.5

]

,

F = G = I2, γ = 0.1, τmax = 1,

and thus,

M = A−W 0F −W 1G =

[

2 −3
−2 5

]

.

It is easy to verify thatξ = (1 0.5)T ∈ int(R2
+) satisfyingMξ ≫ 0. By Theorem

3.1, system (4.1) is practically stable. Taking (3.1) and (3.5) into account we obtain
m∗ = 0.5, δ∗ = 1, κ∗ = 2 andσ = 0.1579. The disturbance‖d(t)‖∞ ≤ 0.1. Every
solution of system (4.1) satisfies the following exponential practical estimation

‖x(t, φ)‖∞ ≤ 0.2 + 2 (‖φ‖∞ − 0.1)+ e−0.1579t, t ≥ 0.

State trajectories of system (4.1) withd1(t) = 0.1 sin3 2t and d2(t) = 0.1 cos 4t are
presented in Figure 1.

We also consider system (4.1) with time delayτij(t) =
∣

∣sin(ω
√
t)
∣

∣ and conduct
extensive simulation for large values ofω, i.e., τij(t) is a fast time-varying delay.
In our conducted simulation test, it was found that all the state trajectories of the
system converged exponentially within the bound, for example, Figure 2 presents state
trajectories of system (4.1) withω = 106. Moreover, system (4.1) without disturbance,
i.e. d(t) = 0, is exponentially stable in the sense of Lyapunov as shown inFigure 3.
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Figure 1. State trajectories of system (4.1)
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Figure 2. State trajectories of system (4.1) with τij(t) = | sin(106
√
t)|
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Figure 3. State trajectories of system (4.1) with d(t) = 0

5. Conclusions

This paper has addressed the ultimate stability of nonlinear time-varying systems
with multiple delays and bounded disturbances. Explicit conditions have been derived for
determining an ultimate bound and a finite transient timeT that guarantee all the state
trajectories of the system converge exponentially to the ultimate bound after a transient
timeT .
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