HNUE JOURNAL OF SCIENCEDOI: 10.18173/2354-1059.2019-0071Natural Science, 2019, Volume 64, Issue 10, pp. 36-46This paper is available online at http://stdb.hnue.edu.vn

A NOTE ON STABLE SOLUTIONS OF A SUB-ELLIPTIC SYSTEM WITH SINGULAR NONLINEARITY

Vu Thi Hien Anh¹ and Dao Manh Thang²

¹Faculty of Mathematics, Hanoi National University of Education ²Hung Vuong High School for Gifted Student, Viet Tri, Phu Tho

Abstract. In this paper, we study a system of the form

$$\begin{cases} \Delta_{\lambda} u = v \\ \Delta_{\lambda} v = -u^{-p} \end{cases} \quad \text{in } \mathbb{R}^N,$$

where p > 1 and Δ_{λ} is a sub-elliptic operator. We obtain a Liouville type theorem for the class of stable positive solutions of the system.

Keywords: Liouville-type theorem, stable positive solutions, Δ_{λ} -Laplacian, sub-elliptic operators.

1. Introduction

In this paper, we are interested in stable positive solutions of the following problem:

$$\begin{cases} \Delta_{\lambda} u = v \\ \Delta_{\lambda} v = -u^{-p} \end{cases} \quad \text{in } \mathbb{R}^{N}, \tag{1.1}$$

where p > 1, and Δ_{λ} is a sub-elliptic operator defined by

$$\Delta_{\lambda} = \sum_{i=1}^{N} \partial_{x_i} \left(\lambda_i^2 \partial_{x_i} \right).$$

Throughout this paper, we always assume that the operator Δ_{λ} satisfies the following hypotheses which are first proposed in [1] and then used in many papers [2-7].

(H1) There is a group of dilations $(\delta_t)_{t>0}$

$$\delta_t : \mathbb{R}^N \to \mathbb{R}, (x_1, ..., x_N) \mapsto (t^{\varepsilon_1} x_1, ..., t^{\varepsilon_N} x_N)$$

Received August 29, 2019. Revised October 22, 2019. Accepted October 29, 2019. Contact Vu Thi Hien Anh, e-mail address: hienanh.k63hnue@gmail.com

with $1 = \varepsilon_1 \le \varepsilon_2 \le \ldots \le \varepsilon_N$, such that λ_i is δ_t -homogeneous of degree $(\varepsilon_i - 1)$, i.e.,

$$\lambda_i(\delta_t(x)) = t^{\varepsilon_i - 1} \lambda_i(x), \text{ for all } x \in \mathbb{R}^N, t > 0, i = 1, 2, ..., N.$$

The number

$$Q = \varepsilon_1 + \varepsilon_2 + \dots + \varepsilon_N \tag{1.2}$$

is called the homogeneous dimension of \mathbb{R}^N with respect to the group of dilations $(\delta_t)_{t>0}$.

(H2) The functions λ_i satisfy $\lambda_1 = 1$ and $\lambda_i(x) = \lambda_i(x_1, ..., x_{i-1})$, i.e., λ_i depends only on the first (i-1) variables $x_1, x_2, ..., x_{i-1}$, for i = 2, 3, ..., N. Moreover, the function λ_i 's are continuous on \mathbb{R}^N , strictly positive and of class C^2 on $\mathbb{R}^N \setminus \Pi$ where

$$\Pi = \left\{ (x_1, ..., x_N) \in \mathbb{R}^N; \prod_{i=1}^N x_i = 0 \right\}.$$

(H3) There exists a constant $\rho \ge 0$ such that

$$0 \le x_k \partial_{x_k} \lambda_i(x), x_k^2 \partial_{x_k}^2 \lambda_i(x) \le \rho \lambda_i(x)$$

for all $k \in \{1, 2, ..., i - 1\}$, i = 1, 2, ..., N and $x = (x_1, x_2, ..., x_N) \in \mathbb{R}^N$. These hypotheses allow us to use

$$abla_{\lambda} := (\lambda_1 \partial_{x_1}, \lambda_2 \partial_{x_2}, ..., \lambda_N \partial_{x_N})$$

which satisfies $\Delta_{\lambda} = (\nabla_{\lambda})^2$. The norm corresponding to the Δ_{λ} is defined by

$$|x|_{\lambda} = \left(\sum_{i=1}^{N} \varepsilon_i \prod_{j \neq i} \lambda_i^2 |x_i|^2\right)^{\frac{1}{2\gamma}},$$

where $\gamma = 1 + \sum_{i=1}^{N} (\varepsilon_i - 1) \ge 1$.

Let us first consider the case $\lambda_i = 1$ for i = 1, 2, ..., N. Then, the problem (1.1) becomes

$$\begin{cases} \Delta u = v \\ \Delta v = -u^{-p} \end{cases} \quad \text{in } \mathbb{R}^N.$$
(1.3)

Based on the idea in [8] for N = 3, Lai and Ye pointed out that the system (1.3) has no positive classical solution provided 0 in any dimension, [9]. When <math>p > 1, the existence of positive classical solutions of the problem (1.3) and of the biharmonic problem

$$-\Delta^2 u = u^{-p} \tag{1.4}$$

are equivalent, see [9-11]. In the low dimensions, N = 3, 4, the problem (1.4) has no C^4 -positive solution [11]. In the case $N \ge 5$, the existence and the assymptotic behavior

of radial solutions of (1.3) have been studied by many mathematicians [8, 9, 11, 12]. For a special class of solutions, i.e., the class of stable positive solutions, an interesting and open problem posed by Guo and Wei [10] is as follows:

Conjecture A: Let p > 1 and $N \ge 5$. A smooth stable solution to (1.3) with growth rate $O(|x|^{\frac{4}{p+1}})$ at ∞ does NOT exist if and only if p satisfies the following condition

$$p > p_0(N) := \frac{N + 2 - \sqrt{4 + N^2 - 4\sqrt{N^2 + H_N}}}{6 - N + \sqrt{4 + N^2 - 4\sqrt{N^2 + H_N}}}$$

where $H_N = \left(\frac{N(N-4)}{4}\right)^2$. As shown in [10], the growth condition $O(|x|^{\frac{4}{p+1}})$ in this conjecture is natural since the equation (1.4) admits entire radial solutions with growth rate $O(r^2)$. The following result was obtained in [10].

Theorem A. Let p > 1 and $N \ge 5$. The problem (1.4) has no classical stable solution u(x) satisfying

$$u(x) = O(|x|^{\frac{4}{p+1}}), \ as \ |x| \to \infty$$

provided that $p > \max(\bar{p}, p_*(N))$. Here

$$p_*(N) = \begin{cases} \frac{N+2-\sqrt{4+N^2-4\sqrt{N^2+H_N^*}}}{6-N+\sqrt{4+N^2-4\sqrt{N^2+H_N^*}}} & \text{if } 5 \le N \le 12 \\ +\infty & \text{if } N \ge 13 \end{cases},$$

where $H_N^* = \left(\frac{N(N-4)}{4}\right)^2 + \frac{(N-2)^2}{2} - 1$ and

$$\bar{p} = \frac{2 + \bar{N}}{6 - \bar{N}}$$

where $\overline{N} \in (4,5)$ is the unique root of the algebraic equation $8(N-2)(N-4) = H_N^*$. It is worth to noticing that $p_*(N) > p_0(N)$. Then, Theorem A is only a partial result and Conjecture A is still open.

In this decade, much attention has been paid to study the elliptic equations and elliptic systems involving degenerate operators such as the Grushin operator [13-18], the Δ_{λ} - Laplacian [3-7] and references given there. Remark that the Grushin operator is a typical example of Δ_{λ} -Laplacian, see [1] for further properties of the operator Δ_{λ} .

As far as we know, there has no work dealing with the system (1.1) involving sub-elliptic operators. The main difficulty arises from the fact that there is no spherical mean formula and one cannot use the ODE technique. Inspired by the work [10] and recent progress in studying degenerate elliptic systems [15], we propose, in this paper, to give a classification of stable positive solutions of (1.1). Motivated by [19, 20], we give the following definition.

A note on stable solutions of a sub-elliptic system with singular nonlinearity

Definition. Let p > 1. A positive solution $(u, v) \in C^2(\mathbb{R}^N) \times C^2(\mathbb{R}^N)$ of (1.1) is called stable if there are two positive smooth functions ξ and η such that

$$\begin{cases} \Delta_{\lambda}\xi = \eta \\ \Delta_{\lambda}\eta = pu^{-p-1}\xi \end{cases}$$
(1.5)

Theorem 1.1. Let p > 1. The system (1.1) has no positive stable solution provided Q < 4. **Theorem 1.2.** Let p > 1 and $Q \ge 4$. Assume that

$$p > \max(\bar{p}, p_*(Q)). \tag{1.6}$$

Here

$$p_*(Q) = \begin{cases} \frac{Q+2-\sqrt{4+Q^2-4}\sqrt{Q^2+H_Q^*}}{6-Q+\sqrt{4+Q^2-4}\sqrt{Q^2+H_Q^*}} & \text{if } 5 \le Q \le 12\\ +\infty & \text{if } Q > 12 \end{cases}$$

where $H_Q^* = \left(\frac{Q(Q-4)}{4}\right)^2 + \frac{(Q-2)^2}{2} - 1$ and

$$\bar{p} = \frac{2 + \bar{Q}}{6 - \bar{Q}},$$

where $\bar{Q} \in (4,5)$ is the unique root of the algebraic equation $8(Q-2)(Q-4) = H_Q^*$. Then the problem (1.1) has no stable solution u(x) satisfying

$$u(x) = O(|x|_{\lambda}^{\frac{4}{p+1}}), \text{ as } |x| \to \infty.$$

Here, Q is defined in (1.2).

Remark that [21, Theorem 1.1] is a direct consequence of Theorem 1.2 when $\lambda_i = 1$ for i = 1, 2, ..., N. In order to prove Theorem 1.1, we borrow some ideas from [20-22] in which the comparison principle and the bootstrap argument play a crucial role. Recall that one can not use spherical mean formula to prove the comparison principle as in [21-23] and then this requires another approach. In this paper, we prove the comparison principle by using the maximum principle argument [15, 24]. In particular, we do not need the stability assumption as in [21, 22].

The rest of the paper is devoted to the proof of the main result.

2. Proof of Theorem 1.2

We begin by establishing an a priori estimate.

Lemma 2.1. Suppose that (u, v) is a stable positive solution of (1.1) satisfying $u(x) = |x|_{\lambda}^{\frac{4}{p+1}}$ as $|x|_{\lambda} \to \infty$. Then for R large, there holds

$$\int_{B_R} u^{-p} dx \le R^{Q - \frac{4p}{p+1}} \tag{2.1}$$

and

$$\int_{B_R} u^2 dx \le R^{Q + \frac{8}{p+1}}.$$
(2.2)

Here and in what follows

$$B_R = \{x \in \mathbb{R}^N; |x_i| \le R^{\epsilon_i}, i = 1, 2, ..., N\}.$$

Proof. It follows from the growth condition of u that

$$\int_{B_R} u^2 dx \le CR^{\frac{8}{p+1}} \int_{B_R} dx = CR^{Q + \frac{8}{p+1}}$$

It remains to prove (2.1). The Hölder inequality gives

$$\int_{B_R} u^{-p} dx \le C \left(\int_{B_R} u^{-p-1} dx \right)^{\frac{p}{p+1}} R^{\frac{Q}{p+1}}.$$

Put $\chi(x) = \phi(\frac{x_1}{R^{\epsilon_1}}, ..., \frac{x_N}{R^{\epsilon_N}})$ where $\phi \in C_c^{\infty}(\mathbb{R}^N; [0, 1])$ is a test function satisfying $\phi = 1$ on B_1 and $\phi = 0$ outside B_2 . The stability inequality implies that

$$\int_{B_R} u^{-p-1} dx \le \int_{B_{2R}} u^{-p-1} \chi^2 dx \le C \int_{B_{2R}} |\Delta_\lambda \chi|^2 dx \le C R^{Q-4}$$

Combining these two estimates, we deduce (2.1).

Remark that Theorem 1.1 is a direct consequence of the last estimate in the proof of Lemma 2.1.

Lemma 2.2. For any $\varphi, \psi \in C^4(\mathbb{R}^N)$, there holds

$$\Delta_{\lambda}\varphi\Delta_{\lambda}(\varphi\psi^{2}) = (\Delta_{\lambda}(\varphi\psi))^{2} - 4(\nabla_{\lambda}\varphi\cdot\nabla_{\lambda}\psi)^{2} + 2\varphi\Delta_{\lambda}\varphi|\nabla_{\lambda}\psi|^{2} - 4\varphi\Delta_{\lambda}\psi\nabla_{\lambda}\varphi\cdot\nabla_{\lambda}\psi - \varphi^{2}(\Delta_{\lambda}\psi)^{2}.$$

The proof of Lemma 2.2 is elementary, see e.g., [25]. We then omit the details. Consequently, we obtain

40

A note on stable solutions of a sub-elliptic system with singular nonlinearity

Lemma 2.3. For any $\varphi \in C^4(\mathbb{R}^N)$ and $\psi \in C^4_c(\mathbb{R}^N)$, we have

$$\int_{\mathbb{R}^{N}} \Delta_{\lambda} \varphi \Delta_{\lambda} (\varphi \psi^{2}) dx = \int_{\mathbb{R}^{N}} \left(\Delta_{\lambda} (\varphi \psi) \right)^{2} dx + \int_{\mathbb{R}^{N}} \left(-4 (\nabla_{\lambda} \varphi \cdot \nabla_{\lambda} \psi)^{2} + 2\varphi \Delta_{\lambda} \varphi |\nabla_{\lambda} \psi|^{2} \right) dx + \int_{\mathbb{R}^{N}} \varphi^{2} \left(2 \nabla_{\lambda} (\Delta_{\lambda} \psi) \cdot \nabla_{\lambda} \psi + (\Delta_{\lambda} \psi)^{2} \right) dx$$

$$(2.3)$$

and

$$2\int_{\mathbb{R}^N} |\nabla_\lambda \varphi|^2 |\nabla_\lambda \psi|^2 dx = 2\int_{\mathbb{R}^N} \varphi(-\Delta_\lambda \varphi) |\nabla_\lambda \psi|^2 dx + \int_{\mathbb{R}^N} \varphi^2 \Delta_\lambda (|\nabla_\lambda \psi|^2) dx.$$
(2.4)

We next give a preparation to the bootstrap argument.

Lemma 2.4. Let p > 1 and assume that (u, v) is a stable positive solution of (1.1). Then, for R > 0,

$$\int_{B_R} \left(v^2 + u^{-p+1} \right) dx \le C R^{Q-4 + \frac{8}{p+1}}.$$

Proof. From (1.1) and an integration by parts, we have for $\varphi \in C_c^4(\mathbb{R}^N)$,

$$\int_{\mathbb{R}^N} u^{-p} \varphi dx = -\int_{\mathbb{R}^N} \Delta_\lambda u \Delta_\lambda \varphi dx.$$
(2.5)

On the other hand, the stability assumption (see e.g., [20, Lemma 7]) implies the following stability inequality

$$p\int_{\mathbb{R}^N} u^{-p-1} \varphi^2 dx \le \int_{\mathbb{R}^N} |\Delta_\lambda \varphi|^2 dx.$$
(2.6)

Put $\chi(x) = \phi(\frac{x_1}{R^{\epsilon_1}}, ..., \frac{x_N}{R^{\epsilon_N}})$ where $\phi \in C_c^{\infty}(\mathbb{R}^N; [0, 1])$ is a test function satisfying $\phi = 1$ on B_1 and $\phi = 0$ outside B_2 . An elementary calculation combined with the assumptions (H1), (H2) and (H3) gives

$$|\nabla_{\lambda}\chi| \leq \frac{C}{R} \text{ and } |\Delta_{\lambda}\chi| \leq \frac{C}{R^2}.$$

Similarly, we also have

$$|\nabla_{\lambda}(\Delta_{\lambda})\chi| \le \frac{C}{R^3}.$$

Choosing $\varphi = u\chi^2$ in (2.5) and (2.5), there holds

$$\int_{\mathbb{R}^N} u^{-p+1} \chi^2 dx = -\int_{\mathbb{R}^N} \Delta_\lambda u \Delta_\lambda (u\chi^2) dx$$
(2.7)

and

$$p\int_{\mathbb{R}^N} u^{-p+1} \chi^2 dx \le \int_{\mathbb{R}^N} |\Delta_\lambda(u\chi)|^2 dx.$$
(2.8)

It follows from (2.7) and (2.8) and Lemma 2.3 that

$$(p+1)\int_{\mathbb{R}^{N}} u^{p+1}\chi^{2} dx = \int_{\mathbb{R}^{N}} |\Delta_{\lambda}(u\chi)|^{2} dx - \int_{\mathbb{R}^{N}} \Delta_{\lambda}u\Delta_{\lambda}(u\chi^{2}) dx$$

$$\leq \int_{\mathbb{R}^{N}} \left(4(\nabla_{\lambda}u \cdot \nabla_{\lambda}\chi)^{2} - 2u\Delta_{\lambda}u|\nabla_{\lambda}\chi|^{2}\right) dx - \int_{\mathbb{R}^{N}} u^{2} \left(2\nabla_{\lambda}(\Delta_{\lambda}\chi) \cdot \nabla_{\lambda}\chi + |\Delta_{\lambda}\chi|^{2}\right) dx.$$

By using simple inequality combined with (2.4), we obtain

$$\int_{\mathbb{R}^{N}} \left(4(\nabla_{\lambda} u \cdot \nabla_{\lambda} \chi)^{2} - 2u\Delta_{\lambda} u |\nabla_{\lambda} \chi|^{2} \right) dx \leq \int_{\mathbb{R}^{N}} 4|\nabla_{\lambda} u|^{2} |\nabla_{\lambda} \chi|^{2} dx + \int_{\mathbb{R}^{N}} 2uv |\nabla_{\lambda} \chi|^{2} dx \\ \leq C \int_{\mathbb{R}^{N}} uv |\nabla_{\lambda} \chi|^{2} dx + C \int_{\mathbb{R}^{N}} u^{2} \Delta_{\lambda} (|\nabla_{\lambda} \chi|^{2}) dx.$$

Consequently,

$$\int_{\mathbb{R}^{N}} u^{-p+1} \chi^{2} dx \leq C \int_{\mathbb{R}^{N}} uv |\nabla_{\lambda}\chi|^{2} dx + C \int_{\mathbb{R}^{N}} u^{2} \left(\Delta_{\lambda} (|\nabla_{\lambda}\chi|^{2}) + |\nabla_{\lambda}(\Delta_{\lambda}\chi) \cdot \nabla_{\lambda}\chi| + |\Delta_{\lambda}\chi|^{2} \right) dx.$$
(2.9)

It is easy to see that $\Delta_{\lambda}(u\chi) = v\chi + 2\nabla_{\lambda}u \cdot \nabla_{\lambda}\chi + u\Delta_{\lambda}\chi$ or equivalently

$$\Delta_{\lambda}(u\chi) - v\chi = 2\nabla_{\lambda}u \cdot \nabla_{\lambda}\chi + u\Delta_{\lambda}\chi.$$

Therefore,

$$\int_{\mathbb{R}^N} v^2 \chi^2 dx \le C \int_{\mathbb{R}^N} \left(|\nabla_\lambda u \cdot \nabla_\lambda \chi|^2 + u^2 |\Delta_\lambda \chi|^2 + |(\Delta_\lambda (u\chi))|^2 \right) dx.$$

This together with (2.9), (2.7) and Lemma 2.2 yield

$$\int_{\mathbb{R}^{N}} \left(v^{2} + u^{-p+1} \right) \chi^{2} dx \leq C \int_{\mathbb{R}^{N}} uv |\nabla_{\lambda}\chi|^{2} dx + C \int_{\mathbb{R}^{N}} u^{2} \left(|\Delta_{\lambda}(|\nabla_{\lambda}\chi|^{2})| + |\nabla_{\lambda}(\Delta_{\lambda}\chi) \cdot \nabla_{\lambda}\chi| + |\Delta_{\lambda}\chi|^{2} \right) dx.$$

A note on stable solutions of a sub-elliptic system with singular nonlinearity

Next, the function χ in the inequality above is replaced by $\chi^m,$ where m is chosen later on, one gets

$$\int_{\mathbb{R}^{N}} \left(u^{-p+1} + v^{2} \right) \chi^{2m} dx \leq \int_{\mathbb{R}^{N}} uv \chi^{2(m-1)} |\nabla_{\lambda}\chi|^{2} dx + C \int_{\mathbb{R}^{N}} u^{2} \left(|\Delta_{\lambda}(|\nabla_{\lambda}\chi^{m}|^{2})| + |\nabla_{\lambda}(\Delta_{\lambda}\chi^{m}) \cdot \nabla_{\lambda}\chi^{m}| + |\Delta_{\lambda}\chi^{m}|^{2} \right) dx.$$
(2.10)

Moreover, it follows from the Young inequality, for $\varepsilon > 0$,

$$\int_{\mathbb{R}^N} uv\chi^{2(m-1)} |\nabla_\lambda \chi|^2 dx \le \varepsilon \int_{\mathbb{R}^N} v^2 \chi^{2m} dx + \frac{1}{4\varepsilon} \int_{\mathbb{R}^N} u^2 \chi^{2(m-2)} |\nabla_\lambda \chi|^4 dx.$$

Combining this and (2.10), one has

$$\int_{\mathbb{R}^N} \left(v^2 + u^{-p+1} \right) \chi^{2m} dx \leq C \int_{\mathbb{R}^N} u^2 \chi^{2(m-2)} |\nabla_\lambda \chi|^4 dx + C \int_{\mathbb{R}^N} u^2 \left(|\Delta_\lambda (|\nabla_\lambda \chi^m|^2)| + |\nabla_\lambda (\Delta_\lambda \chi^m) \cdot \nabla_\lambda \chi^m| + |\Delta_\lambda \chi^m|^2 \right) dx.$$

Consequently, for R > 0,

$$\int_{B_R} \left(v^2 + u^{-p+1} \right) dx \le \int_{\mathbb{R}^N} \left(v^2 + u^{-p+1} \right) \chi^{2m} dx \le C R^{Q-4-\frac{8}{p-1}}.$$

Lemma 2.5. Let p > 1. Assume that (u, v) is a positive solution of (1.1). Then, pointwise in \mathbb{R}^N , the following inequality holds

$$\frac{v^2}{2} \ge \frac{u^{1-p}}{p-1}.$$

Proof. To simplify the notations, let us put

$$l := \sqrt{\frac{2}{p-1}}$$
 and $\sigma := \frac{1-p}{2}$.

Since p > 1, we get

0 < l and $\sigma < 0$.

It is enough to prove that

 $v \ge lu^{\sigma}$.

Set $w = lu^{\sigma} - v$. We shall show that $w \leq 0$ by contradiction argument. Suppose in contrary that

$$\sup_{\mathbb{R}^N} w > 0.$$

A straightforward computation combined with the relation $-\Delta_{\lambda}v = u^{p}$ implies that

$$\begin{split} \Delta_{\lambda}w &= l\sigma u^{\sigma-1}\Delta_{\lambda}u + l\sigma(\sigma-1)u^{\sigma-2}|\nabla_{\lambda}u|^{2} - \Delta_{\lambda}v\\ &\geq l\sigma u^{\sigma-1}\Delta_{\lambda}u - \Delta_{\lambda}v\\ &= l\sigma u^{\sigma-1}v + u^{-p}\\ &= \frac{1}{l}u^{\sigma-1}w. \end{split}$$

Consequently, we arrive at

$$\Delta_{\lambda} w \ge \frac{1}{l} u^{\sigma - 1} w. \tag{2.11}$$

We now consider two possible cases of the supremum of w. First, if there exists x^0 such that

$$\sup_{\mathbb{R}^N} w = w(x^0) = lu^{\sigma}(x^0) - v(x^0) > 0,$$

then we must have $\frac{\partial w}{\partial x_i} = 0$ and $\frac{\partial^2 w}{\partial x_i^2} \leq 0$ for i = 1, 2, ..., N. This together with the assumption (H2) gives

$$\nabla_{\lambda} w(x^0) = 0$$
 and $\Delta_{\lambda} w(x^0) \le 0$.

However, the right hand side of (2.11) at x^0 is positive thanks to (2.11). Thus, we obtain a contradiction.

It remains to consider the case where the supremum of w is attained at infinity. Let $\phi \in C_c^{\infty}(\mathbb{R}^N; [0, 1])$ be a cut-off function satisfying $\phi = 1$ on B_1 and $\phi = 0$ outside B_2 . Put $\phi_R(x) = \phi^m(\frac{x_1}{R^{\varepsilon_1}}, \frac{x_2}{R^{\varepsilon_2}}, ..., \frac{x_N}{R^{\varepsilon_N}})$ where m > 0 chosen later. A simple calculation combined with the assumptions (H1), (H2) show that

$$|\Delta_{\lambda}\phi_R| \le \frac{C}{R^2} \phi_R^{\frac{m-2}{m}} \text{ and } \frac{|\nabla_{\lambda}\phi_R|^2}{\phi_R} \le \frac{C}{R^2} \phi_R^{\frac{m-2}{m}}.$$
(2.12)

Put $w_R(x) = w(x)\phi_R(x)$ and then there exists $x_R \in B_{2R}$ such that $w_R(x_R) = \max_{\mathbb{R}^N} w_R(x)$. Therefore, as above

$$\nabla_{\lambda} w_R(x_R) = 0 \text{ and } \Delta_{\lambda} w_R(x_R) \leq 0.$$

This implies that at x_R

$$\nabla_{\lambda}w = -\phi_R^{-1}w\nabla_{\lambda}\phi_R \tag{2.13}$$

and

$$\phi_R \Delta_\lambda w \le (2\phi_R^{-1} |\nabla_\lambda \phi_R|^2 - \Delta_\lambda \phi_R) w.$$
(2.14)

From (2.12), (2.13) and (2.14), one has

$$\phi_R \Delta_\lambda w \le \frac{C}{R^2} \phi_R^{\frac{m-2}{m}} w.$$
(2.15)

Multiplying (2.11) by ϕ_R and using (2.15), we obtain at x_R

$$\phi_R l\sigma u^{\sigma-1} w \le \frac{C}{R^2} \phi^{\frac{m-2}{m}} \phi_R w$$

or equivalently

$$\phi_R^{\frac{2}{m}}(x_R)u^{\sigma-1}(x_R) \le \frac{C}{R^2}.$$

By choosing $m = \frac{2}{\sigma - 1} > 0$, there holds

$$u_R^{\sigma-1} \le \frac{C}{R^2}.$$

Remark that $\sigma < 0$. Thus, $\lim_{R \to +\infty} u_R(x_R) = \infty$ and we obtain a contradiction since

$$\sup_{\mathbb{R}^N} w \le \lim_{R \to +\infty} u_R^{\sigma}(x_R) = 0.$$

With Lemma 2.4 and Lemma 2.5 at hand, it is enough to follow the bootstrap argument in [10] to obtain the proof of Theorem 1.2.

REFERENCES

- [1] Kogoj, A. E., and Lanconelli, E. 2012. On semilinear Δ_{λ} -Laplace equation. Nonlinear Anal. 75, 12, 4637-4649.
- [2] Anh, C. T., and My, B. K., 2016. *Liouville-type theorems for elliptic inequalities involving the* Δ_{λ} -Laplace operator. Complex Variables and Elliptic Equations 61, 7, 1002-1013.
- [3] Kogoj, A. E., and Sonner, S., 2016. *Hardy type inequalities for* Δ_{λ} -*Laplacians*. Complex Var. Elliptic Equ. 61, 3, 422-442.
- [4] Luyen, D. T., and Tri, N. M., 2015. Existence of solutions to boundary-value problems for similinear Δ_{γ} differential equations. Math. Notes 97, 1-2, 73-84.
- [5] Rahal, B., 2018. Liouville-type theorems with finite Morse index for semilinear Δ_{λ} -Laplace operators.. NoDEA Nonlinear Differential Equations Appl. 25, 3, Art. 21, 19.
- [6] Kogoj, A. E., and Sonner, S., 2013. *Attractors for a class of semi-linear degenerate parabolic equations*. J. Evol. Equ. 13, 3, 675-691.
- [7] Kogoj, A. E., and Lanconelli, E., 2018. *Linear and semilinear problems involving* Δ_{λ} -*Laplacians*. In Proceedings of the International Conference "Two nonlinear days in Urbino 2017", Vol. 25 of Electron. J. Differ. Equ. Conf., Texas State Univ.-San Marcos, Dept. Math., San Marcos, TX, pp. 167-178.

- [8] Choi, Y. S., and Xu, X., 2009. *Nonlinear biharmonic equations with negative exponents*. J. Differential Equations 246, 1, 216-234.
- [9] Lai, B., and Ye, D., 2016. *Remarks on entire solutions for two fourth-order elliptic problems.* Proc. Edinb. Math. Soc. (2) 59, 3, 777-786.
- [10] Guo, Z., and Wei, J., 2014. Liouville type results and regularity of the extremal solutions of biharmonic equation with negative exponents. Discrete Contin. Dyn. Syst. 34, 6, 2561-2580.
- [11] Warnault, G., 2010. *Liouville theorems for stable radial solutions for the biharmonic operator*. Asymptot. Anal. 69, 1-2, 87-98.
- [12] Lai, B., 2016. The regularity and stability of solutions to semilinear fourth-order elliptic problems with negative exponents. Proc. Roy. Soc. Edinburgh Sect. A 146, 1, 195-212.
- [13] Yu, X., 2015. *Liouville type theorem for nonlinear elliptic equation involving Grushin operators*. Commun. Contemp. Math. 17, 5, 1450050, 12.
- [14] Duong, A. T., and Nguyen, N. T., 2017. Liouville type theorems for elliptic equations involving grushin operator and advection. Electron. J. Differential Equations, Paper No. 108, 11.
- [15] Duong, A. T., and Phan, Q. H., 2017. *Liouville type theorem for nonlinear elliptic system involving Grushin operator*. J. Math. Anal. Appl. 454, 2, 785-801.
- [16] Monticelli, D. D., 2010. Maximum principles and the method of moving planes for a class of degenerate elliptic linear operators. J. Eur. Math. Soc. (JEMS) 12, 3, 611-654.
- [17] D'Ambrosio, L., 2004. Hardy inequalities related to Grushin type operators. Proc. Amer. Math. Soc. 132, 3, 725-734.
- [18] D'Ambrosio, L., and Lucente, S., 2003. *Nonlinear Liouville theorems for Grushin and Tricomi operators*. J. Differential Equations 193, 2, 511-541.
- [19] Montenegro, M., 2005. *Minimal solutions for a class of elliptic systems*. Bull. London Math. Soc. 37, 3, 405-416.
- [20] Cowan, C., 2013. Liouville theorems for stable Lane-Emden systems with biharmonic problems. Nonlinearity 26, 8, 2357-2371.
- [21] Hajlaoui, H., Harrabi, A., and Ye, D., 2014. On stable solutions of the biharmonic problem with polynomial growth. Pacific J. Math. 270, 1, 79-93.
- [22] Hu, L.-G., and Zeng, J., 2016. Liouville type theorems for stable solutions of the weighted elliptic system. J. Math. Anal. Appl. 437, 2, 882-901.
- [23] Souplet, P., 2009. *The proof of the Lane-Emden conjecture in four space dimensions*. Adv. Math. 221, 5, 1409-1427.
- [24] Cheng, Z., Huang, G., and Li, C., 2016. On the Hardy-Littlewood-Sobolev type systems. Commun. Pure Appl. Anal. 15, 6, 2059-2074.
- [25] Wei, J., and Ye, D., 2013. *Liouville theorems for stable solutions of biharmonic problem*. Math. Ann. 356, 4, 1599-1612.