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Abstract We proposed an aggregation operator which
is used to aggregate decision makers’ opinions in group
decisionmaking process. First, a Choquet integral-based dis-
tance between generalized interval-valued trapezoidal fuzzy
numbers is defined. Then combining the generalized interval-
valued trapezoidal fuzzy number aggregation operator with
Choquet integral-based distance, an extension of technique
for order preference by similarity to ideal solution method is
developed to deal with a multi-criteria generalized interval-
valued trapezoidal fuzzy number group decision making
problems, where inter-dependent or interactive characteris-
tics among criteria preference of decision makers are also
considered. Finally, an illustrative example is provided to
elaborate the proposed method.

Keywords Multi-criteria group decision making ·
Generalized interval-valued trapezoidal fuzzy numbers ·
Fuzzy measures · Technique for order preference by
similarity to ideal solution

1 Introduction

Technique for order preference by similarity to ideal solution
(TOPSIS) was initiated by Hwang and Yoon [21]. TOPSIS is
a useful and practical technique for selection and ranking of
alternatives [8]. The basic principle is that the chosen alterna-
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tive should have the shortest distance from the positive-ideal
solution and the farthest distance from the negative-ideal
solution. In the TOPSIS theory, crisp values are used for
weights and performance ratings of the criteria. Hwang
and Yoon [21] developed a classical approach to multi-
attribute/multi-criteria decision making (MADM/MCDM)
problems by using TOPSIS. Often, human judgements and
preferences are ambiguous, vague and cannot be estimated
with exact numeric value under many conditions, so the crisp
values are not suitable to model real-world situations. Zadeh
[45] proposed the concept of fuzzy set theory and success-
fully used to handle imprecision (or uncertainty) in decision
making problems, to solve the ambiguity and vagueness in
information from human judgements and preferences. TOP-
SIS has been extended to fuzzy environment in [23]. Fuzzy
numbers are applied and used to establish a prototype fuzzy
TOPSIS [12,32]. Recently a lot of work on fuzzy TOPSIS
has been developed by several authors [6,16,30]. Extension
of TOPSIS method for triangular fuzzy numbers is devel-
oped in [10]. TOPSIS was further extended by Xu and Chen
[42], an interactive method for fuzzy multiple attribute group
decision making.

Interval-valued fuzzy TOPSIS method and experimen-
tal analysis has been proposed by Chen and Tsao [14] and
they also gave the ranking technique of alternatives based
on distance measure. Ashtiani et al. [2] gave an extension
of fuzzy TOPSIS for interval-valued fuzzy sets. Chen and
Lee [13] further developed interval type-2 TOPSIS method
for fuzzy multiple attributes group decision making. On the
basis of interval arithmetic, Chu and Lin [16] introduced the
fuzzy TOPSIS model. The concept of interval-valued intu-
itionistic fuzzy sets (IVIFS) was given by Atanassov [4],
as a generalization of IFS. The basic characteristic of the
IVIFS is that the values of its membership function and non-
membership function are intervals rather than exact numbers.
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Some operational laws of the IVIFS are defined in [3]. In [38]
a novel method for multiple attribute decision making based
on IVIFS and TOPSIS method in uncertain environments
is presented. Wei [41] applied IIFWGA aggregation func-
tions to deal with dynamicmultiple attribute decisionmaking
where all the attribute values are expressed in intuitionistic
fuzzy numbers or interval-valued intuitionistic fuzzy num-
bers. TOPSIS-based nonlinear programming methodology
formulti-attribute decisionmakingwith interval-valued intu-
itionistic fuzzy sets was proposed by Li [27]. Beg and Rashid
[7] proposed the concept of trapezoidal valued intuitionis-
tic fuzzy sets and used it for multi-criteria fuzzy decision
making with Choquet integral-based TOPSIS. Recently, Li
and Chen proposed a multi-criteria group decision making
method based on trapezoidal intuitionistic fuzzy information
in [28] .

Several aggregation process are based on the assumption
that the criteria (attribute) or preferences of decision mak-
ers are independent, and the aggregation operators are linear
operators based on additive measures, which is character-
ized by an independence axiom [24,40]. For real decision
making problems, there is a phenomenon that there exists
some degree of inter-dependent or interactive characteristics
between criteria [19]. Usually, decision makers invited from
same or similar fields for a decision problem. They have sim-
ilar social status, knowledge and preference. Their subjective
preference show non-linearity. Independence phenomena
among these criteria and mutual preferential independence
of decision makers are thus violated. Sugeno [37] intro-
duced the concept of non-additive fuzzy measure, which
makes monotonicity instead of additivity property of fuzzy
measure. It is a more effective tool to model interaction
phenomena [22,26] and to deal with decision making prob-
lems [19,33]. Liginlal and Ow [29] is an excellent review
on analyzing decision maker behavior using fuzzy mea-
sure. In the real decision making problems, the attributes
of the problem are often correlated or inter-dependent. Cho-
quet integral [15] is a useful tool to model the correlation
or inter-dependence. It has been studied and applied in the
decision making methods [9,17,31]. Choquet integral is also
used for interaction between criteria in hierarchy process [1].
Aggregation of decision makers’ opinions is very important
in group decision making problems to perform evaluation
process. Group decision making involves weighted aggrega-
tion of all individual decisions to obtain a single collective
decision. In [36], aggregation operator of intuitionistic fuzzy
group decision making is proposed with the weights of
decision makers. The weights of decision makers play an
important role in the process of aggregation. In [38,43],
aggregation of the interval-valued intuitionistic fuzzy group
decision making environment with the Choquet integral is
studied.

The concept of interval-valued fuzzy number is extended
to the concept of generalized fuzzy number in [44]. Further-
more, the concept of generalized fuzzy number is extended
to the generalized interval-valued trapezoidal fuzzy numbers
(GITFNs) by Chen [11]. GITFNs are suitable for impre-
cise and uncertain preference or information in multi-criteria
decision method. Chen [11] extended TOPSIS method
for multiple criteria decision analysis (MCDA) based on
GITFNs. Recently, TOPSIS is modified for generalized
interval-valued trapezoidal fuzzy numbers to select the most
suitable robot in [34]. Dubois [18] gave some literature about
some old and new techniques for fuzzy decision analysis.
Moreover, Dubois discussed membership function, aggrega-
tion operators, linguistic variables, fuzzy intervals and the
valued preference relations. By the motivation of new tech-
niques of decision analysis in [18] and the use of Choquet
integral in MCDM in [38,39], we extended TOPSIS for
GITFNs with aggregation operators and preference of deci-
sion makers. Combining this proposed aggregation operator
with TOPSIS on Choquet integral-based distance, a multi-
criteria generalized interval-valued trapezoidal fuzzy group
decision making is proposed, where interaction phenomena
among the decision making problem and weights of decision
makers are taken into account.

The rest of the article is organized as follows: in Sect.
2, we review fuzzy set, fuzzy measure, triangular norm,
interval-valued fuzzy sets and generalized interval valued
trapezoidal fuzzy numbers (GITFNs). In Sect. 3, we intro-
duce an exponent law on GITFN, order relation and some
of its properties are also studied in this section. In Sect.
4, based on some operational laws, a generalized interval-
valued trapezoidal fuzzy number geometric aggregation
(GITFNGA) operator is proposed, and some of its properties
are examined. In Sect. 5, according to definition of Cho-
quet integral, we define the Choquet integral-based distance
between any two generalized interval-valued trapezoidal
fuzzy sets. Combining the generalized interval-valued trape-
zoidal fuzzy geometric aggregation operator with Choquet
integral-based distance, an extension of TOPSIS is devel-
oped to deal with a multi-criteria generalized interval-valued
trapezoidal fuzzy group decision making problem where
inter-dependent or interactive characteristics among criteria
and preferences of decisionmakers are considered. In Sect. 6,
an illustrative example is constructed to understand the appli-
cation of the method and to demonstrate its practicality and
feasibility.

2 Preliminaries

As preparation for introducing our new aggregation opera-
tors, some preliminary concepts are given in this section.
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Let X be a crisp universe of generic elements, a fuzzy set
A in the universe X is a mapping from X to [0, 1]. For any
x ∈ X, the value A(x) is called the degree of membership of
x in A.

Let X = {x1, x2, . . . , xn} be the set of the attributes, P(X)

be the power set of X.

Definition 2.1 [37] A λ-fuzzy measure μ on the set X is
a set function μ : P(X) → [0, 1] satisfying the following
properties:

1. μ(φ) = 0, μ(X) = 1;
2. B ⊆ C implies μ(B) ≤ μ(C), for all B,C ⊆ X;
3. μ(B∪C) = μ(B)+μ(C)+λμ(B)μ(C) for all B,C ⊆

X and B ∩ C = φ, where λ ∈ (−1,+∞).

In the above definition, if λ = 0, then the third condition
reduces to the axiom of the additive measure: μ(B ∪ C) =
μ(B) + μ(C) for all B,C ⊆ X and B ∩ C = φ, which
indicates that there is no interaction between B and C . Also
λ 	= 0 indicates that the λ-fuzzy measure μ is non-additive
and there is interaction between B and C.

For λ > 0, μ(B∪C) > μ(B)+μ(C),which implies that
μ is a super-additivemeasure.Whenλ < 0, thenμ(B∪C) <

μ(B)+μ(C),which shows thatμ is a sub-additive measure.
The interaction between sets can be represented by λ.

If X is a finite set, then
⋃n

i=1 xi = X. To determine
λ-fuzzy measure μ on X, Sugeno [37] gave the following
Eq. (2.1)

μ(X)=μ

(
n⋃

i=1

xi

)

=

⎧
⎪⎪⎨

⎪⎪⎩

1
λ

{
n∏

i=1
[1+λμ(xi )] − 1

}

if λ 	=0,

n∑

i=1
μ(xi ) if λ=0.

(2.1)

It can be noted thatμ(xi ) for a subsetwith a single element
xi is called a fuzzy density.

Specially for any subset A ⊂ X, we have

μ(A) =

⎧
⎪⎪⎨

⎪⎪⎩

1
λ

{
∏

xi∈A
[1 + λμ(xi )] − 1

}

if λ 	= 0,
∑

xi∈A
μ(xi ) if λ = 0.

(2.2)

Based on Eq. (2.1), the value of λ can be uniquely deter-
mined from μ(X) = 1, which is equivalent to solving

1 = 1

λ

{
n∏

i=1

[1 + λμ(xi )] − 1

}

. (2.3)

If the elements of B in X are independent, we have

μ(B) =
∑

xi∈B
μ(xi ), for all B ⊆ X. (2.4)

So the interaction between sets or elements of set depends
upon the value of λ and μ.

Definition 2.2 [25] A binary operation T : [0, 1]2 → [0, 1]
is a triangular norm (t-norm) if it satisfies the following:

1. T (1, x) = x for all x ∈ [0, 1] (boundary condition)
2. T (x, y) = T (y, x) for all x, y ∈ [0, 1] (commutativity)
3. T (x, T (y, z)) = T (T (x, y), z) for all x, y, z ∈ [0, 1]

(associativity)
4. if w ≤ x and y ≤ z then T (w, y) ≤ T (x, z) for all

w, x, y, z ∈ [0, 1] (monotonicity).

Definition 2.3 [35] Let CS ([0, 1]) stand for the set of all
closed subintervals of [0, 1]. Let X = {x1, x2, . . .} be a uni-
verse of discourse. An interval-valued fuzzy set (IVFS) in
X is an expression A given by A = {〈x, f A(x)〉 |x ∈ X},
where f A : X → CS([0, 1]). The numbers f A(x) represent
the degree of membership of the element x in the set A, such
that x → f A(x) = [ f −

A (x), f +
A (x)]. Set of all IVFSs on X

is denoted by IVFS(X ).

Definition 2.4 [35] Let A ∈ IVFS(X). If A(x) is a con-
vex set and is defined in a closed and bounded interval,
then A is called “a generalized interval-valued fuzzy num-
ber (IVFN) on the universe of discourse X”. Let A(x) =
[AL(x), AU (x)], where 0 ≤ AL(x) ≤ AU (x) ≤ 1, x ∈ X,

AL : X → [0, 1], and AU : X → [0, 1]. All generalized
IVFNs on X are denoted by IVFN (X ).

Definition 2.5 [11] Let AL(xi )= (x L1i , x
L
2i , x

L
3i , x

L
4i ; hLxi ) and

AU (xi ) = (xU1i , x
U
2i , x

U
3i , x

U
4i ; hUxi ) be two generalized trape-

zoidal fuzzy numbers. Let hLxi and hUxi denote the heights
of AL(xi ) and AU (xi ), respectively. Let x L1i , x

L
2i , x

L
3i , x

L
4i ,

xU1i , xU2i , xU3i , xU4i ∈ [0, 1]. A generalized interval-valued
trapezoidal fuzzy set (GITFS) A defined on the universe of
discourse X = {x1, x2, . . .} is represented by the following:

A=
{〈
xi , [AL (xi ), A

U (xi )]
〉
|xi ∈ X

}

=
{〈
xi , [(x L1i , x L2i , x L3i , x L4i ; hLxi ), (xU1i , xU2i , xU3i , xU4i ; hUxi )]

〉
|xi ∈ X

}
,

where x L1i ≤ x L2i ≤ x L3i ≤ x L4i , x
U
1i ≤ xU2i ≤ xU3i ≤ xU4i , 0 ≤ hLxi

≤ hUxi ≤ 1, xU1i ≤ x L1i , and x L4i ≤ xU4i .

A GITFN A(x) = [AL(x), AU (x)] consists of the two
generalized trapezoidal fuzzy numbers AL(x) = (x L1 , x L2 ,

x L3 , x L4 ; hLx ) and AU (x) = (xU1 , xU2 , xU3 , xU4 ; hUx ), where
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AL(x) is called “ the lower trapezoidal fuzzy number,” and
AU (x) is called “ the upper trapezoidal fuzzy number”.

If hLx = hUx = 1, then the GITFN A(x) becomes a nor-
mal interval-valued trapezoidal fuzzy number. If AL(x) =
AU (x), then A becomes a generalized trapezoidal fuzzy
number. If x L2 = x L3 and xU2 = xU3 , then A(x) is a gener-
alized interval-valued triangular fuzzy number. If x L2 = x L3 ,

xU2 = xU3 , and hLx = hUx = 1, then A is a normal interval-
valued triangular fuzzy number. If x L1 = x L2 = x L3 = x L4 , xU1
= xU2 = xU3 = xU4 , and hLx = hUx = 1, then AL(x) and AU (x)
become crisp values, and A(x) is a crisp interval.

We call [(x L1 , x L2 , x L3 , x L4 ; hLx ), (xU1 , xU2 , xU3 , xU4 ; hUx )]
a GITFN. Let � be the set of all GITFNs. By Definition 2.5,
[(0, 0, 0, 0; 0), (0, 0, 0, 0; 0)] and [(1, 1, 1, 1; 1), (1, 1, 1,
1; 1)] are the smallest and largest GITFNs, respectively.

Definition 2.6 [5] Let ãi = [(aL1i , aL2i , aL3i , aL4i ; hLai ), (aU1i ,

aU2i , a
U
3i , a

U
4i ; hUai )], and b̃i = [(bL1i , bL2i , bL3i , bL4i ; hLbi ), (bU1i ,

bU2i , b
U
3i , b

U
4i ; hUbi )], (i = 1, 2, . . . , n) be two GITFNs on X,

then

d(ãi , b̃i )= 1

8

(

|hLai ×aL1i − bL1i ×hLbi | + |hLai ×aL2i − bL2i ×hLbi |

+|hLai ×aL3i − bL3i ×hLbi | + |hLai ×aL4i − bL4i ×hLbi |
+|hUai ×aU1i − bU1i ×hUbi | + |hUai ×aU2i − bU2i ×hUbi |

+|hUai × aU3i − bU3i ×hUbi |+|hUai × aU4i −bU4i ×hUbi |
)

,

is called the distance between ãi and b̃i .

3 Properties of GITFNs

Definition 3.1 For any two GITFNs, ã and b̃, where ã =
[(aL1 , aL2 , aL3 , aL4 ; hLa ), (aU1 , aU2 , aU3 , aU4 ; hUa )], and b̃ =
[(bL1 , bL2 , bL3 , bL4 ; hLb ), (bU1 , bU2 , bU3 , bU4 ; hUb )];
1. If aL4 ≤ bL4 and aU4 < bU4 , then ã < b̃;
2. If aL4 ≤ bL4 and aU4 > bU4 , then ã > b̃;
3. If aL4 < bL4 and aU4 = bU4 , then ã < b̃;
4. If aL4 = bL4 and aU4 = bU4 and hLa < hLb , then ã < b̃;
5. If aL4 = bL4 and aU4 = bU4 and hLa = hLb , then ã = b̃.

Definition 3.2 Let ã =[(aL1 , aL2 , aL3 , aL4 ; hLa ), (aU1 , aU2 , aU3 ,

aU4 ; hUa )], and b̃ = [(bL1 , bL2 , bL3 , bL4 ; hLb ), (bU1 , bU2 , bU3 , bU4 ;
hUb )] be two GITFNs, then

1. ã · b̃ = [(aL1 bL1 , aL2 b
L
2 , aL3 b

L
3 , aL4 b

L
4 ; min(hLa , hLb )),

(aU1 b
U
1 , aU2 b

U
2 , aU3 b

U
3 , aU4 b

U
4 ; min(hUa , hUb ))];

2. ãλ = [((aL1 )λ, (aL2 )λ, (aL3 )λ, (aL4 )λ; hLa ), ((aU1 )λ, (aU2 )λ,

(aU3 )λ, (aU4 )λ; hUa )], where λ > 0.

Definition 3.2 is modified version [11, Definition 2.4.3].
For two operational laws of Definition 3.2, it is easy to

obtain the following propositions.

Proposition 3.3 Let ã = [(aL1 , aL2 , aL3 , aL4 ; hLa ), (aU1 , aU2 ,

aU3 , aU4 ; hUa )], and b̃ = [(bL1 , bL2 , bL3 , bL4 ; hLb ), (bU1 , bU2 ,

bU3 , bU4 ; hUb )] be two GITFNs, and let c̃ = ã · b̃ and d̃ = ãλ,

then both c̃ and d̃ are also GITFNs.

Proposition 3.4 Let ã = [(aL1 , aL2 , aL3 , aL4 ; hLa ), (aU1 , aU2 ,

aU3 , aU4 ; hUa )], and b̃ = [(bL1 , bL2 , bL3 , bL4 ; hLb ), (bU1 , bU2 , bU3 ,

bU4 ; hUb )] be two GITFNs. Then we have:

1. ã · b̃ = b̃ · ã;
2. (ã · b̃)λ = ãλ · b̃λ;
3. ãλ1+λ2 = ãλ1 · ãλ2 , for all λ, λ1, λ2 > 0.

4 GITFNs geometric aggregation operator

In the following, based on λ-fuzzy measure, we first give the
definition of GITFNs geometric aggregation operator and
then study its properties.

Definition 4.1 Let ãi = [(aL1i , aL2i , aL3i , aL4i ; hLai ), (aU1i , a
U
2i ,

aU3i , a
U
4i ; hUai )] (i = 1, 2, . . . , n) be a collection of GITFNs

on X and μ be a λ-fuzzy measure on X. Based on λ-fuzzy
measure μ, a GITFNs geometric aggregation (GITFNGA)
operator of dimension n is a mapping GITFNGA: �n → �

such that

GITFNGAμ(ã1, ã2, . . . , ãn)

= (ã(1))
μ(A(1))−μ(A(2)) · (ã(2))

μ(A(2))−μ(A(3))

· · · · · (ã(n))
μ(A(n))−μ(A(n+1)),

where (·) indicates a permutation on X such that ã(1) ≤ ã(2) ≤
· · · ≤ ã(n) and A(i) = ((i), . . . , (n)), A(n+1) = φ.

Theorem 4.2 Let ãi = [(aL1i , aL2i , aL3i , aL4i ; hLai ), (aU1i , a
U
2i ,

aU3i , a
U
4i ; hUai )] (i = 1, 2, . . . , n) be a collection of GITFNs on

X, and μ be a λ-fuzzy measure on X, then their aggregated
value by using the GITFNGAμ operator is also a GITFN,
and

GITFNGAμ(ã1, ã2, . . . , ãn)=
[( n∏

i=1

(aL1(i))
μ(A(i))−μ(A(i+1)),

n∏

i=1

(aL2(i))
μ(A(i))−μ(A(i+1)),

n∏

i=1

(aL3(i))
μ(A(i))−μ(A(i+1)),

n∏

i=1

(aL4(i))
μ(A(i))−μ(A(i+1)); n

min
i=1

hLai

)

,
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( n∏

i=1

(aU1(i))
μ(A(i))−μ(A(i+1)),

n∏

i=1

(aU2(i))
μ(A(i))−μ(A(i+1)),

n∏

i=1

(aU3(i))
μ(A(i))−μ(A(i+1)),

n∏

i=1

(aU4(i))
μ(A(i))−μ(A(i+1)); n

min
i=1

hUai

)]

(4.1)

where (·) indicates a permutation on X such that ã(1) ≤ ã(2)

≤ · · · ≤ ã(n) and A(i) = ((i), . . . , (n)), A(n+1) = φ.

Proof The first result follows immediately from Definition
4.1 and Proposition 3.3. Next we prove Eq. (4.1) by using
mathematical induction on n.

By the operational laws of Definition 3.2, we have

(ã(1))
μ(A(1))−μ(A(2))

=
[(

(aL1(1))
μ(A(1))−μ(A(2)), (aL2(1))

μ(A(1))−μ(A(2)),

(aL3(1))
μ(A(1))−μ(A(2)), (aL4(1))

μ(A(1))−μ(A(2)); hLa1
)

,

(

(aU1(1))
μ(A(1))−μ(A(2)), (aU2(1))

μ(A(1))−μ(A(2)),

(aU3(1))
μ(A(1))−μ(A(2)), (aU4(1))

μ(A(1))−μ(A(2)); hUa1
)]

,

(ã(2))
μ(A(1))−μ(A(2))

=
[(

(aL1(2))
μ(A(1))−μ(A(2)), (aL2(2))

μ(A(1))−μ(A(2)),

(aL3(2))
μ(A(1))−μ(A(2)), (aL4(2))

μ(A(1))−μ(A(2)); hLa2
)

,

(

(aU1(2))
μ(A(1))−μ(A(2)), (aU2(2))

μ(A(1))−μ(A(2)),

(aU3(2))
μ(A(1))−μ(A(2)), (aU4(2))

μ(A(1))−μ(A(2)); hUa2
)]

.

Also

ã1 · ã2 =
[

(aL1(1)a
L
1(2), a

L
2(1)a

L
2(2), a

L
3(1)a

L
3(2), a

L
4(1)a

L
4(2);

min(hLa1, h
L
a2)), (a

U
1(1)a

U
1(2), a

U
2(1)a

U
2(2),

aU3(1)a
U
3(2), a

U
4(1)a

U
4(2);min(hUa1, h

U
a2))

]

For n = 2 in Eq. (4.1), we have

GITFNGAμ(ã1, ã2) = (ã1)
μ(A(1))−μ(A(2)) · (ã2)

μ(A(2))−μ(A(3))

=
[(

(aL1(1))
μ(A(1))−μ(A(2)) · (aL1(2))μ(A(2))−μ(A(3)),

(aL2(1))
μ(A(1))−μ(A(2)) · (aL2(2))μ(A(2))−μ(A(3)),

(aL3(1))
μ(A(1))−μ(A(2)) · (aL3(2))

μ(A(2))−μ(A(3)),

(aL4(1))
μ(A(1))−μ(A(2)) · (aL4(2))

μ(A(2))−μ(A(3));min(hLa1 , h
L
a2 )

)

,

(

(aU1(1))
μ(A(1))−μ(A(2)) · (aU1(2))

μ(A(2))−μ(A(3)),

(aU2(1))
μ(A(1))−μ(A(2)) · (aU2(2))μ(A(2))−μ(A(3)),

(aU3(1))
μ(A(1))−μ(A(2)) · (aU3(2))

μ(A(2))−μ(A(3)),

(aU4(1))
μ(A(1))−μ(A(2)) · (aU4(2))

μ(A(2))−μ(A(3));min(hUa1 , h
U
a2 )

)]

.

That is, for n = 2, Eq. (4.1) holds.
Suppose that for n = k, Eq. (4.1) holds, i.e.,

GITFNGAμ(ã1, ã2, . . . , ãk)

=
[( k∏

i=1

(aL1(i))
μ(A(i))−μ(A(i+1)),

k∏

i=1

(aL2(i))
μ(A(i))−μ(A(i+1)),

k∏

i=1

(aL3(i))
μ(A(i))−μ(A(i+1)),

k∏

i=1

(aL4(i))
μ(A(i))−μ(A(i+1)); k

min
i=1

hLai

)

,

( k∏

i=1

(aU1(i))
μ(A(i))−μ(A(i+1)),

k∏

i=1

(aU2(i))
μ(A(i))−μ(A(i+1)),

k∏

i=1

(aU3(i))
μ(A(i))−μ(A(i+1)),

k∏

i=1

(aU4(i))
μ(A(i))−μ(A(i+1)); k

min
i=1

hUai

)]

.

Then, for n = k + 1, according to Definition 2.5, we have

GITFNGAμ(ã1, ã2, . . . , ãk+1)

=
[(

(aL1(k+1))
μ(A(k+1))−μ(A(k+2))

k∏

i=1

(aL1(i))
μ(A(i))−μ(A(i+1)),

(aL2(k+1))
μ(A(k+1))−μ(A(k+2))

k∏

i=1

(aL2(i))
μ(A(i))−μ(A(i+1)),

(aL3(k+1))
μ(A(k+1))−μ(A(k+2))

k∏

i=1

(aL3(i))
μ(A(i))−μ(A(i+1)),

(aL4(k+1))
μ(A(k+1))−μ(A(k+2))

k∏

i=1

(aL4(i))
μ(A(i))−μ(A(i+1));min(

k
min
i=1

hLai , h
L
ak+1

)

)

,

(

(aU1(k+1))
μ(A(k+1))−μ(A(k+2))

k∏

i=1

(aU1(i))
μ(A(i))−μ(A(i+1)),

(aU2(k+1))
μ(A(k+1))−μ(A(k+2))

k∏

i=1

(aU2(i))
μ(A(i))−μ(A(i+1)),

(aU3(k+1))
μ(A(k+1))−μ(A(k+2))

k∏

i=1

(aU3(i))
μ(A(i))−μ(A(i+1)),
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(aU4(k+1))
μ(A(k+1))−μ(A(k+2))

k∏

i=1

(aU4(i))
μ(A(i))−μ(A(i+1));

min

(
k

min
i=1

hUai , h
U
ak+1

)

)]

=
[( k+1∏

i=1

(aL1(i))
μ(A(i))−μ(A(i+1)),

k+1∏

i=1

(aL2(i))
μ(A(i))−μ(A(i+1)),

k+1∏

i=1

(aL3(i))
μ(A(i))−μ(A(i+1)),

k+1∏

i=1

(aL4(i))
μ(A(i))−μ(A(i+1)); k+1

min
i=1

hLai

)

,

( k+1∏

i=1

(aU1(i))
μ(A(i))−μ(A(i+1)),

k+1∏

i=1

(aU2(i))
μ(A(i))−μ(A(i+1)),

k+1∏

i=1

(aU3(i))
μ(A(i))−μ(A(i+1)),

k+1∏

i=1

(aU4(i))
μ(A(i))−μ(A(i+1)); k+1

min
i=1

hUai

)]

.

That is, for n = k + 1, Eq. (4.1) still holds.
Therefore, for all n, the Eq. (4.1) holds. �

Remark 4.3 Let ãi = [(aL1i , aL2i , aL3i , aL4i ; hLai ), (aU1i , a
U
2i , a

U
3i ,

aU4i ; hUai )] and b̃i = [(bL1i , bL2i , bL3i , bL4i ; hLbi ), (bU1i , b
U
2i , b

U
3i ,

bU4i ; hUbi )] (i = 1, 2, . . . , n) be two collections of GITFNs

on X. aLji , a
U
ji , b

L
ji , b

U
ji ∈ [0, 1] for any i and j = 1, 2, 3, 4.

If we assume that TP (aUji , b
U
ji ) = aUji · bUji , then TP is one

of the basic t-norm, called the product, which satisfies the
axioms of Definition 2.2. The associativity of t-norm allows
us to extend the product TP in a unique way to an n-array
operation in the usual way by induction. Define for each
n-tuple (x1, x2, . . . , xn) ∈ [0, 1]n :
TP (x1, x2, . . . , xn) =

n∏

i=1

xi .

Assume that xU1i = (aU1(i))
μ(A(i))−μ(A(i+1)), xU2i =

(aU2(i))
μ(A(i))−μ(A(i+1)), xU3i = (aU3(i))

μ(A(i))−μ(A(i+1)), xU4i =
(aU4(i))

μ(A(i))−μ(A(i+1)), x L1i = (aL1(i))
μ(A(i))−μ(A(i+1)), x L2i =

(aL2(i))
μ(A(i))−μ(A(i+1)), x L3i = (aL3(i))

μ(A(i))−μ(A(i+1)), x L4i =
(aL4(i))

μ(A(i))−μ(A(i+1)). Now Theorem 4.2 further implies

GITFNGAμ(ã1, ã2, . . . , ãn)

=
[(

TP (x L11, x
L
12, . . . , x

L
1n), TP (x L21, x

L
22, . . . , x

L
2n),

TP (x L31, x
L
32, . . . , x

L
3n), TP (x L41, x

L
42, . . . , x

L
4n);

n
min
i=1

hLai

)

,

(

TP (xU11, x
U
12, . . . , x

U
1n), TP (xU21, x

U
22, . . . , x

U
2n),

TP (xU31, x
U
32, . . . , x

U
3n), TP (xU41, x

U
42, . . . , x

U
4n);

n
min
i=1

hUai

)]

.

Thus the GITFNGAμ operator can be represented by one of
the basic t-norm TP .

Proofs of the following corollaries can be done easily by
using the results from Sect. 3, Definition 4.1 and Theorem
4.2.

Corollary 4.4 Let ãi = [(aL1i , aL2i , aL3i , aL4i ; hLai ), (aU1i , a
U
2i ,

aU3i , a
U
4i ; hUai )] (i = 1, 2, . . . , n) be a collection of G I T FN

on X. If all ãi are equal (i = 1, 2, . . . , n) such that hLai =
hLak and h

U
ai = hUak and a

L
ji = aLjk and aUji = aUjk for all i = 1,

2, . . . , n, k = 1, 2, . . . , n and j = 1, 2, 3, 4, that is, ã(i) =
ã(k). Thus, for all i, ãi = ã = [(aL1 , aL2 , aL3 , aL4 ; hLa ), (aU1 ,

aU2 , aU3 , aU4 ; hUa )]. Therefore

GITFNGAμ(ã1, ã2, . . . , ãn) = ã.

Corollary 4.5 Let ãi = [(aL1i , aL2i , aL3i , aL4i ; hLai ), (aU1i , a
U
2i ,

aU3i , a
U
4i ; hUai )] and b̃i = [(bL1i , bL2i , bL3i , bL4i ; hLbi ), (bU1i , b

U
2i ,

bU3i ,b
U
4i ;hUbi )] (i =1,2, . . . ,n)be two collections ofG I T FN

on X, and μ be a λ-fuzzy measure on X. Let (·) indicate a
permutation on X such that ã(1) ≤ · · · ≤ ã(n) and b̃(1) ≤ · · ·
≤ b̃(n). If aLji ≤ bLji and aUji ≤ bUji for all i and j = 1, 2, 3,

4, that is, ã(i) ≤ b̃(i), then

GITFNGAμ(ã1, ã2, . . . , ãn)≤GITFNGAμ(b̃1, b̃2, . . . , b̃n).

Corollary 4.6 Let ãi = [(aL1i , aL2i , aL3i , aL4i ; hLai ), (aU1i , a
U
2i ,

aU3i , a
U
4i ; hUai )] (i = 1, 2, . . . , n) be a collection of G I T FN

on X and μ be a λ-fuzzy measure on X. If

ã− =
[(

min
i
aL1i ,min

i
aL2i ,min

i
aL3i ,min

i
aL4i ;min

i
hLai

)

,

(

min
i
aU1i ,min

i
aU2i ,min

i
aU3i ,min

i
aU4i ;min

i
hUai

)]

ã+ =
[(

max
i

aL1i ,max
i

aL2i ,max
i

aL3i ,max
i

aL4i ;max
i

hLai

)

,

(

max
i

aU1i ,max
i

aU2i ,max
i

aU3i ,max
i

aU4i ;max
i

hUai

)]

then

ã− ≤ GITFNGAμ(ã1, ã2, . . . , ãn) ≤ ã+.

Corollary 4.7 Let ãi = [(aL1i , aL2i , aL3i , aL4i ; hLai ), (aU1i , a
U
2i ,

aU3i , a
U
4i ; hUai )] (i = 1, 2, . . . , n) be a collection of G I T FNs
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on X and μ be a λ-fuzzy measure on X. If s̃ = [(aL1 , aL2 , aL3 ,

aL4 ; hLs ), (aU1 , aU2 , aU3 , aU4 ; hUs )] is a G I T FN on X, then

GTIFGAμ(ã1 · s̃, ã2 · s̃, . . . , ãn · s̃)
= GTIFGAμ(ã1, ã2, . . . , ãn) · s̃.

Corollary 4.8 Let ãi = [(aL1i , aL2i , aL3i , aL4i ; hLai ), (aU1i , a
U
2i ,

aU3i , a
U
4i ; hUai )] (i = 1, 2, . . . , n) be a collection of G I T FNs

on X and μ be a λ-fuzzy measure on X. If v > 0, then

GITFNGAμ((ã1)
v, (ã2)

v, . . . , (ãn)
v)

= (GITFNGAμ(ã1, ã2, . . . , ãn)
)v

.

Corollary 4.9 Let ãi = [(aL1i , aL2i , aL3i , aL4i ; hLai ), (aU1i , a
U
2i ,

aU3i , a
U
4i ; hUai )] (i = 1, 2, . . . , n) be a collection of G I T FNs

on X and μ be a λ-fuzzy measure on X. If v > 0 and s̃ =
[(aL1 , aL2 , aL3 , aL4 ; hLs ), (aU1 , aU2 , aU3 , aU4 ; hUs )] is a G I T FN
on X, then

GITFNGAμ((ã1)
v · s̃, (ã2)v · s̃, . . . , (ãn)v · s̃)

= (GITFNGAμ(ã1, ã2, . . . , ãn))
v · s̃.

Corollary 4.10 Let ãi = [(aL1i , aL2i , aL3i , aL4i ; hLai ), (aU1i , a
U
2i ,

aU3i , a
U
4i ; hUai )] (i = 1, 2, . . . , n) be a collection of G I T FNs

on X and μ be a λ-fuzzy measure on X.

1. If μ(A) = 1 for any A ∈ P(X), then

GITFNGAμ(ã1, ã2, . . . , ãn) =
[

(aL1(n), a
L
2(n), a

L
3(n),

× aL4(n);
n

min
i=1

hLai ), (a
U
1(n), a

U
2(n), a

U
3(n), a

U
4(n);

n
min
i=1

hUai )

]

2. If μ(A) = 0 for any A ∈ P(X) and A 	= X, then

GITFNGAμ(ã1, ã2, . . . , ãn) =
[

(aL1(1), a
L
2(1), a

L
3(1),

× aL4(1);
n

min
i=1

hLai ), (a
U
1(1), a

U
2(1), a

U
3(1), a

U
4(1);

n
min
i=1

hUai )

]

3. For any A, B ∈ P(X) such that |A| = |B|, if μ(A) =
μ(B) and μ{(i), . . . , (n)} = n−i+1

n , 1 ≤ i ≤ n, then

GITFNGAμ(ã1, ã2, . . . , ãn)

=
[( n∏

i=1

(aL1(i))
1
n ,

n∏

i=1

(aL2(i))
1
n ,

n∏

i=1

(aL3(i))
1
n ,

n∏

i=1

(aL4(i))
1
n ; n

min
i=1

hLai

)

,

( n∏

i=1

(aU1(i))
1
n ,

n∏

i=1

(aU2(i))
1
n ,

n∏

i=1

(aU3(i))
1
n ,

n∏

i=1

(aU4(i))
1
n ; n

min
i=1

hUai

)]

5 GITFN group decision making process

It is reasonable to employ the Choquet integral in terms of
the λ-fuzzy measure to aggregate the performance values
instead of the weighted average method, since the Choquet
integral does not assume the independence of one element
from another.Choquet integral is defined as follows.

Definition 5.1 [19] Let X = {x1, x2, . . . , xn} be a universe
of discourse, g be a positive real-valued function on X, and
μ be a λ-fuzzy measure on X. The discrete Choquet integral
of g with respect to μ is defined by

Cμ(g) =
n∑

i=1

g(x(i))[μ(A(i)) − μ(A(i+1))],

where (·) indicates a permutation on X such that g(x(1)) ≤
g(x(2)) ≤ · · · ≤ g(x(n)).Also A(i) = {x(i), . . . , x(n)}, A(n+1)

= φ.

For further properties of Chouquet integral we refer to
[7,9,19,31].

In general, multi-criteria group decision making problem
includes uncertain and imprecise data and information. We
consider the multi-criteria group decision making problems
where all the criteria values are expressed in GIT FNs, and
interaction phenomena among the decisionmaking criteria or
preference of decisionmakers are taken into account. The fol-
lowing notations are used to depict the considered problems:

E = {e1, e2, . . . , er } is the set of the experts involved in
the decision process;

A = {a1, a2, . . . , am} is the set of the considered alterna-
tives;

C = {c1, c2, . . . , cn} is the set of the criteria used for
evaluating the alternatives.

In group decisionmaking problems, aggregation of expert
opinions is very important to appropriately perform eval-
uation process. In the following, Choquet integral-based
TOPSIS is proposed for multi-criteria GIT FN group deci-
sion making where expert opinions are aggregated by the
GIT FNGA operator, which involves the following steps:

Step 1. As for every alternative ai (i = 1, 2, . . . , m), each
expert ek (k = 1, 2, . . . , r), is invited to express
his/her individual evaluation or preference according
to each criteria c j ( j = 1, 2, . . . , n), by a GIT FNs
ãki j = [(aL

1i j k
, aL

2i j k
, aL

3i j k
, aL

4i j k
; hLai jk ), (aU

1i j k
, aU

2i j k
,

aU
3i j k

, aU
4i j k

; hUai jk )] (i = 1, 2, . . . , m; j = 1, 2, . . . ,

n; k = 1, 2, . . . , r),where [(aL
1i j k

, aL
2i j k

, aL
3i j k

, aL
4i j k

;
hLai jk

), (aU
1i j k

, aU
2i j k

, aU
3i j k

, aU
4i j k

; hUai jk )] indicates the
uncertain degree that expert ek considers what the
alternative ai should satisfy the criteria c j . Then we
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can obtain a decision making matrix as follows:

Rk =

⎛

⎜
⎜
⎜
⎝

ãk11 ãk12 · · · ãk1n
ãk21 ãk22 · · · ãk2n
...

...
. . .

...

ãkm1 ãkm2 · · · ãkmn

⎞

⎟
⎟
⎟
⎠

Step 2. Confirm the fuzzy density μk = μ(ek) of each
expert. According to Eq. (2.3), parameter λ1 of
expert can be determined.

Step 3. By Definition 3.1, ãki j is reordered such that ã(k)
i j ≤

ã(k+1)
i j .

Utilize the generalized interval-valued trapezoidal
fuzzy Choquet integral operator

ãi j = GITFNGAμ(ã1i j , ã
2
i j , . . . , ã

r
i j )

=
[( r∏

k=1

(aL1i j (k) )
μ(A(k))−μ(A(k+1)),

r∏

k=1

(aL2i j (k) )
μ(A(k))−μ(A(k+1)),

r∏

k=1

(aL3i j (k) )
μ(A(k))−μ(A(k+1)),

n∏

i=1

(aL4i j (k) )
μ(A(k))−μ(A(k+1)); n

min
i=1

hLai j(k)

)

,

( n∏

i=1

(aU1i j (k) )
μ(A(k))−μ(A(k+1)),

n∏

i=1

(aU2i j (k) )
μ(A(k))−μ(A(k+1)),

n∏

i=1

(aU3i j (k) )
μ(A(k))−μ(A(k+1)),

n∏

i=1

(aU4i j (k) )
μ(A(k))−μ(A(k+1)); n

min
i=1

hUai j(k)

)]

to aggregate all the GITFN decision matrices Rk

= (ãki j )m×n (k = 1, 2, . . . , r) into a complex

GITFN decisionmatrix Rk = (ãki j )m×n,where ãi j =
[(aL1i j , aL2i j , aL3i j , aL4i j ; hLai j ), (aU1i j , a

U
2i j , a

U
3i j , a

U
4i j ;

hUai j )](i = 1, 2, . . . ,m; j = 1, 2, . . . , n), A(k) =
{e(k), . . . , e(r)}, A(r+1) = φ, and μ(A(k)) can be
calculated by Eq. (2.2).

Step 4. Let J1 be a collection of benefit criteria (i.e., the
larger c j , the greater preference) and J2 be a collec-
tion of cost criteria (i.e., the smaller c j , the greater
preference). The generalized interval-valued trape-
zoidal fuzzy positive-ideal solution (GIT-FPIS),

denoted as α̃+ = (α̃+
1 α̃+

2 . . . α̃+
n ), and the general-

ized interval-valued trapezoidal fuzzy negative-ideal
solution (GIT-FNIS), denoted as α̃− = (α̃−

1 α̃−
2

. . . α̃−
n ), are defined as follows:

α̃+ =
[((

max
i

aL1i j ,max
i

aL2i j ,max
i

aL3i j ,max
i

aL4i j ;max
i

hLai j

)

| j ∈ J1,

(

min
i
aL1i j ,min

i
aL2i j ,min

i
aL3i j ,min

i
aL4i j ;min

i
hLai j

)

| j ∈ J2

)

,

((

max
i

aU1i j ,max
i

aU2i j ,max
i

aU3i j ,max
i

aU4i j ;max
i

hUai j

)

| j ∈ J1,

(

min
i
aU1i j ,min

i
aU2i j ,min

i
aU3i j ,min

i
aU4i j ;min

i
hUai j

)

| j ∈ J2

)]

i = 1, 2, . . . ,m,

α̃+ = (α̃+
1 α̃+

2 . . . α̃+
n ),

where α̃+
j = [(αL+

1 j , αL+
2 j , αL+

3 j , αL+
4 j ; hL+

α j
), (αU+

1 j ,

αU+
2 j , αU+

3 j , αU+
4 j ; hU+

α j
)] ( j = 1, 2, . . . , n).

α̃− =
[((

min
i
aL1i j ,min

i
aL2i j ,min

i
aL3i j ,min

i
aL4i j ;min

i
hLai j

)

| j ∈ J1,

(

max
i

aL1i j ,max
i

aL2i j ,max
i

aL3i j ,max
i

aL4i j ;max
i

hLai j

)

| j ∈ J2

)

,

((

min
i
aU1i j ,min

i
aU2i j ,min

i
aU3i j ,min

i
aU4i j ;min

i
hUai j

)

| j ∈ J1,

(

max
i

aU1i j ,max
i

aU2i j ,max
i

aU3i j ,max
i

aU4i j ;max
i

hUai j

)

| j ∈ J2

)]

i = 1, 2, . . . ,m,

α̃− = (α̃−
1 α̃−

2 . . . α̃−
n ),

where α̃−
j = [(αL−

1 j , αL−
2 j , αL−

3 j , αL−
4 j ; hL−

α j
), (αU−

1 j ,

αU−
2 j , αU−

3 j , αU−
4 j ; hU−

α j
)] ( j = 1, 2, . . . , n).

Moreover, we denote the alternatives ai (i = 1, 2,
. . . , m) by xi = (ãi1, ãi2, . . . , ãin).

Step 5. Confirm the fuzzy density μ j = μ(c j ) of each crite-
rion. According to Eq. (2.3), parameter λ2 of criteria
can be determined.

Step 6. Calculate the distance between the alternative xi and
the GIT-FPIS α̃+ and the distance between the alter-
native xi and the GIT-FNIS α̃−, respectively:

di (xi , α̃
+) =

n∑

j=1

di( j)(ãi j , α̃
+
j )(μ(A( j)) − μ(A( j+1))),

(5.1)

where di j (ãi j , α̃
+
j ) = 1

8 (|αL+
1 j × hL+

α j
− aL1i j × hLai j |

+ |αL+
2 j × hL+

α j
− aL2i j × hLai j | + |αL+

3 j × hL+
α j

−
aL3i j × hLai j | + |αL+

4 j × hL+
α j

− aL4i j × hLai j | + |αU+
1 j ×

hU+
α j

− aU1i j × hUai j | + |αU+
2 j × hU+

α j
− aU2i j × hUai j |

+ |αU+
3 j × hU+

α j
− aU3i j × hUai j | + |αU+

4 j × hU+
α j

−
aU4i j×hUai j |), so that di(1)(ãi j , α̃+

j )≤ di(2)(ãi j , α̃
+
j )≤
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· · · ≤ di(n)(ãi j , α̃
+
j ), A( j) = {c( j), . . . , c(n)}, A(n+1)

= φ, μ(A( j)) can be calculated by Eq. (2.2)

di (xi , α̃
−) =

n∑

j=1

di( j)(ãi j , α̃
−
j )(μ(A( j))

−μ(A( j+1))), (5.2)

where di j (ãi j , α̃
−
j ) = 1

8 (|αL−
1 j × hL−

α j
− aL1i j × hLai j |

+ |αL−
2 j × hL−

α j
− aL2i j × hLai j | + |αL−

3 j × hL−
α j

−
aL3i j × hLai j | + |αL−

4 j × hL−
α j

− aL4i j × hLai j | + |αU−
1 j ×

hU−
α j

− aU1i j × hUai j | + |αU−
2 j × hU−

α j
− aU2i j × hUai j | +

|αU−
3 j ×hU−

α j
− aU3i j ×hUai j | + |αU−

4 j ×hU−
α j

− aU4i j ×
hUai j |), so that di(1)(ãi j , α̃−

j )≤ di(2)(ãi j , α̃
−
j )≤· · · ≤

di(n)(ãi j , α̃
−
j ), A( j) = {c( j), . . . , c(n)}, A(n+1) = φ,

μ(A( j)) can be calculated by Eq. (2.2)
Step 7. Calculate the closeness coefficient of each alterna-

tive:

r(xi )= di (xi , α̃−)

di (xi , α̃+)+di (xi , α̃−)
, i=1, 2, . . . ,m.

(5.3)

Step 8. Rank all the alternatives ai (i = 1, 2, . . . ,m)

according to the closeness coefficient r(xi ), the
greater the value r(xi ), the better the alternative ai.

6 Illustrative example

An investment company, wants to invest money in the best
option (adapted from [20]). There is possibility to invest
the money in five sectors: firstly in car industry, secondly
in food company, thirdly in computer company, fourthly in
arms company, and lastly in TV company. The decision of
investment company will be based on: (1) the risk analy-
sis; (2) the growth analysis; (3) the social–political impact
analysis, (4) the environmental impact analysis. There are
three Board members who will decide where to invest. Now
we utilized the proposed method where inter-dependent or
interactive characteristics among criteria and preference of
decision makers are taken into account to get the most desir-
able alternative.

Step 1. As there are five possible alternatives in which to
invest the money: a1 is a car industry, a2 is a food
company, a3 is a computer company, a4 is an arms
company, a5 is a TV company. The decision will be
according to the following four criteria: c1 is the risk
analysis; c2 is the growth analysis; c3 is the social–
political impact analysis; c4 is the environmental

Table 1 The decision matrix
R(1) c1 c2 c3 c4

a1 M G P P

a2 P M M G

a3 G M VG P

a4 VG P P M

a5 EG P VP G

Table 2 The decision matrix
R(2) c1 c2 c3 c4

a1 P VG VP M

a2 VP P G VG

a3 M P G VP

a4 EG M P G

a5 G M P VG

Table 3 The decision matrix
R(3) c1 c2 c3 c4

a1 G VG M VP

a2 M P VG M

a3 P VG G VP

a4 G G P M

a5 M P M EG

impact analysis. The five possible alternatives ai (i
= 1, 2, 3, 4, 5) are to be evaluated using the lin-
guistic information by three decision makers (Board
members) ek (k = 1, 2, 3), as listed in Tables 1, 2
and 3.

R1, R2 and R3 are matrices which are constructed by
using Tables 1, 2, 3 and 4.

R1 =

⎛

⎜
⎜
⎜
⎜
⎝

[(0.4025, 0.4525, 0.5375, 0.5675; 0.8), (0.32, 0.41, 0.58, 0.65; 1.0)]
[(0.0875, 0.1200, 0.1600, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)]
[(0.7825, 0.8150, 0.8850, 0.9075; 0.8), (0.72, 0.78, 0.92, 0.97; 1.0)]
[(0.9475, 0.9850, 0.9925, 0.9925; 0.8), (0.930, 0.980, 1.0, 1.0; 1.0)]
[(1.0000, 1.0000, 1.0000, 1.0000; 1.0), (1.000, 1.000, 1.0, 1.0; 1.0)]

[(0.7825, 0.8150, 0.8850, 0.9075; 0.8), (0.72, 0.78, 0.92, 0.97; 1.0)]
[(0.4025, 0.4525, 0.5375, 0.5675; 0.8), (0.32, 0.41, 0.58, 0.65; 1.0)]
[(0.4025, 0.4525, 0.5375, 0.5675; 0.8), (0.32, 0.41, 0.58, 0.65; 1.0)]
[(0.0875, 0.1200, 0.1600, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)]
[(0.0875, 0.1200, 0.1600, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)]

[(0.0875, 0.1200, 0.1600, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)]
[(0.4025, 0.4525, 0.5375, 0.5675; 0.8), (0.32, 0.41, 0.58, 0.65; 1.0)]
[(0.9475, 0.9850, 0.9925, 0.9925; 0.8), (0.930, 0.980, 1.0, 1.0; 1.0)]
[(0.0875, 0.1200, 0.1600, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)]
[(0.0075, 0.0075, 0.015, 0.0525; 0.8), (0.000, 0.00, 0.02, 0.07; 1.0)]

[(0.0875, 0.1200, 0.1600, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)]
[(0.7825, 0.8150, 0.8850, 0.9075; 0.8), (0.72, 0.78, 0.92, 0.97; 1.0)]
[(0.0875, 0.1200, 0.1600, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)]
[(0.4025, 0.4525, 0.5375, 0.5675; 0.8), (0.32, 0.41, 0.58, 0.65; 1.0)]
[(0.7825, 0.8150, 0.8850, 0.9075; 0.8), (0.72, 0.78, 0.92, 0.97; 1.0)]

⎞

⎟
⎟
⎟
⎟
⎠
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Table 4 The relationship
between GITFNs and degrees of
linguistic importance in a nine
linguistic term scale is from
Chen [11]

Linguistic terms Generalized interval-valued trapezoidal fuzzy numbers

Absolutely poor (AP) [(0.0, 0.0, 0.0, 0.0; 1.0), (0.0, 0.0, 0.0, 0.0; 1.0)]
Very poor (VP) [(0.0075, 0.0075, 0.015, 0.0525; 0.8), (0.0, 0.0, 0.02, 0.07; 1.0)]
Poor (P) [(0.0875, 0.12, 0.16, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)]
Medium poor (MP) [(0.2325, 0.255, 0.325, 0.3575; 0.8), (0.17, 0.22, 0.36, 0.42; 1.0)]
Medium (M) [(0.4025, 0.4525, 0.5375, 0.5675; 0.8), (0.32, 0.41, 0.58, 0.65; 1.0)]
Medium good (MG) [(0.65, 0.6725, 0.7575, 0.79; 0.8), (0.58, 0.63, 0.80, 0.86; 1.0)]
Good (G) [(0.7825, 0.815, 0.885, 0.9075; 0.8), (0.72, 0.78, 0.92, 0.97; 1.0)]
Very good (VG) [(0.9475, 0.985, 0.9925, 0.9925; 0.8), (0.93, 0.98, 1.0, 1.0; 1.0)]
Absolutely good (AG) [(1.0, 1.0, 1.0, 1.0; 1.0), (1.0, 1.0, 1.0, 1.0; 1.0)]

R2 =

⎛

⎜
⎜
⎜
⎜
⎝

[(0.0875, 0.1200, 0.1600, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)]
[(0.0075, 0.0075, 0.0150, 0.0525; 0.8), (0.0, 0.0, 0.020, 0.070; 1.0)]
[(0.4025, 0.4525, 0.5375, 0.5675; 0.8), (0.32, 0.41, 0.58, 0.65; 1.0)]
[(1.0000, 1.0000, 1.0000, 1.0000; 1.0), (1.00, 1.00, 1.00, 1.00; 1.0)]
[(0.7825, 0.8150, 0.8850, 0.9075; 0.8), (0.72, 0.78, 0.92, 0.97; 1.0)]

[(0.9475, 0.9850, 0.9925, 0.9925; 0.8), (0.93, 0.98, 1.00, 1.00; 1.0)]
[(0.0875, 0.1200, 0.1600, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)]
[(0.0875, 0.1200, 0.1600, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)]
[(0.4025, 0.4525, 0.5375, 0.5675; 0.8), (0.32, 0.41, 0.58, 0.65; 1.0)]
[(0.4025, 0.4525, 0.5375, 0.5675; 0.8), (0.32, 0.41, 0.58, 0.65; 1.0)]

[(0.0075, 0.0075, 0.015, 0.0525; 0.8), (0.0, 0.0, 0.020, 0.07; 1.0)]
[(0.7825, 0.815, 0.885, 0.9075; 0.8), (0.72, 0.78, 0.92, 0.97; 1.0)]
[(0.7825, 0.815, 0.885, 0.9075; 0.8), (0.72, 0.78, 0.92, 0.97; 1.0)]
[(0.0875, 0.1200, 0.16, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)]
[(0.0875, 0.120, 0.160, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)]

[(0.4025, 0.4525, 0.5375, 0.5675; 0.8), (0.32, 0.41, 0.58, 0.65; 1.0)]
[(0.9475, 0.9850, 0.9925, 0.9925; 0.8), (0.930, 0.980, 1.0, 1.0; 1.0)]
[(0.0075, 0.0075, 0.0150, 0.0525; 0.8), (0.0, 0.0, 0.020, 0.070; 1.0)]
[(0.7825, 0.8150, 0.8850, 0.9075; 0.8), (0.72, 0.78, 0.92, 0.97; 1.0)]
[(0.9475, 0.9850, 0.9925, 0.9925; 0.8), (0.930, 0.980, 1.0, 1.0; 1.0)]

⎞

⎟
⎟
⎟
⎟
⎠

R3 =

⎛

⎜
⎜
⎜
⎜
⎝

[(0.7825, 0.8150, 0.8850, 0.9075; 0.8), (0.72, 0.78, 0.92, 0.97; 1.0)]
[(0.4025, 0.4525, 0.5375, 0.5675; 0.8), (0.32, 0.41, 0.58, 0.65; 1.0)]
[(0.0875, 0.1200, 0.1600, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)]
[(0.7825, 0.8150, 0.8850, 0.9075; 0.8), (0.72, 0.78, 0.92, 0.97; 1.0)]
[(0.4025, 0.4525, 0.5375, 0.5675; 0.8), (0.32, 0.41, 0.58, 0.65; 1.0)]

[(0.9475, 0.985, 0.9925, 0.9925; 0.8), (0.93, 0.980, 1.0, 1.0; 1.0)]
[(0.0875, 0.120, 0.1600, 0.1825; 0.8), (0.04, 0.1, 0.18, 0.23; 1.0)]
[(0.9475, 0.985, 0.9925, 0.9925; 0.8), (0.93, 0.980, 1.0, 1.0; 1.0)]
[(0.7825, 0.815, 0.885, 0.9075; 0.8), (0.72, 0.78, 0.92, 0.97; 1.0)]
[(0.0875, 0.120, 0.160, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)]

[(0.4025, 0.4525, 0.5375, 0.5675; 0.8), (0.32, 0.41, 0.58, 0.65; 1.0)]
[(0.9475, 0.9850, 0.9925, 0.9925; 0.8), (0.930, 0.980, 1.0, 1.0; 1.0)]
[(0.7825, 0.8150, 0.8850, 0.9075; 0.8), (0.72, 0.78, 0.92, 0.97; 1.0)]
[(0.0875, 0.1200, 0.1600, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)]
[(0.4025, 0.4525, 0.5375, 0.5675; 0.8), (0.32, 0.41, 0.58, 0.65; 1.0)]

[(0.0075, 0.0075, 0.0150, 0.0525; 0.8), (0.0, 0.0, 0.020, 0.070; 1.0)]
[(0.4025, 0.4525, 0.5375, 0.5675; 0.8), (0.32, 0.41, 0.58, 0.65; 1.0)]
[(0.0075, 0.0075, 0.0150, 0.0525; 0.8), (0.0, 0.0, 0.020, 0.070; 1.0)]
[(0.4025, 0.4525, 0.5375, 0.5675; 0.8), (0.32, 0.41, 0.58, 0.65; 1.0)]
[(1.0000, 1.0000, 1.0000, 1.0000; 1.0), (1.000, 1.000, 1.0, 1.0; 1.0)]

⎞

⎟
⎟
⎟
⎟
⎠

Step 2. We first determine fuzzy density of each decision
maker, and its λ parameter. Suppose that μ(e1) =

0.4, μ(e2) = 0.4, μ(e3) = 0.4, then λ of expert can
be determined:
λ1 = −0.44. According to Eq. (2.2), we have μ(e1,
e2) = μ(e1, e3) = μ(e2, e3) = 0.73, μ(e1, e2, e3)
= 1.

Step 3. By Definition 3.1, ãki j is reordered such that ã(k)
i j ≤

ã(k+1)
i j , then utilize the GIT FNGA operator

ãi j = GITFNGAμ(ã1i j , ã
2
i j , ã

3
i j )

=
[( 3∏

k=1

(aL1i j (k) )
μ(A(k))−μ(A(k+1)),

3∏

k=1

(aL2i j (k) )
μ(A(k))−μ(A(k+1)),

3∏

k=1

(aL3i j (k) )
μ(A(k))−μ(A(k+1)),

3∏

i=1

(aL4i j (k) )
μ(A(k))−μ(A(k+1)); 3

min
i=1

hLai j(k)

)

,

( 3∏

i=1

(aL1i j (k) )
μ(A(k))−μ(A(k+1)),

3∏

i=1

(aL2i j (k) )
μ(A(k))−μ(A(k+1)),

3∏

i=1

(aL3i j (k) )
μ(A(k))−μ(A(k+1)),

3∏

i=1

(aL4i j (k) )
μ(A(k))−μ(A(k+1)); 3

min
i=1

hUai j(k)

)]

to aggregate all the generalized interval-valued
trapezoidal fuzzy decision matrices Rk = (ãi j )m×n

(k = 1, 2, 3) into a complex generalized interval
trapezoidal fuzzy decision matrix R = (ãi j )m×n as
follows:
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R =

⎛

⎜
⎜
⎜
⎜
⎝

[(0.3478, 0.4001, 0.4731, 0.5041; 0.8), (0.2525, 0.3623, 0.5086, 0.5763; 1.0)]
[(0.0830, 0.0965, 0.1371, 0.2737; 0.8), (0.0000, 0.0000, 0.2957, 0.2528; 1.0)]
[(0.3478, 0.4001, 0.4731, 0.5041; 0.8), (0.2525, 0.3623, 0.5086, 0.5763; 1.0)]
[(0.9194, 0.9416, 0.9652, 0.9717; 0.8), (0.8935, 0.9289, 0.9777, 0.9918; 1.0)]
[(0.7213, 0.7546, 0.8123, 0.8311; 0.8), (0.6596, 0.7242, 0.8398, 0.8813; 1.0)]

[(0.8998, 0.9359, 0.9623, 0.9688; 0.8), (0.8679, 0.9214, 0.9777, 0.9918; 1.0)]
[(0.1611, 0.2041, 0.2598, 0.2873; 0.8), (0.0919, 0.1758, 0.2874, 0.3485; 1.0)]
[(0.3754, 0.4316, 0.4953, 0.5224; 0.8), (0.2797, 0.3969, 0.5258, 0.5833; 1.0)]
[(0.3478, 0.4001, 0.4731, 0.5041; 0.8), (0.2525, 0.3623, 0.5086, 0.5763; 1.0)]
[(0.1611, 0.2041, 0.2598, 0.2873; 0.8), (0.0919, 0.1758, 0.2874, 0.3485, 1.0)]

[(0.0830, 0.0965, 0.1371, 0.2737; 0.8), (0.0000, 0.0000, 0.2957, 0.2528; 1.0)]
[(0.7059, 0.7500, 0.8098, 0.8286; 0.8), (0.6408, 0.7183, 0.8398, 0.8813; 1.0)]
[(0.8447, 0.8792, 0.9265, 0.9406; 0.8), (0.7976, 0.8546, 0.9512, 0.9819, 1.0)]
[(0.0875, 0.1200, 0.1600, 0.1825; 0.8), (0.0400, 0.1000, 0.1800, 0.2300; 1.0)]
[(0.0830, 0.0965, 0.1371, 0.2052; 0.8), (0.0000, 0.0000, 0.1588, 0.2528; 1.0)]

[(0.0830, 0.0965, 0.1371, 0.2737; 0.8), (0.0000, 0.0000, 0.2957, 0.2528; 1.0)]
[(0.7059, 0.7500, 0.8098, 0.8286, 0.8), (0.6408, 0.7183, 0.8398, 0.8813; 1.0)]
[(0.0200, 0.0227, 0.0387, 0.1639; 0.8), (0.0000, 0.0000, 0.1917, 0.1127; 1.0)]
[(0.5251, 0.5726, 0.6562, 0.6847; 0.8), (0.4426, 0.5303, 0.6975, 0.7629; 1.0)]
[(0.9194, 0.9416, 0.9652, 0.9717; 0.8), (0.8935, 0.9289, 0.9777, 0.9918; 1.0)]

⎞

⎟
⎟
⎟
⎟
⎠

Step 4. Since [(1, 1, 1, 1; 1), (1, 1, 1, 1; 1)] and [(0, 0,
0, 0; 0), (0, 0, 0, 0; 0)] are the largest and small-
est generalized interval trapezoidal fuzzy numbers,
respectively. For cost criteria c1, c4 and benefit cri-
teria c2, c3 GIT-FPIS α̃+ and GIT-FNIS α̃− can be
simply denoted as follows:
α̃+ = ([(0, 0, 0, 0; 0), (0, 0, 0, 0; 0)] [(1, 1, 1, 1; 1), (1, 1, 1, 1; 1)]
[(1, 1, 1, 1; 1), (1, 1, 1, 1; 1)] [(0, 0, 0, 0; 0), (0, 0, 0, 0; 0)])

α̃− = ([(1, 1, 1, 1; 1), (1, 1, 1, 1; 1)] [(0, 0, 0, 0; 0), (0, 0, 0, 0; 0)]
[(0, 0, 0, 0; 0), (0, 0, 0, 0; 0)] [(1, 1, 1, 1; 1), (1, 1, 1, 1; 1)])

Denote the alternatives ai (i = 1, 2, . . . , 5) by xi =
(ãi1 ãi2 ãi3 ãi4):

Step 5. We determine fuzzy density of each criterion, and its
parameter. Suppose thatμ(c1) = 0.4, μ(c2) = 0.25,
μ(c3) = 0.37, μ(c4) = 0.20, according to Eq. (2.3),
the λ of criteria can be determined: λ2 = −0.44. By
Eq. (2.2), we have μ(c1, c2) = 0.6, μ(c1, c3) = 0.7,
μ(c1, c4) = 0.56, μ(c2, c3) = 0.68, μ(c2, c4) =
0.43, μ(c3, c4) = 0.54, μ(c1, c2, c3) = 0.88, μ(c1,
c2, c4) = 0.75, μ(c2, c3, c4) = 0.73, μ(c1, c3, c4)
= 0.84, μ(c1, c2, c3, c4) = 1.

Step 6. According to Eqs. (5.1) and (5.2), respectively, we
calculate that
d1(x1, α̃+) = 0.344029, d1(x1, α̃−) = 0.7281649,
d2(x2, α̃+) = 0.589855, d2(x2, α̃−) = 0.4898953,
d3(x3, α̃+) = 0.317579, d3(x3, α̃−) = 0.7377927,

d4(x4, α̃+) = 0.704097, d4(x4, α̃−) = 0.335438,
d5(x5, α̃+) = 0.823684, d5(x5, α̃−) = 0.2014597.

Step 7. According to Eq. (5.3), we calculate the closeness
coefficient of each alternative as follows:
r(x1) = 0.6791, r(x2) = 0.4537, r(x3) = 0.699,
r(x4) = 0.32268, r(x5) = 0.1965.

Step 8. Rank all the alternatives ai (i = 1, 2, . . . , 5) accord-
ing to the closeness coefficient r(xi ):
a3 � a1 � a2 � a4 � a5.
Thus the most desirable alternative is a3.

7 Conclusion

We have studied the situation that the attributes in the
decision making problem are interactive or inter-dependent
and the evaluation values are GITFNs. We have defined
an aggregation operator with Choquet integral for gen-
eralized interval-valued trapezoidal fuzzy group decision
making process based TOPSIS, where the inter-dependent
of attributes is considered. The GITFS is the best way to deal
with uncertainty. GIT FNGA operator is used to aggregate
the values of decision makers. Generalized interval-valued
trapezoidal fuzzy positive and negative ideal solution cal-
culated by using distance based on Choquet integral. The
relative closeness coefficient is used to rank alternatives. The
properties of GITFNGA operator are studied, such as idem-
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potency, commutativity, boundedness and monotonicity. We
have applied this operator to the multi-criteria generalized
interval-valued trapezoidal fuzzy group decision making
with Choquet integral-based TOPSIS. Finally, an example
has been provided to show the feasibility of our proposed
decision making method. The proposed method is different
from all the previous techniques for group decision making
due to the fact that the proposed method uses generalized
interval trapezoidal fuzzy set theory with interdependent cri-
teria taken into account and GITFNGA operator. So it is
efficient and feasible for real-world decisionmaking applica-
tions. In future, we plan to continue working in the extension
and application of the developed multi-criteria generalized
interval trapezoidal fuzzy group decision making with Cho-
quet integral-based TOPSIS to some extended forms of
intuitionistic spaces and other domains.
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