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PERIODIC SOLUTIONS TO A CLASS OF DIFFERENTIAL VARIATIONAL
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Abstract. In this work, we consider a model formulated by a dynamical system
and an elliptic variational inequality. We prove the solvability of initial value
and periodic problems. Finally, an illustrative example isgiven to show the
applicability of our results.
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1. Introduction

Let (X, ‖ · ‖X) be a Banach space and(Y, ‖ · ‖Y ) be a reflexive Banach space with
the dualY ∗. We consider the following problem:

x′(t) = Ax(t) + F (t, x(t), y(t)), t > 0, (1.1)

By(t) + ∂φ(y(t)) ∋ h(t, x(t), y(t)), t > 0, (1.2)

where(x(·), y(·)) takes values inX × Y ; φ : Y → (−∞,∞] is a proper, convex and
lower semicontinuous function with the subdifferential∂φ ⊂ Y × Y ∗. F is a continuous
function defined onR+ × X × Y . In our system,A is a closed linear operator which
generates aC0-semigroup inX; B : Y → Y ∗ andh : R+×X ×Y → Y ∗ are given maps
which will be specified in the next section.

We study the existence of a periodic solution for this problem, that is, we find a
solution of (1.1)-(1.2) with periodic condition

x(t) = x(t+ T ), for givenT > 0, ∀t ≥ 0. (1.3)

When F and h are autonomous maps, the system (1.1)-(1.2) was investigated
in [1]. In this work, the existence of solutions and the existence of a global attractor
for m-semiflow generated by solution set were proved.
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In the caseφ = IK , the indicator function ofK with K being a closed convex set
in Y , namely,

IK(x) =

{

0 if x ∈ K,

+∞ otherwise,

the problem (1.1)-(1.2) is written as follows

x′(t) = Ax(t) + F (t, x(t), y(t)), t > 0,

y(t) ∈ K, ∀t ≥ 0,

〈By(t), z − y(t)〉 ≥ 〈h(t, x(t), y(t)), z − y(t)〉, ∀z ∈ K, t > 0.

where〈·, ·〉 stands for the duality pairing betweenY ∗ andY .
In the caseX = Rn, Y = Rm andF is single-valued, this model is a differential

variational inequality (DVI), which was systematically studied by Pang and Stewart [2]. It
should be mentioned that DVIs in finite dimensional spaces have been a subject of many
studies in literature because they can be used to represent various models in mechanical
impact problems, electrical circuits with ideal diodes, Coulomb friction problems for
contacting bodies, economical dynamics, and related problems such as dynamic traffic
networks. We refer the reader to [2-5] for some recent results on solvability, stability, and
bifurcation to finite dimensional DVIs.

2. Main results

In this section, we consider the system (1.1)-(1.2) with initial and periodic
conditions. By some suitable hypotheses imposed on given functions, we will obtain
the results concerning the solvability of initial value problem and periodic problem.

2.1. The existence of solution with initial condition

We consider differential variational inequality (1.1)-(1.2) with initial datum

x(0) = x0. (2.1)

To get the existence result, we need the following assumptions.

(A) A is a closed linear operator generating aC0−semigroup(S(t))t≥0 in X.

(B) B is a linear continuous operator fromY to Y ∗ defined by

〈u,Bv〉 = b(u, v), ∀u, v ∈ Y,

whereb : Y × Y → R is a bilinear continuous function onY × Y such that

b(u, u) ≥ ηB‖u‖2Y .

48



Periodic solutions to a class of differential variational inequalities in Banach spaces

(F) F : R+ ×X × Y → X satisfies

‖F (t, x, y)− F (t, x′, y′)‖X ≤ a(t)‖x− x′‖X + b(t)‖y − y′‖Y ,

wherea, b ∈ L1(R+;R+).

(H) h : R+×X ×Y → Y ∗ is a Lipschitz continuous map. In particular, there exist two
positive constantsη1h, η2h and a continuous positive functionηh(·, ·) andηh(t, t) =
0, ∀t ≥ 0 such that:

‖h(t, x1, u1)− h(t1, x2, u2)‖∗ ≤ ηh(t, t1) + η1h‖x1 − x2‖X + η2h‖u1 − u2‖Y ,

for all t ∈ R+, x1, x2 ∈ X ; u1, u2 ∈ Y , where‖ · ‖∗ is the norm in dual spaceY ∗.

Letting T > 0, we mention here the definition of solution of the problem
(1.1)-(1.2)-(2.1).

Definition 2.1. A pair of continuous functions(x, y) is said to be a mild solution of
(1.1)-(1.2)-(2.1)on [0, T ] if

x(t) = S(t)x0 +

∫ t

0

S(t− s)F (t, x(s), y(s))ds, t ∈ [0, T ],

By(t) + ∂φ(y(t)) ∋ h(t, x(t), y(t)), ∀z ∈ Y, a.e.t ∈ (0, T ).

We firstly are concerned with the elliptic variational inequality (1.2). Consider the
EV I(g) problem: findy ∈ X with giveng ∈ Y ∗ satisfying

By + ∂φ(y) ∋ g. (2.2)

We recall a remarkable result which can be seen in [6] or in [7].

Lemma 2.1. If B satisfies(B) andg ∈ X∗, then the solution of(2.2) is unique. Moreover,
the corresponding

S : Y ∗ → Y,

g 7→ y,

is Lipschitzian.

Proof. By [6, Theorem 2.3], we obtain that the solution of (2.2) is unique. In order to
prove the mapg → y is Lipschitz continuous fromY ∗ to Y , let y1, y2 be the solution of
elliptic variational inequalities with respect to given datag1, g2, namely,

By1 + ∂φ(y1) ∋ g1,

By2 + ∂φ(y2) ∋ g2,

49



Nguyen Thi Van Anh

or equivalent to

b(y1, y1 − v) + φ(y1)− φ(v) ≤ 〈y1 − v, g1〉, ∀v ∈ Y, (2.3)

b(y2, y2 − v) + φ(y2)− φ(v) ≤ 〈y2 − v, g2〉, ∀v ∈ Y. (2.4)

Takingv = y2 in (2.3) andv = y1 in (2.4), and combining them, we have

b(y1 − y2, y1 − y2) ≤ 〈y1 − y2, g1 − g2〉.

Hence,

‖y1 − y2‖Y ≤ 1

ηB
‖g1 − g2‖∗,

or

‖S(g1)− S(g2)‖Y ≤ 1

ηB
‖g1 − g2‖∗, (2.5)

thanks to (B), the lemma is proved.

Now, for a fixed(τ, x) ∈ R+ ×X, consider the original form of (1.2)

By + ∂φ(y) ∋ h(τ, x, y). (2.6)

Using the last lemma, we obtain the following existence result and property of solution
map for (2.6).

Lemma 2.2. Let (B) and (H) hold. In addition, suppose thatηB > η2h. Then for each
(τ, x) ∈ R+ × X, there exists a unique solutiony ∈ Y of (2.6). Moreover, the solution
mapping

VI : [0,∞)×X → Y,

(τ, x) 7→ y,

is Lipchizian, more precisely

‖VI(τ, x1)− VI(τ, x2)‖Y ≤ η1h

ηB − η2h
‖x1 − x2‖X . (2.7)

Proof. Let (τ, x) ∈ R+ × X. We consider the mapS ◦ h(τ, x, ·) : Y → Y . Employing
(2.5), we have

‖S(h(τ, x, y1))− S(h(τ, x, y2))‖Y ≤ 1

ηB
‖h(τ, x, y1)− h(τ, x, y2)‖∗

≤ η2h

ηB
‖y1 − y2‖Y .

Becauseη2h < ηB, y 7→ S(h(τ, x, ·)) is a contraction map, then it admits a unique fixed
point, which is the unique solution of (2.6).
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It remains to show the map(τ, x) 7→ y is a Lipschitz corresponding with respect to the
second variable. LetVI(τ, x1) = y1,VI(τ, x2) = y2. Then, one has

‖y1 − y2‖Y = ‖S(h(τ, x1, y1))− S(h(τ, x2, y2))‖Y
≤ 1

ηB
‖h(τ, x1, y1)− h(τ, x2, y2)‖∗

≤ η1h

ηB
‖x1 − x2‖X +

η2h

ηB
‖y1 − y2‖Y .

Therefore
‖y1 − y2‖Y ≤ η1h

ηB − η2h
‖x1 − x2‖X ,

which leads to the conclusion of lemma.

In order to solve (1.1)-(1.2), we convert it to a differential equation. We consider
the following map:

G(t, x) := F (t, x,VI(t, x)), (t, x) ∈ R
+ ×X.

One sees thatG : R+ ×X → X. Moreover, by assumption (F) and the continuity ofVI,
we observe that the mapG(t, ·) is continuous for eacht ≥ 0. By the estimate (2.7), and
the Hausdorff MNC property, one has

χY (VI(t,Ω)) ≤
η1h

ηB − η2h
χX(Ω),

whereχY is the Hausdorff MNC inY . In the case the semigroupS(·) is non-compact,
we have

χX(G(t,Ω)) = χX(F (t,Ω,VI(t,Ω)))

≤ a(t)χX(Ω) + b(t)χY (VI(t,Ω))

≤ a(t)χX(Ω) + b(t)

(

η1h

ηB − η2h
χX(Ω)

)

≤
(

a(t) +
b(t)η1h
ηB − η2h

)

χX(Ω)

= pG(t)χX(Ω),

wherepG(t) =

(

a(t) +
b(t)η1h
ηB − η2h

)

.

Concerning the growth ofG, by (F2) we arrive at

‖G(t, x)‖X ≤ a(t)‖x‖X + b(t)‖VI(t, x)‖Y + ‖F (t, 0, 0)‖X
≤ a(t)‖x‖X + b(t)

η1h

ηB − η2h
‖x‖X + ‖VI(t, 0)‖Y + ‖F (t, 0, 0)‖X.
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By a process similar to that in Lemma 2.2, we obtain

‖VI(t, x)‖ ≤ ηh(t, 0)

ηB − η2h
+

η1h

ηB − η2h
‖x‖+ ‖VI(0, 0)‖.

Thus, we have

‖G(t, x)‖X ≤ ηG(t)‖x‖X + d(t),

whereηG(t) :=

(

a(t) +
b(t)η1h
ηB − η2h

)

andd(t) = ηh(t,0)
ηB−η2h

+ ‖VI(0, 0)‖+ ‖F (t, 0, 0)‖X. In

addition, we also get that

‖G(t, x)−G(t, x′)‖X = ‖F (t, x,VI(t, x))− F (t, x′,VI(t, x′))‖X
≤ a(t)‖x− x′‖X + b(t)‖VI(t, x)− VI(t, x′)‖Y

≤ a(t)‖x− x′‖X +
b(t)η1h
ηB − η2h

‖x− x′‖X

≤
(

a(t) +
b(t)η1h
ηB − η2h

)

‖x− x′‖X

≤ γ(t)‖x− x′‖X , (2.8)

whereγ(t) =

(

a(t) +
b(t)η1h
ηB − η2h

)

.

Due to the aforementioned setting, the problem (1.1)-(1.2)is converted to

x′(t)−Ax(t) = G(t, x(t)), t ∈ [0, T ],

Now we see that, a pair of functions(x, y) is a mild solution of (1.1)-(1.2) with
initial valuex(0) = x0 iff

x(t) = S(t)x0 +

∫ t

0

S(t− s)G(s, x(s))ds, t ∈ [0, T ], (2.9)

y(t) = VI(t, x(t)). (2.10)

Consider theCauchy operator

W : L1(0, T,X) → C([0, T ];X),

W(f)(t) =

∫ t

0

S(t− s)f(s)ds.

For a givenx0 ∈ X, we introduce the mild solution operator

F : C([0, T ];X) → C([0, T ];X),

F(x) = S(·)x0 +W(G(·, x(·))).
It is evident thatx is a fixed point ofF iff x is the first component of solution of
(1.1)-(1.2)-(2.1). In order to prove the existence result for problem (1.1)-(1.2)-(2.1), we
make use of the Schauder fixed point theorem.
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Lemma 2.3.LetE be a Banach space andD ⊂ E be a nonempty compact convex subset.
If the mapF : D → D is continuous, thenF has a fixed point.

We have the following result related to the operatorW.

Proposition 2.1. Let (A) hold. If D ⊂ L1(0, T ;X) is semicompact, thenW(D) is
relatively compact inC(J ;X). In particular, if sequence{fn} is semicompact and
fn ⇀ f ∗ in L1(0, T ;X) thenW(fn) → W(f ∗) in C([0, T ];X).

Theorem 2.1. Let the hypotheses(A), (B), (F) and (H) hold. Then the problem
(1.1)-(1.2)-(2.1)has at least one mild solution(x(·), y(·)) for givenx0 ∈ X.

Proof. We now show that there exists a nonempty convex subsetM0 ⊂ C([0, T ];X)
such thatF(M0) ⊂ M0.

Let z = F (x), then we have

‖z(t)‖X ≤ ‖S(t)x0‖X + ‖
∫ t

0

S(t− s)G(s, x(s))ds‖X

≤M‖x0‖X +

∫ t

0

‖S(t− s)‖L(X)‖‖G(s, x(s))‖Xds

≤M‖x0‖X +M

∫ t

0

(ηG(s)‖x(s)‖X + d(s))ds,

whereM = sup{‖S(t)‖L(X) : t ∈ [0, T ]}.
Denote

M0 = {x ∈ C([0, T ];X) : ‖x(t)‖X ≤ κ(t), ∀t ∈ [0, T ]},

whereκ is the unique solution of the integral equation

κ(t) =M‖x0‖X +M

∫ t

0

(ηG(s)κ(s) + d(s))ds.

It is obvious thatM0 is a closed, convex subset ofC([0, T ];X) andF(M0) ⊂ M0.
Set

Mk+1 = coF(Mk), k = 0, 1, 2, . . .

here, the notationco stands for the closure of convex hull of a subset inC([0, T ];X). We
see thatMk is a closed convex set andMk+1 ⊂ Mk for all k ∈ N.

LetM =
∞
⋂

k=0

Mk, thenM is a closed convex subset ofC([0, T ];X) andF(M) ⊂
M.

On the other hand, for eachk ≥ 0,PG(Mk) is integrably bounded by the growth
of G. Thus,M is also integrably bounded.
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In the sequel, we prove thatM(t) is relatively compact for eacht ≥ 0. By the
regularity of Hausdorff MNC, this will be done ifµk(t) = χX(Mk(t)) → 0 ask → ∞.

If {S(t)} is a compact semigroup, we getµk(t) = 0, ∀t ≥ 0.
On the other hand, if{S(t)} is noncompact, we have

µk+1(t) ≤ χX(

∫ t

0

S(t− s)G(s,Mk(s))ds)

≤ 4M

∫ t

0

χX(G(s,Mk(s)))ds

≤ 4M

∫ t

0

pG(s)χ(Mk(s))ds.

Hence,

µk+1(t) ≤ 4M

∫ t

0

pG(s)µk(s)ds.

Puttingµ∞(t) = lim
k→∞

µk(t) and passing to the limit we have

µ∞(t) ≤ 4M

∫ t

0

pG(s)µ∞(s)ds.

By using the Gronwall inequality, we obtainµ∞(t) = 0 for all t ∈ J . Hence,M(t)
is relatively compact for allt ∈ J .

By Proposition 2.1,W(M) is relatively compact inC([0, T ];X). ThenF(M) is a
relatively compact subset inC([0, T ];X).

Let us put
D = coΦ(M).

It is easy to see thatD is a nonempty compact convex subset ofC([0, T ];X) and
F(D) ⊂ D becauseF(D) = F(coF(M)) ⊂ F(M) ⊂ coF(M) = D.

We now considerF : D → D. In order to apply the fixed point principle given by
Lemma 2.3, it remains to show thatF is a continuous map. Letxn ∈ D with xn → x∗

andyn ∈ F(xn) with yn → y∗. Thenyn(t) = S(t)x0 +
∫ t

0
S(t− s)G(s, xn(s))ds. By the

continuity ofG we can pass to the limit to get that

x∗(t) = S(t)x0 +

∫ t

0

S(t− s)G(s, x∗(s))ds.

ThenF has a fixed pointx. Therefore, lety(·) = VI(·,x(·)), we conclude that(x,y) is
a mild solution of our problem.

Theorem 2.2.Under the assumptions(A), (B), (F) and(H), the system(1.1)-(1.2)has a
unique mild solution for each initial valuex(0) = x0.
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Proof. Let (x1, y1) and (x2, y2) be two mild solutions of (1.1)-(1.2) such thatx1(0) =
x2(0) = x0, we have

x1(t) = S(t)x0 +

∫ t

0

S(t− s)G(s, x1(s))ds,

x2(t) = S(t)x0 +

∫ t

0

S(t− s)G(s, x2(s))ds.

Then subtracting two last equations, we have

x1(t)− x2(t) =

∫ t

0

S(t− s)(G(s, x1(s))−G(s, x2(s)))ds.

By estimate ofG, we obtain that

‖x1(t)− x2(t)‖X ≤
∫ t

0

‖S(t− s)‖L(X)‖G(s, x1(s))−G(s, x2(s))‖Xds

≤M

∫ t

0

γ(s)‖x1(s)− x2(s)‖Xds.

Using the Gronwall inequality, we deduce the uniqueness of mild solution.

2.2. The existence of mild periodic solution

In this section, letT > 0 be a positive time. We replace(A), (F), (H) by the
following assumptions:

(A∗) A satisties(A) and the semigroupS(t) is is exponentially stable with exponentα,
that is

‖S(t)‖L(X) ≤Me−αt, ∀t > 0.

(F∗) F satisfies(F) with a(t) ≡ a andb(t) ≡ b. Moreover,

F (t, x, y) = F (t+ T, x, y), ∀t ≥ 0, x ∈ X, y ∈ Y ;

(H∗) h satisfies(H) and

h(t, x, y) = h(t+ T, x, y) ∀t ≥ 0, x ∈ X, y ∈ Y.

Definition 2.2. A pair of continuous functions(x, y) is called a mildT -periodic solution
of (1.1)-(1.2) iff

x(t) = S(t− s)x(s) +

∫ t

s

S(t− s)F (s, x(s), y(s))ds, ∀t ≥ s ≥ 0,

x(t) = x(t + T ), ∀t ≥ 0,

By(t) + ∂(φ(y(t))) ∋ h(t, x(t), y(t)), for a.e.t ≥ 0.
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By Theorem 2.2, due to the unique solvability of (2.9)-(2.10), we define the
following map:

G : X → X,

G(x0) = S(T )x0 +

∫ T

0

S(T − s)G(s, x(s))ds, wherex is a mild solution of (2.9) with

x(0) = x0.

The following theorem shows the main result of this section.

Theorem 2.3. Under the assumptions(A∗), (B), (F∗) and (H∗), the system(1.1)-(1.2)
has a unique mildT -periodic solution, provided thatηB > η2h and the estimates hold

α > M(a +
bη1h

ηB − η2h
), (2.11)

M exp

(

−
(

α−M(a +
bη1h

ηB − η2h
)

)

T

)

< 1. (2.12)

Proof. First of all, we prove thatG has a fixed point. For anyξ1, ξ2 ∈ X, let
x1 = x1(·; ξ1), x2 = x2(·; ξ2) be the mild solutions of (2.9) with initial valuesξ1, ξ2,
respectively. We have

G(ξ1)− G(ξ2) = S(T )(ξ1 − ξ2) +

∫ T

0

S(T − s)(G(s, x1(s))−G(s, x2(s)))ds.

By the integral formula of mild solution, one has

x1(t)− x2(t) = S(t)(ξ1 − ξ2) +

∫ t

0

S(t− s)(G(s, x1(s))−G(s, x2(s)))ds.

Then employing (2.8), we get

‖x1(t)− x2(t)‖X ≤ ‖S(t)‖L(X)‖ξ1 − ξ2‖X +

∫ t

0

‖S(t− s)‖L(X)‖G(s, x1(s))−G(s, x2(s))‖Xds

≤ Me−αt‖ξ1 − ξ2‖X +M

∫ t

0

e−α(t−s)γ‖x1(s)− x2(s)‖Xds,

whereγ = a+ bη1h
ηB−η2h

. Hence,

eαt‖x1(t)− x2(t)‖X ≤M‖ξ1 − ξ2‖X +Mγ

∫ t

0

eαs‖x1(s)− x2(s)‖Xds.

Using the Gronwall inequality, we have

eαt‖x1(t)− x2(t)‖X ≤M‖ξ1 − ξ2‖XeMγt.
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Then,
‖x1(t)− x2(t)‖X ≤M‖ξ1 − ξ2‖Xe−(α−Mγ)t.

From then, one has

‖G(ξ1)− G(ξ2)‖X ≤Me−αT ‖ξ1 − ξ2‖X +

∫ T

0

Me−α(T−s)γ‖x1(s)− x2(s)‖Xds

≤Me−αT ‖ξ1 − ξ2‖X +

∫ T

0

Me−α(T−s)γM‖ξ1 − ξ2‖Xe−(α−Mγ)sds

=Me−(α−Mγ)T ‖ξ1 − ξ2‖X .

Then, by the estimations (2.11)-(2.12), it implies thatG has a unique fixed point inX. We
suppose thatG(x∗) = x∗. By the definition ofG, there exists a unique mild solution̄x(t)
satisfying

x̄(t) = S(t)x∗ +

∫ t

0

S(t− s)G(s, x̄(s))ds,

and x̄(0) = x̄(T ) = x∗. This fixed point is the initial value from which the mild
T -periodic solution starts. Then, definex̄(t) by

x̄(t) = x̄(t− kT ), t ∈ [kT, (k + 1)T ], k = 0, 1, 2, ...

and we define
ȳ(t) = VI(t, x̄(t)), t ≥ 0,

which yields that(x̄, ȳ) is mild periodic solution of (1.1)-(1.2).

3. Application

Let Ω ⊂ Rn be a bounded domain with smooth boundary. Consider the following
problem

∂Z

∂t
(t, x)−∆xZ(t, x) = f(t, x, Z(t, x), u(t, x)), (3.1)

−∆xu(t, x) + β(u(t, x)− ψ(x)) ∋ h(t, x, Z(t, x), u(t, x)), (3.2)

Z(t, x) = 0, u(t, x) = 0, x ∈ ∂Ω, t ≥ 0, (3.3)

with the periodic condition

Z(t, x) = Z(t+ T, x), ∀x ∈ Ω, t ∈ R
+,

whereT > 0. The mapsf, h : Ω × R → R are continuous functions,ψ is inH2(Ω) and
β : R → 2R is a maximal monotone graph

β(r) =











0 if r > 0,

R− if r = 0,

∅ if r < 0.
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Note that, parabolic variational inequality (3.2) reads asfollows:

−∆xu(t, x) = h(x, Z(t, x)) in {(t, x) ∈ Q := (0, T )× Ω : u(t, x) ≥ ψ(x)},
−∆xu(t, x) ≥ h(x, Z(t, x)), in Q,

u(t, x) ≥ ψ(x), ∀(t, x) ∈ Q,

which represents a rigorous and efficient way to treat dynamic diffusion problems with a
free or moving boundary. This model is called theobstacle parabolic problem(see [6]).

LetX = L2(Ω), Y = H1
0 (Ω), the norm inX andY is given by

|u| =
√

∫

Ω

u2(x)dx, u ∈ L2(Ω).

The norm inH1
0(Ω) is given by

‖u‖ =

√

∫

Ω

|∇u(x)|2dx, u ∈ H1
0 (Ω).

Define the abstract function

F : R+ ×X × Y → P(X)

F (t, Z, u) = f(t, x, Z(x), u(x)),

and the operator

A = ∆ : D(A) ⊂ X → X ;D(A) = {H2(Ω) ∩H1
0 (Ω)}.

Then (3.1) can be reformulated as

Z ′(t)− AZ(t) = F (t, Z(t), u(t)),

whereZ(t) ∈ X, u(t) ∈ Y such thatZ(t)(x) = Z(t, x) andu(t)(x) = u(t, x). It is
known that ([8]), the semigroupS(t) generated byA is compact and exponentially stable,
that is,

‖S(t)‖L(X) ≤ e−λ1t,

then the assumption(A∗) is satisfied.
We assume, in addition, that there exist nonnegative functionsa(·), b(·) ∈ L∞(Ω)

such that

|f(t, x, p, q)− f(t, x, p′, q′)| ≤ a(x)|p− p′|+ b(x)|q − q′|,

and moreover, we supposef(t, x, p, q) = f(t+ T, x, p, q) for all t ≥ 0, x ∈ Ω, p, q ∈ R.
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By the setting of functionF , it is easy to see thatF is continuous and

‖F (t, Z, u)− F (t, Z̄, ū)‖ ≤ ‖a‖∞‖Z − Z̄‖X +
‖b‖∞√
λ1

‖u− ū‖Y .

Thus, (F) holds.
Consider the elliptic variational inequality (3.2), puttingB = −∆, where−∆ is

Laplace operator

〈u,−∆v〉 :=
∫

Ω

∇u(x)∇v(x)dx,

then〈Bu, u〉 = ‖u‖2U . So, the assumption(B) is testified withηB = 1.
The maph : R+ × Ω× R× R → R satisfiesh(t, x, p, q) = h(t + T, x, p, q), ∀x ∈

Ω, t ≥ 0, p, q ∈ R and

|h(t, x, p, q)− h(t̄, x, p′, q′)| ≤ η(t, t̄) + c(x)|p− p′|+ d(x)|q − q′|, ∀x ∈ Ω, p, q ∈ R,

wherec(·), d(·) are the nonnegative functions inL∞(Ω) andη(·, ·) : R+ ×R+ → R+ is a
nonnegative continuous function.

Let h : R+ ×X × Y → L2(Ω), h(t, Z̄, ū)(x) = h(t, x, Z̄(x), ū(x)), we obtain

|h(t, Z, u)− h(t̄, Z̄, ū)| ≤ ‖c‖∞‖Z − Z̄‖X +
‖d‖∞√
λ1

‖u− ū‖Y + η(t, t̄)|Ω|.

Then the EVI (3.2) reads as

Bu(t) + ∂IK(u(t)) ∋ h(t, Z(t), u(t)),

where

K = {u ∈ H1
0 (Ω) : u(y) ≥ ψ(x), for a.e.x ∈ Ω},

∂IK(u) =
{

u ∈ H1
0 (Ω) :

∫

Ω

u(x)(v(x)− z(x))dx ≥ 0, ∀z ∈ K
}

,

= {u ∈ H1
0 (Ω) : u(x) ∈ β(v(x)− ψ(x)), for a.e.x ∈ Ω}.

It follows that (H) is testified.
We have the following result due to Theorem 2.3.

Theorem 3.1. If ‖d‖2∞ < λ1 and

‖a‖∞ +
‖b‖∞‖c‖∞√
λ1 − ‖d‖∞

< λ1,

then the problem(3.1)-(3.3)has a unique mildT -periodic solution(Z,u).
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