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Abstract. In [15], the authors propose an
accurate method, namely the correction method,
for computing hydrodynamic interaction between
very closed spherical particles in a Stokes �uid.
The accuracy of this method depends on two
truncation parameters for approximating the
Neumann to Dirichlet matrix and the velocity
correction respectively. In this paper, we es-
tablish a numerical determination to estimate
these parameters. We perform some numerical
experiments to present our method.
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1. Introduction

In recent papers, many mathematicians have
studied the hydro dynamic interactions between
close particles immersed in a Stokes �uid to sim-
ulate the motions of nano scale swimmers robots
which is designed from nano-sized medical de-
vices (see [2], [3] and references therein). One
of the main di�culties is to compute the total
forces and torques exerted by the particles. Our
work is motivated by this problem.

We consider N non intersecting particles im-
mersed in a viscous �uid. For simplicity, the
particles are identical balls B1, B2,..., BN with
radius 1 and centers z1, z2,..., zN ∈ R3, respec-
tively. We assume that the closed balls Bi do
not intersect and that the �uid �lls the rest
of the space. The �uid occupies the domain

Ω := R3 \
(⋃N

i=1Bi

)
.We assume moreover that

the �uid inertia e�ects are negligible compared
to the viscosity (i.e. the Reynolds number is
very small Re � 1) so that the velocity u and
the pressure p solve the stationary Stokes equa-
tions in the �uid domain,

∇ · σ = 0, ∇ · u = 0 in Ω, (1)

where σ = ∇u+∇uT −pId is the stress tensor in
the �uid and Id is the identity matrix. On the
surfaces of the particles, we consider a no-slip
boundary condition,

u = ui on ∂Bi, i = 1, 2, ..., N.

where the velocity ui corresponds to a rigid dis-
placement. It is characterized by the velocityUi

at the center zi of the ball Bi and by the angular
velocity ωi (Ui, ωi ∈ R3),

ui(x) := Ui + ωi × (x− zi), for x ∈ R3. (2)

We are interested in solutions which decay at
in�nity, i.e., which ful�lls u(x) → 0, p(x) →
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0, as |x| → ∞. The existence and uniqueness
of a solution to (1) is classical in the Hilbert
space (see [10] and [17]).

The surface density of force exerted on the
�uid at some point x of the surface ∂Bi is given
by

fi(x) =
(
∇u+∇uT − pId

)
.ni, (3)

where ni denotes the exterior normal on the sur-
face of the particle Bi. The total force and total
torque exerted by the particle Bi on the �uid are
given by the following formulas,

Fi =

∫
∂Bi

fi(x)dS(x),

Ti =

∫
∂Bi

(x− zi)× fi(x)dS(x).

We recall that the solution to the transmission
problem u is given by the convolution of the sur-
face force density fi with the Green tensor for
the Stokes equation as follows

u(x) =

N∑
i=1

∫
∂Bi

G(x−y)fi(y)dS(y), x ∈ R3 (4)

This explicit formula gives the velocity �eld ev-
erywhere as soon as the force densities fi are
known. However, the data of the problem are
the velocity �eld ui, not these force densities.
We are led to consider the following �Dirichlet
to Neumann operator�

DN : (u|∂B1
, ..., u|∂BN

) 7−→ (f1, ..., fN ).

This operator is positive and symmetric,
its inverse is the corresponding �Neumann to
Dirichlet operator" ND. In the initial prob-
lem, we only need to compute approximations
of DN when (u|∂Bi

)1≤i≤N is a �nite sequence
of rigid motion. Moreover, we do not need a
complete description of (fi)1≤i≤N but only the
projections of these densities. In short, we only
need a projection of the operator DN on a �nite
dimensional space of dimensions 6N . This pro-
jection is called the friction operator as follows

F : R6N −→ R6N ,

(Ui, ωi)1≤i≤N 7−→ (Fi, Ti)1≤i≤N .

Unfortunately, we do not have a nice explicit
expression for DN such as (4). To compute ac-
curate approximations of F starting from (4),

the direct method consists in 1/ approximating
ND by a Galerkin method, 2/ inverse this ap-
proximate operator, 3/ project this inverse on
the space of rigid motions. For a �xed posi-
tion of the particles, the direct method has a
very good behavior as we send the truncating
order to in�nity. On the contrary, if we consider
a sequence of con�gurations with at least two
particles getting closer and closer and with dif-
ferent prescribed velocities, the distributions of
forces concentrate near the contact points. In
this case, the convergence of the direct method
degenerates.

A large amount of research has been studied to
develop numerical tools to approximate the fric-
tion operator, such as [5], [6], [8], [9], [13]. Re-
cently, in [15], the authors developed a method
which is called the correction method for com-
puting very accurate numerical solutions. This
method depends on two truncating parameters
for approximating the Dirichlet to Neumann op-
erator DN and computing the correction veloci-
ties respectively. In the correction method, these
parameters are chosen to obtain a good approx-
imation of friction operator. The main goal of
this paper is to present a numerical method to
determine truncating parameters for the correc-
tion method.

The rest of this paper is organized as follows.
In the next section, we describe the main idea
of the correction method which is based on the
singular-regular decomposition. We also present
the interpolation method for computing the sin-
gular �elds and the computation of correction
velocities for two close particles. In Section 3. ,
we propose some numerical computations to es-
timate the truncation orders using in the correc-
tion method. In Section 4. , numerical experi-
ments are performed for four particles problem.
Finally, we give several conclusions and perspec-
tives in the last section.

2. The correction method

2.1. Singular-regular splitting

Let us �rst introduce a cut-o� distance δ > 0.
We denote by dij the distance between two par-
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ticles Bi and Bj , dij = |zi − zj | − 2. The set of
pairs of close particles is de�ned as

P =
{

(i, j) ∈ {1, ..., N}2, i 6= j : dij < δ
}
.

Our method consists in taking advantage of the
linearity of the Stokes equations for rewriting
the �elds (u, p) as a superposition

u = u0 +
∑
c∈P

uc, p = p0 +
∑
c∈P

pc,

where each couple (u0, p0) solves the Stokes
equations in Ω and (uc, pc) solves the Stokes
equations in the �ctitious �uid domain:

Ωc = R3 \ {Bi ∪Bj} , for c = (i, j) ∈ P.

The couple (uc, pc) handle the large variations of
(u, p) localized in the small gap between Bi and
Bj which are due to the di�erence between the
prescribed velocities on ∂Bi and ∂Bj . Precisely,
for c = (i, j) ∈ P, we introduce the velocity �eld

wc(x) :=
1

2
[uj(x)− ui(x)],

which vanishes if and only if the solid Bi∪Bj fol-
lows a rigid motion. The �singular� �eld (uc, pc)
are de�ned as the unique solution of the problem

−∆uc +∇pc = 0 in Ωc,

∇ · uc = 0 in Ωc,

uc = −wc on ∂Bi,

uc = wc on ∂Bj ,

uc(x)→ 0, pc(x)→ 0 as |x| → ∞.

(5)

By linearity, the remaining part (u0, p0) solves
the Stokes problem in Ω. The boundary condi-
tions u0 for this problem are set so that the total
velocity �eld satis�es the boundary conditions ui
speci�ed in the original problem
−∆u0 +∇p0 = 0 in Ω,

∇ · u0 = 0 in Ω,

u0 = w0 on ∂Bi,

u0(x)→ 0, p0(x)→ 0 as |x| → ∞,

(6)

where,

w0(x) := ui(x)−
∑
c∈P

uc(x), x ∈ ∂Bi. (7)

At the end we aggregate the di�erent contribu-
tions. With obvious notation, for k = 1, 2, ..., N ,

Fk = F 0
k +

∑
c∈P

F ck , Tk = T 0
k +

∑
c∈P

T ck .

Notice that the singular solution (uc, pc) associ-
ated to a pair of close particles c = (i, j) ∈ P do
not contribute to the forces and torques exerted
by the surface of a third particle Bk, k /∈ {i, j} :
we have F ck = T ck = 0. Indeed, in this case,
Bk ⊂ Ωc, so that by the Stokes formula,

F ck =

∫
∂Bk

σc(x) · nk(x)dS =

∫
Bk

∇ · σc(x)dx = 0.

Similarly, using the Levi-Civita antisymmetric
symbol εαβγ and Einstein summation conven-
tion on greek indices, we compute,

T ck =

∫
∂Bk

nk(x)× (σc · nk(x)]dS

= εαβγ

∫
∂Bk

nβσ
c
γζnζdS

= εαβγ

∫
Bk

∂

∂xζ

[
(x− zi)βσcγζ

]
dx

= εαβγ

∫
Bk

(x− zi)β (∇ · σc)γ︸ ︷︷ ︸
=0

dx

+

∫
Bk

εαβγσ
c
γβ︸ ︷︷ ︸

=0

dx = 0.

As a consequence, the total force and torque ex-
erted by the particle Bk on the �uid are given
by

Fk = F 0
k +

∑
c=(i,j)∈P,

k∈{i,j}

F ck ,

Tk = T 0
k +

∑
c=(i,j)∈P,

k∈{i,j}

T ck . (8)

The advantage of decomposing the solution re-
sides in the possibility of using di�erent methods
for solving problems (5) and (6). The singular
parts are solution of the Stokes equations (5)
around only two solid particles. We will ap-
proximate these singular parts by interpolating
in pre-computed tables. The remaining parts
solves the Stokes equations (6) in the original
domain but with modi�ed boundary conditions
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which do not necessarily correspond to rigid mo-
tions of the particles. The remaining regular
part may be approximated by using any stan-
dard numerical method.

Let us �rst consider problem (5). For c =
(i, j) ∈ P, by changing coordinates, we may
assume that zi = −(1 + dc/2)ez and zj =
(1 + dc/2)ez. In the new coordinates, the ve-
locity wc uniquely decomposes as

wc(x) = U czez +U cxye1 + ωczez × x+ ωcxye2 × x,

where e1 and e2 are two unit vectors orthogonal
to ez. Hence, the solution of (5) can be decom-
posed as

(uc, pc) = U cz (uA, pA) + U cxy(uB , pB)

+ ωcxy(uB′ , pB′) + ωcz(uC , pC), (9)

where, for Z = A,B,B′, or C, the couple
(uZ , pZ) solves the Stokes equations in the do-
main

Ωdc := R3 \
[
Bdc+ ∪B

dc
−

]
, (10)

where Bdc± denotes the solid sphere with unit
radius and center ±(1 + dc/2)ez. The di�erence
between these problems comes from the speci�c
boundary conditions,

uZ = wZ on ∂Bdc+ ∪ ∂B
dc
− ,

where wZ are de�ned as follows, for x ∈ ∂Bdc± ,

wA(x) := ±ez, wB(x) := ±e1,
wB′(x) := ±e2 × x, wC(x) := ±ez × x. (11)

When solving independently the second or the
third problem, we may rotate the frame so that
e1 or e2 coincide with ex. We end with four fam-
ily of problems only depending on the distance
dc. More precisely, in view of (8), we need ap-
proximations of

FZ(dc) :=

∫
∂Bdc

+

σZ(x) · n(x)dS(x), (12)

TZ(dc) :=

∫
∂Bdc

+

n(x)× [σZ(x) · n(x)]dS(x).

(13)

Using the symmetries of the problems, the cor-
responding total forces and torques on ∂Bdc− are

deduced from the former. For the computa-
tion of the boundary conditions (7) satis�ed by
the remaining �regular part� (u0, p0), we also
need approximations of vZ(x, dc) := uZ(x), for
x ∈ Ωdc and Z = A,B,B′, C.

In the next section, we describe a procedure
for computing these quantities. The method is
based on known asymptotic as dc → 0, direct
computations and interpolation in the parame-
ter dc.

Let us now consider problem (6). It is of
the same nature as the original problem: solve
the Stokes equations in the �uid domain sur-
rounding the particles. The new problem looks
even more complex since we have substituted the
function w0 for the simple rigid motions ui that
can be described with 6N parameters. However,
by construction, (u0, p0) is a very regular vec-
tor �eld, even in the limit of touching particles.
As a consequence, applying standard numerical
methods to problem (6), we can compute ap-
proximations of (u0, p0) with an accuracy that
does not depend on the distance dc between close
particles.

In the next section, we describe a procedure
for computing the approximations of the singu-
lar part and the boundary condition for the reg-
ular part. The main idea is to interpolate the
needed quantities into a grid of known values
which has been computed once for all during a
pre-processing step.

2.2. The interpolation method

for computing the singular

�elds

As explained in the discussions at the end of Sec-
tion 2.1. , for each c = (i, j) ∈ P, the singular
part (uc, pc) can be decomposed as a combina-
tion of four parts (uZ , pZ) which are solutions of
four family of problems only depending on the
distance dc,

−∆uZ +∇pZ = 0 in Ωdc ,

∇ · uZ = 0 in Ωdc ,

uZ = wZ on ∂Ωdc ,

(14)

where Ωdc and wZ are given by (10) and (11) re-
spectively. Recall that the �uid domain Ωdc only
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depends on the distance dc. We need to compute
approximations of fZ and TZ given by (12), (13).
Our method is based on asymptotic formulas for
the total force and torque at small distance, di-
rect computations and interpolation in the pa-
rameter dc.

In a pre-processing step, we decompose (f̃Z)k
and (wZ)k, for k = Bdc− , B

dc
+ , in the basis of

vector spherical harmonics (see [16]) as follows,

(f̃Z)k =
∑
α≥0

fZk,αφk,α, (wZ)k =
∑
α≥0

wZk,αφk,α.

By truncating the above series up to order
Mmax, with Mmax large, the discrete Neumann
to Dirichlet matrix NDZ,dis. is computed as de-
scribed in [18]. Then we compute accurate ap-
proximations of the surface force density fdis.Z

by solving the linear problem,

NDZ,dis..f
dis.
Z = WZ ,

where WZ =
(
wZi,α

)
k=i,j,α=1,...,Mmax

. By this

direct method, we may compute fdis.Z as a func-
tion of dc for a �nite number of distances, say
dc ∈ Ddis := {d0, λd0, λ2d0, ...} for some small
d0 and some λ > 1. Combining the explicit
asymptotic formula of the force density with this
discrete set of accurately computed values, we
obtain approximations of fdis.Z (dc) by interpola-
tion for every 0 < dc < δ.

For instance, let us consider the �rst problem
Z = A. We are interested in the total force and
torque exerted by the �rst particles Bdc− . In this
case, from the symmetries and the asymptotic
formulas given by (see [7])

FA(dc) =

(
3π

dc
+O(ln dc)

)
ez, TA(dc) = 0,

We guess that FA(dc) expands as

FA(dc) =

[
3π

dc
+ C1 ln dc + C2 + C3(dc ln dc)

+ C4dc +RA(dc)

]
ez.

The constants C1, C2, C3 and C4 are then de-
termined by using a least square approximation
based on highly accurate numerical simulations
performed for a small number of small values of

dc. The Figure 1 shows the behavior of the rest
term RA(dc).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−2

0

2

4

6

8

10

12
x 10−4

Fig. 1: The term RA(dc) in a function of dc.

Tab. 1: The absolute errors of interpolation.

dc 0.475 0.355 0.275 0.135 0.0135
Lmax 50 50 50 70 150
error 4.4e-13 2.2e-12 3.5e-12 7.4e-12 3.1e-10

In a second step we build a table of values of
RA(dc) for dc ranging in a �nite subset of (0, δ).
These values are obtained by the direct method
with a very large Lmax.

In practice, we have preformed accurate sim-
ulations with the following distances:

dc = 0.001, 0.002, ..., 0.009, 0.01, 0.02, ..., 0.5.

This ends the preprocessing step.
Eventually, when needed, we use the cubic spline
interpolation method to estimateRA(dc) for any
non-tabulated distance dc ∈ (0, δ) from the tab-
ulated values. In Table 1, we show the result
of some numerical tests realized in order to esti-
mate the error due to the interpolation method.

2.3. Computation of correction

velocities

In this section, we present the interpolation
method to compute the coe�cients of the cor-
rection velocities.

48 c© 2017 Journal of Advanced Engineering and Computation (JAEC)



VOLUME: 2 | ISSUE: 1 | 2018 | March

We consider again the problem (14). Let BR
be the ball of radius R = 3 centered at the origin
of the coordinate system. This ball contains the
two balls Bdc− and Bdc+ . We want to determine
the velocity UZ(r, dc) for r ∈ R3 \BR.

We �rst compute the force densities on the
boundary of Bdc+ and Bdc− using the direct
method with a large truncating order. Then,
we can deduce the velocity �eld UZ everywhere
using the explicit formula (4) and vector spheri-
cal harmonics (see [18]). On the other hand, we
know that the velocity �eld in R3 \BR reads

UZ(r, dc) =
∑
l≥1

∑
|m|≤l

gTZ,l,m(dc)|r|−(l+1)Tl,m

+
∑
l≥0

∑
|m|≤l+1

gIZ,l,m(dc)|r|−(l+1)Il,m

+
∑
l≥1

∑
|m|≤l−1

[
(2l − 3)(l − 1)

2l
gIZ,l−2,m(dc)(|r|2 − 1)

+ gNZ,l,m(dc)

]
|r|−(l+1)Nl,m, (15)

We then only have to tabulate the coe�cients
gTZ,l,m, g

I
Z,l,m, g

N
Z,l,m. These coe�cients are ob-

tained by projecting UZ(·, dc) on the basis of
rescaled vector spherical harmonics on ∂BR. In
a last step, we use (15) to obtain the correspond-
ing coe�cients in the vector spherical harmonic
basis on ∂B(0, 1).

In practice, the series (15) is truncated at
some order L̃max. We call L̃max the correction
truncation order. Notice that this truncation or-
der may be di�erent than Lmax de�ned in [18].
The choice of L̃max will be discussed in the next
section.

Finally, using a polynomial interpolation of
these computed coe�cients, we can estimate the
coe�cients of the correction velocities on the
unit sphere for any dc ∈ Ddis.

These coe�cients are computed as functions
of the distance dc in the four cases corresponding
to Z = A,B,B′, C. As an example, we show the
absolute error of the polynomial interpolation
corresponding to one coe�cient in Figure 2.
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x 10−10

Fig. 2: The absolute errors of interpolation correspond
to the coe�cient gNZ,5,0(dc) (right) in function
of dc in the case Z = A.

3. Numerical

determination of the

truncation orders

In the correction method, when we approximate
the correction w0 determined by (7) and the
Neumann to Dirichlet matrix DN , we have to
choose two truncating parameters: Lmax for ap-
proximating the Neumann to Dirichlet matrix
and L̃max for approximating the velocity cor-
rections. These quantities prescribe the number
of vector spherical harmonics used for the dis-
cretization. The natural question is how can we
choose these parameters such that the solution
has a given accuracy? How do they depend on
the distances between the particles? In this sec-
tion, we present a numerical estimation of these
parameters.

3.1. Correction truncation

order

Let us consider the problem (1) with three
unit balls. We assume that their centers lie
on the vertical axis with corresponding coor-
dinates z1 = (0, 0, 0), z2 = (0, 0, 2 + d), and
z3 = (0, 0, 4 +d+D). We assume moreover that
the two �rst balls translate along the vertical
axis with opposite velocities and that the third
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particle moves with the same velocity of the sec-
ond one, i.e., the given velocities of three balls
are respectively u1 = −ez and u2 = u3 = ez.

Firstly, we write the surface densities as func-
tions of the distances between the particles and
of the truncating parameters

fdis.
(
L, L̃

)
= fdis.

(
d,D,L, L̃

)
,

where L and L̃ are respectively the truncation
orders used for approximating the Neumann to
Dirichlet matrix and for the velocity corrections.

Since the correction method converges very
fast, we may �x a large enough value of the
truncation order L = L0 for estimating L̃max.
In numerical tests we choose L0 = 20. Then for

every L̃ ∈
[
1, L̃∞

)
, we de�ne the error for the

surface density as follows

Err :=
∣∣∣fdis. (L0, L̃

)
− fdis.

(
L0, L̃∞

)∣∣∣ ,
where L̃∞ is very large.

Given a real small number ε > 0, the trunca-
tion order L̃max is chosen as follows

L̃max(d,D) := min
{
L̃ ∈

[
1, L̃∞

)
: Err < ε

}
.

In our numerical experiments, we set ε = 10−6.
Moreover, we only consider d < δ, where δ = 2
is the cut-o� distance de�ned in Section 2.1. .
Then we numerically calculate L̃max(d,D) as a
function of d and D (see Figure 3).

Figure 3 shows that the truncation order L̃max
for computing the velocity correction mainly de-
pends on D. This truncation order can be used
to estimate the other truncation order Lmax in
the next section.

Here we perform the tests with D varify from
0.1 to 5. We can choose

L̃max(D) =



10 for D ≥ 3,

12 for 2 ≤ D < 3,

14 for 1.5 ≤ D < 2,

16 for 0.7 ≤ D < 1.5,

18 for 0.6 ≤ D < 0.7,

22 for 0.3 ≤ D < 0.6,

24 for 0.1 ≤ D < 0.3.
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Fig. 3: Estimations of L̃max(d,D).

3.2. Truncation order for

solving the problem

We now consider the same three-sphere con-
�guration as in the previous section. For com-
putational time problem, we could not calculate

fdis.
(
L, L̃max

)
for very large values of L. The

error on the surface force density is estimated by
the di�erence between two consecutive values of
L with L̃max determined in the previous section.
For every L ≥ 1, we de�ne

Err :=
∣∣∣fdis. (L, L̃max)− fdis. (L− 1, L̃max

)∣∣∣ ,
(16)

The truncation order Lmax is chosen as fol-
lows, for a given small real number ε > 0,

Lmax(d,D) := min {L ∈ [1,∞) : Err < ε} .

In fact, the truncation order Lmax can be also
estimated with another de�nition of the density
error,

Ẽrr =
∣∣∣fdis. (L, L̃∞)− fdis. (L− 1, L̃∞

)∣∣∣ ,
where L̃∞ is very large. The two errors are very
close in the numerical computation. Hence, it is
more convenient to use the �rst de�nition (16).

We also choose ε = 10−6 and the cut-o� dis-
tance δ = 2. We consider two cases: D > δ and
D < δ.

50 c© 2017 Journal of Advanced Engineering and Computation (JAEC)



VOLUME: 2 | ISSUE: 1 | 2018 | March

• The �rst case: D = D0 > δ,
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Fig. 4: First: the error Err(d,D0, L) with D0 > δ. Sec-
ond: the corresponding Lmax(d,D0) as a func-
tion of d.

In this case, the truncation order mainly de-
pends on the distance d. We conclude that for
isolated pairs of particles D ≥ δ, we see that the
critical truncation level is a monotonic increas-
ing function of d.

We can choose

Lmax(d) =



10 for d ≥ 0.5,

11 for 0.2 ≤ d < 0.5,

12 for 0.18 ≤ d < 0.2,

13 for 0.15 ≤ d < 0.18,

14 for 0.1 ≤ d < 0.15,

15 for 0.01 ≤ d < 0.1.
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Fig. 5: Estimations of Lmax(d,D) for D ≥ δ = 2.

We made these tests with d varying from 0.01
to 0.5. Even for d = 0.01, the truncation order
Lmax = 15 lead to an error smaller than ε =
10−6 (see Figure 5).

• The second case: D = D0 < δ,
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Fig. 6: Lmax(d,D) for D ≤ δ = 2.

In this case, the optimal truncation order de-
pends on both d and D. This truncation order
tends to in�nity as both d and D go to 0.

In practice, we see on the graphic that we can
choose Lmax as an a�ne function of log10D and
log10d in the region of [Lmax,opt ≥ 40] (see Fig-
ure 6).
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4. Numerical results

In this section, we perform some numerical
tests to compare the three methods: the direct
method in [11], the Stokesian Dynamics in [5]
and the correction method. Recall that in the
case of two particles, the correction method and
the Stokesian Dynamics are exactly the same.
Hence we just consider the cases with more than
two particles.

We consider four particles such that their cen-
ters are not on a straight line. These centers are
respectively

z1 = 0, z2 = (2 + d)ea,

z3 = z2 + (2 + d)eb, z4 = z3 + (2 + d)ec,

where d = 0.05 is the distance of particles and
ea, eb, ec are unit vectors as follows

ea =

(
1√
3
,

1√
3
,

1√
3

)
,

eb =

(
1√
4
,

1√
5
,

√
11

20

)
,

ec =

(
1√
2
,

1√
6
,

1√
3

)
.

The rigid displacements ui are given by (2),
where the corresponding velocities Ui and an-
gular velocities ωi are given by

U1 = (1,−2, 3), U2 = (−2, 3, 0),

U3 = (3, 0,−1), U4 = (−1,−1, 1),

ω1 = (2, 0,−3), ω2 = (−1,−2, 0),

ω3 = (2, 1,−2), ω4 = (−1,−1, 1).

We show the numerical results in two steps: �rst
we compare the three methods in Figure 7 and
then we compare the two best methods in Fig-
ure 8. The behavior of the total forces and
torques on four particles are slightly the same
in three directions. So we show below the force
on the particle B2 in z direction.

Zooming on the results of the Stokesian Dy-
namics and the correction method (see Fig-
ure 8), we see that the latter has a better behav-
ior. With Lmax = 8, the relative error for the
correction is smaller than 6.10−6. So we con-
clude that even in the presence of several parti-
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Fig. 7: Forces on the particle B2 in z direction com-
puted with the three methods with d = 0.05.
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Fig. 8: Forces on the particle B2 in z direction com-
puted with the Stokesian Dynamics and the cor-
rection method: B1 (�rst), B2 (second), B3

(third) and B4 (fourth). d = 0.05.

cles the correction method also improves the ap-
proximation of the interactions with neighboring
particles.

Let us state again the main di�erence between
these methods. The Stokesian Dynamics mod-
i�es the interaction of each pair of close parti-
cles independently. The correction method also
modi�es the interactions with neighboring parti-
cles. Hence at the same level of truncation order,
the computational time of the correction method
is larger. But the correction method converges
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very fast and requires a small level of truncation
order to get an accurate result.

5. Conclusions and

perspectives

In conclusion, we have presented an accurate
method for the computations of hydrodynamic
forces between spherical particles suspended in
a Stokes �uid. The main improvement of this
new method compared with the Stokesian Dy-
namics is that the in�uence of the singular force
densities between two closed particles on the
neighboring particles is also computed. For this
reason, the computational cost for this method
is larger. The main part of the computational
time is due to the computation of the correc-
tion velocities and their projection on the vec-
tor spherical harmonics basis. On the other
hand, these computations are independent from
one sphere to another and could be easily paral-
lelized. This should solve the main drawback of
the method. Moreover, we proposed some nu-
merical determination for some parameters us-
ing in this method.

In our research, we only consider spherical
particles. The main advantage of this shape is
that the computation can be based on the vector
spherical harmonics basis. The methods gener-
alize to arbitrary smooth particles. In this case,
we should use a boundary �nite element method
instead of the decomposition in vector spherical
harmonics.
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