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1. Introduction

The Laplace transform theory has been studied from the17th century. The Fourier
transform has been studied from the19th century together with the Fourier cosine, Fourier
sine transforms and convolution of two functions for Fourier transform. The Laplace
transform, the Fourier transform, Fourier cosine and Fourier sine transforms play
important roles in mathematics and have many applications in science and engineering.

There are many interesting results related to Laplace transform (see [1-4]), Fourier,
Fourier cosine and Fourier sine transforms [4-8].

A time scale is an arbitrary nonempty closed subset of real numbers. Time scale
analysis unifies and extends continuous and discrete analyses; see [9].

The subject of transforms on time scale for the continuous case has been studied
long ago and there are many results for continuous dynamic systems. However the subject
of transforms on time scale for the discrete case has only been studied recently and there
are not many works about transforms on discrete time scales.

Let h be a positive real number. An important time scale is the following:
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Definition 1.1. [9] Time scaleTh is determined by

Th =











0 if h = ∞

hZ if h > 0

R if h = 0

We denote

N = {1, 2, 3, 4, . . .} is the set of all natural numbers,N0 = N ∪ {0}

T
+
h = {hk : k ∈ N0}

Note thatT+
h is also a time scale obtained from time scaleTh where we only take

non-negative points.

The first one who works on the subject of integral transformation on time scales
is Stefan Hilger in 1988 in his PhD dissertation. His work aimed to do away with the
discrepancies between continuous and discrete dynamic systems.

The Laplace transform on time scales was introduced by Hilger in [10] in a form
that tries to unify the (continuous) Laplace transform and the (discrete) Z-transform.
The Laplace transform on time scales was further investigated by Martin Bohner, Allan
Peterson and Gusein Sh. Guseinov in [9, 11, 12].

In this paper we study generalized convolution for h-Laplace transform on time
scaleT+

h and obtain some of its properties as well as applications in solving some linear
equations of convolution type. This paper is organized as follows. In Section 2, we review
some properties of h-Laplace and Fourier cosine transformson time scaleT+

h . In Section 3
we introduce and study generalized convolution for h-Laplace transform. In Section 4 we
give some applications of this generalized convolution in solving some linear equations
of convolution type.

2. h-Laplace and Fourier transforms on time scaleT+

h

In this paper we use the following spaces:

Definition 2.1. Letα > 0 be a fixed positive number. We define

L1(T
+
h ) = {x : T+

h → R
∣

∣|x(0)|+ 2
∞
∑

n=1

|x(nh)| < ∞}

‖x‖1 = h
(

|x(0)|+ 2
∞
∑

n=1

|x(nh)|
)

is called the norm ofx in L1(T
+
h ).

L1(T
+
h , e

αnh) :=
{

x : T+
h → R

∣

∣2h

∞
∑

n=1

eαnh|x(nh)| < ∞
}

.
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B(T+
h , e

−αnh) :=
{

x : T+
h → R

∣

∣∃C > 0 such that|x(nh)| ≤ Ce−αnh, ∀n ∈ N0}.

For the caseh = 1 the spaceL1(T
+
h ) and the norm1

2
‖x‖1 were used in [13].

Proposition 2.1. For all α > 0 we have

B(T+
h , e

−2αnh) ⊂ L1(T
+
h , e

αnh) ⊂ L1(T
+
h ).

Proof. (i) If x ∈ L1(T
+
h , e

αnh) then
∞
∑

n=1

eαnh|x(nh)| < ∞. Sinceeαnh > 1 we get

|x(0)| + 2
∞
∑

n=1

|x(nh)| < ∞ and thenf ∈ L1(T
+
h ). ThereforeL1(T

+
h , e

αnh) ⊂

L1(T
+
h ).

(ii) If x ∈ B(T+
h , e

−2αnh) then there existsC > 0 such that

|x(nh)| ≤ Ce−2αnh, ∀n ∈ N0.

From this inequality we get

∞
∑

n=1

eαnh|x(nh)| ≤ C

∞
∑

n=1

e−αnh < ∞

sox ∈ L1(T
+
h , e

αnh). ThereforeB(T+
h , e

−2αnh) ⊂ L1(T
+
h , e

αnh).

For z ∈ C we denoteℜz the real part ofz andℑz the imaginary part ofz.
In [12] Martin Bohner and Gusein Sh. Guseinov gave the concept of h-Laplace transform
on time scaleT+

h

Definition 2.2. [12] If x : T+
h → C is a function, then its h-Laplace transform is defined

by

L{x}(z) =
h

1 + hz

∞
∑

k=0

x(kh)

(1 + hz)k
(2.1)

for those values ofz 6= − 1
h

for which the series converges.

Definition 2.3. [12] For given functionsx, y : T+
h → C their Laplace convolutionx ∗ y

L

is defined by

(x ∗ y
L

)(kh) = h

k−1
∑

m=0

x(kh−mh− h)y(mh) for k ∈ N
∗,

(x ∗ y
L

)(0h) = 0. (2.2)
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Remark 2.1. Letx ∈ L1(T
+
h ). For z ∈ C,ℜz ≥ 0 we have

∣

∣

∣

x(kh)

(1 + hz)k

∣

∣

∣
≤ |x(kh)|. Since

x ∈ L1(T
+
h ) the series

∑

∞

k=0 |x(kh)| converges. By comparison test
∑

∞

k=0

x(kh)

(1 + hz)k

converges. Hence forz ∈ C, ℜz ≥ 0 the seriesL{x}(z) converges.

Settingh∗ = − 1
h
, we can rewrite the formula (2.1) in the form (see [12])

L{x}(z) =
1

z − h∗

∞
∑

k=0

x(kh)

hk(z − h∗)k
(2.3)

Remark 2.2. [12] The domain of existence for the h-Laplace transform (2.1) of function
x is investigated as below:
Set

R = lim sup k

√

|x(kh)|
k→∞

.

(i) If 0 < R < ∞ the series (2.3) converges in the region|z − h∗| >
R
h

and diverges
for |z − h∗| <

R

h
.

(ii) If R = 0 then the series (2.3) converges everywhere with the exception ofz = h∗.

(iii) If R = ∞ then the series (2.3) diverges everywhere.

Proposition 2.2. [12] If L{x}(z) exists for|z−h∗| > A andL{y}(z) exists for|z−h∗| >
B then the Laplace convolution defined in (2.2) satisfies

L{x ∗ y
L

}(z) = L{x}(z)L{y}(z) for |z − h∗| > max{A,B}.

Lemma 2.1. If x ∈ L1(T
+
h ) then its h-Laplace transformL{x}(z) is analytic in the region

ℜz > 0.

Proof. Let us denote

Ln{x}(z) = h

n
∑

k=0

x(kh)

(1 + hz)k+1
.

We can see that each functionLn{x}(z) is analytic in the regionℜz > 0. Forℜz > 0
then|1 + hz| ≥ ℜ(1 + hz) ≥ 1 so we have the following estimate:

|L{x}(z)− Ln{x}(z)| ≤ h

∞
∑

k=n+1

|x(kh)|

|1 + hz|k+1
≤ h

∞
∑

k=n+1

|x(kh)|. (2.4)

Sincex ∈ L1(T
+
h ) from (2.4) the sequenceLn{x}(z) converges uniformly toL{x}(z)

with respect toz in the regionℜz > 0 thereforeL{x}(z) is analytic in the regionℜz >

0.
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The Fourier cosine transform on time scaleT
+
h is defined as the following:

Definition 2.4. [14] For a real valued functionx ∈ L1(T
+
h ) its Fourier cosine transform

is defined by

Fc{x}(u) = hx(0) + 2h

∞
∑

n=1

x(nh) cos(unh), u ∈ R. (2.5)

For the caseh = 1, (2.5) becomes two times the discrete time Fourier cosine
transform studied in [13].

Definition 2.5.

Ac = {Fc{x}(u), u ∈ [0,
π

h
]
∣

∣x ∈ L1(T
+
h )} (2.6)

We callAc the image space ofL1(T
+
h ) through the Fourier cosine transformFc.

ForFc{x} ∈ Ac the inverse Fourier cosine transform is given by

x(nh) =
1

π

∫ π

h

0

Fc{x}(u) cos(unh)du, n ∈ N0. (2.7)

Definition 2.6. [14] The Fourier cosine convolution on time scale of two functionsx, y ∈
L1(T

+
h ) is defined as

(x ∗
Fc

y)(t) = h
{

∞
∑

n=1

x(nh)
[

y(|t− nh|) + y(t+ nh)
]

+ x(0)y(t)
}

, t ∈ T
+
h . (2.8)

Proposition 2.3. [14] Let x, y ∈ L1(T
+
h ) thenx ∗

Fc

y ∈ L1(T
+
h ),

‖x ∗
Fc

y‖1 ≤ ‖x‖1‖y‖1

and we have the factorization equality

Fc{x ∗
Fc

y}(u) = Fc{x}(u)Fc{y}(u), u ∈ [0,
π

h
]. (2.9)

Lemma 2.2. [8](Wiener-Levy type Theorem for Fourier cosine series) Let x ∈ L1(T
+
h )

and Φ(z) be an analytic function whose domain contains the range ofFc{x}(u) and
satisfiesΦ(0) = 0. ThenΦ(Fc{x}(u)) is a Fourier cosine transform of a function in
L1(T

+
h ).
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3. Generalized convolution for Fourier cosine andh-Laplace
transform on time scale

Notation 1. For m,n ∈ N0 we define

I(n,m) =

∫ π

0

cos(nu)

(1 + u)m+1
du. (3.1)

Definition 3.1. The generalized convolution of two functionsx, y ∈ L1(T
+
h ) with respect

to the Fourier cosine and h-Laplace transform on time scaleT
+
h is defined as

(x ∗ y)(kh) =
h

2π
x(0)

∞
∑

m=0

y(mh)θ(k, 0, m) +
h

π

∞
∑

n=1

∞
∑

m=0

x(nh)y(mh)θ(k, n,m), k ∈ N0

(3.2)

in here

θ(k, n,m) = I(n + k,m) + I(|n− k|, m). (3.3)

Notation 2. For each functionx we denotex1 a function onT+
h defined by

x1(0) =
1

2
x(0), x1(nh) = x(nh), for n ∈ N. (3.4)

The formula (3.2) can be written in the form

(x ∗ y)(kh) =
h

π

∞
∑

n=0

∞
∑

m=0

x1(nh)y(mh)θ(k, n,m), k ∈ N0. (3.5)

Lemma 3.1. The following properties forI(n,m) can be obtained straightforward.

(i) I(0, 0) = ln(1 + π)

(ii) I(0, m) =
1

m

[

1−
1

(1 + π)m

]

, m ∈ N

(iii) |I(n,m)| ≤ I(0, m) ≤ ln(1 + π), m, n ∈ N0.

(iv) I(n,m) =
1

m

[

1 +
(−1)n+1

(1 + π)m

]

−
n2

m(m− 1)
I(n,m− 2), m ≥ 2, n ∈ N0.

We use Lemma 3.1 (iii) and (3.3) to obtain|θ(k, n,m)| ≤ 2 ln(1 + π) and
consequently forx, y ∈ L1(T

+
h ) the expression (3.2) is well defined.

Lemma 3.2. For n ∈ N, m ∈ N0 the following equality holds.

I(n,m) =
1

m!

∫

∞

0

tm+1e−t

n2 + t2

[

1− (−1)ne−πt
]

dt. (3.6)
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Proof. By changing of variable

∫

∞

0

tme−t(1+u)dt =
1

(1 + u)m+1

∫

∞

0

zme−zdz =
1

(1 + u)m+1
Γ(m+ 1)

=
m!

(1 + u)m+1
(3.7)

Substituting (3.7) into (3.1) to get

I(n,m) =
1

m!

∫ π

0

cos(nu)du

∫

∞

0

tme−t(1+u)dt =
1

m!

∫

∞

0

tme−tdt

∫ π

0

cos(nu)e−tudu

=
1

m!

∫

∞

0

tme−t t

n2 + t2

[

1− (−1)ne−πt
]

dt

=
1

m!

∫

∞

0

tm+1e−t

n2 + t2

[

1− (−1)ne−πt
]

dt.

Notation 3. In [15], page 386 we know the following functions:

ci(u) =

∫

∞

u

cos t

t
dt, si(u) = −

∫

∞

u

sin t

t
dt, u > 0. (3.8)

Lemma 3.3. For n ∈ N we have

(i) I(n, 0) = cos(n)
[

ci(n)− ci(n + nπ)
]

+ sin(n)
[

si(n+ nπ)− si(n)
]

,

(ii) For m ∈ N

I(n, 2m) =
(−1)mn2m

(2m)!

{

cos(n)[ci(n)− ci(n + nπ)] + sin(n)[si(n+ nπ)− si(n)]
}

+

1

(2m)!

m−1
∑

k=0

(−1)m−1−kn2m−2−2k(2k + 1)!
[

1−
(−1)n

(1 + π)2k+2

]

, (3.9)

(iii) For m ∈ N0

I(n, 2m+ 1) =
(−1)m+1n2m+2

n(2m+ 1)!

{

sin(n)[ci(n + nπ)− ci(n)]+

cos(n)[si(n + nπ)− si(n)]
}

+
1

(2m+ 1)!

m
∑

k=0

(−1)m−kn2m−2k(2k)!
[

1−
(−1)n

(1 + π)2k+1

]

.

(3.10)
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Proof. (i) From formula (3.1)

I(n, 0) =

∫ π

0

cos(nu)

1 + u
du =

∫ 1+π

1

cos(nv − n)

v
dv

= cos(n)

∫ 1+π

1

cos(nv)

v
dv + sin(n)

∫ 1+π

1

sin(nv)

v
dv

= cos(n)

∫ n+nπ

n

cos(s)

s
ds+ sin(n)

∫ n+nπ

n

sin(s)

s
ds

= cos(n)
[

ci(n)− ci(n+ nπ)
]

+ sin(n)
[

si(n + nπ)− si(n)
]

.

(ii) Using (3.6) and the equality

t2m+1 − t(−n2)m

n2 + t2
=

m−1
∑

k=0

t2k+1(−n2)m−1−k

we get

I(n, 2m) =
1

(2m)!

∫

∞

0

t2m+1e−t

n2 + t2

[

1− (−1)ne−πt
]

dt.

=
(−1)mn2m

(2m)!

∫

∞

0

te−t

n2 + t2

[

1− (−1)ne−πt
]

dt+

1

(2m)!

m−1
∑

k=0

(−1)m−1−kn2m−2−2k

∫

∞

0

t2k+1e−t
[

1− (−1)ne−πt
]

dt.

(3.11)

We compute the integrals inside (3.11)

∫

∞

0

t2k+1e−tdt = Γ(2k + 2) = (2k + 1)! (3.12)

∫

∞

0

t2k+1e−te−πtdt =

∫

∞

0

t2k+1e−(1+π)tdt

=
1

(1 + π)2k+2

∫

∞

0

s2k+1e−sds =
Γ(2k + 2)

(1 + π)2k+2
=

(2k + 1)!

(1 + π)2k+2
. (3.13)

Using the formula for Laplace transform in [15], page 135 forα = n, p = 1, A =
1, B = 0 we have

∫

∞

0

te−t

n2 + t2
dt = cos(n)ci(n)− sin(n)si(n). (3.14)
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Using the formula for Laplace transform in [15], page 135 forα = n, p = 1 +
π, A = 1, B = 0 we have

∫

∞

0

te−te−πt

n2 + t2
dt = cos(n+ nπ)ci(n + nπ)− sin(n+ nπ)si(n + nπ)

= (−1)n
[

cos(n)ci(n + nπ)− sin(n)si(n+ nπ)
]

. (3.15)

Plugging (3.12), (3.13), (3.14) and (3.15) into (3.11) we get (3.9).

(iii) Using (3.6) and the equality

t2m+2 − (−n2)m+1

n2 + t2
=

m
∑

k=0

t2k(−n2)m−k

we get

I(n, 2m+ 1) =
1

(2m+ 1)!

∫

∞

0

t2m+2e−t

n2 + t2

[

1− (−1)ne−πt
]

dt

=
(−1)m+1n2m+2

(2m+ 1)!

∫

∞

0

e−t

n2 + t2

[

1− (−1)ne−πt
]

dt+

1

(2m+ 1)!

m
∑

k=0

(−1)m−kn2m−2k

∫

∞

0

t2ke−t
[

1− (−1)ne−πt
]

dt.

(3.16)

We compute the integrals inside (3.16)
∫

∞

0

t2ke−tdt = Γ(2k + 1) = (2k)! (3.17)

∫

∞

0

t2ke−te−πtdt =

∫

∞

0

t2ke−(1+π)tdt

=
1

(1 + π)2k+1

∫

∞

0

s2ke−sds =
Γ(2k + 1)

(1 + π)2k+1
=

(2k)!

(1 + π)2k+1
. (3.18)

Using the formula for Laplace transform in [15], page 135 forα = n, p = 1, A =
0, B = 1

n
we have

∫

∞

0

e−t

n2 + t2
dt = −

1

n
sin(n)ci(n)−

1

n
cos(n)si(n). (3.19)

Using the formula for Laplace transform in [15], page 135 forα = n, p = 1 +
π, A = 0, B = 1

n
we have

∫

∞

0

e−te−πt

n2 + t2
dt = −

1

n
sin(n + nπ)ci(n+ nπ)−

1

n
cos(n + nπ)si(n+ nπ)

=
(−1)n+1

n

[

sin(n)ci(n + nπ) +
1

n
cos(n)si(n+ nπ)

]

. (3.20)
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Plugging (3.17), (3.18), (3.19) and (3.20) into (3.16) we get (3.10).

Lemma 3.4. (i) For m,n ∈ N0 we have

I(n,m) > 0, (3.21)

(ii) For m ∈ N0 we have
∞
∑

n=1

I(n,m) < π. (3.22)

Proof. (i) For n = 0 from the result in Lemma 3.1 (i) and (ii) we haveI(0, m) >

0 ∀m ∈ N0.
Forn > 0 from (3.6)

I(n,m) =
1

m!

∫

∞

0

tm+1e−t

n2 + t2

[

1− (−1)ne−πt
]

dt.

For t > 0 we have0 < 1− (−1)ne−πt. HenceI(n,m) > 0

(ii) For t > 0 we have1− (−1)ne−πt < 2. Then

I(n,m) <
2

m!

∫

∞

0

tm+1e−t

n2 + t2
dt. (3.23)

Moreover
∞
∑

n=1

1

n2 + t2
≤

∞
∑

n=1

∫ n

n−1

dx

x2 + t2
=

∫

∞

0

dx

x2 + t2
=

1

t

[

arctan
x

t

]∞

x=0
=

π

2t
.

(3.24)

Combining (3.23) with (3.24) the following inequality holds

∞
∑

n=1

I(n,m) <
π

m!

∫

∞

0

tme−tdt =
π

m!
Γ(m+ 1) = π.

Theorem 3.1.Letx, y be any two functions inL1(T
+
h ) then their generalized convolution

defined in (3.2) satisfiesx ∗ y ∈ L1(T
+
h ) and we have the estimate

‖x ∗ y‖1 ≤
[

2 +
ln(1 + π)

π

]

‖x‖1‖y‖1. (3.25)

Moreover the following factorization equality holds

Fc{x ∗ y}(u) = Fc{x}(u)L{y}(u), ∀u ∈ [0,
π

h
]. (3.26)
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Proof. Firstly we will prove thatx ∗ y ∈ L1(T
+
h ).

We define functionx1 as in (3.4). From (3.2) and (3.21)

|(x ∗ y)(0)|+ 2
∞
∑

k=1

|(x ∗ y)(kh)| ≤
h

π

∞
∑

n=0

∞
∑

m=0

|x1(nh)||y(mh)|
[

θ(0, n,m)+

2

∞
∑

k=1

θ(k, n,m)
]

. (3.27)

The expression inside bracket can be estimated using (3.22)

θ(0, n,m) + 2

∞
∑

k=1

θ(k, n,m) = 2In,m + 2

∞
∑

k=1

[

I(n + k,m) + I(|n− k|, m)
]

= 2
[

I(0, m) + 2
∞
∑

s=1

I(s,m)
]

< 2
[

ln(1 + π) + 2π
]

.

(3.28)

Substituting (3.28) into (3.27) we obtain

|(x ∗ y)(0)|+ 2

∞
∑

k=1

|(x ∗ y)(kh)| ≤
2h

π

[

2π + ln(1 + π)
]

∞
∑

n=0

∞
∑

m=0

|x1(nh)||y(mh)|

≤ 2h
[

2 +
ln(1 + π)

π

]‖x‖1
2h

‖g‖1
h

. (3.29)

Multiplying (3.29) byh we have

‖x ∗ y‖1 ≤
[

2 +
ln(1 + π)

π

]

‖x‖1‖y‖1.

Fork ∈ N0 it follows from (3.5)

(x ∗ y)(kh) =
h

π

∞
∑

n=0

∞
∑

m=0

x1(nh)y(mh)θ(k, n,m)

=
h

π

∞
∑

n=0

∞
∑

m=0

x1(nh)y(mh)
[

I(n + k,m) + I(|n− k|, m)
]

=
h

π

∞
∑

n=0

∞
∑

m=0

x1(nh)y(mh)

∫ π

0

cos(n+ k)u+ cos(n− k)u

(1 + u)m+1
du

=
h2

π

∞
∑

n=0

∞
∑

m=0

x1(nh)y(mh)

∫ π

h

0

cos(n+ k)uh+ cos(n− k)uh

(1 + hu)m+1
du

=
2h2

π

∞
∑

n=0

∞
∑

m=0

x1(nh)y(mh)

∫ π

h

0

cos(nuh) cos(kuh)

(1 + hu)m+1
du

=
1

π

∫ π

h

0

2h2

∞
∑

n=0

∞
∑

m=0

cos(unh)

(1 + hu)m+1
x1(nh)y(mh) cos(kuh)du. (3.30)
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We compute the product of Fourier cosine and h-Laplace transform of two functionsx, y
using formulas (2.1) and (2.5)

Fc{x}(u)L{y}(u) = 2h2
∞
∑

n=0

x1(nh) cos(unh)

∞
∑

m=0

y(mh)

(1 + hu)m+1

= 2h2
∞
∑

n=0

∞
∑

m=0

cos(unh)

(1 + hu)m+1
x1(nh)y(mh). (3.31)

Substituting (3.31) into (3.30) we get

(x ∗ y)(kh) =
1

π

∫ π

h

0

Fc{x}(u)L{y}(u) cos(kuh)du, ∀k ∈ N0. (3.32)

Moreover from inverse Fourier cosine transform (2.7) we have

(x ∗ y)(kh) =
1

π

∫ π

h

0

Fc{x ∗ y}(u) cos(kuh)du, ∀k ∈ N0. (3.33)

By (3.32) and (3.33) we then get the factorization equality (3.26).

Theorem 3.2. (Titchmarsh’s type Theorem) : Letx ∈ L1(T
+
h , e

αnh) andy ∈ L1(T
+
h ). If

x ∗ y ≡ 0 thenx ≡ 0 or y ≡ 0.

Proof. Sincex ∗ y ≡ 0 we have

Fc{x ∗ y}(u) = 0, for all u ∈ [0,
π

h
]. (3.34)

Using (3.26) and (3.34)

Fc{x}(u)L{y}(u) ≡ 0, for all u ∈ [0,
π

h
]. (3.35)

Applying Lemma 2.1 thenL{y}(u) is an analytic function in the regionℜu > 0.
We have

Fc{x}(u) = hx(0) + 2h
∞
∑

n=1

x(nh) cos(unh). (3.36)

Fork ∈ N by calculation

∣

∣

∣

dk

duk

[

x(nh) cos(unh)
]

∣

∣

∣
=

∣

∣

∣
x(nh)(nh)k cos(unh+ k

π

2
)
∣

∣

∣
≤ |x(nh)|(nh)k

≤ eαnh|x(nh)|
(αnh)ke−αnh

αk
. (3.37)
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We see that

0 ≤ (αnh)ke−αnh = e−αnh (αnh)
k

k!
k! ≤ k!. (3.38)

From (3.36), (3.37) and (3.38) and Definition 2.1

∣

∣

∣

dk
(

Fc{x}(u)
)

duk

∣

∣

∣
≤

k!

αk

(

2h
∞
∑

n=1

eαnh|x(nh)|
)

≤ C
k!

αk
, for all u ∈ [0,

π

h
].

The Taylor expansion ofFc{x}(u) is

Fc{x}(u) = Fc{x}(u0) +
∞
∑

n=1

1

n!

dn
(

Fc{x}(u)
)

dun

∣

∣

∣

u=u0

(u− u0)
n, u0 ∈ (0,

π

h
). (3.39)

We estimate the general component of the series as the following:

∣

∣

∣

1

n!

dn
(

Fc{x}(u)
)

dun

∣

∣

∣

u=u0

(u− u0)
n
∣

∣

∣
≤

1

n!
C
n!

αn
|u− u0|

n = C
( |u− u0|

α

)n
.

Therefore, the series (3.39) converges if|u− u0| < α, it means thatFc{x}(u) is analytic
for all u ∈ (0, π

h
). Moreover we know thatL{y}(u) is an analytic function in the region

ℜu > 0. Hence from (3.35) we getFc{x}(u) ≡ 0 orL{y}(u) ≡ 0 for all u ∈ [0, π

h
].

Thereforex(nh) = 0, ∀n or y(mh) = 0, ∀m. This completes the Theorem.

4. Some applications

4.1. Two linear equations of convolution type

In this subsection we will study two linear equations

hx(0)

2π

∞
∑

m=0

y(mh)θ(k, 0, m) +
h

π

∞
∑

n=1

∞
∑

m=0

x(nh)y(mh)θ(k, n,m) = z(kh), ∀k ∈ N0

(4.1)

x(kh) +
hx(0)

2π

∞
∑

m=0

y(mh)θ(k, 0, m) +
h

π

∞
∑

n=1

∞
∑

m=0

x(nh)y(mh)θ(k, n,m) = z(kh), ∀k ∈ N0

(4.2)

Herey, z ∈ L1(T
+
h ) are given functions andx ∈ L1(T

+
h ) is an unknown function.

Theorem 4.1. Let y, z ∈ L1(T
+
h ) andL{y}(u) 6= 0 on [0, π

h
]. Then the necessary and

sufficient condition for the equation (4.1) to have a solution inL1(T
+
h ) is

Fc{z}(u)

L{y}(u)
∈ Ac
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whereAc is defined in (2.6).

Moreover the solution is of the form

x(nh) =
1

π

∫ π

h

0

Fc{z}(u)

L{y}(u)
cos(unh)du, n ∈ N0. (4.3)

Proof. Using Definition 3.1, the equation (4.1) can be written in theform

(x ∗ y)(kh) = z(kh), ∀k ∈ N0. (4.4)

• The necessary condition. Applying the Fourier cosine transform to both sides of
(4.4) and using the factorization equality (3.26) we get

Fc{x}(u)L{y}(u) = Fc{z}(u), u ∈ [0,
π

h
].

HenceFc{x}(u) =
Fc{z}(u)

L{y}(u)
∈ Ac and the solution is given by (4.3).

• The sufficient condition. If
Fc{z}(u)

L{y}(u)
∈ Ac then there existsx ∈ L1(T

+
h ) such that

Fc{x}(u) =
Fc{z}(u)

L{y}(u)
, u ∈ [0, π

h
]. Therefore

Fc{x ∗ y}(u) = Fc{x}(u)L{y}(u) = Fc{z}(u), u ∈ [0,
π

h
]. (4.5)

Taking the inverse Fourier cosine transform of (4.5) we have(x ∗ y)(kh) =
z(kh), ∀k ∈ N0.

Lemma 4.1. Let f ∈ L1(T
+
h ) then there existsg ∈ L1(T

+
h ) such that

Fc{g}(u) = L{f}(u), ∀u ∈ [0,
π

h
], (4.6)

‖g‖1 ≤
( ln(1 + π)

π
+ 2

)

‖f‖1. (4.7)

Proof. We choose a functiong defined onT+
h by

g(nh) =
1

π

∫ π

h

0

L{f}(u) cos(unh)du, n ∈ N0. (4.8)
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We will prove thatg ∈ L1(T
+
h ). Using the definition of h-Laplace transform in (2.1) and

substituting to (4.8)

g(nh) =
h

π

∞
∑

k=0

f(kh)

∫ π

h

0

cos(unh)

(1 + hu)k+1
du

=
1

π

∞
∑

k=0

f(kh)

∫ π

0

cos(vn)

(1 + v)k+1
dv =

1

π

∞
∑

k=0

f(kh)I(n, k). (4.9)

From (4.9) and (3.22)

∞
∑

n=1

|g(nh)| ≤
1

π

∞
∑

n=1

∞
∑

k=0

|f(kh)|I(n, k) =
1

π

∞
∑

k=0

|f(kh)|

∞
∑

n=1

I(n, k) ≤

∞
∑

k=0

|f(kh)|,

(4.10)

|g(0)| ≤
1

π

∞
∑

k=0

|f(kh)|I(0, k) ≤
ln(1 + π)

π

∞
∑

k=0

|f(kh)|. (4.11)

From the estimates (4.10) and (4.11)

|g(0)|+ 2
∞
∑

n=1

|g(nh)| ≤
( ln(1 + π)

π
+ 2

)

∞
∑

k=0

|f(kh)| ≤
( ln(1 + π)

π
+ 2

)‖f‖1
h

< ∞.

Thereforeg ∈ L1(T
+
h ) and inequality (4.7) holds.

From (4.8) and the inverse Fourier cosine transform formula(2.7) and we getg is the
inverse Fourier cosine transform ofL{f} so equality (4.6) holds.

Theorem 4.2. The necessary and sufficient condition for the equation (4.2) to have a
unique solution inL1(T

+
h ), for all right hand sidez ∈ L1(T

+
h ), is

1 + L{y}(u) 6= 0, ∀u ∈ [0,
π

h
]. (4.12)

The solution of (4.2) has the form

x(nh) = z(nh)− (z ∗ ℓ
Fc

)(nh), ∀n ∈ N0,

whereℓ ∈ L1(T
+
h ) is defined by

Fc{ℓ}(u) =
L{y}(u)

1 + L{y}(u)
, u ∈ [0,

π

h
].
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Proof. Using Definition 3.1, we can rewrite the equation (4.2) as

x(kh) + (x ∗ y)(kh) = z(kh), ∀k ∈ N0.

Applying the Fourier cosine transform on both sides of the previous equation and using
equality (3.26) we get

Fc{x}(u) + Fc{x}(u)L{y}(u) = Fc{z}(u), u ∈ [0,
π

h
].

It means thatFc{x}(u)
[

1 + L{y}(u)
]

= Fc{z}(u), ∀u ∈ [0,
π

h
].

Therefore (4.12) is the necessary condition for the equation (4.2) to have a unique solution
in L1(T

+
h ), for all right hand sidez ∈ L1(T

+
h ).

Moreover if the condition (4.12) holds then

Fc{x}(u) =
Fc{z}(u)

1 + L{y}(u)
, ∀u ∈ [0,

π

h
]. (4.13)

Sincey ∈ L1(T
+
h ), by Lemma 4.1 there exists a functiong ∈ L1(T

+
h ) such that

Fc{g}(u) = L{y}(u), ∀u ∈ [0,
π

h
]. Now (4.13) is equivalent to

Fc{x}(u) = Fc{z}(u)− Fc{z}(u)
Fc{g}(u)

1 + Fc{g}(u)
, ∀u ∈ [0,

π

h
]. (4.14)

By Wiener-Levy type Theorem, there exists a functionℓ ∈ L1(T
+
h ) such that

Fc{ℓ}(u) =
Fc{g}(u)

1 + Fc{g}(u)
=

L{y}(u)

1 + L{y}(u)
, u ∈ [0,

π

h
].

Hence (4.14) is equivalent to

Fc{x}(u) = Fc{z}(u)− Fc{z}(u)Fc{ℓ}(u), ∀u ∈ [0,
π

h
].

Using the factorization equality (2.9) we obtain

Fc{x}(u) = Fc{z}(u)−Fc{z ∗
Fc

ℓ}(u).

This leads to

x(nh) = z(nh)− (z ∗
Fc

ℓ)(nh), ∀n ∈ N0.
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4.2. System of two linear equations of convolution type

In this subsection we will study system of two linear equations of convolution type.
Consider the system of two linear equations in the followingform:














x(kh) + h
{ ∞
∑

n=1

y(nh)
[

u(|kh− nh|) + u(kh+ nh)
]

+ y(0)u(kh)
}

= z(kh),

hx(0)

2π

∞
∑

m=0

v(mh)θ(k, 0, m) +
h

π

∞
∑

n=1

∞
∑

m=0

x(nh)v(mh)θ(k, n,m) + y(kh) = w(kh)

(4.15)
for all k ∈ N0 whereu, v, z, w ∈ L1(T

+
h ) are given functions andx, y ∈ L1(T

+
h ) are

unknown functions.

Sincev ∈ L1(T
+
h ), by Lemma 4.1 there exists a functionv1 ∈ L1(T

+
h ) such that

Fc{v1}(ω) = L{v}(ω), ∀ω ∈ [0,
π

h
]. (4.16)

Theorem 4.3. If u, v, z, w ∈ L1(T
+
h ) and satisfy

△ = 1−Fc{u}(ω)L{v}(ω) 6= 0, ∀ω ∈ [0,
π

h
]

then the system of equations (4.15) has unique solutionx, y ∈ L1(T
+
h )







x(kh) = z(kh)− (u ∗
Fc

w)(kh) + (z ∗
Fc

ℓ)(kh)−
[

(u ∗
Fc

w) ∗
Fc

ℓ
]

(kh)

y(kh) = w(kh)− (z ∗
Fc

v1)(kh) + (w ∗
Fc

ℓ)(kh)−
[

(z ∗
Fc

v1) ∗
Fc

ℓ
]

(kh)

for all k ∈ N0 wherev1 is defined by (4.16) andℓ ∈ L1(T
+
h ) is defined by

Fc{ℓ}(ω) =
Fc{u}(ω)L{v}(ω)

1− Fc{u}(ω)L{v}(ω)
∀ω ∈ [0,

π

h
].

Proof. Let v2 = u ∗
Fc

v1 ∈ L1(T
+
h ). From Wiener-Levy Type Theorem for Fourier cosine

series there exists a functionℓ ∈ L1(T
+
h ) such that

Fc{ℓ}(ω) =
Fc{v2}(ω)

1− Fc{v2}(ω)
=

Fc{u}(ω)Fc{v1}(ω)

1−Fc{u}(ω)Fc{v1}(ω)

=
Fc{u}(ω)L{v}(ω)

1− Fc{u}(ω)L{v}(ω)
, ∀ω ∈ [0,

π

h
].

Using (2.8) and (3.2) the system of equations (4.15) can be written in the form
{

x(kh) + (y ∗
Fc

u)(kh) = z(kh)

(x ∗ v)(kh) + y(kh) = w(kh).
(4.17)
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Applying the Fourier cosine transform to both sides of the first and the second equations
of (4.17) we obtain

{

Fc{x}(ω) + Fc{y}(ω)Fc{u}(ω) = Fc{z}(ω), ∀ω ∈ [0, π
h
]

Fc{x}(ω)L{v}(ω) + Fc{y}(ω) = Fc{w}(ω), ∀ω ∈ [0, π
h
].

(4.18)

We have

△ = 1− Fc{u}(ω)L{v}(ω) 6= 0,

△ = 1− Fc{u}(ω)Fc{v1}(ω) = 1− Fc{v2}(ω),

1

△
= 1 +

Fc{v2}(ω)

1− Fc{v2}(ω)
= 1 + Fc{ℓ}(ω).

△1 = Fc{z}(ω)− Fc{u}(ω)Fc{w}(ω) = Fc{z − u ∗
Fc

w}(ω),

△2 = Fc{w}(ω)−Fc{z}(ω)L{v}(ω)

= Fc{w}(ω)−Fc{z}(ω)Fc{v1}(ω) = Fc{w − z ∗
Fc

v1}(ω).

The solution of the system (4.18) is

Fc{x}(ω) =
△1

△
= Fc{z − u ∗

Fc

w}(ω)
[

1 + Fc{ℓ}(ω)
]

,

Fc{y}(ω) =
△2

△
= Fc{w − z ∗

Fc

v1}(ω)
[

1 + Fc{ℓ}(ω)
]

.

Therefore






x(kh) = (z − u ∗
Fc

w)(kh) +
[

(z − u ∗
Fc

w) ∗
Fc

ℓ
]

(kh)

y(kh) = (w − z ∗
Fc

v1)(kh) +
[

(w − z ∗
Fc

v1) ∗
Fc

ℓ
]

(kh).

We obtain






x(kh) = z(kh)− (u ∗
Fc

w)(kh) + (z ∗
Fc

ℓ)(kh)−
[

(u ∗
Fc

w) ∗
Fc

ℓ
]

(kh)

y(kh) = w(kh)− (z ∗
Fc

v1)(kh) + (w ∗
Fc

ℓ)(kh)−
[

(z ∗
Fc

v1) ∗
Fc

ℓ
]

(kh).
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