

Anders Blomqvist / Getty Images

Soil Resources

Overview of Chapter 14

- The Soil System
- Soil Properties and Major Soil Types
- Environmental Problems Related to Soil
- Soil Conservation and Regeneration

Mudslide in Oso, WA (2014)

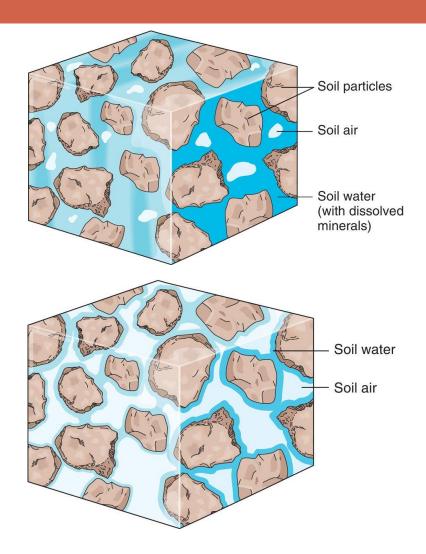
- Caused by heavy rainfall in erosion prone area
 - Iogging and poor management of area
 - Certain topographic areas need different management
- 41 people died in mudslide
- Soil as a resource and in need of protection
 For our benefit, as well

Soil

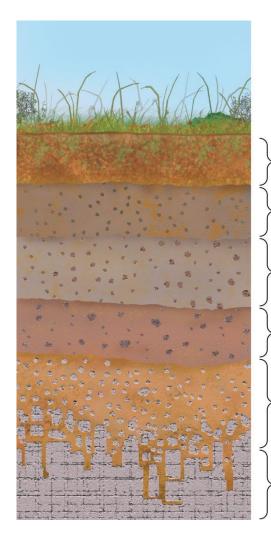
Uppermost layer of earth's crust that supports plants, animals and microbes

- Soil Forming Factors
 - Weathering of parent material
 - **Time**
 - Climate
 - Organisms
 - Topography

eung Vai Chi, Rosanna / Getty Images.



Soil Composition - "typical soil"


- Mineral Particles (45%)
 - Weathered rock
- Organic Material (5%)
 - Litter, animal dung, dead remains of plants and animals
 - Humus black organic matter remaining after most decomposition
 - Collective name for many different organic compounds
- □ Water (25%)
- □ Air (25%)

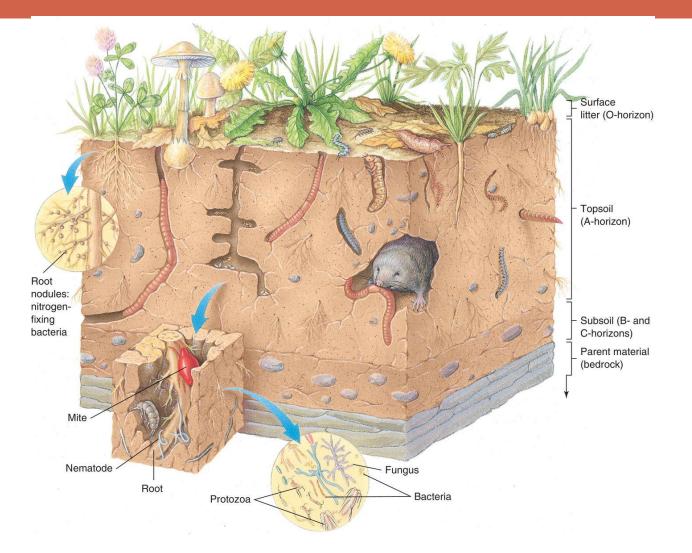
Soil Composition

- Pore space
 - 50% of soil
 - Soil air good for aeration
 - Soil water provides water to roots

Soil Horizons

O-horizon (accumulation of plant litter)

A-horizon (accumulation of organic matter and humus)

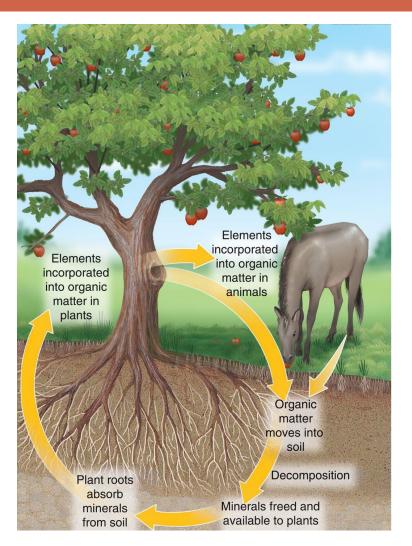

E-horizon (heavily leached)

B-horizon (accumulation of clay and nutrient minerals)

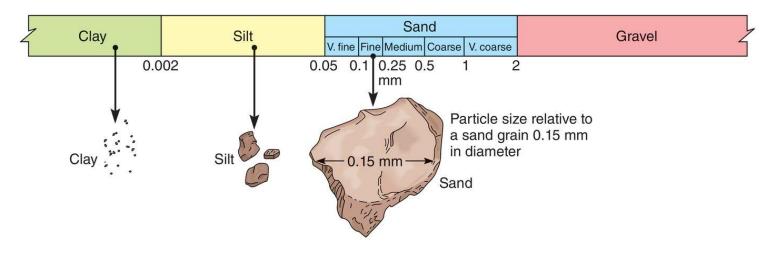
C-horizon (weathered pieces of rock)

Solid parent material (bedrock)

Soil Organisms

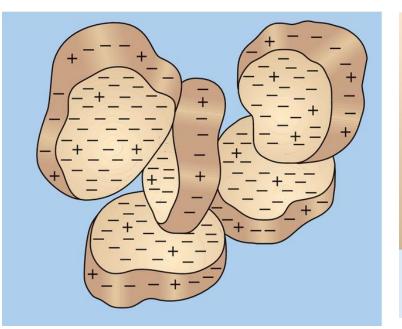


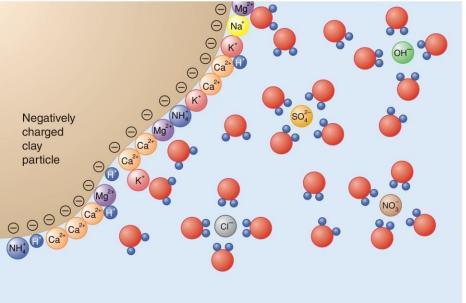
Soil Organisms


- There are millions of microorganisms in 1 tsp of fertile agricultural soil
- Soil organisms provide <u>ecosystem services</u>
 - Def: Important environmental benefits that ecosystems provide
 - Decaying and cycling organic material
 - Castings from gut of earthworms
 - Breaking down toxic materials
 - Cleansing water
 - Soil aeration
 - Mycorrhizae

Nutrient Cycling

 The pathway of various nutrient minerals or elements from the environment through organisms and back to the environment




- Soil Texture
 - Relative proportion of sand, silt and clay
 - Sand: 2mm–0.05mm
 - Silt: 0.05mm-0.002mm
 - □ Clay: >0.002mm

- Soil texture affects soil properties
- Coarse textured soil (sandy)
 - Excellent drainage
- Fine textured soil (high in clay)
 - Poor drainage
 - Low oxygen levels in soil
 - Due to negatively charged surface, able to hold onto important plant nutrients (K⁺, Ca²⁺, NO₂⁻)

Negative charge on clay attracts positivelycharged nutrients

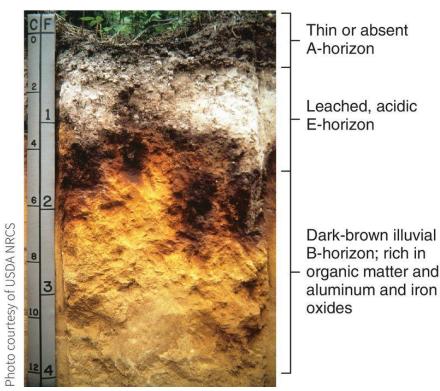
Table 14.1Soil Properties Affected by Soil Texture

Soil Texture Type

Soil Property	Sandy Soil	Loam	Clay Soil
Aeration	Excellent	Good	Poor
Drainage	Excellent	Good	Poor
Nutrient mineral–holding capacity	Low	Medium	High
Water-holding capacity	Low	Medium	High
Workability (tillage)	Easy	Moderate	Difficult

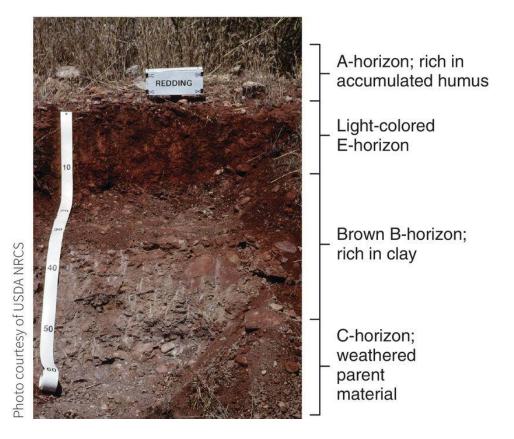
Soil Acidity

- Measured using pH scale
- pH of most soils range from 4–8
- Affects solubility of certain plant nutrients
- Optimum soil pH is 6–7, because nutrients are most available to plants at this pH
- Acid precipitation (primarily from industrial emissions)
 - Sulfuric and nitric acids
 - Alters soils, need to add calcium to reverse


Major Soil Groups

- Variations in soil forming factors cause variation in soils around globe
- Soil Taxonomy
 - Separates soils into 12 orders in U.S.
 - Subdivided into more than 20,000 soil series that vary by locality
- Five common soil orders
 - Spodosols, alfisols, mollisols, aridosols, oxisols

Spodosols


Form under coniferous forests

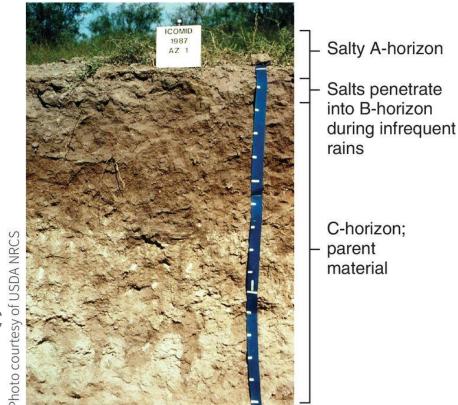
- Cold, ample precipitation, good drainage
- O-horizon composed of decaying needles
- E-horizon is ash-gray under thin A-horizon
- Not good farmland- too acidic

Alfisols

- Temperate deciduous forests
- Brown to gray-brown Ahorizon
- Precipitation high enough to leach most organics and nutrients out of O-, A- and Bhorizons
- Soil fertility maintained by leaf litter

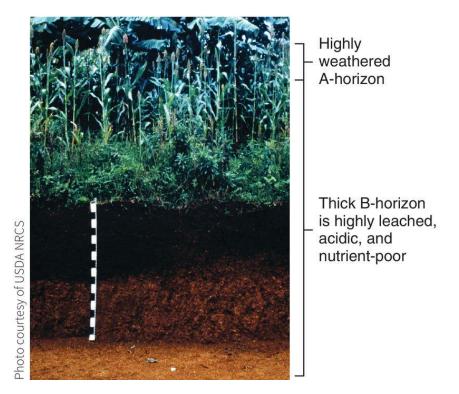
Mollisols

- Found in temperate, semi-arid grassland
- Very fertile soil
- Thick, dark brown/ black A-horizon
- Soluble nutrients stay in A-horizon due to low leaching
- Grow most grains
- Deep rooting grasses help form



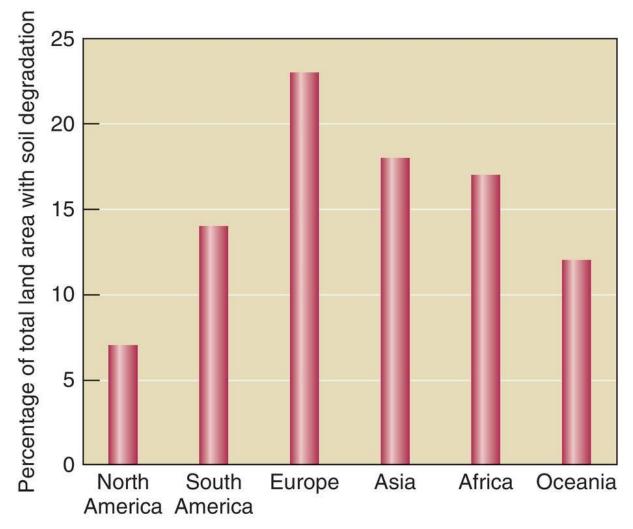
Thick dark – A-horizon; rich in humus

> Thick B-horizon; rich in calcium carbonate in deeper parts


Aridisols

- Found in arid regions of all continents
- Low precipitation preclude leaching and growth of lush vegetation
- Development of salic (salty) horizon possible

- Found in tropical and subtropical areas with high precipitation
- Very little organic material accumulation due to fast decay rate
- B-horizon is highly leached and nutrient poor



Soil Problems

Soil Erosion

- Caused primarily by water and wind
- Wearing away or removal of soil (usually topsoil)
- Why a problem?
 - Causes a loss in soil fertility as organic material and nutrients are eroded
 - More fertilizers must be used to replace nutrients lost to erosion
- Accelerated by poor soil management practices

Soil Erosion, Desertification and Salinization

Soil Erosion

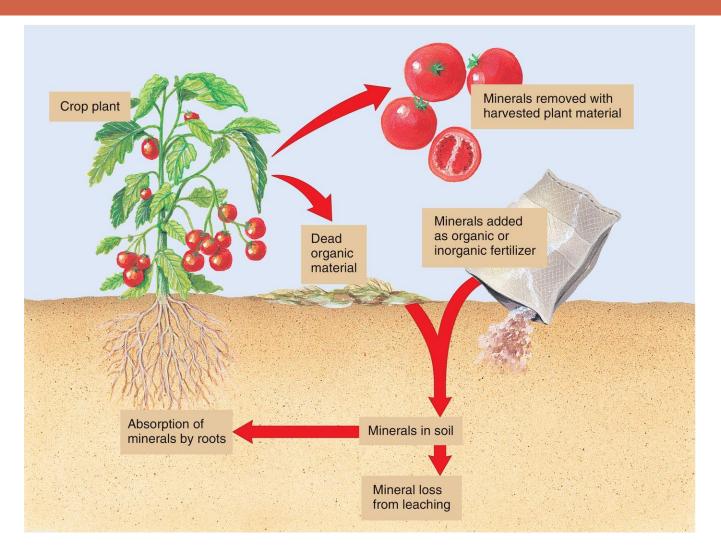
- Increases movement of sediment among ecosystems
 - Into streams and waterways
 - Increases water pollution
 - Degradation of water infrastructure (ex: dams)

Soil Erosion

 Accelerated by poor soil practices
 Not just agriculture
 National Resources Conservation Service estimates erosion (5 year intervals)

Water erosion in grain belt (large rainstorm can remove ~1mm, but can add up)

Annual loss of 75 billion metric tons of topsoil?
 Problems from loss and problems from where it goes


Case in Point: American Dust Bowl

- Great Plains has low precipitation and is subject to drought
 - 1930–1937 severe drought
 - No natural vegetation roots to hold soil in place
 - Replaced by annual crops
 - Winds blew soil as far east as NYC and DC.
 - Farmers went bankrupt

Soil Problems - Nutrient Mineral Depletion

Soil Problems - Salinization

Gradual accumulation of salt in the soil, usually due to improper irrigation techniques

Often in arid and semi-arid areas

Salt

concentrations get to levels toxic to plants

Jim Rlchardson / Getty Images

Soil Problems- Desertification

Degradation of once-fertile rangeland, agricultural land, or tropical dry forest into nonproductive desert

. Tumanowicz / Science Source

Soil Conservation

Conservation tillage

- Residues from previous year's crops are left in place to prevent soil erosion
- Crop rotation
 - Planting a series of different crops in the same field over a period of years

Soil Conservation

 Contour Plowing
 Plowing around hill instead of up-down
 Strip Cropping
 Alternating strips of different crops along natural contours

Terracing

Creating terraces on steep slopes to prevent erosion

Soil Conservation

 Cover cropping
 Crops grown between seasons of other crops
 Otherwise soil lies bare

Preserving Soil Fertility

Organic fertilizers

- Animal manure, crop residue, bone meal and compost
- Nutrient available to plants only as material decomposes
- Inorganic fertilizers
 - Manufactured from chemical compounds
 - Soluble
 - Fast acting, short lasting
 - Mobile- easily leach and pollute groundwater

Soil Reclamation

Two steps

Stabilize land to prevent further erosionRestoring soil to former fertility

- Best way to do this is <u>shelterbelts</u>
 - Row of trees planted to reduce wind erosion of soil

Soil Conservation Policies in US

Soil Conservation Act 1935

- Authorized formation of Soil Conservation Service, now called Natural Resource Conservation Service (NRCS)
- Assess soil damage and develop policies to improve soil
- □ Food Security Act (Farm Bill) 1985
 - Farmers with highly erodible soil had to change their farming practices
 - Instituted Conservation Reserve Program
 - Pays farmers to stop farming highly erodible land

Soil Conservation Policies in US

- Conservation Reserve Program (CRP)
 - Voluntary subsidy program
 - Pays farmers to stop producing crops on highly erodible land
 - Plant native grasses and retire production on it for 10-15 years
 - Land not harvested or used for production
 - Provides other ecosystem services such as habitat and increases water quality
 - Has saved ~7.1 metric tons of soil per hectare

Composting and Mulching

Make your own compost

- Degrade organic waste materials
- Add to property to naturally increase fertility

Mulch

- Weed control
- Reduces evaporation
- Natural mulches can add to soil organic content

