Natural Science, 2019, Volume 64, Issue 10, pp. 36-46
This paper is available online at http://stdb.hnue.edu.vn

A NOTE ON STABLE SOLUTIONS OF A SUB-ELLIPTIC SYSTEM WITH SINGULAR NONLINEARITY

Vu Thi Hien Anh ${ }^{1}$ and Dao Manh Thang ${ }^{2}$
${ }^{1}$ Faculty of Mathematics, Hanoi National University of Education
${ }^{2}$ Hung Vuong High School for Gifted Student, Viet Tri, Phu Tho

Abstract. In this paper, we study a system of the form

$$
\left\{\begin{array}{l}
\Delta_{\lambda} u=v \\
\Delta_{\lambda} v=-u^{-p}
\end{array} \quad \text { in } \mathbb{R}^{N}\right.
$$

where $p>1$ and Δ_{λ} is a sub-elliptic operator. We obtain a Liouville type theorem for the class of stable positive solutions of the system.
Keywords: Liouville-type theorem, stable positive solutions, Δ_{λ}-Laplacian, sub-elliptic operators.

1. Introduction

In this paper, we are interested in stable positive solutions of the following problem:

$$
\left\{\begin{array}{l}
\Delta_{\lambda} u=v \tag{1.1}\\
\Delta_{\lambda} v=-u^{-p}
\end{array} \quad \text { in } \mathbb{R}^{N}\right.
$$

where $p>1$, and Δ_{λ} is a sub-elliptic operator defined by

$$
\Delta_{\lambda}=\sum_{i=1}^{N} \partial_{x_{i}}\left(\lambda_{i}^{2} \partial_{x_{i}}\right)
$$

Throughout this paper, we always assume that the operator Δ_{λ} satisfies the following hypotheses which are first proposed in [1] and then used in many papers [2-7].
(H1) There is a group of dilations $\left(\delta_{t}\right)_{t>0}$

$$
\delta_{t}: \mathbb{R}^{N} \rightarrow \mathbb{R},\left(x_{1}, \ldots, x_{N}\right) \mapsto\left(t^{\varepsilon_{1}} x_{1}, \ldots, t^{\varepsilon_{N}} x_{N}\right)
$$

Received August 29, 2019. Revised October 22, 2019. Accepted October 29, 2019.
Contact Vu Thi Hien Anh, e-mail address: hienanh.k63hnue@gmail.com
with $1=\varepsilon_{1} \leq \varepsilon_{2} \leq \ldots \leq \varepsilon_{N}$, such that λ_{i} is δ_{t}-homogeneous of degree $\left(\varepsilon_{i}-1\right)$, i.e.,

$$
\lambda_{i}\left(\delta_{t}(x)\right)=t^{\varepsilon_{i}-1} \lambda_{i}(x), \text { for all } x \in \mathbb{R}^{N}, t>0, i=1,2, \ldots, N .
$$

The number

$$
\begin{equation*}
Q=\varepsilon_{1}+\varepsilon_{2}+\ldots+\varepsilon_{N} \tag{1.2}
\end{equation*}
$$

is called the homogeneous dimension of \mathbb{R}^{N} with respect to the group of dilations $\left(\delta_{t}\right)_{t>0}$.
(H2) The functions λ_{i} satisfy $\lambda_{1}=1$ and $\lambda_{i}(x)=\lambda_{i}\left(x_{1}, \ldots, x_{i-1}\right)$, i.e., λ_{i} depends only on the first $(i-1)$ variables $x_{1}, x_{2}, \ldots, x_{i-1}$, for $i=2,3, \ldots, N$. Moreover, the function λ_{i} 's are continuous on \mathbb{R}^{N}, strictly positive and of class C^{2} on $\mathbb{R}^{N} \backslash \Pi$ where

$$
\Pi=\left\{\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N} ; \prod_{i=1}^{N} x_{i}=0\right\}
$$

(H3) There exists a constant $\rho \geq 0$ such that

$$
0 \leq x_{k} \partial_{x_{k}} \lambda_{i}(x), x_{k}^{2} \partial_{x_{k}}^{2} \lambda_{i}(x) \leq \rho \lambda_{i}(x)
$$

for all $k \in\{1,2, \ldots, i-1\}, i=1,2, \ldots, N$ and $x=\left(x_{1}, x_{2}, \ldots, x_{N}\right) \in \mathbb{R}^{N}$.
These hypotheses allow us to use

$$
\nabla_{\lambda}:=\left(\lambda_{1} \partial_{x_{1}}, \lambda_{2} \partial_{x_{2}}, \ldots, \lambda_{N} \partial_{x_{N}}\right)
$$

which satisfies $\Delta_{\lambda}=\left(\nabla_{\lambda}\right)^{2}$. The norm corresponding to the Δ_{λ} is defined by

$$
|x|_{\lambda}=\left(\sum_{i=1}^{N} \varepsilon_{i} \prod_{j \neq i} \lambda_{i}^{2}\left|x_{i}\right|^{2}\right)^{\frac{1}{2 \gamma}}
$$

where $\gamma=1+\sum_{i=1}^{N}\left(\varepsilon_{i}-1\right) \geq 1$.
Let us first consider the case $\lambda_{i}=1$ for $i=1,2, \ldots, N$. Then, the problem (1.1) becomes

$$
\left\{\begin{array}{l}
\Delta u=v \tag{1.3}\\
\Delta v=-u^{-p}
\end{array} \quad \text { in } \mathbb{R}^{N}\right.
$$

Based on the idea in [8] for $N=3$, Lai and Ye pointed out that the system (1.3) has no positive classical solution provided $0<p \leq 1$ in any dimension, [9]. When $p>1$, the existence of positive classical solutions of the problem (1.3) and of the biharmonic problem

$$
\begin{equation*}
-\Delta^{2} u=u^{-p} \tag{1.4}
\end{equation*}
$$

are equivalent, see [9-11]. In the low dimensions, $N=3,4$, the problem (1.4) has no C^{4}-positive solution [11]. In the case $N \geq 5$, the existence and the assymptotic behavior
of radial solutions of (1.3) have been studied by many mathematicians [8, 9, 11, 12]. For a special class of solutions, i.e., the class of stable positive solutions, an interesting and open problem posed by Guo and Wei [10] is as follows:
Conjecture A: Let $p>1$ and $N \geq 5$. A smooth stable solution to (1.3) with growth rate $O\left(|x|^{\frac{4}{p+1}}\right)$ at ∞ does NOT exist if and only if p satisfies the following condition

$$
p>p_{0}(N):=\frac{N+2-\sqrt{4+N^{2}-4 \sqrt{N^{2}+H_{N}}}}{6-N+\sqrt{4+N^{2}-4 \sqrt{N^{2}+H_{N}}}}
$$

where $H_{N}=\left(\frac{N(N-4)}{4}\right)^{2}$. As shown in [10], the growth condition $O\left(|x|^{\frac{4}{p+1}}\right)$ in this conjecture is natural since the equation (1.4) admits entire radial solutions with growth rate $O\left(r^{2}\right)$. The following result was obtained in [10].
Theorem A. Let $p>1$ and $N \geq 5$. The problem (1.4) has no classical stable solution $u(x)$ satisfying

$$
u(x)=O\left(|x|^{\frac{4}{p+1}}\right), \text { as }|x| \rightarrow \infty
$$

provided that $p>\max \left(\bar{p}, p_{*}(N)\right)$. Here

$$
p_{*}(N)= \begin{cases}\frac{N+2-\sqrt{4+N^{2}-4 \sqrt{N^{2}+H_{N}^{*}}}}{6-N+\sqrt{4+N^{2}-4 \sqrt{N^{2}+H_{N}^{*}}}} & \text { if } 5 \leq N \leq 12 \\ +\infty & \text { if } N \geq 13\end{cases}
$$

where $H_{N}^{*}=\left(\frac{N(N-4)}{4}\right)^{2}+\frac{(N-2)^{2}}{2}-1$ and

$$
\bar{p}=\frac{2+\bar{N}}{6-\bar{N}},
$$

where $\bar{N} \in(4,5)$ is the unique root of the algebraic equation $8(N-2)(N-4)=H_{N}^{*}$. It is worth to noticing that $p_{*}(N)>p_{0}(N)$. Then, Theorem A is only a partial result and Conjecture A is still open.

In this decade, much attention has been paid to study the elliptic equations and elliptic systems involving degenerate operators such as the Grushin operator [13-18], the Δ_{λ} - Laplacian [3-7] and references given there. Remark that the Grushin operator is a typical example of Δ_{λ}-Laplacian, see [1] for further properties of the operator Δ_{λ}.

As far as we know, there has no work dealing with the system (1.1) involving sub-elliptic operators. The main difficulty arises from the fact that there is no spherical mean formula and one cannot use the ODE technique. Inspired by the work [10] and recent progress in studying degenerate elliptic systems [15], we propose, in this paper, to give a classification of stable positive solutions of (1.1). Motivated by [19, 20], we give the following definition.

Definition. Let $p>1$. A positive solution $(u, v) \in C^{2}\left(\mathbb{R}^{N}\right) \times C^{2}\left(\mathbb{R}^{N}\right)$ of (1.1) is called stable if there are two positive smooth functions ξ and η such that

$$
\left\{\begin{array}{l}
\Delta_{\lambda} \xi=\eta \tag{1.5}\\
\Delta_{\lambda} \eta=p u^{-p-1} \xi
\end{array}\right.
$$

Theorem 1.1. Let $p>1$. The system (1.1) has no positive stable solution provided $Q<4$.
Theorem 1.2. Let $p>1$ and $Q \geq 4$. Assume that

$$
\begin{equation*}
p>\max \left(\bar{p}, p_{*}(Q)\right) . \tag{1.6}
\end{equation*}
$$

Here

$$
p_{*}(Q)= \begin{cases}\frac{Q+2-\sqrt{4+Q^{2}-4 \sqrt{Q^{2}+H_{Q}^{*}}}}{6-Q+\sqrt{4+Q^{2}-4 \sqrt{Q^{2}+H_{Q}^{*}}}} & \text { if } 5 \leq Q \leq 12 \\ +\infty & \text { if } Q>12\end{cases}
$$

where $H_{Q}^{*}=\left(\frac{Q(Q-4)}{4}\right)^{2}+\frac{(Q-2)^{2}}{2}-1$ and

$$
\bar{p}=\frac{2+\bar{Q}}{6-\bar{Q}},
$$

where $\bar{Q} \in(4,5)$ is the unique root of the algebraic equation $8(Q-2)(Q-4)=H_{Q}^{*}$. Then the problem (1.1) has no stable solution $u(x)$ satisfying

$$
u(x)=O\left(|x|_{\lambda}^{\frac{4}{p+1}}\right), \text { as }|x| \rightarrow \infty .
$$

Here, Q is defined in (1.2).
Remark that [21, Theorem 1.1] is a direct consequence of Theorem 1.2 when $\lambda_{i}=1$ for $i=1,2, \ldots, N$. In order to prove Theorem 1.1, we borrow some ideas from [20-22] in which the comparison principle and the bootstrap argument play a crucial role. Recall that one can not use spherical mean formula to prove the comparison principle as in [21-23] and then this requires another approach. In this paper, we prove the comparison principle by using the maximum principle argument [15, 24]. In particular, we do not need the stability assumption as in [21, 22].

The rest of the paper is devoted to the proof of the main result.

Vu Thi Hien Anh and Dao Manh Thang

2. Proof of Theorem 1.2

We begin by establishing an a priori estimate.
Lemma 2.1. Suppose that (u, v) is a stable positive solution of (1.1) satisfying $u(x)=$ $|x|_{\lambda}^{\frac{4}{p+1}}$ as $|x|_{\lambda} \rightarrow \infty$. Then for R large, there holds

$$
\begin{equation*}
\int_{B_{R}} u^{-p} d x \leq R^{Q-\frac{4 p}{p+1}} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{B_{R}} u^{2} d x \leq R^{Q+\frac{8}{p+1}} \tag{2.2}
\end{equation*}
$$

Here and in what follows

$$
B_{R}=\left\{x \in \mathbb{R}^{N} ;\left|x_{i}\right| \leq R^{\epsilon_{i}}, i=1,2, \ldots, N\right\} .
$$

Proof. It follows from the growth condition of u that

$$
\int_{B_{R}} u^{2} d x \leq C R^{\frac{8}{p+1}} \int_{B_{R}} d x=C R^{Q+\frac{8}{p+1}}
$$

It remains to prove (2.1). The Hölder inequality gives

$$
\int_{B_{R}} u^{-p} d x \leq C\left(\int_{B_{R}} u^{-p-1} d x\right)^{\frac{p}{p+1}} R^{\frac{Q}{p+1}}
$$

Put $\chi(x)=\phi\left(\frac{x_{1}}{R^{\epsilon_{1}}}, \ldots, \frac{x_{N}}{R^{\epsilon_{N}}}\right)$ where $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{N} ;[0,1]\right)$ is a test function satisfying $\phi=1$ on B_{1} and $\phi=0$ outside B_{2}. The stability inequality implies that

$$
\int_{B_{R}} u^{-p-1} d x \leq \int_{B_{2 R}} u^{-p-1} \chi^{2} d x \leq C \int_{B_{2 R}}\left|\Delta_{\lambda} \chi\right|^{2} d x \leq C R^{Q-4}
$$

Combining these two estimates, we deduce (2.1).
Remark that Theorem 1.1 is a direct consequence of the last estimate in the proof of Lemma 2.1.

Lemma 2.2. For any $\varphi, \psi \in C^{4}\left(\mathbb{R}^{N}\right)$, there holds

$$
\begin{aligned}
\Delta_{\lambda} \varphi \Delta_{\lambda}\left(\varphi \psi^{2}\right)=\left(\Delta_{\lambda}(\varphi \psi)\right)^{2}-4\left(\nabla_{\lambda} \varphi \cdot \nabla_{\lambda} \psi\right)^{2} & +2 \varphi \Delta_{\lambda} \varphi\left|\nabla_{\lambda} \psi\right|^{2} \\
& -4 \varphi \Delta_{\lambda} \psi \nabla_{\lambda} \varphi \cdot \nabla_{\lambda} \psi-\varphi^{2}\left(\Delta_{\lambda} \psi\right)^{2}
\end{aligned}
$$

The proof of Lemma 2.2 is elementary, see e.g., [25]. We then omit the details. Consequently, we obtain

Lemma 2.3. For any $\varphi \in C^{4}\left(\mathbb{R}^{N}\right)$ and $\psi \in C_{c}^{4}\left(\mathbb{R}^{N}\right)$, we have

$$
\begin{align*}
\int_{\mathbb{R}^{N}} \Delta_{\lambda} \varphi \Delta_{\lambda}\left(\varphi \psi^{2}\right) d x & =\int_{\mathbb{R}^{N}}\left(\Delta_{\lambda}(\varphi \psi)\right)^{2} d x+\int_{\mathbb{R}^{N}}\left(-4\left(\nabla_{\lambda} \varphi \cdot \nabla_{\lambda} \psi\right)^{2}+2 \varphi \Delta_{\lambda} \varphi\left|\nabla_{\lambda} \psi\right|^{2}\right) d x \\
& +\int_{\mathbb{R}^{N}} \varphi^{2}\left(2 \nabla_{\lambda}\left(\Delta_{\lambda} \psi\right) \cdot \nabla_{\lambda} \psi+\left(\Delta_{\lambda} \psi\right)^{2}\right) d x \tag{2.3}
\end{align*}
$$

and

$$
\begin{equation*}
2 \int_{\mathbb{R}^{N}}\left|\nabla_{\lambda} \varphi\right|^{2}\left|\nabla_{\lambda} \psi\right|^{2} d x=2 \int_{\mathbb{R}^{N}} \varphi\left(-\Delta_{\lambda} \varphi\right)\left|\nabla_{\lambda} \psi\right|^{2} d x+\int_{\mathbb{R}^{N}} \varphi^{2} \Delta_{\lambda}\left(\left|\nabla_{\lambda} \psi\right|^{2}\right) d x . \tag{2.4}
\end{equation*}
$$

We next give a preparation to the bootstrap argument.
Lemma 2.4. Let $p>1$ and assume that (u, v) is a stable positive solution of (1.1). Then, for $R>0$,

$$
\int_{B_{R}}\left(v^{2}+u^{-p+1}\right) d x \leq C R^{Q-4+\frac{8}{p+1}} .
$$

Proof. From (1.1) and an integration by parts, we have for $\varphi \in C_{c}^{4}\left(\mathbb{R}^{N}\right)$,

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} u^{-p} \varphi d x=-\int_{\mathbb{R}^{N}} \Delta_{\lambda} u \Delta_{\lambda} \varphi d x \tag{2.5}
\end{equation*}
$$

On the other hand, the stability assumption (see e.g., [20, Lemma 7]) implies the following stability inequality

$$
\begin{equation*}
p \int_{\mathbb{R}^{N}} u^{-p-1} \varphi^{2} d x \leq \int_{\mathbb{R}^{N}}\left|\Delta_{\lambda} \varphi\right|^{2} d x \tag{2.6}
\end{equation*}
$$

Put $\chi(x)=\phi\left(\frac{x_{1}}{R^{\epsilon_{1}}}, \ldots, \frac{x_{N}}{R^{\epsilon_{N}}}\right)$ where $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{N} ;[0,1]\right)$ is a test function satisfying $\phi=1$ on B_{1} and $\phi=0$ outside B_{2}. An elementary calculation combined with the assumptions (H1), (H2) and (H3) gives

$$
\left|\nabla_{\lambda} \chi\right| \leq \frac{C}{R} \text { and }\left|\Delta_{\lambda} \chi\right| \leq \frac{C}{R^{2}}
$$

Similarly, we also have

$$
\left|\nabla_{\lambda}\left(\Delta_{\lambda}\right) \chi\right| \leq \frac{C}{R^{3}}
$$

Choosing $\varphi=u \chi^{2}$ in (2.5) and (2.5), there holds

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} u^{-p+1} \chi^{2} d x=-\int_{\mathbb{R}^{N}} \Delta_{\lambda} u \Delta_{\lambda}\left(u \chi^{2}\right) d x \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
p \int_{\mathbb{R}^{N}} u^{-p+1} \chi^{2} d x \leq \int_{\mathbb{R}^{N}}\left|\Delta_{\lambda}(u \chi)\right|^{2} d x \tag{2.8}
\end{equation*}
$$

It follows from (2.7) and (2.8) and Lemma 2.3 that

$$
\begin{aligned}
& (p+1) \int_{\mathbb{R}^{N}} u^{p+1} \chi^{2} d x=\int_{\mathbb{R}^{N}}\left|\Delta_{\lambda}(u \chi)\right|^{2} d x-\int_{\mathbb{R}^{N}} \Delta_{\lambda} u \Delta_{\lambda}\left(u \chi^{2}\right) d x \\
& \leq \int_{\mathbb{R}^{N}}\left(4\left(\nabla_{\lambda} u \cdot \nabla_{\lambda} \chi\right)^{2}-2 u \Delta_{\lambda} u\left|\nabla_{\lambda} \chi\right|^{2}\right) d x-\int_{\mathbb{R}^{N}} u^{2}\left(2 \nabla_{\lambda}\left(\Delta_{\lambda} \chi\right) \cdot \nabla_{\lambda} \chi+\left|\Delta_{\lambda} \chi\right|^{2}\right) d x
\end{aligned}
$$

By using simple inequality combined with (2.4), we obtain

$$
\begin{aligned}
\int_{\mathbb{R}^{N}}\left(4\left(\nabla_{\lambda} u \cdot \nabla_{\lambda} \chi\right)^{2}-2 u \Delta_{\lambda} u\left|\nabla_{\lambda} \chi\right|^{2}\right) d x & \leq \int_{\mathbb{R}^{N}} 4\left|\nabla_{\lambda} u\right|^{2}\left|\nabla_{\lambda} \chi\right|^{2} d x+\int_{\mathbb{R}^{N}} 2 u v\left|\nabla_{\lambda} \chi\right|^{2} d x \\
& \leq C \int_{\mathbb{R}^{N}} u v\left|\nabla_{\lambda} \chi\right|^{2} d x+C \int_{\mathbb{R}^{N}} u^{2} \Delta_{\lambda}\left(\left|\nabla_{\lambda} \chi\right|^{2}\right) d x
\end{aligned}
$$

Consequently,

$$
\begin{align*}
\int_{\mathbb{R}^{N}} u^{-p+1} \chi^{2} d x & \leq C \int_{\mathbb{R}^{N}} u v\left|\nabla_{\lambda} \chi\right|^{2} d x \\
& +C \int_{\mathbb{R}^{N}} u^{2}\left(\Delta_{\lambda}\left(\left|\nabla_{\lambda} \chi\right|^{2}\right)+\left|\nabla_{\lambda}\left(\Delta_{\lambda} \chi\right) \cdot \nabla_{\lambda} \chi\right|+\left|\Delta_{\lambda} \chi\right|^{2}\right) d x \tag{2.9}
\end{align*}
$$

It is easy to see that $\Delta_{\lambda}(u \chi)=v \chi+2 \nabla_{\lambda} u \cdot \nabla_{\lambda} \chi+u \Delta_{\lambda} \chi$ or equivalently

$$
\Delta_{\lambda}(u \chi)-v \chi=2 \nabla_{\lambda} u \cdot \nabla_{\lambda} \chi+u \Delta_{\lambda} \chi
$$

Therefore,

$$
\int_{\mathbb{R}^{N}} v^{2} \chi^{2} d x \leq C \int_{\mathbb{R}^{N}}\left(\left|\nabla_{\lambda} u \cdot \nabla_{\lambda} \chi\right|^{2}+u^{2}\left|\Delta_{\lambda} \chi\right|^{2}+\mid\left(\left.\Delta_{\lambda}(u \chi)\right|^{2}\right) d x\right.
$$

This together with (2.9), (2.7) and Lemma 2.2 yield

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}}\left(v^{2}+u^{-p+1}\right) \chi^{2} d x \leq C \int_{\mathbb{R}^{N}} u v\left|\nabla_{\lambda} \chi\right|^{2} d x \\
& \quad+C \int_{\mathbb{R}^{N}} u^{2}\left(\left|\Delta_{\lambda}\left(\left|\nabla_{\lambda} \chi\right|^{2}\right)\right|+\left|\nabla_{\lambda}\left(\Delta_{\lambda} \chi\right) \cdot \nabla_{\lambda} \chi\right|+\left|\Delta_{\lambda} \chi\right|^{2}\right) d x
\end{aligned}
$$

Next, the function χ in the inequality above is replaced by χ^{m}, where m is chosen later on, one gets

$$
\begin{align*}
& \int_{\mathbb{R}^{N}}\left(u^{-p+1}+v^{2}\right) \chi^{2 m} d x \leq \int_{\mathbb{R}^{N}} u v \chi^{2(m-1)}\left|\nabla_{\lambda} \chi\right|^{2} d x \\
& \quad+C \int_{\mathbb{R}^{N}} u^{2}\left(\left|\Delta_{\lambda}\left(\left|\nabla_{\lambda} \chi^{m}\right|^{2}\right)\right|+\left|\nabla_{\lambda}\left(\Delta_{\lambda} \chi^{m}\right) \cdot \nabla_{\lambda} \chi^{m}\right|+\left|\Delta_{\lambda} \chi^{m}\right|^{2}\right) d x \tag{2.10}
\end{align*}
$$

Moreover, it follows from the Young inequality, for $\varepsilon>0$,

$$
\int_{\mathbb{R}^{N}} u v \chi^{2(m-1)}\left|\nabla_{\lambda} \chi\right|^{2} d x \leq \varepsilon \int_{\mathbb{R}^{N}} v^{2} \chi^{2 m} d x+\frac{1}{4 \varepsilon} \int_{\mathbb{R}^{N}} u^{2} \chi^{2(m-2)}\left|\nabla_{\lambda} \chi\right|^{4} d x .
$$

Combining this and (2.10), one has

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}}\left(v^{2}+u^{-p+1}\right) \chi^{2 m} d x \leq C \int_{\mathbb{R}^{N}} u^{2} \chi^{2(m-2)}\left|\nabla_{\lambda} \chi\right|^{4} d x \\
& \quad+C \int_{\mathbb{R}^{N}} u^{2}\left(\left|\Delta_{\lambda}\left(\left|\nabla_{\lambda} \chi^{m}\right|^{2}\right)\right|+\left|\nabla_{\lambda}\left(\Delta_{\lambda} \chi^{m}\right) \cdot \nabla_{\lambda} \chi^{m}\right|+\left|\Delta_{\lambda} \chi^{m}\right|^{2}\right) d x .
\end{aligned}
$$

Consequently, for $R>0$,

$$
\int_{B_{R}}\left(v^{2}+u^{-p+1}\right) d x \leq \int_{\mathbb{R}^{N}}\left(v^{2}+u^{-p+1}\right) \chi^{2 m} d x \leq C R^{Q-4-\frac{8}{p-1}}
$$

Lemma 2.5. Let $p>1$. Assume that (u, v) is a positive solution of (1.1). Then, pointwise in \mathbb{R}^{N}, the following inequality holds

$$
\frac{v^{2}}{2} \geq \frac{u^{1-p}}{p-1}
$$

Proof. To simplify the notations, let us put

$$
l:=\sqrt{\frac{2}{p-1}} \text { and } \sigma:=\frac{1-p}{2} .
$$

Since $p>1$, we get

$$
0<l \text { and } \sigma<0 .
$$

It is enough to prove that

$$
v \geq l u^{\sigma} .
$$

Vu Thi Hien Anh and Dao Manh Thang

Set $w=l u^{\sigma}-v$. We shall show that $w \leq 0$ by contradiction argument. Suppose in contrary that

$$
\sup _{\mathbb{R}^{N}} w>0 .
$$

A straightforward computation combined with the relation $-\Delta_{\lambda} v=u^{p}$ implies that

$$
\begin{aligned}
\Delta_{\lambda} w & =l \sigma u^{\sigma-1} \Delta_{\lambda} u+l \sigma(\sigma-1) u^{\sigma-2}\left|\nabla_{\lambda} u\right|^{2}-\Delta_{\lambda} v \\
& \geq l \sigma u^{\sigma-1} \Delta_{\lambda} u-\Delta_{\lambda} v \\
& =l \sigma u^{\sigma-1} v+u^{-p} \\
& =\frac{1}{l} u^{\sigma-1} w
\end{aligned}
$$

Consequently, we arrive at

$$
\begin{equation*}
\Delta_{\lambda} w \geq \frac{1}{l} u^{\sigma-1} w \tag{2.11}
\end{equation*}
$$

We now consider two possible cases of the supremum of w. First, if there exists x^{0} such that

$$
\sup _{\mathbb{R}^{N}} w=w\left(x^{0}\right)=l u^{\sigma}\left(x^{0}\right)-v\left(x^{0}\right)>0
$$

then we must have $\frac{\partial w}{\partial x_{i}}=0$ and $\frac{\partial^{2} w}{\partial x_{i}^{2}} \leq 0$ for $i=1,2, \ldots, N$. This together with the assumption (H2) gives

$$
\nabla_{\lambda} w\left(x^{0}\right)=0 \text { and } \Delta_{\lambda} w\left(x^{0}\right) \leq 0
$$

However, the right hand side of (2.11) at x^{0} is positive thanks to (2.11). Thus, we obtain a contradiction.

It remains to consider the case where the supremum of w is attained at infinity. Let $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{N} ;[0,1]\right)$ be a cut-off function satisfying $\phi=1$ on B_{1} and $\phi=0$ outside B_{2}. Put $\phi_{R}(x)=\phi^{m}\left(\frac{x_{1}}{R^{\varepsilon_{1}}}, \frac{x_{2}}{R^{\varepsilon_{2}}}, \ldots, \frac{x_{N}}{R^{\varepsilon_{N}}}\right)$ where $m>0$ chosen later. A simple calculation combined with the assumptions (H1), (H2) show that

$$
\begin{equation*}
\left|\Delta_{\lambda} \phi_{R}\right| \leq \frac{C}{R^{2}} \phi_{R}^{\frac{m-2}{m}} \text { and } \frac{\left|\nabla_{\lambda} \phi_{R}\right|^{2}}{\phi_{R}} \leq \frac{C}{R^{2}} \phi_{R}^{\frac{m-2}{m}} \tag{2.12}
\end{equation*}
$$

Put $w_{R}(x)=w(x) \phi_{R}(x)$ and then there exists $x_{R} \in B_{2 R}$ such that $w_{R}\left(x_{R}\right)=$ $\max _{\mathbb{R}^{N}} w_{R}(x)$. Therefore, as above

$$
\nabla_{\lambda} w_{R}\left(x_{R}\right)=0 \text { and } \Delta_{\lambda} w_{R}\left(x_{R}\right) \leq 0
$$

This implies that at x_{R}

$$
\begin{equation*}
\nabla_{\lambda} w=-\phi_{R}^{-1} w \nabla_{\lambda} \phi_{R} \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{R} \Delta_{\lambda} w \leq\left(2 \phi_{R}^{-1}\left|\nabla_{\lambda} \phi_{R}\right|^{2}-\Delta_{\lambda} \phi_{R}\right) w \tag{2.14}
\end{equation*}
$$

From (2.12), (2.13) and (2.14), one has

$$
\begin{equation*}
\phi_{R} \Delta_{\lambda} w \leq \frac{C}{R^{2}} \phi_{R}^{\frac{m-2}{m}} w . \tag{2.15}
\end{equation*}
$$

Multiplying (2.11) by ϕ_{R} and using (2.15), we obtain at x_{R}

$$
\phi_{R} l \sigma u^{\sigma-1} w \leq \frac{C}{R^{2}} \phi^{\frac{m-2}{m}} \phi_{R} w
$$

or equivalently

$$
\phi_{R}^{\frac{2}{m}}\left(x_{R}\right) u^{\sigma-1}\left(x_{R}\right) \leq \frac{C}{R^{2}} .
$$

By choosing $m=\frac{2}{\sigma-1}>0$, there holds

$$
u_{R}^{\sigma-1} \leq \frac{C}{R^{2}}
$$

Remark that $\sigma<0$. Thus, $\lim _{R \rightarrow+\infty} u_{R}\left(x_{R}\right)=\infty$ and we obtain a contradiction since

$$
\sup _{\mathbb{R}^{N}} w \leq \lim _{R \rightarrow+\infty} u_{R}^{\sigma}\left(x_{R}\right)=0 .
$$

With Lemma 2.4 and Lemma 2.5 at hand, it is enough to follow the bootstrap argument in [10] to obtain the proof of Theorem 1.2.

REFERENCES

[1] Kogoj, A. E., and Lanconelli, E. 2012. On semilinear Δ_{λ}-Laplace equation. Nonlinear Anal. 75, 12, 4637-4649.
[2] Anh, C. T., and My, B. K., 2016. Liouville-type theorems for elliptic inequalities involving the Δ_{λ}-Laplace operator. Complex Variables and Elliptic Equations 61, 7, 1002-1013.
[3] Kogoj, A. E., and Sonner, S., 2016. Hardy type inequalities for Δ_{λ}-Laplacians. Complex Var. Elliptic Equ. 61, 3, 422-442.
[4] Luyen, D. T., and Tri, N. M., 2015. Existence of solutions to boundary-value problems for similinear Δ_{γ} differential equations. Math. Notes 97, 1-2, 73-84.
[5] Rahal, B., 2018. Liouville-type theorems with finite Morse index for semilinear Δ_{λ}-Laplace operators. NoDEA Nonlinear Differential Equations Appl. 25, 3, Art. 21, 19.
[6] Kogoj, A. E., and Sonner, S., 2013. Attractors for a class of semi-linear degenerate parabolic equations. J. Evol. Equ. 13, 3, 675-691.
[7] Kogoj, A. E., and Lanconelli, E., 2018. Linear and semilinear problems involving Δ_{λ}-Laplacians. In Proceedings of the International Conference "Two nonlinear days in Urbino 2017", Vol. 25 of Electron. J. Differ. Equ. Conf., Texas State Univ.-San Marcos, Dept. Math., San Marcos, TX, pp. 167-178.

Vu Thi Hien Anh and Dao Manh Thang

[8] Choi, Y. S., and Xu, X., 2009. Nonlinear biharmonic equations with negative exponents. J. Differential Equations 246, 1, 216-234.
[9] Lai, B., and Ye, D., 2016. Remarks on entire solutions for two fourth-order elliptic problems. Proc. Edinb. Math. Soc. (2) 59, 3, 777-786.
[10] Guo, Z., and Wei, J., 2014. Liouville type results and regularity of the extremal solutions of biharmonic equation with negative exponents. Discrete Contin. Dyn. Syst. 34, 6, 2561-2580.
[11] Warnault, G., 2010. Liouville theorems for stable radial solutions for the biharmonic operator. Asymptot. Anal. 69, 1-2, 87-98.
[12] Lai, B., 2016. The regularity and stability of solutions to semilinear fourth-order elliptic problems with negative exponents. Proc. Roy. Soc. Edinburgh Sect. A 146, 1, 195-212.
[13] Yu, X., 2015. Liouville type theorem for nonlinear elliptic equation involving Grushin operators. Commun. Contemp. Math. 17, 5, 1450050, 12.
[14] Duong, A. T., and Nguyen, N. T., 2017. Liouville type theorems for elliptic equations involving grushin operator and advection. Electron. J. Differential Equations, Paper No. 108, 11.
[15] Duong, A. T., and Phan, Q. H., 2017. Liouville type theorem for nonlinear elliptic system involving Grushin operator. J. Math. Anal. Appl. 454, 2, 785-801.
[16] Monticelli, D. D., 2010. Maximum principles and the method of moving planes for a class of degenerate elliptic linear operators. J. Eur. Math. Soc. (JEMS) 12, 3, 611-654.
[17] D'Ambrosio, L., 2004. Hardy inequalities related to Grushin type operators. . Proc. Amer. Math. Soc. 132, 3, 725-734.
[18] D'Ambrosio, L., and Lucente, S., 2003. Nonlinear Liouville theorems for Grushin and Tricomi operators. J. Differential Equations 193, 2, 511-541.
[19] Montenegro, M., 2005. Minimal solutions for a class of elliptic systems. Bull. London Math. Soc. 37, 3, 405-416.
[20] Cowan, C., 2013. Liouville theorems for stable Lane-Emden systems with biharmonic problems. Nonlinearity 26, 8, 2357-2371.
[21] Hajlaoui, H., Harrabi, A., and Ye, D., 2014. On stable solutions of the biharmonic problem with polynomial growth. Pacific J. Math. 270, 1, 79-93.
[22] Hu, L.-G., and Zeng, J., 2016. Liouville type theorems for stable solutions of the weighted elliptic system. J. Math. Anal. Appl. 437, 2, 882-901.
[23] Souplet, P., 2009. The proof of the Lane-Emden conjecture in four space dimensions. Adv. Math. 221, 5, 1409-1427.
[24] Cheng, Z., Huang, G., and Li, C., 2016. On the Hardy-Littlewood-Sobolev type systems. Commun. Pure Appl. Anal. 15, 6, 2059-2074.
[25] Wei, J., and Ye, D., 2013. Liouville theorems for stable solutions of biharmonic problem. Math. Ann. 356, 4, 1599-1612.

