
	 Visit www.dummies.com/extras/linuxaio for great Dummies content online.

Book V
Administration

http://www.dummies.com/extras/linuxaio

Contents at a Glance

Contents at a Glance

Chapter 1: Introducing Basic System Administration 301
Taking Stock of System Administration Tasks..301
Introducing Some GUI Sysadmin Tools..303
How to Become root...305
Understanding How Linux Boots...308
Taking Stock of Linux System Configuration Files..314
Monitoring System Performance..317
Viewing System Information with the /proc File System..322
Understanding Linux Devices..325
Managing Loadable Driver Modules..328
Scheduling Jobs in Linux..330

Chapter 2: Managing Users and Groups . 337
Adding User Accounts..337
Understanding the /etc/passwd File...343
Managing Groups..344
Other User and Group Administration Values...345
Exploring the User Environment..347
Changing User and Group Ownership of Files..350

Chapter 3: Managing File Systems . . 351
Exploring the Linux File System...351
Sharing Files with NFS..358
Backing Up and Restoring Files..361
Accessing a DOS or Windows File System...368

Chapter 4: Working with Samba and NFS . . 373
Sharing Files with NFS..373
Setting Up a Windows Server Using Samba...377

Chapter 1: Introducing Basic
System Administration

In This Chapter
✓	Introducing the GUI sysadmin tools

✓	Becoming root

✓	Understanding the system startup process

✓	Taking stock of the system configuration files

✓	Viewing system information through the /proc file system

✓	Monitoring system performance

✓	Managing devices

✓	Scheduling jobs

S
ystem administration, or sysadmin, refers to whatever has to be done to
keep a computer system up and running. The system administrator (the

sysadmin) is whoever is in charge of taking care of these tasks.

If you’re running Linux at home or in a small office, you’re most likely the
system administrator for your systems. Or maybe you’re the system admin-
istrator for an entire LAN full of Linux systems. Regardless of your position
or title, this chapter will introduce you to basic system administration
procedures and show you how to perform some common tasks.

Taking Stock of System Administration Tasks
So what are system administration tasks? An off-the-cuff reply is anything
you have to do to keep the system running well. More accurately, though, a
system administrator’s duties include

	 ✦	 Adding and removing user accounts: You have to add new user
accounts and remove unnecessary user accounts. If a user forgets the
password, you have to change the password.

	 ✦	 Managing the printing system: You have to turn the print queue on or
off, check the print queue’s status, and delete print jobs if necessary.

	 ✦	 Installing, configuring, and upgrading the operating system and vari-
ous utilities: You have to install or upgrade parts of the Linux operating
system and other software that are part of the operating system.

Taking Stock of System Administration Tasks302

	 ✦	 Installing new software: You have to install software that comes in vari-
ous package formats, such as RPM or DEB. You also have to download
and unpack software that comes in source-code form — and then build
executable programs from the source code.

	 ✦	 Managing hardware: Sometimes you have to add new hardware and
install drivers so the devices work properly.

	 ✦	 Making backups: You have to back up files, whether to a DVD drive, a
USB memory stick, an external hard drive, or tape.

	 ✦	 Mounting and unmounting file systems: When you want to access the
files on a CD-ROM, for example, you have to mount that CD-ROM’s file
system on one of the directories in your Linux file system. You may also
have to mount old floppy disks from the archive closet, in both Linux
format and DOS format.

	 ✦	 Automating tasks: You have to schedule Linux tasks to take place auto-
matically (at specific times) or periodically (at regular intervals).

	 ✦	 Monitoring the system’s performance: You may want to keep an eye on
system performance to see where the processor is spending most of its
time and to see the amount of free and used memory in the system.

	 ✦	 Starting and shutting down the system: Although starting the system
typically involves nothing more than powering up the PC, you do have to
take some care when you shut down your Linux system. If your system
is set up for a graphical login screen, you can perform the shutdown
operation by choosing a menu item from the login screen. Otherwise,
use the shutdown command to stop all programs before turning off
your PC’s power switch.

	 ✦	 Monitoring network status: If you have a network presence (whether a
LAN, a DSL line, or a cable modem connection), you may want to check
the status of various network interfaces and make sure your network
connection is up and running.

	 ✦	 Setting up host and network security: You have to make sure that system
files are protected and that your system can defend itself against attacks
over the network.

	 ✦	 Monitoring security: You have to keep an eye on any intrusions, usually
by checking the log files.

That’s a long list of tasks! Not all these items are covered in this chapter, but
the rest of this minibook describes most of these tasks. The focus in this
chapter is on some of the basics, such as using the GUI tools, explaining how
to become root (the superuser), describing the system configuration files,
and showing you how to monitor system performance, manage devices, and
set up periodic jobs.

Book V
Chapter 1

Introducing
Basic System

Adm

inistration
Introducing Some GUI Sysadmin Tools 303

Introducing Some GUI Sysadmin Tools
Each Linux distribution comes with GUI tools for performing system
administration tasks. The GUI tools prompt you for input and then run
the necessary Linux commands to perform the task. Although there are
slight differences among them, the tools have become more and more
uniform as time has passed.

For example, Figure 1-1 shows the YaST Control Center available in SUSE,
and Figure 1-2 shows the System Settings interface in Ubuntu. Aside from
YaST having more options, you should notice that there is great similarity
between the interfaces.

	

Figure 1-1:
YaST
Control
Center is
your starting
point for
many
sysadmin
tasks in
SUSE.

	

The left side of the YaST Control Center shows icons for the categories of
tasks you can perform. The right side shows icons for specific tasks in the
currently selected category. When you click an icon on the right side of
the YaST Control Center, a new YaST window appears and enables you to
perform that task.

As you can see from the entries in the YaST Control Center, it is truly meant
to be a one-stop-shopping spot for all your sysadmin chores.

Figure 1-3 shows the Settings interface in Fedora and you can see that while
the icons differ a bit from those found in the other distributions, most of the
major chores an administrator deals with are capable of being addressed
from here.

Introducing Some GUI Sysadmin Tools304

	

Figure 1-2:
The Settings
interface
in Ubuntu
offers many
tools similar
to those in
YaST.

	

	

Figure 1-3:
The Settings
interface
in Fedora
differs a
bit from
Ubuntu.

	

Book V
Chapter 1

Introducing
Basic System

Adm

inistration
How to Become root 305

Since YaST is the most complete of the lot, Table 1-1 lists the common tasks
found in the Control Center.

Table 1-1	 Tasks by Category in the YaST Control Center
This Category Enables You to Configure or Manage the Following

Software Online Update, Installation Source, Installation in Xen
Environment, Installation into Directory, Media Check, Patch
CD Update, Software Management, System Update

Hardware Bluetooth, CD-ROM Drives, Disk Controller, Graphics Card
and Monitor, Hardware Information, IDE DMA Mode, Infrared
Device, Joystick, Keyboard Layout, Mouse Model, Printer,
Scanner, Sound, TV Card

System /etc/sysconfig Editor, Boot Loader Configuration, Boot
or Rescue, Date and Time, LVM, Language, PCI Device Drivers,
Partitioner, Power Management, Powertweak, Profile Manager,
System Backup, System Restoration, System Services (run level)

Network
Devices

DSL, Fax, ISDN, Modem, Network Card, Phone Answering
Machine

Network
Services

DHCP Server, DNS Server, DNS Host and Name, HTTP Server,
Host Names, Kerberos Client, LDAP Client, Mail Transfer Agent,
NFS Client, NFS Server, NIS Client, NIS Server, NTP Client,
Network Services (xinetd), Proxy, Remote Administration,
Routing, SLP Browser, Samba Client, Samba Server, TFTP Server

Security and
Users

Firewall, Group Management, Local Security, User
Management

Support Where you can find documentation and help resources

Miscellaneous Autoinstallation, Post a Support Query, Vendor Driver CD, View
Start-up Log, View System Log

How to Become root
You have to log in as root to perform system administration tasks. The
root user is the superuser and the only account with all the privileges
needed to do anything in the system.

Common wisdom says you should not normally log in as root. When you’re
root, you can easily delete all the files with one misstep — especially when
you’re typing commands. For example, you type the command rm *.html
to delete all files that have the .html extension. But what if you accidentally
press the spacebar after the asterisk (*)? The shell takes the command to be
rm * .html and — because * matches any filename — deletes everything
in the current directory. Seems implausible until it happens to you!

How to Become root306

Using the su - command
If you’re logged in as a normal user, how do you do any system administra-
tion chores? Well, you become root for the time being. If you’re working at a
terminal window or console, type

su -

Then enter the root password in response to the prompt. From this point,
you’re root. Do whatever you have to do. To return to your usual self, type

exit

That’s it! It’s that easy.

	 By the way, Knoppix has a root user but doesn’t have a root password, so
you can become root by simply typing su - at the shell prompt in a terminal
window. Also, Ubuntu doesn’t have a root user. To perform any task that
requires root privileges in Ubuntu, you must type sudo followed by the
command and then provide your normal user password when prompted.

In the Security minibook, the issue will be addressed more, but you can con-
trol who can use sudo through configuration files (or the YaST interface, as
Figure 1-4 shows).

	

Figure 1-4:
Configuring
who can
use sudo.

	

Book V
Chapter 1

Introducing
Basic System

Adm

inistration
How to Become root 307

Becoming root for the GUI utilities
Most Linux distributions include GUI utilities to perform system administra-
tion chores. If you use any of these GUI utilities to perform a task that requires
you to be root, the utility typically pops up a dialog box that prompts you
for the root password, as shown in Figure 1-5 (except in Ubuntu, where the
GUI tools prompt for your normal user password). Just type the password and
press Enter. If you don’t want to use the utility, click Cancel.

	

Figure 1-5:
Type
the root
password
and press
Enter to
gain root
privileges.

	

Recovering from a forgotten root password
To perform system administration tasks, you have to know the root pass-
word. What happens if you forget the root password? Not to worry. You can
reset the root password by following these steps:

	 1.	 Reboot the PC (select Reboot as you log out of the GUI screen) or
power up as usual.

		 As soon you see the graphical GRUB boot loader screen that shows the
names of the operating systems, you can boot. If your system runs the
LILO boot loader, press Ctrl+X, type linux single at the boot: prompt,
and press Enter. Then proceed to Step 4. If you don’t see the graphical
loader screen on reboot, it might not be installed (which can occasion-
ally occur when choosing to install from a Live CD). If this is the case, it
is recommended that you reinstall from the CD.

	 2.	 If you have more than one operating system installed, use the arrow
key to select Linux as your operating system and then press the A key.

		 GRUB prompts you for commands to add to its default boot command.

	 3.	 Press the spacebar, and then type single and press Enter.

		 Linux starts as usual but runs in a single-user mode that doesn’t require
you to log in. After Linux starts, you see the following command-line
prompt similar to the following:

sh-3.00#

Understanding How Linux Boots308

	 4.	 Type the passwd command to change the root password as follows:

sh-3.00# passwd
Changing password for user root.
New password:

	 5.	 Type the new root password that you want to use (it doesn’t appear
onscreen) and then press Enter.

		 Linux asks for the password again, like this:

Retype new password:

	 6.	 Type the password again and press Enter.

		 If you enter the same password both times, the passwd command
changes the root password.

	 7.	 Now type reboot and press Enter to reboot the PC.

		 After Linux starts, it displays the familiar login screen. Now you can log
in as root with the new password.

	 In SUSE Linux, in Step 3, type single init=/bin/sh (instead of single) and
before proceeding to Step 4, at the command-line prompt, type mount / -n -0
remount,rw. Then perform Steps 4 through 6 to change the root password.
After changing the password, type mount / -n -o remount,ro. Then continue
to Step 7 and reboot the PC.

	 Make sure that your Linux PC is physically secure. As these steps show,
anyone who can physically access your Linux PC can simply reboot, set a
new root password, and do whatever he or she wants with the system.
Another way to protect against resetting the password is to set a GRUB
password, which causes GRUB to require a valid password before it boots
Linux. Of course, you must then remember to enter the GRUB password
every time you boot your system!

Understanding How Linux Boots
Knowing the sequence in which Linux starts processes as it boots is impor-
tant. You can use this knowledge to start and stop services, such as the web
server and Network File System (NFS). The next few sections provide you
with an overview of how Linux boots and starts the initial set of processes.
These sections also familiarize you with the shell scripts that start various
services on a Linux system.

Understanding the init process
When Linux boots, it loads and runs the core operating system program
from the hard drive. The core operating system is designed to run other
programs. A process named init starts the initial set of processes on your
Linux system.

Book V
Chapter 1

Introducing
Basic System

Adm

inistration
Understanding How Linux Boots 309

To see the processes currently running on the system, type

ps ax | more

You get an output listing that starts like this:

PID TTY STAT TIME COMMAND
1 ? S 0:22 init [2]

The first column, with the heading PID, shows a number for each process.
PID stands for process ID (identification) — a sequential number assigned by
the Linux kernel. The first entry in the process list, with a PID of 1, is the init
process. It’s the first process, and it starts all other processes in your Linux
system. That’s why init is sometimes referred to as the mother of all processes.

What the init process starts depends on

	 ✦	 The run level, an identifier that identifies a system configuration in
which only a selected group of processes can exist.

	 ✦	 The contents of the /etc/inittab file, a text file that specifies which
processes to start at different run levels.

	 ✦	 A number of shell scripts that are executed at specific run levels.
(The scripts are located in the /etc/init.d directory and a number
of subdirectories in /etc — these subdirectories have names that
begin with rc.)

	 Most Linux distributions use seven run levels — 0 through 6. The meaning
of the run levels differs from one distribution to another. Table 1-2 shows the
meanings of the run levels and points out some of the actions specific to
Fedora, Debian, SUSE, Ubuntu, and Xandros.

Table 1-2	 Run Levels in Linux
Run Level Meaning

0 Shut down the system.

1 Run in single-user standalone mode (no one else can log in; you
work at the text console).

2 Run in multiuser mode (Debian, Ubuntu, and Xandros use run level
2 as the default run level).

3 Run in full multiuser mode (used for text mode login in Fedora and
SUSE).

4 Run in full multiuser mode (unused in Fedora and SUSE).

5 Run in full multiuser mode (used as the default run level with
graphical login in Fedora and SUSE).

6 Reboot the system.

Understanding How Linux Boots310

	 The current run level together with the contents of the /etc/inittab file
control which processes init starts in Linux. The default run level is 2 in
Debian, Ubuntu, and Xandros. In Fedora and SUSE, run level 3 is used for text
mode login screens and 5 for the graphical login screen. You can change the
default run level by editing a line in the /etc/inittab file.

To check the current run level, type the following command in a terminal
window:

/sbin/runlevel

In Debian, the runlevel command prints an output like this:

N 2

The first character of the output shows the previous run level (N means no
previous run level), and the second character shows the current run level
(2). In this case, the system started at run level 2. If you’re in a GUI desktop
in Fedora, the runlevel command should show 5 as the current run level.

Examining the /etc/inittab file
The /etc/inittab file is the key to understanding the processes that init
starts at various run levels. You can look at the contents of the file by using
the more command, as follows:

more /etc/inittab

	 To see the contents of the /etc/inittab file with the more command, you
don’t have to log in as root.

To interpret the contents of the /etc/inittab file, follow these steps:

	 1.	 Look for the line that contains the phrase initdefault.

		 Here’s that line from the /etc/inittab file from a Debian system:

id:2:initdefault:

		 That line shows the default run level. In this case, it’s 2.

	 2.	 Find all the lines that specify what init runs at run level 2.

		 Look for a line that has a 2 between the first two colons (:). Here’s a
relevant line in Debian:

l2:2:wait:/etc/init.d/rc 2

		 This line specifies that init executes the file /etc/init.d/rc with 2
as an argument.

If you look at the file /etc/init.d/rc in a Debian system, you find it’s a
shell script. You can study this file to see how it starts various processes for
run levels 1 through 5.

Book V
Chapter 1

Introducing
Basic System

Adm

inistration
Understanding How Linux Boots 311

	 Each entry in the /etc/inittab file tells init what to do at one or more
run levels — you simply list all run levels at which the process runs. Each
inittab entry has four fields — separated by colons — in the following
format:

	id:runlevels:action:process

Table 1-3 shows what each field means.

Table 1-3	 Fields in Each inittab Entry
Field Meaning

id A unique one- or two-character identifier. The init process
uses this field internally. You can use any identifier you want, as
long as you don’t use the same identifier on more than one line.

runlevels A sequence of zero or more characters, each denoting a
run level. For example, if the runlevels field is 12345, that
entry applies to each of the run levels 1 through 5. This field
is ignored if the action field is set to sysinit, boot, or
bootwait.

action What the init process will do with this entry. If this field
is initdefault, for example, init interprets the
runlevels field as the default run level. If this field is set
to wait, init starts the program or script specified in the
process field and waits until that process exits.

process Name of the script or program that init starts. Some settings
of the action field require no process field. For example,
when the action field is initdefault, there’s no need for a
process field.

Trying a new run level with the init command
To try a new run level, you don’t have to change the default run level in the
/etc/inittab file. If you log in as root, you can change the run level (and,
consequently, the processes that run in Linux) by typing init followed by the
run level.

For example, to put the system in single-user mode, type the following:

init 1

Thus, if you want to try run level 3 without changing the default run level in
/etc/inittab file, enter the following command at the shell prompt:

init 3

Understanding How Linux Boots312

The system ends all current processes and enters run level 3. By default, the
init command waits 20 seconds before stopping all current processes and
starting the new processes for run level 3.

	 To switch to run level 3 immediately, type the command init -t0 3. The
number after the -t option indicates the number of seconds init waits
before changing the run level.

You can also use the telinit command, which is simply a symbolic link
(a shortcut) to init. If you make changes to the /etc/inittab file and
want init to reload its configuration file, use the command telinit q.

Understanding the Linux startup scripts
The init process runs a number of scripts at system startup. In the fol-
lowing discussions, a Debian system is used as an example, but the basic
sequence is similar in other distributions — only the names and locations of
the scripts may vary.

	 If you look at the /etc/inittab file in a Debian system, you find the follow-
ing lines near the beginning of the file:

Boot-time system configuration/initialization script.
	si::sysinit:/etc/init.d/rcS

The first line is a comment line. The second line causes init to run the
/etc/init.d/rcS script — the first Linux startup script that init runs
in a Debian system. The rcS script performs many initialization tasks, such
as mounting the file systems, setting the clock, configuring the keyboard
layout, starting the network, and loading many other driver modules. The
rcS script performs these initialization tasks by calling many other scripts
and reading configuration files located in the /etc/rcS.d directory.

After executing the /etc/init.d/rcS script, the init process runs the
/etc/init.d/rc script with the run level as an argument. For example,
for run level 2, the following line in /etc/inittab specifies what init
executes:

l2:2:wait:/etc/init.d/rc 2

This example says init executes the command /etc/init.d/rc 2 and
waits until that command completes.

The /etc/init.d/rc script is somewhat complicated. Here’s how it works:

	 ✦	 It executes scripts in a directory corresponding to the run level. For
example, for run level 2, the /etc/init.d/rc script runs the scripts in
the /etc/rc2.d directory.

Book V
Chapter 1

Introducing
Basic System

Adm

inistration
Understanding How Linux Boots 313

	 ✦	 In the directory that corresponds with the run level, /etc/init.d/rc
looks for all files that begin with K and executes each of them with the
stop argument. This argument kills any currently running processes.
Then it locates all files that begin with S and executes each file with a
start argument. This argument starts the processes needed for the
specified run level.

To see it executed at run level 2, type the following command:

ls -l /etc/rc2.d

In the resulting listing, the K scripts — the files whose names begin with
K — stop (or kill) servers, whereas the S scripts start servers. The /etc/
init.d/rc script executes these files in the order in which they appear in
the directory listing.

Manually starting and stopping servers
In Linux, the server startup scripts reside in the /etc/init.d directory.
You can manually invoke scripts in this directory to start, stop, or restart
specific processes — usually servers. For example, to stop the FTP server
(the server program is vsftpd), type the following command:

/etc/init.d/vsftpd stop

If vsftpd is already running and you want to restart it, type the following
command:

/etc/init.d/vsftpd restart

You can enhance your system administration skills by familiarizing yourself
with the scripts in the /etc/init.d directory. To see its listing, type the
following command:

ls /etc/init.d

The script names give you some clue about which server the script can
start and stop. For example, the samba script starts and stops the processes
required for Samba Windows networking services. At your leisure, you may
want to study some of these scripts to see what each one does. You don’t
have to understand all the shell programming; the comments help you dis-
cover the purpose of each script.

Automatically starting servers at system startup
You want some servers to start automatically every time you boot the
system. The exact commands to configure the servers vary from one
distribution to another.

Taking Stock of Linux System Configuration Files314

	 In Fedora and SUSE, use the chkconfig command to set up a server to start
whenever the system boots into a specific run level. For example, if you start
the SSH server, you want the sshd server to start whenever the system
starts. You can make that happen by using the chkconfig command. To set
sshd to start whenever the system boots into run level 3, 4, or 5, type the
following command (while logged in as root):

	chkconfig --level 345 sshd on

	 In Fedora and SUSE, you can also use the chkconfig command to check
which servers are turned on or off. For example, to see the complete list of
all servers for all run levels, type the following command:

	chkconfig --list

	 In Debian, Ubuntu, and Xandros, you can use the update-rc.d command to
enable a server to start automatically at system startup. For example, to set
sshd to start automatically at the default run levels, type update-rc.d sshd
defaults in a terminal window while logged in as root. You can also specify
the exact run levels and the sequence number (the order in which each
server starts). To find out more about the update-rc.d command, type
man update-rc.d in a terminal window.

Taking Stock of Linux System Configuration Files
Linux includes a host of configuration files. All these files share text files that
you can edit with any text editor. To edit these configuration files, you must
log in as root. A selection of the most popular configuration files appears in
Table 1-4, along with a brief description of each. This table gives you an idea
of what types of configuration files a system administrator has to work with.
In many cases, Linux includes GUI utility programs to set up many of these
configuration files.

Table 1-4	 Some Linux Configuration Files
Configuration File Description

/boot/grub Location of files for the GRUB boot loader.

/boot/grub/menu.lst Configuration file for the boot menu that
GRUB displays before it boots your system.

/boot/System.map Map of the Linux kernel (maps kernel
addresses into names of functions and
variables).

/boot/vmlinuz The Linux kernel (the operating system’s
core).

Book V
Chapter 1

Introducing
Basic System

Adm

inistration
Taking Stock of Linux System Configuration Files 315

Configuration File Description

/etc/apache2/httpd.conf Configuration file for the Apache web
server (Debian).

/etc/apt/sources.list Configuration file that lists the sources —
FTP or websites or CD-ROM — from which
the Advanced Packaging Tool (APT) obtains
packages (Debian, Ubuntu, and Xandros).

/etc/at.allow Usernames of users allowed to use the
at command to schedule jobs for later
execution.

/etc/at.deny Usernames of users forbidden to use the
at command.

/etc/bashrc System-wide functions and aliases for the
bash shell (Fedora).

/etc/bash.bashrc System-wide functions and aliases for the
bash shell (Debian, SUSE, Ubuntu, and
Xandros).

/etc/cups/cupsd.conf Printer configuration file for the Common
Unix Printing System (CUPS) scheduler.

/etc/fonts Directory with font configuration files. (In
particular, you can put local font configu-
ration settings in the file /etc/fonts/
local.conf.)

/etc/fstab Information about file systems available
for mounting and where each file system
is to be mounted.

/etc/group Information about groups.

/etc/grub.conf The configuration for the GRUB boot loader
in Fedora and SUSE.

/etc/hosts List of IP numbers and their corresponding
hostnames.

/etc/hosts.allow Hosts allowed to access Internet services
on this system.

/etc/hosts.deny Hosts forbidden to access Internet services
on this system.

/etc/httpd/conf/httpd.
conf

Configuration file for the Apache web
server (Fedora).

/etc/init.d Directory with scripts to start and stop
various servers.

/etc/inittab Configuration file used by the init pro-
cess that starts all the other processes.

(continued)

Taking Stock of Linux System Configuration Files316

Configuration File Description

/etc/issue File containing a message to be printed
before displaying the text mode login
prompt (usually the distribution name
and the version number).

/etc/lilo.conf The configuration for the Linux Loader
(LILO) — one of the boot loaders that can
load the operating system from disk (pres-
ent only if you use the LILO boot loader).

/etc/login.defs Default information for creating user
accounts, used by the useradd command.

/etc/modprobe.conf Configuration file for loadable kernel mod-
ules, used by the modprobe command
(Fedora and SUSE).

/etc/modules.conf Configuration file for loadable modules
(Debian and Xandros).

/etc/mtab Information about currently mounted file
systems.

/etc/passwd Information about all user accounts. (Actual
passwords are stored in /etc/shadow.)

/etc/profile System-wide environment and startup file
for the bash shell.

/etc/profile.d Directory containing script files (with
names that end in .sh) that the /etc/
profile script executes.

/etc/init.d/rcS Linux initialization script in Debian, SUSE,
Ubuntu, and Xandros.

/etc/rc.d/rc.sysinit Linux initialization script in Fedora.

/etc/shadow Secure file with encrypted passwords for all
user accounts (can be read by only root).

/etc/shells List of all the shells on the system that the
user can use.

/etc/skel Directory that holds initial versions of files
such as .bash_profile that copy to a
new user’s home directory.

/etc/sysconfig Linux configuration files (Fedora and SUSE).

/etc/sysctl.conf Configuration file with kernel parameters
that are read in and set by sysctl at
system startup.

/etc/termcap Database of terminal capabilities and
options (Fedora and SUSE).

Table 1‑4 (continued)

Book V
Chapter 1

Introducing
Basic System

Adm

inistration
Monitoring System Performance 317

Configuration File Description

/etc/udev Directory containing configuration files for
udev — the program that provides the
ability to dynamically name hot-pluggable
devices and create device files in the
/dev directory.

/etc/X11 Directory with configuration files for the X
Window System (X11) and various display
managers such as gdm and xdm.

/etc/X11/xorg.conf Configuration file for X.Org X11 — the X
Window System (Fedora, Ubuntu, and
SUSE).

/etc/xinetd.conf Configuration for the xinetd daemon
that starts a number of Internet services
on demand.

/etc/yum.conf Configuration for the Yum package updater
and installer (Fedora).

/var/log/apache2 Web server access and error logs (Debian).

/var/log/cron Log file with messages from the cron
process that runs scheduled jobs.

/var/log/boot.msg File with boot messages (SUSE).

/var/log/dmesg File with boot messages (Debian, Fedora,
Ubuntu, and Xandros).

/var/log/httpd Web server access and error logs (Fedora).

/var/log/messages System log.

Monitoring System Performance
When you’re the system administrator, you must keep an eye on how well
your Linux system is performing. You can monitor the overall performance
of your system by looking at information such as

	 ✦	 Central processing unit (CPU) usage

	 ✦	 Physical memory usage

	 ✦	 Virtual memory (swap-space) usage

	 ✦	 Hard drive usage

Linux comes with a number of utilities that you can use to monitor one or
more of these performance parameters. The following sections introduce
a few of these utilities and show you how to understand the information
presented by said utilities.

Monitoring System Performance318

Using the top utility
To view the top CPU processes — the ones that use most of the CPU time —
you can use the text mode top utility. To start that utility, type top in a termi-
nal window (or text console). The top utility then displays a text screen listing
the current processes, arranged in the order of CPU usage, along with various
other information, such as memory and swap-space usage. Figure 1-6 shows a
typical output from the top utility.

	

Figure 1-6:
You can see
the top CPU
processes
by using the
top utility.

	

	 The top utility updates the display every five seconds. If you keep top running
in a window, you can continually monitor the status of your Linux system. To
quit top, press Q or Ctrl+C or close the terminal window.

The first five lines of the output screen (see Figure 1-6) provide summary
information about the system, as follows:

	 ✦	 The first line shows the current time, how long the system has been up,
how many users are logged in, and three load averages — the average
number of processes ready to run during the last 1, 5, and 15 minutes.

	 ✦	 The second line lists the total number of processes and the status of
these processes.

	 ✦	 The third line shows CPU usage — what percentage of CPU time is used
by user processes, what percentage by system (kernel) processes, and
during what percentage of time the CPU is idle.

	 ✦	 The fourth line shows how the physical memory is being used — the
total amount, how much is used, how much is free, and how much is
allocated to buffers (for reading from the hard drive, for example).

Book V
Chapter 1

Introducing
Basic System

Adm

inistration
Monitoring System Performance 319

	 ✦	 The fifth line shows how the virtual memory (or swap space) is being
used — the total amount of swap space, how much is used, how much is
free, and how much is being cached.

The table that appears below the summary information (refer to Figure 1-6)
lists information about the current processes, arranged in decreasing order
by amount of CPU time used. Table 1-5 summarizes the meanings of the
column headings in the table that top displays.

Table 1-5	 Column Headings in top Utility’s Output
Heading Meaning

PID Process ID of the process.

USER Username under which the process is running.

PR Priority of the process.

NI Nice value of the process — the value ranges from –20 (highest
priority) to 19 (lowest priority) and the default is 0. (The nice value
represents the relative priority of the process: The higher the
value, the lower the priority and the nicer the process because it
yields to other processes.)

VIRT Total amount of virtual memory used by the process, in kilobytes.

RES Total physical memory used by a task (typically shown in kilobytes,
but an m suffix indicates megabytes).

SHR Amount of shared memory used by process.

S State of the process (S for sleeping, D for uninterruptible sleep, R
for running, Z for zombies — processes that should be dead but
are still running — or T for stopped).

%CPU Percentage of CPU time used since last screen update.

%MEM Percentage of physical memory used by the process.

TIME+ Total CPU time the process has used since it started.

COMMAND Shortened form of the command that started the process.

Using the uptime command
You can use the uptime command to get a summary of the system’s state.
Just type the command like this:

uptime

It displays output similar to the following:

15:03:21 up 32 days, 57 min, 3 users, load average: 0.13, 0.23, 0.27

Monitoring System Performance320

This output shows the current time, how long the system has been up, the
number of users, and (finally) the three load averages — the average number
of processes that were ready to run in the past 1, 5, and 15 minutes. Load
averages greater than 1 imply that many processes are competing for CPU
time simultaneously.

The load averages give you an indication of how busy the system is.

Using the vmstat utility
You can get summary information about the overall system usage with the
vmstat utility. To view system usage information averaged over 5-second
intervals, type the following command (the second argument indicates the
total number of lines of output vmstat displays):

vmstat 5 8

You see output similar to the following listing:

procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----
r b swpd free buff cache si so bi bo in cs us sy id wa
0 0 31324 4016 18568 136004 1 1 17 16 8 110 33 4 61 1
0 1 31324 2520 15348 139692 0 0 7798 199 1157 377 8 8 6 78
1 0 31324 1584 12936 141480 0 19 5784 105 1099 437 12 5 0 82
2 0 31324 1928 13004 137136 7 0 1586 138 1104 561 43 6 0 51
3 1 31324 1484 13148 132064 0 0 1260 51 1080 427 50 5 0 46
0 0 31324 1804 13240 127976 0 0 1126 46 1082 782 19 5 47 30
0 0 31324 1900 13240 127976 0 0 0 0 1010 211 3 1 96 0
0 0 31324 1916 13248 127976 0 0 0 10 1015 224 3 2 95 0

The first line of output shows the averages since the last reboot. After that,
vmstat displays the 5-second average data seven more times, covering the
next 35 seconds. The tabular output is grouped as six categories of informa-
tion, indicated by the fields in the first line of output. The second line shows
further details for each of the six major fields. You can interpret these fields
by using Table 1-6.

Table 1-6	 Meaning of Fields in the vmstat Utility’s Output
Field Name Description

procs Number of processes and their types: r = processes waiting
to run, b = processes in uninterruptible sleep, w = processes
swapped out but ready to run.

memory Information about physical memory and swap-space usage (all
numbers in kilobytes): swpd = virtual memory used, free = free
physical memory, buff = memory used as buffers, cache =
virtual memory that’s cached.

Book V
Chapter 1

Introducing
Basic System

Adm

inistration
Monitoring System Performance 321

Field Name Description

swap Amount of swapping (the numbers are in kilobytes per second):
si = amount of memory swapped in from disk, so = amount of
memory swapped to disk.

io Information about input and output. (The numbers are in blocks per
second, where the block size depends on the disk device.) bi =
rate of blocks sent to disk, bo = rate of blocks received from disk.

system Information about the system: in = number of interrupts per
second (including clock interrupts), cs = number of context
switches per second — how many times the kernel changed
which process was running.

cpu Percentages of CPU time used: us = percentage of CPU time
used by user processes, sy = percentage of CPU time used by
system processes, id = percentage of time CPU is idle, wa = time
spent waiting for input or output (I/O).

	 In the vmstat utility’s output, high values in the si and so fields indicate
too much swapping. (Swapping refers to the copying of information between
physical memory and the virtual memory on the hard drive.) High numbers
in the bi and bo fields indicate too much disk activity.

Checking disk performance and disk usage
Linux comes with the /sbin/hdparm program to control IDE or ATAPI hard
drives, which are common on most PCs. One feature of the hdparm program
is that you can use the -t option to determine the rate at which data is
read from the disk into a buffer in memory. For example, here’s the result of
typing /sbin/hdparm -t /dev/hda on one system:

/dev/hda:
Timing buffered disk reads: 178 MB in 3.03 seconds = 58.81 MB/sec

The command requires the IDE drive’s device name (/dev/hda for the first
hard drive and /dev/hdb for the second hard drive) as an argument. If you
have an IDE hard drive, you can try this command to see how fast data is
read from your system’s disk drive.

To display the space available in the currently mounted file systems, use the
df command. If you want a more readable output from df, type the following
command:

df -h

Viewing System Information with the /proc File System322

Here’s a typical output from this command:

Filesystem Size Used Avail Use% Mounted on
/dev/hda5 7.1G 3.9G 2.9G 59% /
/dev/hda3 99M 18M 77M 19% /boot
none 125M 0 125M 0% /dev/shm
/dev/scd0 2.6G 2.6G 0 100% /media/cdrecorder

As this example shows, the -h option causes the df command to display the
sizes in gigabytes (G) and megabytes (M).

To check the disk space being used by a specific directory, use the du
command — you can specify the -h option to view the output in kilobytes
(K) and megabytes (M), as shown in the following example:

du -h /var/log

Here’s a typical output of that command:

152K /var/log/cups
4.0K /var/log/vbox
4.0K /var/log/httpd
508K /var/log/gdm
4.0K /var/log/samba
8.0K /var/log/mail
4.0K /var/log/news/OLD
8.0K /var/log/news
4.0K /var/log/squid
2.2M /var/log

The du command displays the disk space used by each directory, and the
last line shows the total disk space used by that directory. If you want to
see only the total space used by a directory, use the -s option. For exam-
ple, type du -sh /home to see the space used by the /home directory. The
command produces output that looks like this:

89M /home

Viewing System Information
with the /proc File System

Your Linux system has a special /proc file system. You can find out many
things about your system from this file system. In fact, you can even change
kernel parameters through the /proc file system (just by writing to a file in
that file system), thereby modifying the system’s behavior.

The /proc file system isn’t a real directory on the hard drive but a col-
lection of data structures in memory, managed by the Linux kernel, that
appears to you as a set of directories and files. The purpose of /proc

Book V
Chapter 1

Introducing
Basic System

Adm

inistration
Viewing System Information with the /proc File System 323

(also called the process file system) is to give you access to information
about the Linux kernel as well as to help you find out about all processes
currently running on your system.

You can access the /proc file system just as you access any other directory,
but you have to know the meaning of various files to interpret the informa-
tion. Typically, you can use the cat or more commands to view the contents
of a file in /proc. The file’s contents provide information about some aspect
of the system.

As with any directory, start by looking at a detailed directory listing of
/proc. To do so, log in as root and type ls -l /proc in a terminal window.
In the output, the first set of directories (indicated by the letter d at the
beginning of the line) represents the processes currently running on your
system. Each directory that corresponds to a process has the process ID
(a number) as its name.

	 Notice also a very large file named /proc/kcore; that file represents the
entire physical memory of your system. Although /proc/kcore appears in
the listing as a huge file, no single physical file occupies that much space on
your hard drive — so don’t try to remove the file to reclaim disk space.

Several files and directories in /proc contain interesting information about
your Linux PC. The /proc/cpuinfo file, for example, lists the key charac-
teristics of your system, such as processor type and floating-point processor
information. You can view the processor information by typing cat /proc/
cpuinfo. For example, here’s what appears when cat /proc/cpuinfo is
run on a sample system:

processor : 0
vendor_id : GenuineIntel
cpu family : 15
model : 3
model name : Intel(R) Celeron(R) CPU 2.53GHz
stepping : 3
cpu MHz : 2533.129
cache size : 256 KB
fdiv_bug : no
hlt_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 5
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge

mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss
ht tm pbe pni monitor ds_cpl cid

bogomips : 4997.12

Viewing System Information with the /proc File System 324

This output is from a 2.5-GHz Celeron system. The listing shows many inter-
esting characteristics of the processor. Note the line that starts with fdiv_
bug. Remember the infamous Pentium floating-point division bug? The bug
is in an instruction called fdiv (for floating-point division). Thus, the fdiv_
bug line indicates whether this particular Pentium has the bug.

The last line in the /proc/cpuinfo file shows the BogoMIPS for the proces-
sor, as computed by the Linux kernel when it boots. BogoMIPS is something
that Linux uses internally to time-delay loops.

Table 1-7 summarizes some of the files in the /proc file system that provide
information about your Linux system. You can view some of these files on
your system to see what they contain, but note that not all files shown in
Table 1-7 are present on your system. The specific contents of the /proc file
system depend on the kernel configuration and the driver modules that are
loaded (which, in turn, depend on your PC’s hardware configuration).

Table 1-7	 Some Files and Directories in /proc
File Name Content

/proc/acpi Information about Advanced Configuration and Power
Interface (ACPI) — an industry-standard interface
for configuration and power management on laptops,
desktops, and servers.

/proc/bus Directory with bus-specific information for each bus
type, such as PCI.

/proc/cmdline The command line used to start the Linux kernel (for
example, ro root=LABEL=/ rhgb).

/proc/cpuinfo Information about the CPU (the microprocessor).

/proc/devices Available block and character devices in your system.

/proc/dma Information about DMA (direct memory access) channels
that are used.

/proc/driver/
rtc

Information about the PC’s real-time clock (RTC).

/proc/
filesystems

List of supported file systems.

/proc/ide Directory containing information about IDE devices.
/proc/
interrupts

Information about interrupt request (IRQ) numbers and
how they are used.

/proc/ioports Information about input/output (I/O) port addresses and
how they’re used.

/proc/kcore Image of the physical memory.

/proc/kmsg Kernel messages.

Book V
Chapter 1

Introducing
Basic System

Adm

inistration
Understanding Linux Devices 325

File Name Content

/proc/loadavg Load average (average number of processes waiting to
run in the last 1, 5, and 15 minutes).

/proc/locks Current kernel locks (used to ensure that multiple
processes don’t write to a file at the same time).

/proc/meminfo Information about physical memory and swap-space
usage.

/proc/misc Miscellaneous information.

/proc/modules List of loaded driver modules.

/proc/mounts List of mounted file systems.

/proc/net Directory with many subdirectories that contain infor-
mation about networking.

/proc/
partitions

List of partitions known to the Linux kernel.

/proc/pci Information about PCI devices found on the system.

/proc/scsi Directory with information about SCSI devices found on
the system (present only if you have a SCSI device).

/proc/stat Overall statistics about the system.

/proc/swaps Information about the swap space and how much is
used.

/proc/sys Directory with information about the system. You can
change kernel parameters by writing to files in this
directory. (Using this method to tune system perfor-
mance requires expertise to do properly.)

/proc/uptime Information about how long the system has been up.

/proc/version Kernel version number.

	 You can navigate the /proc file system just as you’d work with any other
directories and files in Linux. Use the more or cat commands to view the
contents of a file.

Understanding Linux Devices
Linux treats all devices as files and uses a device just as it uses a file — opens
it, writes data to it, reads data from it, and closes it when finished. This abil-
ity to treat every device as a file is possible because of device drivers, which
are special programs that control a particular type of hardware. When the
kernel writes data to the device, the device driver does whatever is appro-
priate for that device. For example, when the kernel writes data to the DVD
drive, the DVD device driver puts that data onto the physical medium of the
DVD disk.

Understanding Linux Devices326

Thus the device driver isolates the device-specific code from the rest of
the kernel and makes a device look like a file. Any application can access a
device by opening the file specific to that device.

Device files
Applications can access a device as if it were a file. These files, called device
files, appear in the /dev directory in the Linux file system.

If you use the ls command to look at the list of files in the /dev directory,
you see several thousand files. These files don’t mean that your system has
several thousand devices. The /dev directory has files for all possible types
of devices — that’s why the number of device files is so large.

So how does the kernel know which device driver to use when an application
opens a specific device file? The answer is in two numbers called the major
and minor device numbers. Each device file is mapped to a specific device
driver through these numbers.

To see an example of the major and minor device numbers, type the follow-
ing command in a terminal window:

ls -l /dev/hda

You see a line of output similar to the following:

brw-rw---- 1 root disk 3, 0 Aug 16 14:50 /dev/hda

In this line, the major and minor device numbers appear just before the date. In
this case, the major device number is 3 and the minor device number is 0. The
kernel selects the device driver for this device file by using the major device
number.

You don’t have to know much about device files and device numbers, except
to be aware of their existence.

	 In case you’re curious, all the major and minor numbers for devices are
assigned according to device type. The Linux Assigned Names And Numbers
Authority (LANANA) assigns these numbers. You can see the current device
list at www.lanana.org/docs/device-list/devices-2.6+.txt.

Block devices
The first letter in the listing of a device file also provides an important clue.
For the /dev/hda device, the first letter is b, which indicates that /dev/
hda is a block device — one that can accept or provide data in chunks (typi-
cally 512 bytes or 1K). By the way, /dev/hda refers to the first IDE hard
drive on your system (the C: drive in Windows). Hard drives and CD-ROM
drives are examples of block devices.

http://www.lanana.org/docs/device-list/devices-2.6+.txt

Book V
Chapter 1

Introducing
Basic System

Adm

inistration
Understanding Linux Devices 327

Character devices
If the first letter in the listing of a device file is c, the device is a character
device — one that can receive and send data one character (one byte) at a
time. For example, the serial port and parallel ports are character devices.
To see the specific listing of a character device, type the following command
in a terminal window:

ls -l /dev/ttyS0

The listing of this device is similar to the following:

crw-rw---- 1 root uucp 4, 64 Aug 16 14:50 /dev/ttyS0

Note that the very first letter is c because /dev/ttyS0 — the first serial
port — is a character device.

Network devices
Network devices that enable your system to interact with a network — for
example, Ethernet and dial-up Point-to-Point Protocol (PPP) connections — are
special because they need no file to correspond to the device. Instead, the
kernel uses a special name for the device. For example, Ethernet devices are
named eth0 for the first Ethernet card, eth1 for the second one, and so on.
PPP connections are named ppp0, ppp1, and so on.

Because network devices aren’t mapped to device files, no files correspond-
ing to these devices are in the /dev directory.

Persistent device naming with udev
Starting with the Linux kernel 2.6, a new approach for handling devices was
added, based on the following features:

	 ✦	 sysfs: The kernel provides the sysfs file system, which is mounted
on the /sys directory of the file system. The sysfs file system displays
all the devices in the system as well as lots of information about each
device, including the location of the device on the bus, attributes such
as name and serial number, and the major and minor numbers of the
device.

	 ✦	 /sbin/hotplug: This program is called whenever a device is added or
removed. It can then do whatever is necessary to handle the device.

	 ✦	 /sbin/udev: This program takes care of dynamically named devices
based on device characteristics such as serial number, device number
on a bus, or a user-assigned name based on a set of rules that are set
through the text file /etc/udev/udev.rules.

Managing Loadable Driver Modules328

	 The udev program’s configuration file is /etc/udev/udev.conf. Based on
settings in that configuration file, udev creates device nodes automatically
in the directory specified by the udev_root parameter. For example, to
manage the device nodes in the /dev directory, udev_root should be
defined in /etc/udev/udev.conf as follows:

	udev_root="/dev/"

Managing Loadable Driver Modules
To use any device, the Linux kernel must contain the driver. If the driver
code is linked into the kernel as a monolithic program (a program in the form
of a single, large file), adding a new driver means rebuilding the kernel with
the new driver code. Rebuilding the kernel means you have to reboot the PC
with the new kernel before you can use the new device driver. Luckily, the
Linux kernel uses a modular design that does away with rebooting hassles.
Linux device drivers can be created in the form of modules that the kernel
can load and unload without having to restart the PC.

	 Driver modules are one type of a broader category of software modules
called loadable kernel modules. Other types of kernel modules include code
that can support new types of file systems, modules for network protocols,
and modules that interpret different formats of executable files.

Loading and unloading modules
You can manage the loadable device driver modules by using a set of com-
mands. You have to log in as root to use some of these commands. Table 1-8
summarizes a few commonly used module commands.

Table 1-8	 Commands to Manage Kernel Modules
This
Command

Does the Following

insmod Inserts a module into the kernel.

rmmod Removes a module from the kernel.

depmod Determines interdependencies between modules.

ksyms Displays a list of symbols along with the name of the module that
defines the symbol.

lsmod Lists all currently loaded modules.

modinfo Displays information about a kernel module.

modprobe Inserts or removes a module or a set of modules intelligently. (For
example, if module A requires B, modprobe automatically loads
B when asked to load A.)

Book V
Chapter 1

Introducing
Basic System

Adm

inistration
Managing Loadable Driver Modules 329

If you have to use any of these commands, log in as root or type su - in a
terminal window to become root.

To see what modules are currently loaded, type

lsmod

You see a long list of modules. The list that you see will depend on the types
of devices installed on your system.

The list displayed by lsmod includes all types of Linux kernel modules, not
just device drivers. For example, if you use the Ext3 file system, you typically
find two modules — jbd and ext3 — that are part of the Ext3 file system
(the latest file system for Linux).

	 Besides lsmod, one commonly used module command is modprobe. Use
modprobe when you need to manually load or remove one or more modules.
The best thing about modprobe is that you don’t need to worry if a module
requires other modules to work. The modprobe command automatically
loads any other module needed by a module. For example, to manually load
the sound driver, use the command

modprobe snd-card-0

This command causes modprobe to load everything needed to make sound
work.

	 You can use modprobe with the -r option to remove modules. For example,
to remove the sound modules, use the following command:

	modprobe -r snd-card-0

This command gets rid of all the modules that the modprobe snd-card-0
command had loaded.

Using the /etc/modprobe.conf file
How does the modprobe command know that it needs to load the snd-
intel8x0 driver module? The answer’s in the /etc/modprobe.conf
configuration file. That file contains a line that tells modprobe what it
should load when it sees the module name snd-card-0.

To view the contents of /etc/modprobe.conf, type

cat /etc/modprobe.conf

Scheduling Jobs in Linux330

For example, consider a /etc/modprobe.conf file that contains the
following lines:

alias eth0 3c59x
alias snd-card-0 snd-intel8x0
alias usb-controller uhci-hcd

Each line that begins with the keyword alias defines a standard name for
an actual driver module. For example, the first line defines 3c59x as the
actual driver name for the alias eth0, which stands for the first Ethernet
card. Similarly, the second line defines snd-intel8x0 as the module to load
when the user uses the name snd-card-0.

The modprobe command consults the /etc/modprobe.conf file to con-
vert an alias to the real name of a driver module. It also consults the /etc/
modprobe.conf file for other tasks, such as obtaining parameters for driver
modules. For example, you can insert lines that begin with the options key-
word to provide values of parameters that a driver may need.

For example, to set the debug-level parameter for the Ethernet driver to 5
(this parameter generates lots of information in /var/log/messages), add
the following line to the /etc/modprobe.conf file:

options 3c59x debug=5

This line specifies 5 as the value of the debug parameter in the 3c59x
module.

If you want to know the names of the parameters that a module accepts, use
the modinfo command. For example, to view information about the 3c59x
driver module, type

modinfo 3c59x | more

From the resulting output, it’s possible to tell that debug is the name of the
parameter for setting the debug level.

Unfortunately, the information displayed by the modinfo command can be
cryptic. The only saving grace is that you may not have to do much more
than use a graphical utility to configure the device, and the utility takes
care of adding whatever is needed to configuration files, such as /etc/
modprobe.conf.

Scheduling Jobs in Linux
As a system administrator, you may have to run some programs automati-
cally at regular intervals or execute one or more commands at a specified
time in the future. Your Linux system includes the facilities to schedule jobs

Book V
Chapter 1

Introducing
Basic System

Adm

inistration
Scheduling Jobs in Linux 331

to run at any future date or time you want. You can also set up the system to
perform a task periodically or just once. Here are some typical tasks you can
perform by scheduling jobs on your Linux system:

	 ✦	 Back up the files in the middle of the night

	 ✦	 Download large files in the early morning when the system isn’t busy

	 ✦	 Send yourself messages as reminders of meetings

	 ✦	 Analyze system logs periodically and look for any abnormal activities

You can set up these jobs by using the at command or the crontab facility of
Linux. The next few sections introduce these job-scheduling features of Linux.

Scheduling one-time jobs
If you want to run one or more commands at a later time, you can use the at
command. The atd daemon — a program designed to process jobs submit-
ted using at — runs your commands at the specified time and mails the
output to you.

	 Before you try the at command, you need to know that the following config-
uration files control which users can schedule tasks using the at command:

	 ✦	 /etc/at.allow contains the names of the users who may submit jobs
using the at command.

	 ✦	 /etc/at.deny contains the names of users not allowed to submit jobs
using the at command.

If these files aren’t present or if you find an empty /etc/at.deny file, any
user can submit jobs by using the at command. The default in Linux is an
empty /etc/at.deny file; with this default in place, anyone can use the
at command. If you don’t want some users to use at, simply list their user-
names in the /etc/at.deny file.

To use at to schedule a one-time job for execution at a later time, follow
these steps:

	 1.	 Run the at command with the date or time when you want your
commands executed.

		 When you press Enter, the at> prompt appears, as follows:

at 21:30
at>

		 This method is the simplest way to indicate the time when you want
to execute one or more commands — simply specify the time in a
24-hour format. In this case, you want to execute the commands at
9:30 p.m. tonight (or tomorrow, if it’s already past 9:30 p.m.). You
can, however, specify the execution time in many different ways.
(See Table 1-9 for examples.)

Scheduling Jobs in Linux332

	 2.	 At the at> prompt, type the commands you want to execute as if you
were typing at the shell prompt. After each command, press Enter
and continue with the next command. When you finish entering the
commands you want to execute, press Ctrl+D to indicate the end.

		 Here’s an example that shows how to execute the ps command at a
future time:

at> ps
at> <EOT>
job 1 at 2014-12-28 21:30

		 After you press Ctrl+D, the at command responds with the <EOT>
message, a job number, and the date and time when the job will execute.

Table 1-9	 Formats for the at Command for the Time of Execution
Command When the Job Will Run

at now Immediately
at now + 15
minutes

15 minutes from the current time

at now + 4 hours 4 hours from the current time

at now + 7 days 7 days from the current time

at noon At noontime today (or tomorrow, if already past
noon)

at now next hour Exactly 60 minutes from now

at now next day At the same time tomorrow

at 17:00 tomorrow At 5:00 p.m. tomorrow

at 4:45pm At 4:45 p.m. today (or tomorrow, if it’s already past
4:45 p.m.)

at 3:00 Dec 28,
2014

At 3:00 a.m. on December 28, 2014

After you enter one or more jobs, you can view the current list of scheduled
jobs with the atq command:

atq

The output looks similar to the following:

4 2014-12-28 03:00 a root
5 2014-10-26 21:57 a root
6 2014-10-26 16:45 a root

Book V
Chapter 1

Introducing
Basic System

Adm

inistration
Scheduling Jobs in Linux 333

The first field on each line shows the job number — the same number that
the at command displays when you submit the job. The next field shows the
year, month, day, and time of execution. The last field shows the jobs pending
in the a queue.

If you want to cancel a job, use the atrm command to remove that job from
the queue. When removing a job with the atrm command, refer to the job by
its number, as follows:

atrm 4

This command deletes job 4 scheduled for 3:00 a.m. December 28, 2014.

	 When a job executes, the output is mailed to you. Type mail at a terminal
window to read your mail and to view the output from your jobs.

Scheduling recurring jobs
Although at is good for running commands at a specific time, it’s not useful
for running a program automatically at repeated intervals. You have to use
crontab to schedule such recurring jobs — for example, if you want to back
up your files to tape at midnight every evening.

You schedule recurring jobs by placing job information in a file with a specific
format and submitting this file with the crontab command. The cron
daemon — crond — checks the job information every minute and executes
the recurring jobs at the specified times. Because the cron daemon processes
recurring jobs, such jobs are also referred to as cron jobs.

Any output from a cron job is mailed to the user who submits the job. (In
the submitted job-information file, you can specify a different recipient for
the mailed output.)

Two configuration files control who can schedule cron jobs using crontab:

	 ✦	 /etc/cron.allow contains the names of the users who may submit
jobs using the crontab command.

	 ✦	 /etc/cron.deny contains the names of users not allowed to submit
jobs using the crontab command.

If the /etc/cron.allow file exists, only users listed in this file can sched-
ule cron jobs. If only the /etc/cron.deny file exists, users listed in this
file can’t schedule cron jobs. If neither file exists, the default Linux setup
enables any user to submit cron jobs.

Scheduling Jobs in Linux334

To submit a cron job, follow these steps:

	 1.	 Prepare a shell script (or an executable program in any programming
language) that can perform the recurring task you want to perform.

		 You can skip this step if you want to execute an existing program
periodically.

	 2.	 Prepare a text file with information about the times when you want
the shell script or program (from Step 1) to execute and then submit
this file by using crontab.

		 You can submit several recurring jobs with a single file. Each line
with timing information about a job has a standard format, with six
fields — the first five specify when the job runs, and the sixth and
subsequent fields constitute the command that runs. For example,
here’s a line that executes the myjob shell script in a user’s home
directory at five minutes past midnight each day:

5 0 * * * $HOME/myjob

		 Table 1-10 shows the meaning of the first five fields. Note: An asterisk (*)
means all possible values for that field. Also, an entry in any of the first
five fields can be a single number, a comma-separated list of numbers, a
pair of numbers separated by a hyphen (indicating a range of numbers),
or an asterisk.

	 3.	 Suppose the text file jobinfo (in the current directory) contains the
job information. Submit this information to crontab with the follow-
ing command:

crontab jobinfo

That’s it! You’re set with the cron job. From now on, the cron job runs at
regular intervals (as specified in the job-information file), and you receive
mail messages with the output from the job.

To verify that the job is indeed scheduled, type the following command:

crontab -l

The output of the crontab -l command shows the cron jobs currently
installed in your name. To remove your cron jobs, type crontab -r.

If you log in as root, you can also set up, examine, and remove cron jobs
for any user. To set up cron jobs for a user, use this command:

crontab _u username filename

Here username is the user for whom you install the cron jobs, and filename
is the file that contains information about the jobs.

Book V
Chapter 1

Introducing
Basic System

Adm

inistration
Scheduling Jobs in Linux 335

Table 1-10	 Format for the Time of Execution in crontab Files
Field
Number

Meaning of
Field

Acceptable Range of Values*

1 Minute 0–59

2 Hour of the
day

0–23

3 Day of the
month

0–31

4 Month 1–12 (1 means January, 2 means February, and
so on) or the names of months using the first
three letters — Jan, Feb, Mar, Apr, May, Jun, Jul,
Aug, Sep, Oct, Nov, Dec

5 Day of the
week

0–6 (0 means Sunday, 1 means Monday, and
so on) or the three-letter abbreviations of
weekdays — Sun, Mon, Tue, Wed, Thu, Fri, Sat

* An asterisk in a field means all possible values for that field. For example, if an asterisk is in the third field,
the job is executed every day.

Use the following form of crontab command to view the cron jobs for a user:

crontab _u username -l

To remove a user’s cron jobs, use the following command:

crontab -u username -r

Note: The cron daemon also executes the cron jobs listed in the system-
wide cron job file /etc/crontab. Here’s a typical /etc/crontab file from
a Linux system (type cat /etc/crontab to view the file):

SHELL=/bin/bash
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root
HOME=/
run-parts
01 * * * * root run-parts /etc/cron.hourly
02 4 * * * root run-parts /etc/cron.daily
22 4 * * 0 root run-parts /etc/cron.weekly
42 4 1 * * root run-parts /etc/cron.monthly

The first four lines set up several environment variables for the jobs listed in
this file. The MAILTO environment variable specifies the user who receives the
mail message with the output from the cron jobs in this file.

Scheduling Jobs in Linux336

The line that begins with # is a comment line. The four lines following the
run-parts comment execute the run-parts shell script (located in the
/usr/bin directory) at various times with the name of a specific directory
as argument. Each of the arguments to run-parts — /etc/cron.hourly,
/etc/cron.daily, /etc/cron.weekly, and /etc/cron.monthly — are
directories. Essentially, run-parts executes all scripts located in the direc-
tory that you provide as an argument.

Table 1-11 lists the directories where you can find these scripts and when
they execute. You have to look at the scripts in these directories to know
what executes at these periodic intervals.

Table 1-11	 Script Directories for cron Jobs
Directory Name Script Executes

/etc/cron.hourly Every hour

/etc/cron.daily Each day

/etc/cron.weekly Weekly

/etc/cron.monthly Once each month

Chapter 2: Managing Users
and Groups

In This Chapter
✓	Managing a user account with a GUI user manager and commands

✓	Understanding the password file

✓	Managing your groups

✓	Working in the user environment

✓	Changing user and group ownerships of files and directories

L
inux is a multiuser system, so it has many user accounts. Even if you’re
the only user on your system, there will be a whole host of system

user accounts. These aren’t for people. They’re just for running specific
programs; many servers require a unique username and group name. For
example, the FTP server runs under the username ftp.

User accounts can belong to one or more groups. Typically, each username
has a corresponding private group name. By default, each user belongs to
that corresponding private group. However, you can define other groups for
the purpose of providing access to specific files and directories based on
group membership.

User and group ownerships of files are a way to make sure that only the
right people (or the right process) can access the right files and directories.
Managing the user and group accounts is a typical job for system adminis-
tration. It’s not hard to do this part of the job, given the tools that come with
Linux, as you discover in this chapter.

Adding User Accounts
You get the chance to add user accounts when you boot your system for
the first time after installing Linux. Typically (depending on your distribu-
tion), the root account is the only one that must be created/set up during
installation. If you don’t add other user accounts when you start the system
for the first time, you can add new users later on, using a GUI user account
manager or the useradd command.

Adding User Accounts338

	 Creating other user accounts besides root is always a good idea. Even if
you’re the only user of the system, logging in as a less privileged user is
good practice because that way you can’t damage any important system
files inadvertently. If necessary, you can type su - to log in as root and then
perform any system administration tasks.

Managing user accounts by using
a GUI user manager
Most Linux distributions come with a GUI tool to manage user accounts.
You can use that GUI tool to add new user accounts. The tool displays a list
of current user accounts and has an Add button for adding new users. For
the purposes of illustration, the YaST interface from OpenSUSE is shown in
Figure 2-1.

	

Figure 2-1:
In SUSE,
select the
Security
and Users
category
from the
left side of
the YaST
Control
Center, and
then click
the User
and Group
Manage
ment icon
in the right
side of the
window.

	

The basic steps, regardless of the specific GUI tool, are as follows:

	 1.	 Click the Add User button.

		 A dialog box prompts you for information about the username and pass-
word variables for the new user account, as shown in Figure 2-2.

Book V
Chapter 2

M
anaging Users
and Groups

Adding User Accounts 339

	

Figure 2-2:
You can
create the
account
by sup-
plying the
requested
variables.

	

	 2.	 Enter the requested information.

		 The GUI tool takes care of adding the new user account.

	 3.	 (Optional) Click one of the other tabs for the user (refer to Figure 2-2)
to configure additional information.

		 The Details tab (shown in Figure 2-3) allows you to override the defaults
for the home directory, shell, and ID information.

		 The Password Settings tab (shown in Figure 2-4) allows you to override
the defaults for the password configuration. Plug-Ins can be used for a
number of parameters, but are often used with quota configuration (such
as size limits on files and the number of inodes that can be created):

	 •	 Soft limits warn the user.

	 •	 Hard limits stop the user.

	 The tabs — other than User Data — are used to override the system defaults.
If you want to change the system defaults, change the variables in the User
and Group Administration interface.

Adding User Accounts340

	

Figure 2-3:
Use Details
to configure
settings
other than
the defined
defaults
for user
accounts.

	

	

Figure 2-4:
Use
Password
Settings to
configure
settings
other than
the defined
defaults for
new user
accounts.

	

Book V
Chapter 2

M
anaging Users
and Groups

Adding User Accounts 341

Notice that the tool you use for adding new users is called User and Group
Management because there are two types of accounts it can configure: Users
and Groups. Selecting Groups instead of Users allows you to add new groups
to /etc/group, as shown in Figure 2-5.

	

Figure 2-5:
Groups
can be
created and
managed
similarly to
users.

	

To add a new user account, click the Add button and enter the information
requested in the New Local User window. Fill in the requested information
(including any add-ins such as for group qoutas) and then click the OK button.

Notice that the newly added user account from Figure 2-2 now appears in
the list of users in the Group Members pane and can be added — along with
others — to the group.

You can add more user or group accounts, if you like. When you finish,
click the OK button to create any new accounts you’ve added; then you exit
automatically.

By default, YaST places all local users in a group named users. Sometimes
you want a user to be in another group as well, so that user can access the
files owned by that group. Adding a user to another group is easy. For exam-
ple, to add the username kdulaney to the group called wheel, type the fol-
lowing command in a terminal window:

usermod -G wheel kdulaney

Adding User Accounts342

	 To remove a user account, click the username in the list of user accounts
and then click the Remove or the Delete button.

Managing user accounts by using commands
If you’re working from a text console, you can create a new user account by
using the useradd command. Follow these steps to add an account for a
new user:

	 1.	 Log in as root.

		 If you’re not already logged in as root, type su - to become root.

	 2.	 Type the following useradd command with the -c option to create
the account:

/usr/sbin/useradd -c "Kristin Dulaney" kdulaney

	 3.	 Set the password by using the passwd command, as follows:

passwd kdulaney

		 You’re prompted for the password twice. If you type a password that
someone can easily guess, the passwd program will scold you and sug-
gest that you use a more difficult password.

	 The useradd command consults the following configuration files to obtain
default information about various parameters for the new user account:

	 ✦	 /etc/default/useradd: Specifies the default shell (/bin/bash) and
the default home directory location (/home).

	 ✦	 /etc/login.defs: Provides system-wide defaults for automatic group
and user IDs, as well as password-expiration parameters.

	 ✦	 /etc/skel: Contains the default files that useradd creates in the user’s
home directory.

Examine these files with the cat or more commands to see what they
contain.

	 You can delete a user account by using the userdel command. Simply type
/usr/sbin/userdel username at the command prompt where username is the
name of the user you want to remove. To wipe out that user’s home direc-
tory as well, type +userdel -r username.

To modify any information in a user account, use the usermod command.
For example, for user kdulaney to have root as the primary group, type
the following:

usermod -g root kdulaney

Book V
Chapter 2

M
anaging Users
and Groups

Understanding the /etc/passwd File 343

	 To find out more about the useradd, userdel, and usermod commands,
type man useradd, man userdel, or man usermod, respectively, in a termi-
nal window.

Understanding the /etc/passwd File
The /etc/passwd file is a list of all user accounts. It’s a text file and any
user can read it — no special privileges needed. Each line in /etc/passwd
has seven fields, separated by colons (:).

Here’s a typical entry from the /etc/passwd file:

kdulaney:x:1000:1000:Kristin Dulaney,,,,:/home/kdulaney:/bin/bash

As the example shows, the format of each line in /etc/passwd looks
like this:

username:password:UID:GID:GECOS:homedir:shell

Table 2-1 explains the meaning of the seven fields in each /etc/passwd
entry.

Table 2-1	 Fields in the /etc/passwd File
This Field Contains

username An alphanumeric username, usually 8 characters long and
unique. (Linux allows usernames to be longer than 8 characters,
but some other operating systems do not.)

password When present, a 13-character encrypted password. (An empty
field means that no password is required to access the account.
An x means the password is stored in the /etc/shadow file,
which is more secure.)

UID A unique number that serves as the user identifier. (root has a
UID of 0, and usually UIDs from 1 to 100 are reserved for non-
human users such as servers; keeping the UID value to less than
32,767 is best.)

GID The default group ID of the group to which the user belongs (GID
0 is for group root, other groups are defined in /etc/group,
and users can be, and usually are, in more than one group at a
time).

GECOS Optional personal information about the user. (The finger
command uses this field; GECOS stands for General Electric
Comprehensive Operating System, a long-forgotten operating
system that’s immortalized by the name of this field in /etc/
passwd.)

(continued)

Managing Groups344

This Field Contains

homedir The name of the user’s home directory.

shell The command interpreter (shell), such as bash (/bin/bash),
which executes when this user logs in.

Managing Groups
A group is something to which users belong. A group has a name and an
identification number (ID). After a group is defined, users can belong to one
or more of these groups.

You can find all the existing groups listed in /etc/group. For example, here’s
the line that defines the group named wheel:

wheel:x:10:root,kdulaney

As this example shows, each line in /etc/group has the following format,
with four fields separated by colons:

groupname:password:GID:membership

Table 2-2 explains the meaning of the four fields in a group definition.

Table 2-2	 Meaning of Fields in /etc/group File
Field Name Meaning

Groupname The name of the group (for example, wheel)

Password The group password (an x means that the password is stored
in the /etc/shadow file)

GID The numerical group ID (for example, 10)

Membership A comma-separated list of usernames that belong to this
group (for example, root,kdulaney)

If you want to create a new group, you can simply use the groupadd com-
mand. For example, to add a new group called class with an automatically
selected group ID, type the following command in a terminal window (you
have to be logged in as root):

groupadd class

Table 2‑1 (continued)

Book V
Chapter 2

M
anaging Users
and Groups

Other User and Group Administration Values 345

Then you can add users to this group with the usermod command. For exam-
ple, to add the user kdulaney to the group named class, type the following
commands:

usermod -G class kdulaney

If you want to remove a group, use the groupdel command. For example, to
remove a group named class, type

groupdel class

Other User and Group Administration Values
One of the easiest ways to administer users and groups is to make certain
you have the default values set to what you want them to be.

The concept of least privilege should be followed and, as the name implies,
the goal of it is to give users the minimal privileges needed to do their jobs
and nothing more.

Figure 2-6 shows the values that can be set for global password values. If
you check the box Check New Passwords, then users will be prevented from
using passwords that can be found in a dictionary, that are names, or use
common words. The minimum password length can only be set if Check
New Passwords is enabled; also consider the possible encryption methods
seriously:

	 ✦	 DES is the default encryption method of many distributions, and
although it works in almost any environment, it limits passwords to
eight characters or fewer.

	 ✦	 MD5 lets you use longer passwords and is supported by all newer distri-
butions, but can be a problem if you need to interact with older systems.

	 ✦	 SHA-512 is usually the other choice offered and it a strong hash method
that is not compatible with many systems.

The default settings for new users, shown in Figure 2-7, can be set to increase
security by choosing a different skeleton, a more secure shell, or a higher
umask value.

Lastly, the authentication settings (shown in Figure 2-8) allow you to config-
ure the connection settings that will take effect by default.

Other User and Group Administration Values346

	

Figure 2-6:
Global
password
variables
can greatly
increase
system
security.

	

	

Figure 2-7:
Default
values for
the new
users can
be changed.

	

Book V
Chapter 2

M
anaging Users
and Groups

Exploring the User Environment 347

	

Figure 2-8:
Default
authentica-
tion setting
values can
be changed.

	

Exploring the User Environment
When you log in as a user, you get a set of environment variables that con-
trol many aspects of what you see and do on your Linux system. If you want
to see your current environment, type the following command in a terminal
window:

env

(By the way, the printenv command also displays the environment, but
env is shorter.)

Exploring the User Environment348

The env command prints a long list of lines. The collection of lines is the
current environment; each line defines an environment variable. For exam-
ple, the env command displays this typical line:

HOSTNAME=localhost.localdomain

This line defines the environment variable HOSTNAME as localhost.
localdomain.

An environment variable is nothing more than a name associated with
a string. For example, the environment variable named PATH is typically
defined as follows for a normal user:

PATH=/usr/local/bin:/bin:/usr/bin:/usr/local/sbin:/usr/
sbin:/sbin

The string to the right of the equal sign (=) is the value of the PATH environ-
ment variable. By convention, the PATH environment variable is a sequence
of directory names, each name separated from the others by a colon (:).

Each environment variable has a specific purpose. For example, when the
shell has to search for a file, it simply searches the directories listed in the
PATH environment variable in the order of their appearance. Therefore, if
two programs have the same name, the shell executes the one it finds first.

In a fashion similar to the shell’s use of the PATH environment variable, an
editor such as vi uses the value of the TERM environment variable to figure
out how to display the file you edit with vi. To see the current setting of
TERM, type the following command at the shell prompt:

echo $TERM

If you type this command in a terminal window, the output is as follows:

xterm

To define an environment variable in bash, use the following syntax:

export NAME=Value

Here NAME denotes the name of the environment variable and Value is the
string representing its value. Therefore you set TERM to the value xterm by
using the following command:

export TERM=xterm

Book V
Chapter 2

M
anaging Users
and Groups

Exploring the User Environment 349

	 After you define an environment variable, you can change its value by
simply specifying the new value with the syntax NAME=new-value. For
example, to change the definition of TERM to vt100, type TERM=vt100 at
the shell prompt.

With an environment variable such as PATH, typically you want to append
a new directory name to the existing definition rather than define the PATH
from scratch. For example, if you download and install the fictional XYZ 5
Development Kit, you have to add the location of the XYZ binaries to PATH.
Here’s how you accomplish that task:

export PATH=$PATH:/usr/xyz/xyz.5.0/bin

This command appends the string :/usr/xyz/xyz.5.0/bin to the current
definition of the PATH environment variable. The net effect is to add /usr/
xyz/xyz.5.0/bin to the list of directories in PATH.

Note: You also can write this export command as follows:

export PATH=${PATH}:/usr/xyz/xyz.5.0/bin

After you type that command, you can access programs in the /usr/xyz/
xyz.5.0/bin directory that the interpreter can execute.

PATH and TERM are only two of a handful of common environment variables.
Table 2-3 lists some of the environment variables for a typical Linux user.

Table 2-3	 Typical Environment Variables in Linux
Environment
Variable

Contents

DISPLAY The name of the display on which the X Window System
displays output (typically set to :0.0)

HOME Your home directory

HOSTNAME The host name of your system

LOGNAME Your login name

MAIL The location of your mail directory

PATH The list of directories in which the shell looks for programs

SHELL Your shell (SHELL=/bin/bash for bash)

TERM The type of terminal

Changing User and Group Ownership of Files350

Changing User and Group Ownership of Files
In Linux, each file or directory has two types of owners: a user and a group.
In other words, a user and group own each file and directory. The user and
group ownerships can control who can access a file or directory.

To view the owner of a file or directory, use the ls -l command to see the
detailed listing of a directory. For example, here’s a typical file’s information:

-rw-rw-r-- 1 kdulaney kdulaney 40909 Aug 16 20:37
composer.txt

In this example, the first set of characters shows the file’s permission setting —
who can read, write, or execute the file. The third and fourth fields (in this
example, kdulaney kdulaney) indicate the user and group owner of the file.
Each user has a private group that has the same name as the username. Thus
most files appear to show the username twice when you list user and group
ownership.

As a system administrator, you may decide to change the group ownership
of a file to a common group. For example, suppose you want to change the
group ownership of the composer.txt file to the class group. To do that,
log in as root and type the following command:

chgrp class composer.txt

This chgrp command changes the group ownership of composer.txt to
class.

You can use the chown command to change the user owner. The command
has the following format:

chown username filename

For example, to change the user ownership of a file named sample.jpg to
kdulaney, type

chown kdulaney sample.jpg

The chown command can change both the user and group owner at the same
time. For example, to change the user owner to kdulaney and the group
owner to class, type

chown kdulaney.class composer.txt

In other words, you simply append the group name to the username with a
period in between, and then use that as the name of the owner.

Chapter 3: Managing File Systems

In This Chapter
✓	Navigating the Linux file system

✓	Sharing files with NFS

✓	Backing up and restoring files

✓	Mounting the NTFS file system

✓	Accessing MS-DOS files

A
 file system refers to the organization of files and directories. As a system
administrator, you have to perform certain operations to manage file

systems on various storage media. For example, you have to know how to
mount — add a file system on a storage medium by attaching it to the overall
Linux file system. You also have to back up important data and restore files
from a backup. Other file-system operations include sharing files with the
Network File System (NFS) and accessing MS-DOS files. This chapter shows
you how to perform all file-system management tasks.

Exploring the Linux File System
	 The files and directories in your PC store information in an organized manner,

just like paper filing systems. When you store information on paper, typically
you put several pages in a folder and then store the folder in a file cabinet.
If you have many folders, you probably have some sort of filing system. For
example, you may label each folder’s tab and then arrange them alphabeti-
cally in the file cabinet. You might have several file cabinets, each with lots of
drawers, which, in turn, contain folders full of pages.

Operating systems, such as Linux, organize information in your computer
in a manner similar to your paper filing system. Linux uses a file system to
organize all information in your computer. Of course, the storage medium
isn’t a metal file cabinet and paper. Instead, Linux stores information on
devices such as hard drives, USB drives, and DVD drives.

To draw an analogy between your computer’s file system and a paper filing
system, think of a disk drive as the file cabinet. The drawers in the file cabi-
net correspond to the directories in the file system. The folders in each

Exploring the Linux File System352

drawer are also directories — because a directory in a computer file system
can contain other directories. You can think of files as the pages inside the
folder — and that’s where the actual information is stored. Figure 3-1 illus-
trates the analogy between a file cabinet and the Linux file system.

	

Figure 3-1:
It’s a bit of
a stretch,
but you
can think
of the Linux
file system
as similar
to a filing
cabinet.

	

The Linux file system has a hierarchical structure — directories can contain
other directories, which in turn contain individual files.

Everything in your Linux system is organized in files and directories. To
access and use documents and programs on your system, you have to be
familiar with the file system.

Understanding the file-system hierarchy
	 The Linux file system is organized like a tree, with a root directory from

which all other directories branch out. When you write a complete pathname,
the root directory is represented by a single slash (/). Then there’s a hierar-
chy of files and directories. Parts of the file system can be on different physi-
cal drives or in different hard drive partitions.

Linux uses a standard directory hierarchy. Figure 3-2 shows some of the stan-
dard parts of the Linux file system. You can create new directories anywhere
in this structure.

Book V
Chapter 3

M
anaging File
System

s
Exploring the Linux File System 353

	

Figure 3-2:
The Linux
file system
uses a
standard
directory
hierarchy
similar to
this one.

	

Write the name of any file or directory by concatenating the names of direc-
tories that identify where that file or directory is and by using the forward
slash (/) as a separator. For example, in Figure 3-2, the usr directory at the
top level is written as /usr because the root directory (/) contains usr.
On the other hand, the X11R6 directory is inside the usr directory, which
is inside the root directory (/). Therefore the X11R6 directory is uniquely
identified by the name /usr/X11R6. This type of full name is a pathname
because the name identifies the path you take from the root directory to
reach a file. Thus /usr/X11R6 is a pathname.

	 The Filesystem Hierarchy Standard (FHS) specifies the organization of files and
directories in Unix-like operating systems, such as Linux. FHS defines a stan-
dard set of directories and their intended use. The FHS, if faithfully adopted
by all Linux distributions, should help improve the interoperability of appli-
cations, system administration tools, development tools, and scripts across
all Linux distributions. FHS even helps the system documentation (as well as
books like this one) because the same description of the file system applies
to all Linux distributions. Version 2.3 of FHS was announced on January 29,
2004. FHS 2.3 is part of the Linux Standard Base version 3.x (LSB 3.0), which
was released on July 1, 2005. The standard was updated with 3.1 on October
25, 2005, and 3.2 on January 28, 2008. LSB 3.x (see www.linuxbase.org) is a
set of binary standards aimed at reducing variations among the Linux distri-
butions and promoting portability of applications. As of this writing, the most
current Base is 4.1, which came out in early 2011. To find out more about the
Linux Standard Base, check out the home page at

www.linuxfoundation.org/collaborate/workgroups/lsb.

Each of the standard directories in the Linux file system has a specific pur-
pose. Table 3-1, Table 3-2, and Table 3-3 summarize these directories.

http://www.linuxbase.org
http://www.linuxfoundation.org/collaborate/workgroups/lsb

Exploring the Linux File System354

Table 3-1	 Standard Directories in Linux File System
Directory Used to Store

/bin Executable files for user commands (for use by all users)

/boot Files needed by the boot loader to load the Linux kernel

/dev Device files

/etc Host-specific system configuration files

/home User home directories

/lib Shared libraries and kernel modules

/media Mount point for removable media

/mnt Mount point for a temporarily mounted file system

/opt Add-on application software packages

/root Home directory for the root user

/sbin Utilities for system administration

/srv Data for services (such as web and FTP) offered by this system

/tmp Temporary files

Table 3-2	 The /usr Directory Hierarchy
Directory Secondary Directory Hierarchy

/usr/bin Most user commands
/usr/
include

Directory for include files — files that are inserted into source
code of applications by using various directives — used in
developing Linux applications

/usr/lib Libraries used by software packages and for programming
/usr/
libexec

Libraries for applications

/usr/
local

Any local software

/usr/sbin Nonessential system administrator utilities
/usr/
share

Shared data that doesn’t depend on the system architecture
(whether the system is an Intel PC or a Sun SPARC workstation)

/usr/src Source code

Book V
Chapter 3

M
anaging File
System

s
Exploring the Linux File System 355

Table 3-3	 The /var Directory Hierarchy
Directory Variable Data

/var/
cache

Cached data for applications

/var/lib Information relating to the current state of applications

/var/lock Lock files to ensure that a resource is used by one application
only

/var/log Log files organized into subdirectories

/var/mail User mailbox files

/var/opt Variable data for packages stored in the /opt directory

/var/run Data describing the system since it was booted
/var/
spool

Data that’s waiting for some kind of processing

/var/tmp Temporary files preserved between system reboots

/var/yp Network Information Service (NIS) database files

Mounting a device on the file system
	 The storage devices that you use in Linux contain Linux file systems. Each

device has its own local file system consisting of a hierarchy of directo-
ries. Before you can access the files on a device, you have to attach the
device’s directory hierarchy to the tree that represents the overall Linux
file system.

Mounting is the operation you perform to cause the file system on a physical
storage device (a hard drive partition or a CD-ROM) to appear as part of the
Linux file system. Figure 3-3 illustrates the concept of mounting.

Figure 3-3 shows each device with a name that begins with /dev. For exam-
ple, /dev/cdrom is the first DVD/CD-ROM drive. Physical devices are mounted
at specific mount points on the Linux file system. For example, the DVD/
CD-ROM drive, /dev/cdrom, is mounted on /media/cdrom in the file
system. After mounting the CD-ROM in this way, the Fedora directory on a
CD-ROM or DVD-ROM appears as /media/cdrom/Fedora in the Linux file
system.

Exploring the Linux File System356

	

Figure 3-3:
You have
to mount a
device on
the Linux
file system
before
accessing it.

	

You can use the mount command to manually mount a device on the Linux
file system at a specified directory. That directory is the mount point. For
example, to mount the DVD/CD-ROM drive at the /media/cdrom directory,
type the following command (after logging in as root):

mount /dev/cdrom /media/cdrom

The mount command reports an error if the DVD/CD-ROM device is mounted
already or if no CD or DVD media is in the drive. Otherwise the mount opera-
tion succeeds, and you can access the contents of the DVD or CD through
the /media/cdrom directory.

	 You can use any directory as the mount point. If you mount a device on a
nonempty directory, however, you can’t access the files in that directory
until you unmount the device by using the umount command. Therefore
always use an empty directory as the mount point.

	 To unmount a device when you no longer need it, use the umount command.
For example, for a DVD/CD-ROM device with the device name /dev/cdrom,
type the following command to unmount the device:

	umount /dev/cdrom

Book V
Chapter 3

M
anaging File
System

s
Exploring the Linux File System 357

The umount command succeeds as long as no one is using the DVD/CD-ROM.
If you get an error when trying to unmount the DVD/CD-ROM, check to see if
the current working directory is on the DVD or CD. If you’re currently work-
ing in one of the DVD/CD-ROM’s directories, that also qualifies as a use of the
DVD/CD-ROM.

Examining the /etc/fstab file
	 The mount command has the following general format:

	mount device-name mount-point

	 However, you can mount by specifying only the CD-ROM device name or the
mount-point name, provided there’s an entry in the /etc/fstab file for
the CD-ROM mount point. That entry specifies the CD-ROM device name and
the file-system type. That’s why you can mount the CD-ROM with a shorter
mount command.

	 For example, in Debian, you can mount the CD-ROM by typing one of the fol-
lowing commands:

mount /dev/cdrom
	mount /media/cdrom

The /etc/fstab file is a configuration file — a text file containing informa-
tion that the mount and umount commands use. Each line in the /etc/
fstab file provides information about a device and its mount point in the
Linux file system. Essentially, the /etc/fstab file associates various mount
points within the file system with specific devices, which enables the mount
command to work from the command line with only the mount point or the
device as argument.

	 Here’s a /etc/fstab file from a SUSE system. (The file has a similar format
in other Linux distributions.)

/dev/hda7 /boot ext3 acl,user_xattr 1 2
/dev/hda6 /data1 auto noauto,user 0 0
/dev/hda9 /data2 auto noauto,user 0 0
/dev/hda10 /data3 auto noauto,user 0 0
/dev/hda5 /data4 auto noauto,user 0 0
/dev/hda2 /windows/C ntfs ro,users,gid=users,umask=0002,nls=utf8 0 0
/dev/hda8 swap swap pri=42 0 0
devpts /dev/pts devpts mode=0620,gid=5 0 0
proc /proc proc defaults 0 0
usbfs /proc/bus/usb usbfs noauto 0 0
sysfs /sys sysfs noauto 0 0
/dev/cdrecorder /media/cdrecorder subfs fs=cdfss,ro,procuid,nosuid,nodev,exec,ioc

harset=utf8 0 0

Sharing Files with NFS358

The first field on each line shows a device name, such as a hard drive parti-
tion. The second field is the mount point, and the third field indicates the
type of file system on the device. You can ignore the last three fields for now.

This /etc/fstab file shows that the /dev/hda8 device functions as a swap
device for virtual memory, which is why both the mount point and the file-
system type are set to swap.

	 The Linux operating system uses the contents of the /etc/fstab file to
mount various file systems automatically. During Linux startup, the init
process executes a shell script that runs the mount -a command. That com-
mand reads the /etc/fstab file and mounts all listed file systems (except
those with the noauto option). The third field on each line of /etc/fstab
specifies the type of file system on that device, and the fourth field shows a
comma-separated list of options that the mount command uses when mount-
ing that device on the file system. Typically, you find the defaults option in
this field. The defaults option implies — among other things — that the
device mounts at boot time, that only the root user can mount the device,
and that the device mounts for both reading and writing. If the options
include noauto, the device doesn’t mount automatically when the system
boots.

	 In Fedora, you often find the managed option in the fourth field of /etc/
fstab entries. The managed option indicates that the line was added to the
fstab file by the HAL (hardware abstraction layer) daemon, which runs the
fstab-sync command to add entries in the /etc/fstab file for each
removable drive that it detects. You typically find that the entries for DVD/
CD-ROM drive(s) (/dev/hdc in most systems) have the managed option in
the fourth field.

Sharing Files with NFS
	 Sharing files through the NFS is simple and involves two basic steps:

	 ✦	 On the NFS server, export one or more directories by listing them in the
/etc/exports file and by running the /usr/sbin/exportfs com-
mand. In addition, you must run the NFS server.

	 ✦	 On each client system, use the mount command to mount the directo-
ries the server has exported.

	 How you start the NFS server depends on the Linux distribution. If a GUI
sysadmin tool is available, you can start the NFS server from the GUI tool.
Otherwise, you can type a command in a terminal window to start the NFS
server:

Book V
Chapter 3

M
anaging File
System

s
Sharing Files with NFS 359

	 ✦	 In Debian, you can type invoke-rc.d nfs-kernel-server start and invoke-
rc.d nfs-common start to start the NFS server.

	 ✦	 In Fedora, type service nfs start.

	 ✦	 To start the NFS server in SUSE, you can use the YaST Control Center:
From the main menu, choose the Kickoff Application Launcher➪YaST➪
System➪System Services (run level).

		 Doing so brings up a screen such as that shown in Figure 3-4.

	 ✦	 In Xandros, you can start the NFS server from the Xandros Control Center
(Main Menu➪Control Center) or by typing invoke-rc.d nfs-user-server
start in a terminal window.

The only problem in using NFS is that each client system must support it.
Most PCs don’t come with NFS — that means you have to buy NFS software
separately if you want to share files by using NFS. If, however, all systems
on your LAN run Linux (or other variants of Unix with built-in NFS support),
using NFS makes sense.

	

Figure 3-4:
You can
start NFS in
openSUSE
from YaST.

	

	 NFS has security vulnerabilities. Therefore don’t set up NFS on systems directly
connected to the Internet.

The upcoming section walks you through an NFS setup, using an example of
two Linux PCs on a LAN.

Sharing Files with NFS360

Exporting a file system with NFS
To export a file system with NFS, start with the server system that exports —
makes available to the client systems — the contents of a directory. On the
server, you must run the NFS service and also designate one or more file sys-
tems to be exported to the client systems.

You have to add an appropriate entry to the /etc/exports file. For exam-
ple, suppose you want to export the /home directory and you want to enable
the hostname LNBP75 to mount this file system for read and write operations.
(You can use a host’s IP address in place of the hostname.) You can do so by
adding the following entry to the /etc/exports file:

/home LNBP75(rw)

If you use the IP address of a host, the entry might look like this:

/home 192.168.1.200(rw)

This specifies that 192.168.1.200 is the IP address of the host that’s allowed
full access to the /home directory.

After adding the entry in the /etc/exports file, start the NFS server using
a method appropriate for your Linux distribution. For example, in Fedora,
log in as root and type the following command in a terminal window:

service nfs start

When the NFS service is up, the server side of NFS is ready. Now you can
try to mount the exported file system from a client system and access the
exported file system.

	 If you ever make any changes to the exported file systems listed in the /etc/
exports file, remember to restart the NFS service. For example, in Fedora,
type service nfs restart in a terminal window. In Xandros, type invoke-rc.d
nfs-user-server restart.

Mounting an NFS file system
	 To access an exported NFS file system on a client system, you have to mount

that file system on a mount point — which is, in practical terms, nothing
more than a local directory. For example, suppose you want to access the /
home/public directory exported from the server named LNBP200 at the
local directory /mnt/lnbp200 on the client system. To do so, follow these
steps:

Book V
Chapter 3

M
anaging File
System

s
Backing Up and Restoring Files 361

	 1.	 Log in as root and create the directory with the following command:

mkdir /mnt/lnbp200

	 2.	 Type the following command to perform the mount operation:

mount lnbp200:/home/public /mnt/lnbp200

		 If you know only the IP address of the server, replace the hostname (in
this case, lnbp200) with the IP address.

	 3.	 Change the directory to /mnt/lnbp200 with the command cd /mnt/
lnbp200.

		 Now you can view and access exported files from this directory.

	 To confirm that the NFS file system is indeed mounted, log in as root on the
client system and type mount in a terminal window. You see a line similar to
the following about the NFS file system:

lnbp200:/home/public on /mnt/lnbp200 type nfs (rw,addr=192.168.1.200)

Backing Up and Restoring Files
	 Backing up and restoring files is a crucial system administration task. If

something happens to your system’s hard drive, you have to rely on the
backups to recover important files. The following discussion presents some
backup strategies, describes several backup media, and explains how to back
up and restore files by using the tape archiver (tar) program that comes
with Linux. Also, you find out how to perform incremental and automatic
backups on tapes.

	 If you have a CD burner, you can back up files also by recording them on a
CD-R. Consult Book II, Chapter 5, for information on what application you
can use to burn a data CD.

Selecting a backup strategy and media
Your Linux system’s hard drive contains everything you need to keep the
system running — as well as other files (such as documents and databases)
that keep your business running. You have to back up these files so you can
recover quickly and bring the system back to normal in case the hard drive
crashes. Typically, you have to follow a strict regimen of regular backups
because you can never tell when the hard drive may fail or the file system
may get corrupted. To implement such a regimen, first decide which files
you want to back up, how often, and what backup storage media to use. This
process is what is meant by selecting a backup strategy and backup media.

Backing Up and Restoring Files362

Your choice of backup strategy and backup media depends on your assess-
ment of the risk of business disruption due to hard drive failure. Depending
on how you use your Linux system, a disk failure may or may not have much
effect on you.

For example, if you use your Linux system as a learning tool (to find out
more about Linux or programming), all you may need are backup copies
of some system files required to configure Linux. In this case, your backup
strategy can be to save important system configuration files on your pre-
ferred storage media every time you change any system configuration.

On the other hand, if you use your Linux system as an office server that
provides shared file storage for many users, the risk of business disruption
due to disk failure is much higher. In this case, you have to back up all the
files every week and back up any new or changed files every day. You can
perform these backups in an automated manner (with the job-scheduling
features described in Chapter 1 of this minibook). Also, you probably need
a backup storage medium that can store many gigabytes of data. In other
words, for high-risk situations, your backup strategy has to be more elabo-
rate and requires additional equipment (such as a high-capacity external
hard drive).

Your choice of backup media depends on the amount of data you have to
back up. For a small amount of data (such as system configuration files),
you can use USB flash drives as backup media. If your PC has an old Zip
drive, you can use Zip disks as backup media; these are good for backing
up a single-user directory. To back up entire servers, use an external hard
drive (which could be attached to the computer or the network) or other
storage device.

When backing up files to these media, you have to refer to the backup device
by name. You will find these devices under the /dev directory.

Commercial backup utilities for Linux
The next section explains how to back up and restore files using the tape
archiver (tar) program that comes with Linux. Although you can manage
backups with tar, a number of commercial backup utilities come with
graphical user interfaces and other features to simplify backups. Here are
some well-known commercial backup utilities for Linux:

	 ✦	 BRU: A backup and restore utility from the TOLIS Group, Inc. (www.
tolisgroup.com)

	 ✦	 LONE-TAR: Tape backup software package from Lone Star Software Corp.
(www.cactus.com)

http://www.tolisgroup.com
http://www.tolisgroup.com
http://www.cactus.com

Book V
Chapter 3

M
anaging File
System

s
Backing Up and Restoring Files 363

	 ✦	 Arkeia: Backup and recovery software for heterogeneous networks from
Arkeia (www.arkeia.com)

	 ✦	 CA ARCserve Backup for Linux: Data-protection technology for Linux
systems from Computer Associates (http://www.arcserve.com)

Using the tape archiver — tar
You can use the tar command to archive files to a device, such as a hard
drive or tape. The tar program creates an archive file that can contain other
directories and files and (optionally) compress the archive for efficient stor-
age. The archive is then written to a specified device or another file. Many
software packages are distributed in the form of a compressed tar file.

The command syntax of the tar program is as follows:

tar options destination source

Here options are usually specified by a sequence of single letters, with each
letter specifying what tar does. The destination is the device name of the
backup device. And source is a list of file or directory names denoting the
files to back up.

Backing up and restoring a single-volume archive
Suppose you want to back up the contents of the /etc/X11 directory on a
hard drive. Log in as root, and type the following command, where xxx rep-
resents your drive:

tar zcvf /dev/xxx /etc/X11

The tar program displays a list of filenames as each file is copied to the
compressed tar archive. In this case, the options are zcvf, the destination
is /dev/xxx (the drive), and the source is the /etc/X11 directory (which
implies all its subdirectories and their contents). You can use a similar tar
command to back up files to a tape — simply replace the hard drive location
with that of the tape device — such as /dev/st0 for a SCSI tape drive.

Table 3-4 defines a few common tar options.

Table 3-4	 Common tar Options
Option Does the Following

c Creates a new archive.

f Specifies the name of the archive file or device on the next field in the
command line.

(continued)

http://www.arkeia.com
http://www.arcserve.com

Backing Up and Restoring Files364

Option Does the Following

M Specifies a multivolume archive. (The next section describes multivol-
ume archives.)

t Lists the contents of the archive.

v Displays verbose messages.

x Extracts files from the archive.

z Compresses the tar archive using gzip.

To view the contents of the tar archive you create on the drive, type the fol-
lowing command (replacing xxx with the drive device):

tar ztf /dev/xxx

You see a list of filenames (each begins with /etc/X11) indicating what’s in
the backup. In this tar command, the t option lists the contents of the tar
archive.

To extract the files from a tar backup, follow these steps while logged in
as root:

	 1.	 Change the directory to /tmp by typing this command:

cd /tmp

		 This step is where you can practice extracting the files from the tar
backup. For a real backup, change the directory to an appropriate loca-
tion (typically, you type cd /).

	 2.	 Type the following command:

tar zxvf /dev/xxx

		 This tar command uses the x option to extract the files from the archive
stored on the device (replace xxx with the drive).

Now if you check the contents of the /tmp directory, you notice that the
tar command creates an etc/X11 directory tree in /tmp and restores all
the files from the tar archive into that directory. The tar command strips
the leading / from the filenames in the archive and restores the files in the
current directory. If you want to restore the /etc/X11 directory from the
archive, use this command (substituting the device name for xxx):

tar zxvf /dev/xxx -C /

Table 3‑4 (continued)

Book V
Chapter 3

M
anaging File
System

s
Backing Up and Restoring Files 365

The -C does a cd to the directory specified (in this case, the root directory
of /) before doing the tar; the / at the end of the command denotes the
directory where you want to restore the backup files.

You can use the tar command to create, view, and restore an archive. You
can store the archive in a file or in any device you specify with a device name.

Backing up and restoring a multivolume archive
Sometimes the capacity of a single storage medium is less than the total
storage space needed to store the archive. In this case, you can use the M
option for a multivolume archive — meaning the archive can span multiple
tapes or even floppies (if you happen to be using an older machine that still
has them). Note, however, that you can’t create a compressed, multivolume
archive. That means you have to drop the z option.

Note: The M tells tar to create a multivolume archive. The tar command
prompts you for a second media when the first one is filled. Take out the first
media, and insert another when you see the following prompt:

Prepare volume #2 and hit return:

When you press Enter, the tar program continues with the second media.
For larger archives, the tar program continues to prompt for new media as
needed.

To restore from this multivolume archive, type cd /tmp to change the direc-
tory to /tmp. (I use the /tmp directory for illustrative purposes, but you
have to use a real directory when you restore files from archive.) Then type
(replacing xxx with the device you are using)

tar xvfM /dev/xxx

The tar program prompts you to feed the media as necessary.

	 Use the du -s command to determine the amount of storage you need for
archiving a directory. For example, type du -s /etc to see the total size of the
/etc directory in kilobytes. Here’s a typical output of that command:

	35724 /etc

The resulting output shows that the /etc directory requires at least
35,724 kilobytes of storage space to back up.

Backing Up and Restoring Files366

Backing up on tapes
Although backing up on tapes is as simple as using the right device name in
the tar command, you do have to know some nuances of the tape device
to use it well. When you use tar to back up to the device named /dev/st0
(the first SCSI tape drive), the tape device automatically rewinds the tape
after the tar program finishes copying the archive to the tape. The /dev/
st0 device is called a rewinding tape device because it rewinds tapes by
default.

If your tape can hold several gigabytes of data, you may want to write sev-
eral tar archives — one after another — to the same tape (otherwise much
of the tape may be left empty). If you plan to do so, your tape device can’t
rewind the tape after the tar program finishes. To help you with scenarios
like this one, several Linux tape devices are nonrewinding. The nonrewind-
ing SCSI tape device is called /dev/nst0. Use this device name if you want
to write one archive after another on a tape.

	 After each archive, the nonrewinding tape device writes an end-of-file (EOF)
marker to separate one archive from the next. Use the mt command to control
the tape — you can move from one marker to the next or rewind the tape.
For example, after you finish writing several archives to a tape using the
/dev/nst0 device name, you can force the tape to rewind with the following
command:

	mt -f /dev/nst0 rewind

After rewinding the tape, you can use the following command to extract files
from the first archive to the current disk directory:

tar xvf /dev/nst0

After that, you must move past the EOF marker to the next archive. To do so,
use the following mt command:

mt -f /dev/nst0 fsf 1

This positions the tape at the beginning of the next archive. Now use the
tar xvf command again to read this archive.

	 If you save multiple archives on a tape, you have to keep track of the archives
yourself. The order of the archives can be hard to remember, so you may be
better off simply saving one archive per tape.

Performing incremental backups
Suppose you use tar to back up your system’s hard drive on a tape. Because
such a full backup can take quite some time, you don’t want to repeat this
task every night. (Besides, only a small number of files may have changed

Book V
Chapter 3

M
anaging File
System

s
Backing Up and Restoring Files 367

during the day.) To locate the files that need backing up, you can use the
find command to list all files that have changed in the past 24 hours:

find / -mtime -1 -type f -print

This command prints a list of files that have changed within the last day.
The -mtime -1 option means you want the files that were last modified less
than one day ago. You can now combine this find command with the tar
command to back up only those files that have changed within the last day:

tar cvf /dev/st0 'find / -mtime -1 -type f -print'

When you place a command between single back quotes, the shell executes
that command and places the output at that point in the command line. The
result is that the tar program saves only the changed files in the archive.
This process gives you an incremental backup of only the files that have
changed since the previous day.

Performing automated backups
Chapter 1 of this minibook shows how to use crontab to set up recurring jobs
(called cron jobs). The Linux system performs these tasks at regular intervals.
Backing up your system is a good use of the crontab facility. Suppose your
backup strategy is as follows:

	 ✦	 Every Sunday at 1:15 a.m., your system backs up the entire hard drive on
the tape.

	 ✦	 Monday through Saturday, your system performs an incremental backup
at 3:10 a.m. by saving only those files that have changed during the past
24 hours.

To set up this automated backup schedule, log in as root and type the fol-
lowing lines in a file named backups (this example assumes that you are
using a SCSI tape drive):

15 1 * * 0 tar zcvf /dev/st0 /
10 3 * * 1-6 tar zcvf /dev/st0 'find / -mtime -1 -type f -print'

Next, submit this job schedule by using the following crontab command:

crontab backups

Now you’re set for an automated backup. All you need to do is to place a
new tape in the tape drive every day. Remember also to give each tape an
appropriate label.

Accessing a DOS or Windows File System368

Accessing a DOS or Windows File System
If you’re using a legacy machine that you just don’t want to throw out and
have a really old version of Microsoft Windows installed on your hard drive,
you’ve probably already mounted the DOS or Windows partition under Linux.
If not, you can easily mount DOS or Windows partitions in Linux. Mounting
makes the DOS or Windows directory hierarchy appear as part of the Linux
file system.

Mounting a DOS or Windows disk partition
	 To mount a DOS or Windows hard drive partition or storage device in Linux,

use the mount command but include the option -t vfat to indicate the file-
system type as DOS. For example, if your DOS partition happens to be the
first partition on your IDE (Integrated Drive Electronics) drive and you want
to mount it on /dosc, use the following mount command:

	mount -t vfat /dev/hda1 /dosc

The -t vfat part of the mount command specifies that the device you
mount — /dev/hda1 — has an MS-DOS file system. Figure 3-5 illustrates
the effect of this mount command.

	

Figure 3-5:
Here’s how
you mount
a DOS
partition on
the /dosc
directory.

	

Book V
Chapter 3

M
anaging File
System

s
Accessing a DOS or Windows File System 369

Figure 3-5 shows how directories in your DOS partition map to the Linux file
system. What was the C:\DOS directory under DOS becomes /dosc/dos
under Linux. Similarly, C:\WINDOWS now is /dosc/windows. You probably
can see the pattern. To convert a DOS filename to Linux (when you mount
the DOS partition on /dosc), perform the following steps:

	 1.	 Change the DOS names to lowercase.

	 2.	 Change C:\ to /dosc/.

	 3.	 Change all backslashes (\) to slashes (/).

Mounting those ancient DOS floppy disks
Just as you mount a DOS hard drive partition on the Linux file system, you
can also mount a DOS floppy disk on a legacy machine. You must log in as
root to mount a floppy, but you can set up your system so that any user
can mount a DOS floppy disk. You also have to know the device name for
the floppy drive. By default, Linux defines the following two generic floppy
device names:

	 ✦	 /dev/fd0 is the A drive (the first floppy drive)

	 ✦	 /dev/fd1 is the B drive (the second floppy drive, if you have one)

You can use any empty directory in the file system as the mount point, but
the Linux system comes with a directory, /media/floppy, specifically for
mounting a floppy disk.

To mount a DOS floppy disk on the /media/floppy directory, put the floppy
in the drive and type the following command:

mount -t vfat /dev/fd0 /media/floppy

After you mount the floppy, you can copy files to and from the floppy by using
the Linux copy command (cp). To copy the file gnome1.pcx from the current
directory to the floppy, type the following:

cp gnome1.pcx /media/floppy

Similarly, to see the contents of the floppy disk, type the following:

ls /media/floppy

If you want to remove the floppy disk from the drive, first unmount the floppy
drive. Unmounting removes the association between the floppy disk’s file
system and the mount point on the Linux file system. Use the umount com-
mand to unmount the floppy disk like this:

umount /dev/fd0

Accessing a DOS or Windows File System370

	 You can set up your Linux system so that any user can mount a DOS floppy.
To enable any user to mount a DOS floppy in the A drive on the /a directory,
for example, perform the following steps:

	 1.	 Log in as root.

	 2.	 Create the /a directory (the mount point) by typing the following
command in a terminal window:

mkdir /a

	 3.	 Edit the /etc/fstab file in a text editor (such as vi or emacs) by
inserting the following line, and then save the file and quit the editor:

/dev/fd0 /a vfat noauto,user 0 0

		 The first field in that line is the device name of the floppy drive (/dev/
fd0); the second field is the mount directory (/a); the third field shows
the type of file system (vfat). The user option (which appears next to
noauto) enables all users to mount DOS floppy disks.

	 4.	 Log out and then log back in as a normal user.

	 5.	 To confirm that you can mount a DOS floppy as a normal user and not
just as root, insert a DOS floppy in the A drive and type the following
command:

mount /a

		 The mount operation succeeds, and you see a listing of the DOS floppy
when you type the command ls /a.

	 6.	 To unmount the DOS floppy, type umount /a.

Mounting an NTFS partition
	 Nowadays, most PCs come with Windows 7 or Windows 8 pre-installed on

the hard drive. Both of these versions of Windows, as well as Windows XP,
typically use the NT File System (NTFS). Linux supports read-only access to
NTFS partitions, and many distributions come with the ntfs.ko kernel
module, which is needed to access an NTFS partition.

If you’ve installed Linux on a Windows system and want to access files on the
NTFS partition but your distribution doesn’t include the ntfs.ko module,
you can build the kernel after enabling an NTFS module during the kernel
configuration step.

After rebuilding and booting from the new kernel, log in as root and type
the following command to create a mount point for the NTFS partition. (In
this case, I’m creating a mount point in the /mnt directory.)

mkdir /mnt/windir

Book V
Chapter 3

M
anaging File
System

s
Accessing a DOS or Windows File System 371

Now you can mount the NTFS partition with the following command:

mount /dev/hda2 /mnt/windir -t ntfs -r -o umask=0222

	 If necessary, replace /dev/hda2 with the device name for the NTFS parti-
tion on your system. On most PCs that come with Windows pre-installed, the
NTFS partition is the second one (/dev/hda2) — the first partition (/dev/
hda1) is usually a hidden partition used to hold files used for the Windows
installation.

372 Book V: Administration

Chapter 4: Working with
Samba and NFS

In This Chapter
✓	Sharing files with Network File System

✓	Installing and configuring Samba

✓	Setting up a Windows server using Samba

I
f your local area network is like many others, it needs the capability to
share files between systems that run Linux and other systems that don’t.

Thus, Linux includes two prominent file-sharing services:

	 ✦	 Network File System (NFS): For sharing files with other Unix systems
(or PCs with NFS client software)

	 ✦	 Samba: For file sharing and print sharing with Windows systems

This chapter describes how to share files using both NFS and Samba.

Sharing Files with NFS
Sharing files through NFS is simple and involves two basic steps:

	 ✦	 On the Linux system that runs the NFS server, you export (share) one
or more directories by listing them in the /etc/exports file and by
running the exportfs command. In addition, you must start the NFS
server.

	 ✦	 On each client system, you use the mount command to mount the direc-
tories that your server has exported.

The only problem in using NFS is that each client system must support it.
Microsoft Windows doesn’t come with NFS, so you have to buy NFS soft-
ware separately if you want to share files by using NFS. However, using NFS
if all systems on your LAN run Linux (or other variants of Unix with built-in
NFS support) makes sense.

	 NFS has security vulnerabilities. Therefore you should not set up NFS on
systems directly connected to the Internet without using the RPCSEC_GSS
security that comes with NFS version 4 (NFSv4).

Sharing Files with NFS374

	 The Linux 2.6 kernel includes support for NFSv4, which is built on earlier ver-
sions of NFS. But unlike earlier versions, NFSv4 has stronger security and was
designed to operate in an Internet environment. (RFC 3510 describes NFSv4;
see www.ietf.org/rfc/rfc3530.txt.) NFSv4 uses the RPCSEC_GSS (GSS
stands for Generic Security Services) protocol for security. You can continue
to use the older user ID- and group ID-based authentication with NFSv4, but if
you want to use RPCSEC_GSS you have to run three additional services:
rpcsvcgassd on the server, rpsgssd on the client, and rpcidmapd on both
the client and the server. For more information about NFSv4 implementation
in Linux, visit www.citi.umich.edu/projects/nfsv4/linux.

The next few sections walk you through NFS setup, using an example of two
Linux PCs on a LAN.

Exporting a file system with NFS
Start with the server system that exports — makes available to the client
systems — the contents of a directory. On the server, you must run the NFS
service and also designate one or more file systems to export.

To export a file system, you have to add an appropriate entry to the /etc/
exports file. For example, suppose that you want to export the /home
directory and you want to enable the host named LNBP75 to mount this file
system for read and write operations. You can do so by adding the following
entry to the /etc/exports file:

/home LNBP75(rw,sync)

If you want to give access to all hosts on a LAN such as 192.168.0.0, you
could change this line to

/home 192.168.0.0/24(rw,sync)

Every line in the /etc/exports file has this general format:

directory host1(options) host2(options) . . .

The first field is the directory being shared via NFS, followed by one or more
fields that specify which hosts can mount that directory remotely and a
number of options in parentheses. You can specify the hosts with names or
IP addresses, including ranges of addresses.

The options in parentheses denote the kind of access each host is granted
and how user and group IDs from the server are mapped to ID the client.
(For example, if a file is owned by root on the server, what owner is that on
the client?) Within the parentheses, commas separate the options. For exam-
ple, if a host is allowed both read and write access — and all IDs are to be

http://www.ietf.org/rfc/rfc3530.txt
http://www.citi.umich.edu/projects/nfsv4/linux

Book V
Chapter 4

W
orking w

ith
Sam

ba and N
FS

Sharing Files with NFS 375

mapped to the anonymous user (by default, the anonymous user is named
nobody) — the options look like this:

(rw,all_squash)

Table 4-1 shows the options you can use in the /etc/exports file. You find
two types of options: general options and user ID mapping options.

Table 4-1	 Options in /etc/exports
Option Description

General Options

secure Allows connections only from ports 1024 or lower
(default)

insecure Allows connections from ports 1024 or higher

ro Allows read-only access (default)

rw Allows both read and write access

sync Performs write operations (writing information to the
disk) when requested (by default)

async Performs write operations when the server is ready

no_wdelay Performs write operations immediately

wdelay Waits a bit to see whether related write requests arrive
and then performs them together (by default)

hide Hides an exported directory that’s a subdirectory of
another exported directory (by default)

no_hide Causes a directory to not be hidden (opposite of hide)

subtree_check Performs subtree checking, which involves checking
parent directories of an exported subdirectory when-
ever a file is accessed (by default)

no_subtree_
check

Turns off subtree checking (opposite of
subtree_check)

insecure_locks Allows insecure file locking

User ID Mapping
Options

all_squash Maps all user IDs and group IDs to the anonymous user
on the client

no_all_squash Maps remote user and group IDs to similar IDs on the
client (by default)

root_squash Maps remote root user to the anonymous user on the
client (by default)

(continued)

Sharing Files with NFS376

Option Description

no_root_squash Maps remote root user to the local root user

anonuid=UID Sets the user ID of anonymous user to be used for the
all_squash and root_squash options

anongid=GID Sets the group ID of anonymous user to be used for the
all_squash and root_squash options

After adding the entry in the /etc/exports file, manually export the file
system by typing the following command in a terminal window:

exportfs -a

This command exports all file systems defined in the /etc/exports file.

Now you can start the NFS server processes.

	 In Debian, start the NFS server by logging in as root and typing /etc/init.d/nfs-
kernel-server start in a terminal window. In Fedora, type /etc/init.d/nfs start.
In SUSE, type /etc/init.d/nfsserver start. If you want the NFS server to start
when the system boots, type update-rc.d nfs-kernel-server defaults in Debian.
In Fedora, type chkconfig - -level 35 nfs on. In SUSE, type chkconfig - -level 35
nfsserver on. In Xandros, type update-rc.d nfs-user-server defaults.

When the NFS service is up, the server side of NFS is ready. Now you can try
to mount the exported file system from a client system and then access the
exported file system as needed.

	 If you ever make any changes to the exported file systems listed in the
/etc/exports file, remember to restart the NFS service. To restart a ser-
vice, invoke the script in the /etc/init.d directory with restart as the
argument (instead of the start argument that you use to start the service).

Mounting an NFS file system
To access an exported NFS file system on a client system, you have to mount
that file system on a mount point. The mount point is nothing more than a
local directory. For example, suppose that you want to access the /home
directory exported from the server named LNBP200 at the local directory
/mnt/lnbp200 on the client system. To do so, follow these steps:

	 1.	 Log in as root and create the directory with this command:

mkdir /mnt/lnbp200

Table 4‑1 (continued)

Book V
Chapter 4

W
orking w

ith
Sam

ba and N
FS

Setting Up a Windows Server Using Samba 377

	 2.	 Type the following command to mount the directory from the remote
system (LNBP200) on the local directory /mnt/lnbp200:

mount lnbp200:/home /mnt/lnbp200

After completing these steps, you can then view and access exported files
from the local directory /mnt/lnbp200.

To confirm that the NFS file system is indeed mounted, log in as root on the
client system and type mount in a terminal window. You see a line similar to
the following about the NFS file system:

lnbp200:/home/public on /mnt/lnbp200 type nfs (rw,addr=192.168.0.4)

	 NFS supports two types of mount operations — hard and soft. By default, a
mount is hard, which means that if the NFS server does not respond, the client
keeps trying to access the server indefinitely until the server responds. You
can soft mount an NFS volume by adding the -o soft option to the mount
command. For a soft mount, the client returns an error if the NFS server fails
to respond.

Setting Up a Windows Server Using Samba
If you rely on Windows for file sharing and print sharing, you probably use
Windows in your servers and clients. If so, you can still move to a Linux PC
as your server without losing Windows file-sharing and print-sharing capabil-
ities; you can set up Linux as a Windows server. When you install Linux from
this book’s companion DVD-ROM, you also get a chance to install the Samba
software package, which performs that setup. All you have to do is select the
Windows File Server package group during installation.

	 After you install and configure Samba on your Linux PC, your client PCs — even
if they’re running an old Windows operating system or one of the more recent
Windows versions — can access shared disks and printers on the Linux PC. To
do so, they use the Common Internet File System (CIFS) protocol, the underly-
ing protocol in Windows file and print sharing.

With the Samba package installed, you can make your Linux PC a Windows
client, which means that the Linux PC can access the disks and printers that
a Windows server manages. At the same time, your Linux PC can be a client
to other Windows systems on the network.

The Samba software package has these major components:

	 ✦	 /etc/samba/smb.conf: The Samba configuration file that the SMB
server uses.

	 ✦	 /etc/samba/smbusers: A Samba configuration file that shows the
Samba usernames corresponding to usernames on the local Linux PC.

Setting Up a Windows Server Using Samba378

	 ✦	 nmbd: The NetBIOS name server, which clients use to look up servers.
(NetBIOS stands for Network Basic Input/Output System — an interface
that applications use to communicate with network transports, such as
TCP/IP.)

	 ✦	 nmblookup: A command that returns the IP address of a Windows PC
identified by its NetBIOS name.

	 ✦	 smbadduser: A program that adds users to the SMB (Server Message
Block) password file.

	 ✦	 smbcacls: A program that manipulates Windows NT access control lists
(ACLs) on shared files.

	 ✦	 smbclient: The Windows client, which runs on Linux and allows Linux
to access the files and printer on any Windows server.

	 ✦	 smbcontrol: A program that sends messages to the smbd, nmbd, or
winbindd processes.

	 ✦	 smbd: The SMB server, which accepts connections from Windows clients
and provides file-sharing and print-sharing services.

	 ✦	 smbmount: A program that mounts a Samba share directory on a
Linux PC.

	 ✦	 smbpasswd: A program that changes the password for an SMB user.

	 ✦	 smbprint: A script that enables printing on a printer on an SMB server.

	 ✦	 smbstatus: A command that lists the current SMB connections for the
local host.

	 ✦	 smbtar: A program that backs up SMB shares directly to tape drives on
the Linux system.

	 ✦	 smbumount: A program that unmounts a currently mounted Samba
share directory.

	 ✦	 testparm: A program that ensures that the Samba configuration file is
correct.

	 ✦	 winbindd: A server that resolves names from Windows NT servers.

The following sections describe how to configure and use Samba.

Installing Samba
You may have already installed Samba when you installed Linux. You can
check first, and if you don’t find Samba on your system, you can easily
install it.

	 To see whether Samba is installed, type dpkg -l samba* in Debian, Ubuntu,
and Xandros or type rpm -q samba in Fedora and SUSE.

Book V
Chapter 4

W
orking w

ith
Sam

ba and N
FS

Setting Up a Windows Server Using Samba 379

	 In Debian and Ubuntu, type apt-get install samba to install Samba. In Fedora,
log in as root and type yum install samba samba-swat. This installs not
only samba but also the web configuration interface, SWAT (Samba Web
Administration Tool). In SUSE, click Software Management in the YaST
Control Center’s Software category. Then use YaST’s search facility to look
for samba, select the relevant packages, and install them. As for Xandros,
you get Samba when you install Xandros.

After installing the Samba software, you have to configure Samba before you
can use it.

Configuring Samba
To set up the Windows file-sharing and print-sharing services, you can either
edit the configuration file manually or use a GUI tool. Using the GUI tool is
much easier than editing a configuration file. Fedora and SUSE come with
GUI tools for configuring the Samba server.

	 In Fedora, choose System Settings➪Advanced➪Samba from the KDE desktop
to open the Samba Server Configuration window. Enter a valid username and
password at the prompt, and the configuration interface that follows lets you
create and edit entries in the configuration file /etc/samba/smb.conf.

	 In SUSE, you can configure Samba through the YaST Control Center — choose
System➪Control Center (YaST) from the main menu. Click Network Services
on the left side of the window and then click Samba Server on the right side of
the window. In the window that appears, select a workgroup name (YaST dis-
plays the name of any existing Windows workgroup on your LAN) and click
Next. Then you can select the server type, enable the server, and select what
you want to share. After you exit the Samba server configuration utility, YaST
stores the Samba settings in configuration files in the /etc/samba directory.

After configuring Samba, type the following command in a terminal window
to verify that the Samba configuration file is okay:

testparm

If the command says that it loaded the files okay, you’re all set to go. The
testparm command also displays the contents of the Samba configuration file.

	 Samba uses the /etc/samba/smb.conf file as its configuration file. This is
a text file with a syntax similar to that of a Microsoft Windows 3.1 INI file.
You can edit that file in any text editor on your Linux system. Like the old
Windows INI files, the /etc/samba/smb.conf file consists of sections,
with a list of parameters in each section. Each section of the smb.conf file
begins with the name of the section in brackets. The section continues until
the next section begins or until the file ends. Each line uses the name =
value syntax to specify the value of a parameter. As in Windows INI files,

Setting Up a Windows Server Using Samba380

comment lines begin with a semicolon (;). In the /etc/samba/smb.conf
file, comments may also begin with a hash mark (#).

	 To start the Samba services automatically when the system reboots, type
update-rc.d samba defaults in Debian, Ubuntu, and Xandros or type chkcon-
fig - -level 35 smb on in Fedora and SUSE. To start Samba immediately, type
/etc/init.d/smb start in Fedora and SUSE or type /etc/init.d/samba start in
Debian, Ubuntu, and Xandros.

Trying out Samba
You can now access the Samba server on the Linux system from one of the
Windows systems on the LAN. Double-click the Network Neighborhood icon on
the Windows 95/98/ME desktop. On Windows XP, choose Start➪My Network
Places and then click View Workgroup Computers. All the computers on the
same workgroup are shown. In Windows, choose Start➪Computer➪Network.

When you see the Samba server, you can open it by double-clicking the icon.
After you enter your Samba username and password, you can access the
folders and printers (if any) on the Samba share.

You can use the smbclient program to access shared directories and print-
ers on Windows systems on the LAN and to ensure that your Linux Samba
server is working. One quick way to check is to type smbclient -L in a termi-
nal window to view the list of services on the Linux Samba server itself.

This chapter is only an introduction to Samba.
To find out more about Samba, you can consult
the following resources:

	✓	 To view Samba documentation online,
visit www.samba.org/samba/docs/
man/Samba-HOWTO-Collection.

	✓	 Using Samba, 3rd Edition, by Jay Ts, Robert
Eckstein, and David Collier-Brown (O’Reilly
& Associates, 2007)

You should also visit www.samba.org to
keep up with the latest news on Samba devel-
opment. This site also has links to resources
for learning Samba.

Discovering more about Samba

http://www.samba.org/samba/docs/man/Samba-HOWTO-Collection
http://www.samba.org/samba/docs/man/Samba-HOWTO-Collection
http://www.samba.org

	 Visit www.dummies.com/extras/linuxaio for great Dummies content online.

Book VI
Security

http://www.dummies.com/extras/linuxaio

Contents at a Glance

Contents at a Glance

Chapter 1: Introducing Linux Security . 383
Why Worry about Security?...383
Establishing a Security Framework..384
Securing Linux..389
Delving into Computer Security Terminology & Tools...391
Keeping Up with Security News and Updates..397

Chapter 2: Securing Linux . 399
Securing Passwords...399
Protecting Files and Directories..402
Encrypting and Signing Files with GnuPG...406
Monitoring System Security..412
Securing Internet Services..413
Using Secure Shell (SSH) for Remote Logins...415
Setting Up Simple Firewalls...418
Security Files to Be Aware Of..426

Chapter 3: Computer Security Audits and
Vulnerability Testing Types . 429

Understanding Security Audits...429
Implementing a Security Test Methodology...431
Vulnerability Testing Types...440
Exploring Security Testing Tools...440

Chapter 1: Introducing Linux
Security

In This Chapter
✓	Establishing a security policy and framework

✓	Understanding host security issues

✓	Understanding network security issues

✓	Translating computer security terminology

✓	Keeping up with security news and updates

T
his chapter explains why you need to worry about security — and offers
a high-level view of how to get a handle on security. The idea of an overall

security framework is explained and the two key aspects of security — host
security and network security — are discussed. This chapter ends by intro-
ducing you to the terminology used in discussing computer security.

	 According to the weighting, 15 percent of the questions on the LX0-102 exam
fall under the Security domain. This number should be viewed as being very
conservative since so much of administration involves security. You’ll find
topics related to it in domains such as Administrative Tasks, Essential System
Services, Networking Fundamentals, and so on. Because of that, you’ll find a
lot of security-relevant information in the three chapters of Book 6 and in
other chapters as well.

Why Worry about Security?
In today’s networked world, you have to worry about your Linux system’s
security. For a standalone system or a system used in an isolated local area
network (LAN), you have to focus on protecting the system from the users,
and the users from one another. In other words, you don’t want a user to
modify or delete system files, whether intentionally or unintentionally — and
you don’t want a user destroying another user’s files (or their own, if you
can prevent it).

Since the odds are good that your Linux system is connected to the Internet,
you have to secure the system from unwanted accesses over the Internet.
These intruders — or crackers, as they’re commonly known — typically
impersonate a user, steal or destroy information, and even deny you access
to your own system — known as a Denial of Service (DoS), or Distributed
Denial of Service (DDoS), attack.

Establishing a Security Framework384

By its very nature, an Internet connection makes your system accessible to any
other system on the Internet. After all, the Internet connects a huge number
of networks across the globe. In fact, the client/server architecture of Internet
services, such as HTTP (web) and FTP, rely on the wide-open network access
the Internet provides. Unfortunately, the easy accessibility to Internet services
running on your system also means that anyone on the Net can easily access
your system.

If you operate an Internet host that provides information to others, you cer-
tainly want everyone to access your system’s Internet services, such as FTP
and web servers. However, these servers often have vulnerabilities that crack-
ers may exploit to harm your system. You need to know about the potential
security risks of Internet services — and the precautions you can take to mini-
mize the risk of someone exploiting the weaknesses of your FTP or web server.

You also want to protect your company’s internal network from outsiders,
even though your goal is to provide information to the outside world through
your web or FTP server. You can protect your internal network by setting up
an Internet firewall — a controlled-access point to the internal network —
and placing the web and FTP servers on a host outside the firewall.

Establishing a Security Framework
The first step in securing your Linux system is to set up a security policy —
a set of guidelines that state what you enable users (as well as visitors over
the Internet) to do on your Linux system. The level of security you establish
depends on how you use the Linux system — and on how much is at risk if
someone gains unauthorized access to your system.

If you’re a system administrator for one or more Linux systems at an organi-
zation, you probably want to involve company management, as well as the
users, in setting up the security policy. Obviously, you can’t create a draconian
policy that blocks all access. (That would prevent anyone from effectively
working on the system.) On the other hand, if the users are creating or using
data valuable to the organization, you have to set up a policy that protects the
data from disclosure to outsiders. In other words, the security policy should
strike a balance between the users’ needs and the need to protect the system.

For a standalone Linux system or a home system that you occasionally con-
nect to the Internet, the security policy can be just a listing of the Internet
services that you want to run on the system and the user accounts that you
plan to set up on the system. For any larger organization, you probably have
one or more Linux systems on a LAN connected to the Internet — preferably
through a firewall. (To reiterate, a firewall is a device that controls the flow
of Internet Protocol — IP — packets between the LAN and the Internet.) In
such cases, thinking of computer security systematically — across the entire
organization — is best. Figure 1-1 shows the key elements of an organization-
wide framework for computer security.

Book VI
Chapter 1

Introducing Linux
Security

Establishing a Security Framework 385

	

Figure 1-1:
Start with
an organi-
zation-wide
framework
for computer
security.

	

The security framework outlined in Figure 1-1 focuses on

	 ✦	 Determining the business requirements for security

	 ✦	 Performing risk assessments

	 ✦	 Establishing a security policy

	 ✦	 Implementing a cybersecurity solution that includes people, process,
and technology to mitigate identified security risks

	 ✦	 Continuously monitoring and managing security

The following sections discuss some of the key elements of the security
framework.

Determining business requirements for security
The business requirements for security identify the computer resources
and information you have to protect (including any requirements imposed
by applicable laws, such as the requirement to protect the privacy of some
types of data). Typical security requirements may include items such as the
following:

	 ✦	 Enabling access to information by authorized users

	 ✦	 Implementing business rules that specify who has access to what
information

	 ✦	 Employing a strong user-authentication system

	 ✦	 Denying execution to malicious or destructive actions on data

Establishing a Security Framework386

	 ✦	 Protecting data from end to end as it moves across networks

	 ✦	 Implementing all security and privacy requirements that applicable laws
impose

Performing risk analysis
Risk analysis is all about identifying and assessing risks — potential events that
can harm your Linux system. The analysis involves determining the following
and performing some analysis to establish the priority for handling the risks:

	 ✦	 Threats: What you’re protecting against

	 ✦	 Vulnerabilities: Weaknesses that may be exploited by threats (these are
the risks)

	 ✦	 Probability: The likelihood that a threat will exploit the vulnerability

	 ✦	 Impact: The effect of exploiting a specific vulnerability

	 ✦	 Mitigation: What to do to reduce vulnerabilities

Typical threats
Some typical threats to your Linux system include the following:

	 ✦	 Denial of Service: The computer and network are tied up so legitimate
users can’t make use of the systems. For businesses, Denial of Service
(DoS) can mean a loss of revenue. Since bringing a system to its knees
with a single computer attack is a bit of a challenge these days, the
more common tactic is to point a number of computers at a single site
and let them do the dirty work. While the purpose and result are the
same as ever, this ganging up is referred to as Distributed Denial of
Service (DDoS) attack because more than one computer is attacking
the host.

	 ✦	 Unauthorized access: Use of the computer and network by someone
who isn’t an authorized user. The unauthorized user can steal informa-
tion or maliciously corrupt or destroy data. Some businesses may be
hurt by the negative publicity resulting from the mere act of an unau-
thorized user gaining access to the system, even if the data shows no
sign of explicit damage.

	 ✦	 Disclosure of information to the public: The unauthorized release of
information to the public. For example, the disclosure of a password file
enables potential attackers to figure out username and password com-
binations for accessing a system. Exposure of other sensitive informa-
tion, such as financial and medical data, may be a potential liability for a
business.

Book VI
Chapter 1

Introducing Linux
Security

Establishing a Security Framework 387

Typical vulnerabilities
The threats to your system and network come from exploitation of vulnera-
bilities in your organization’s resources — both computer and people. Some
common vulnerabilities follow:

	 ✦	 People’s foibles (divulging passwords, losing security cards, and so on)

	 ✦	 Internal network connections (routers, switches)

	 ✦	 Interconnection points (gateways — routers and firewalls — between
the Internet and the internal network)

	 ✦	 Third-party network providers (ISPs, long-distance carriers) with looser
security

	 ✦	 Operating system security holes (potential holes in Internet servers,
such as those associated with sendmail, named, and bind)

	 ✦	 Application security holes (known weaknesses in specific applications)

The 1-2-3 of risk analysis (probability and effect)
To perform risk analysis, assign a numeric value to the probability and effect
of each potential vulnerability. To develop a workable risk analysis, do the
following for each vulnerability or risk:

	 1.	 Assign subjective ratings of low, medium, and high to the probability. As
the ratings suggest, low probability means a lesser chance that the vul-
nerability will be exploited; high probability means a greater chance.

	 2.	 Assign similar ratings to the effect. What you consider the effect is up to
you. If the exploitation of a vulnerability will affect your business greatly,
assign it a high effect rating.

	 3.	 Assign a numeric value to the three levels — low = 1, medium = 2, and
high = 3 — for both probability and effect.

	 4.	 Multiply the probability by the effect — you can think of this product as
the risk level. Then make a decision to develop protections for vulner-
abilities that exceed a specific threshold for the product of probability
and effect. For example, you may choose to handle all vulnerabilities
that have a probability-times-effect value greater than 6.

If you want to characterize the probability and effect with finer gradations,
use a scale of 1 through 5 (for example) instead of 1 through 3, and follow
the same steps as before.

Establishing a security policy
Using risk analysis and any business requirements that you may have to
address (regardless of risk level) as a foundation, you can craft a security
policy for the organization. Such a security policy typically addresses high-
level objectives such as ensuring the confidentiality, integrity, and availability
of data and systems.

Establishing a Security Framework388

The security policy typically addresses the following areas:

	 ✦	 Authentication: What method is used to ensure that a user is the real
user? Who gets access to the system? What is the minimum length and
complexity of passwords? How often do users change passwords? How
long can a user be idle before that user is logged out automatically?

	 ✦	 Authorization: What can different classes of users do on the system?
Who can have the root password?

	 ✦	 Data protection: What data must be protected? Who has access to the
data? Is encryption necessary for some data?

	 ✦	 Internet access: What are the restrictions on users (from the LAN)
accessing the Internet? What Internet services (such as web, Internet
Relay Chat, and so on) can users access? Are incoming e-mails and
attachments scanned for viruses? Is there a network firewall? Are vir-
tual private networks (VPNs) used to connect private networks across
the Internet?

	 ✦	 Internet services: What Internet services are allowed on each Linux
system? Are there any file servers, mail servers, or web servers? What
services run on each type of server? What services, if any, run on
Linux systems used as desktop workstations?

	 ✦	 Security audits: Who tests whether the security is adequate? How often
is the security tested? How are problems found during security testing
handled?

	 ✦	 Incident handling: What are the procedures for handling any computer
security incidents? Who must be informed? What information must be
gathered to help with the investigation of incidents?

	 ✦	 Responsibilities: Who is responsible for maintaining security? Who
monitors log files and audit trails for signs of unauthorized access? Who
maintains the security policy?

Implementing security solutions (mitigation)
After you analyze the risks — vulnerabilities — and develop a security policy,
you have to select the mitigation approach: how to protect against specific
vulnerabilities. This is where you develop an overall security solution based
on security policy, business requirements, and available technology — a
solution that makes use of people, process, and technology and includes the
following:

	 ✦	 Services (authentication, access control, encryption)

	 ✦	 Mechanisms (username and password, firewalls)

	 ✦	 Objects (hardware, software)

Book VI
Chapter 1

Introducing Linux
Security

Securing Linux 389

Because it’s impossible to protect computer systems from all attacks, solu-
tions identified through the risk management process must support three
integral concepts of a holistic security program:

	 ✦	 Protection: Provides countermeasures such as policies, procedures,
and technical solutions to defend against attacks on the assets being
protected.

	 ✦	 Detection: Monitors for potential breakdowns in the protective measures
that could result in security breaches.

	 ✦	 Reaction or Response: Responds to detected breaches to thwart attacks
before damage occurs; often requires human involvement.

Because absolute protection from attacks is impossible to achieve, a secu-
rity program that doesn’t incorporate detection and reaction is incomplete.

Managing security
In addition to implementing security solutions, you have to install security
management that continually monitors, detects, and responds to any secu-
rity incidents.

The combination of the risk analysis, security policy, security solutions,
and security management provides the overall security framework. Such
a framework helps establish a common level of understanding of security
concerns — and a common basis for the design and implementation of
security solutions.

Securing Linux
After you define a security policy, you can proceed to secure the system
according to the policy. The exact steps depend on what you want to do with
the system, whether the system is a server or workstation, and how many
users must access the system.

To secure the Linux system, you have to handle two broad categories of secu-
rity issues:

	 ✦	 Host-security issues: These issues relate to securing the operating system
and the files and directories on the system.

	 ✦	 Network-security issues: These issues refer to the threat of attacks over
the network connection.

	 If your host is connecting to a large network, Directory Services can become
a significant issue. Directory Services security is outside the scope of this
book, but you can find a number of sources addressing the issue with a
Google search.

Securing Linux390

Understanding the host-security issues
Here are some high-level guidelines to address host security. (I cover some
of these topics in detail in Chapter 2 of this minibook.)

	 ✦	 When installing Linux, select only the package groups that you need for
your system. Don’t install unnecessary software. For example, if your
system is used as a workstation, you don’t have to install most of the
servers (web server, news server, and so on).

	 ✦	 Create initial user accounts and make sure that all passwords are strong
enough that password-cracking programs can’t guess them. Linux
includes tools to enforce strong passwords.

	 ✦	 Set file ownerships and permissions to protect important files and
directories.

	 ✦	 If mandatory access-control capabilities are available, enable them.
Support for this feature has been incorporated, through Security
Enhanced Linux (SELinux), since kernel 2.6.

	 ✦	 Use the GNU Privacy Guard (GnuPG) to encrypt or decrypt files with sen-
sitive information and to authenticate files that you download from the
Internet. GnuPG comes with Linux, and you can use the gpg command to
perform tasks such as encrypting or decrypting a file and digitally sign-
ing a file. (See Chapter 2 of this minibook for an explanation of digital
signatures.)

	 ✦	 Use file-integrity checking tools, such as Tripwire, to monitor any changes
to crucial system files and directories. Visit www.tripwire.com for the
commercial version.

	 ✦	 Periodically, check various log files for signs of any break-ins or
attempted break-ins. These log files are in the /var/log directory of
your system.

	 ✦	 Install security updates as soon as they are available and tested. These
security updates fix known vulnerabilities in Linux. Be sure to test the
update on nonproduction machines before rolling it out to your produc-
tion servers.

Understanding network-security issues
The issue of security comes up as soon as you connect your organization’s
internal network to the Internet. You need to think of security even if you
connect a single computer to the Internet, but security concerns are more
pressing when an entire internal network is opened to the world.

If you’re an experienced system administrator, you already know that the
cost of managing an Internet presence doesn’t worry corporate manage-
ment; their main concern is security. To get your management’s backing for

http://www.tripwire.com

Book VI
Chapter 1

Introducing Linux
Security

Delving into Computer Security Terminology and Tools 391

the website, you have to lay out a plan to keep the corporate network secure
from intruders.

You may think that you can avoid jeopardizing the internal network by con-
necting only external servers, such as web and FTP servers, to the Internet.
However, employing this simplistic approach isn’t wise. It’s like deciding not
to drive because you may have an accident. Not having a network connec-
tion between your web server and your internal network also has the follow-
ing drawbacks:

	 ✦	 You can’t use network file transfers, such as FTP, to copy documents and
data from your internal network to the web server.

	 ✦	 Users on the internal network can’t access the corporate web server.

	 ✦	 Users on the internal network don’t have access to web servers on
the Internet. Such a restriction makes a valuable resource — the
web — inaccessible to the users in your organization.

A practical solution to this problem is to set up an Internet firewall and to
put the web server on a highly secured host outside the firewall.

In addition to using a firewall, here are some other steps to take to address
network security. (I explain these further in Chapter 2 of this minibook.)

	 ✦	 Enable only those Internet services you need on a system. In particular,
don’t enable services that aren’t properly configured.

	 ✦	 Use Secure Shell (ssh) for remote logins. Don’t use the r commands,
such as rlogin and rsh.

	 ✦	 Secure any Internet services, such as FTP or TELNET, that you want
to run on your system. You can use the TCP wrapper access-control
files — /etc/hosts.allow and /etc/hosts.deny — to secure
some of these services. (See Chapter 3 of this minibook for more on
the TCP wrapper.)

	 ✦	 Promptly fix any known vulnerabilities of Internet services that you
choose to run. Typically, you can download and install the latest secu-
rity updates from your Linux distribution’s online update sites.

Delving into Computer Security Terminology and Tools
Computer books, magazine articles, and experts on computer security use a
number of terms that you need to know in order to understand discussions
about computer security (and to communicate effectively with security
vendors).

Table 1-1 describes some of the commonly used computer security terms. If
you’re taking the LX0-102 exam, port scanning and setuid are important.

Delving into Computer Security Terminology and Tools392

Table 1-1	 Common Computer Security Terminology
Term Description

Application gateway A proxy service that acts as a gateway for
application-level protocols, such as FTP, HTTP,
NNTP, and SSH.

Authentication The process of confirming that a user is indeed
who he or she claims to be. The typical authen-
tication method is a challenge-response method
wherein the user enters a username and secret
password to confirm his or her identity.

Backdoor A security weakness that a cracker places on a
host to bypass security features.

Bastion host A highly secured computer that serves as an orga-
nization’s main point of presence on the Internet.
A bastion host typically resides on the perimeter
network, but a dual-homed host (with one network
interface connected to the Internet and the other
to the internal network) is also a bastion host.

Buffer overflow A security flaw in a program that enables a
cracker to send an excessive amount of data to
that program and to overwrite parts of the running
program with code in the data being sent. The
result is that the cracker can execute arbitrary
code on the system and possibly gain access
to the system as a privileged user. The new
exec-shield feature of the Linux kernel pro-
tects against buffer overflows.

Certificate An electronic document that identifies an entity
(such as an individual, an organization, or a com-
puter) and associates a public key with that iden-
tity. A certificate contains the certificate holder’s
name, a serial number, an expiration date, a copy
of the certificate holder’s public key, and the
digital signature of the certificate authority so a
recipient can verify that the certificate is real.

Certificate authority (CA) An organization that validates identities and issues
certificates.

Confidentiality Of data, a state of being accessible to no one but
authorized users (usually achieved by encryption).

Cracker A person who breaks into (or attempts to break
into) a host, often with malicious intent.

Decryption The process of transforming encrypted informa-
tion into its original, intelligible form.

Book VI
Chapter 1

Introducing Linux
Security

Delving into Computer Security Terminology and Tools 393

Term Description

Denial of Service (DoS) An attack that uses so many of the resources on
your computer and network that legitimate users
can’t access and use the system. From a single
source, the attack overwhelms the target com-
puter with messages and blocks legitimate traf-
fic. It can prevent one system from being able to
exchange data with other systems or prevent the
system from using the Internet.

Digital signature A one-way MD5 (Message Digest algorithm 5)
or SHA-1 (Secure Hash Algorithm-1) hash of a
message encrypted with the private key of the
message originator, used to verify the integrity of
a message and ensure nonrepudiation.

Distributed Denial of
Service (DDoS)

A variant of the Denial of Service attack that uses
a coordinated attack from a distributed system
of computers rather than a single source. It often
makes use of worms to spread to — and take con-
trol of — multiple computers that can then attack
the target.

DMZ Another name for the perimeter network. (DMZ
originally stood for demilitarized zone, the buffer
zone separating the warring North and South in
Korea and Vietnam.)

Dual-homed host A computer with two network interfaces (think of
each network as a home).

Encryption The process of transforming information so it’s
unintelligible to anyone but the intended recipient.
The transformation is performed by a mathemati-
cal operation between a key and the information.

Exploit tools Publicly available and sophisticated tools that
intruders of various skill levels can use to deter-
mine vulnerabilities and gain entry into targeted
systems.

Firewall A controlled-access gateway between an organi-
zation’s internal network and the Internet. A dual-
homed host can be configured as a firewall.

Hash The result when a mathematical function converts
a message into a fixed-size numeric value known
as a message digest (or hash). The MD5 algorithm,
for example, produces a 128-bit message digest;
SHA-1 generates a 160-bit message digest. The
hash of a message is encrypted with the private
key of the sender to produce the digital signature.

(continued)

Delving into Computer Security Terminology and Tools394

Term Description

Host A computer on a network that’s configured to offer
services to other computers on the network.

Integrity Of received data, a state of being the same as
originally sent (that is, unaltered in transit).

IP spoofing An attack in which a cracker figures out the IP
address of a trusted host and then sends pack-
ets that appear to come from the trusted host.
The attacker can send packets but can’t see
responses. However, the attacker can predict the
sequence of packets and essentially send com-
mands that set up a backdoor for future break-ins.

IPSec (IP Security
Protocol)

A security protocol for the network layer of the
OSI networking model, designed to provide
cryptographic security services for IP packets.
IPSec provides encryption-based authentica-
tion, integrity, access control, and confidentiality.
(For information on IPSec for Linux, visit www.
ipsec-howto.org.)

Logic bombs A form of sabotage in which a programmer
inserts code that causes the program to perform
a destructive action when some triggering event
occurs, such as terminating the programmer’s
employment.

Nonrepudiation A security feature that prevents the sender of data
from being able to deny ever having sent the data.

Packet A collection of bytes, assembled according to a
specific protocol, that serves as the basic unit
of communication on a network. On TCP/IP net-
works, for example, the packet may be referred to
as an IP packet or a TCP/IP packet.

Packet filtering Selective blocking of packets according to type of
packet (as specified by the source and destination
IP address or port).

Perimeter network A network between the Internet and the protected
internal network. The perimeter network (also
known as DMZ) is where the bastion host resides.

Port scanning A method of discovering which ports are open (in
other words, which Internet services are enabled)
on a system, performed by sending connection
requests to the ports, one by one. This procedure
is usually a precursor to further attacks; two port-
scanning tools to know are nmap, and netstat.

Table 1‑1 (continued)

http://www.ipsec-howto.org
http://www.ipsec-howto.org

Book VI
Chapter 1

Introducing Linux
Security

Delving into Computer Security Terminology and Tools 395

Term Description

Proxy server A server on the bastion host that enables internal
clients to access external servers (and enables
external clients to access servers inside the pro-
tected network). There are proxy servers for vari-
ous Internet services, such as FTP and HTTP.

Public key cryptography An encryption method that uses a pair of keys — a
private key and a public key — to encrypt and
decrypt the information. Anything encrypted with
the public key is decrypted only with the corre-
sponding private key, and vice versa.

Public Key Infrastructure
(PKI)

A set of standards and services that enables the
use of public key cryptography and certificates
in a networked environment. PKI facilitates tasks
such as issuing, renewing, and revoking certifi-
cates, and generating and distributing public and
private key pairs.

Screening router An Internet router that filters packets.

setuid program A program that runs with the permissions of the
owner regardless of who runs the program. For
example, if root owns a setuid/suid pro-
gram, that program has root privileges regard-
less of who started the program. Crackers often
exploit vulnerabilities in setuid programs to gain
privileged access to a system. Similarly, sgid
programs are used to run with the permissions of
the group, regardless of who runs the program,
and have their own similar vulnerabilities.

Sniffer Synonymous with packet sniffer — a program that
intercepts routed data and examines each packet
in search of specified information, such as pass-
words transmitted in clear text.

Spyware Any software that covertly gathers user information
through the user’s Internet connection and usually
transmits that information in the background to
someone else. Spyware can also gather informa-
tion about e-mail addresses and even passwords
and credit card numbers. Spyware is similar to a
Trojan horse in that users are tricked into installing
spyware when they install something else.

Symmetric key encryption An encryption method wherein the same key is
used to encrypt and decrypt the information.

Threat An event or activity, deliberate or unintentional,
with the potential for causing harm to a system or
network.

(continued)

Delving into Computer Security Terminology and Tools396

Term Description

Trojan horse A program that masquerades as a benign pro-
gram but is really a backdoor used for attacking
a system. Attackers often install a collection of
Trojan horse programs that enable the attacker to
freely access the system with root privileges,
yet hide that fact from the system administrator.
Such collections of Trojan horse programs are
called rootkits.

Virus A self-replicating program that spreads from one
computer to another by attaching itself to other
programs.

Vulnerability A flaw or weakness that may cause harm to a
system or network.

War-dialing Simple programs that dial consecutive phone
numbers looking for modems.

War-driving A method of gaining entry into wireless computer
networks that uses a laptop, antennas, and a wire-
less network card and involves patrolling loca-
tions to gain unauthorized access.

Worm A self-replicating program that copies itself from
one computer to another over a network.

Table 1-2 lists some of the commonly used computer security-related tools.
Some of these you’ve seen before as they were discussed in other chapters
where they related to the topics there; some others are new as they are rel-
evant to security only.

Table 1-2	 Common Computer Security Tools
Tool Description

chage With this command, you can modify the time between required
password changes (both minimum and maximum number of days),
the number of days of warning to be given that a change must be
made, and expiration date.

find One of the most powerful all-around tools, this command allows
you to find almost anything on machine if you can come up with
the right syntax. Among the plethora of choices, you can find
files created by a user, by a group, on a certain date, with certain
permissions.

Table 1‑1 (continued)

Book VI
Chapter 1

Introducing Linux
Security

Keeping Up with Security News and Updates 397

Tool Description

lsof An acronym for list open files, this utility does just that. Depending
on the parameters used, you can choose to see files opened by a
process, or by a user.

netstat To see the status of the network, including network connections,
routing tables and statistics per interface, this tool does it all. A
similar command, ss, is intended to replace much of the function-
ality here.

nmap This tool is used to scan the network and essentially create a map
of what is available on it. This capability makes it an ideal tool for
port scanning and security auditing.

passwd A utility (not the file by the same name that holds user account
information), with which users can change their passwords at
the command line whenever necessary. Many users don’t know
this utility exists, so they change their passwords when required,
through one of the graphical interface tools.

su To temporarily become another user, su can be used within the
current user’s session. Another shell is created; upon exiting from
this second shell, the user goes back to the original session. This
utility can be used to become the root user or any other user
(provided the corresponding password is given).

sudo Instead of creating a new session (as su requires) to perform a
job with elevated privileges, sudo enables the user to just run
that task.

ulimit Resource limits on shells can be set or viewed using this com-
mand to keep one user from excessively hogging system
resources.

usermod This utility can be thought of as an enhanced version of chage.
Not only can it be used to set/change password expiration param-
eters, it can also be used to specify a default shell, lock/unlock an
account, and so on.

Keeping Up with Security News and Updates
To keep up with the latest security alerts, you may want to visit one or both
of the following sites on a daily basis:

	 ✦	 CERT Coordination Center (CERT/CC) at www.cert.org

	 ✦	 United States Computer Emergency Readiness Team (US-CERT) at
www.us-cert.gov

http://www.cert.org
http://www.us-cert.gov

Keeping Up with Security News and Updates398

If you prefer to receive regular security updates through e-mail, you can also
sign up for (subscribe to) various mailing lists:

	 ✦	 Focus on Linux: Fill out the form at www.securityfocus.com/archive
to subscribe to this mailing list focused on Linux security issues.

	 ✦	 US-CERT National Cyber Alert System: Follow the directions at www.
us-cert.gov to subscribe to this mailing list. The Cyber Alert System
features four categories of security information through its mailing lists:

	 •	 Technical Cyber Security Alerts: Alerts that provide technical informa-
tion about vulnerabilities in various common software products.

	 •	 Cyber Security Alerts: Alerts sent when vulnerabilities affect the
general public. Each alert outlines the steps and actions that non-
technical home and corporate computer users can take to protect
themselves from attacks.

	 •	 Cyber Security Bulletins: Biweekly summaries of security issues and
new vulnerabilities along with patches, workarounds, and other
actions that users can take to help reduce risks.

	 •	 Cyber Security Tips: Advice on common security issues for nontechni-
cal computer users.

	 Finally, check your distribution’s website for updates that may fix any
known security problems with that distribution:

	 	 ✦	 In Debian and Ubuntu, you can update the system with the commands
apt-get update followed by apt-get upgrade.

	 ✦	 For Fedora, the website is http://fedoraproject.org.

	 ✦	 In SUSE, use YaST Online Update to keep your system up to date.

	 ✦	 In Xandros, obtain the latest updates from Xandros Networks.

http://www.securityfocus.com/archive
http://www.us-cert.gov
http://www.us-cert.gov
http://fedoraproject.org

Chapter 2: Securing Linux

In This Chapter
✓	Securing passwords on your Linux system

✓	Protecting the system’s files and directories

✓	Using GnuPG to encrypt and sign files

✓	Monitoring the security of your system

✓	Hardening Internet services

✓	Using Secure Shell for secure remote logins

✓	Setting up simple firewalls and enabling packet filtering

T
o secure your Linux system, you have to pay attention to both host
security and network security. The distinction between the two types

of security is somewhat arbitrary because securing the network involves
securing the applications on the host that relate to what Internet services
your system offers.

This chapter first examines host security and then explains how you can
secure network services (mostly by not offering unnecessary services), how
you can use a firewall to stop unwanted network packets from reaching your
network, and how to use Secure Shell for secure remote logins.

Host is the techie term for your Linux system — especially when you use it
to provide services on a network. But the term makes sense even when you
think of the computer by itself; it’s the host for everything that runs on it: the
operating system and all applications. A key aspect of computer security is to
secure the host.

Securing Passwords
Historically, Unix passwords are stored in the /etc/passwd file, which any
user can read. For example, a typical old-style /etc/passwd file entry for
the root user looks like this:

root:t6Z7NWDK1K8sU:0:0:root:/root:/bin/bash

The fields are separated by colons (:), and the second field contains the pass-
word in encrypted form. To check whether a password is valid, the login
program encrypts the plain-text password the user enters and compares the
password with the contents of the /etc/passwd file. If they match, the user
is allowed to log in.

Securing Passwords400

Password-cracking programs work just like the login program, except these
programs choose one word at a time from a dictionary, encrypt the word,
and compare the encrypted word with the encrypted passwords in the
/etc/passwd file for a match. To crack the passwords, the intruder needs
the /etc/passwd file. Often crackers use weaknesses of various Internet
servers (such as mail and FTP) to get a copy of the /etc/passwd file.

Passwords have become more secure in Linux due to several improvements,
including shadow passwords and pluggable authentication modules, or
PAMs (described in the next two sections). You can install shadow pass-
words or a PAM easily while you install Linux. During Linux installation, you
typically get a chance to configure the authentication. If you enable MD5
security and enable shadow passwords, you automatically enable more
secure passwords in Linux.

Shadow passwords
Obviously, leaving passwords lying around where anyone can get at them —
even if the passwords are encrypted — is bad security. So instead of storing
passwords in the /etc/passwd file (which any user can read), Linux now
stores them in a shadow password file,/etc/shadow. Only the superuser
(root) can read this file. For example, here’s the entry for root in the new-
style /etc/passwd file:

root:x:0:0:root:/root:/bin/bash

In this case, note that the second field contains an x instead of an encrypted
password. The x is the shadow password; the actual encrypted password is
now stored in the /etc/shadow file, where the entry for root is like this:

root:1AAAni/yN$uESHbzUpy9Cgfoo1Bf0tS0:11077:0:99999:7:-1:-1:134540356

The format of the /etc/shadow entries with colon-separated fields resem-
bles the entries in the /etc/passwd file, but the meanings of most of the
fields differ. The first field is still the username, and the second one is the
encrypted password.

The remaining fields in each /etc/shadow entry control when the password
expires. You don’t have to interpret or change these entries in the /etc/
shadow file. Instead, use the chage command to change the password expi-
ration information. For starters, you can check a user’s password expiration
information by using the chage command with the -l option, as follows. (In
such a case, you have to be logged in as root.)

chage -l root

This command displays expiration information, including how long the pass-
word lasts and how often you can change the password.

Book VI
Chapter 2

Securing Linux

Securing Passwords 401

If you want to ensure that the user is forced to change a password at regular
intervals, you can use the -M option to set the maximum number of days
that a password stays valid. For example, to make sure that user kdulaney
is prompted to change the password in 90 days, log in as root and type the
following command:

chage -M 90 kdulaney

You can use the command for each user account to ensure that all passwords
expire when appropriate and that all users must choose new passwords.

Pluggable authentication modules (PAMs)
In addition to improving the password file’s security by using shadow pass-
words, Linux also improves the encryption of the passwords stored in the
/etc/shadow file by using the MD5 message-digest algorithm described in
RFC 1321 (www.ietf.org/rfc/rfc1321.txt or www.cse.ohio-state.
edu/cgi-bin/rfc/rfc1321.html). MD5 reduces a message of any length
to a 128-bit message digest (or fingerprint) of a document so that you can
digitally sign it by encrypting it with your private key. MD5 works quite well
for password encryption, too.

Another advantage of MD5 over older-style password encryption is that the
older passwords were limited to a maximum of eight characters; new pass-
words (encrypted with MD5) can be much longer. Longer passwords are
harder to guess, even if the /etc/shadow file falls into the wrong hands.

You can tell that MD5 encryption is in effect in the /etc/shadow file. The
encrypted passwords are longer and they all sport the 1 prefix, as in the
second field of the following sample entry:

root:1AAAni/yN$uESHbzUpy9Cgfoo1Bf0tS0:11077:0:99999:7:-1:-1:134540356

An add-on program module called a pluggable authentication module (PAM)
performs the MD5 encryption. Linux PAMs provide a flexible method for
authenticating users. By setting the PAM’s configuration files, you can change
your authentication method on-the-fly, without modifying vital programs
that verify a user’s identity (such as login and passwd).

Linux uses PAM capabilities extensively. The PAMs reside in many different
modules (more on this momentarily); their configuration files are in the /
etc/pam.d directory of your system. Check out the contents of this direc-
tory on your system by typing the following command:

ls /etc/pam.d

Each configuration file in this directory specifies how users are authenticated
for a specific utility.

http://www.ietf.org/rfc/rfc1321.txt
http://www.cse.ohio-state.edu/cgi-bin/rfc/rfc1321.html
http://www.cse.ohio-state.edu/cgi-bin/rfc/rfc1321.html

Protecting Files and Directories402

Protecting Files and Directories
One important aspect of securing the host is to protect important system
files — and the directories that contain these files. You can protect the files
through file ownership and the permission settings that control who can
read, write, or (in the case of executable programs) execute the file.

The default Linux file security is controlled through the following settings for
each file or directory:

	 ✦	 User ownership

	 ✦	 Group ownership

	 ✦	 Read, write, execute permissions for the owner

	 ✦	 Read, write, execute permissions for the group

	 ✦	 Read, write, execute permissions for others (everyone else)

Viewing ownerships and permissions
You can see settings related to ownership and permissions for a file when
you look at a detailed listing with the ls -l command. For example, type
the following command to see the detailed listing of the /etc/inittab file:

ls -l /etc/inittab

The resulting listing looks something like this:

-rw-r--r-- 1 root root 1666 Feb 16 07:57 /etc/inittab

The first set of characters describes the file permissions for user, group, and
others. The third and fourth fields show the user and group that own this
file. In this case, both user and group names are the same: root.

Changing file ownerships
You can set the user and group ownerships with the chown command.
For example, if the file /dev/hda should be owned by the user root and
the group disk, you type the following command as root to set up this
ownership:

chown root.disk /dev/hda

To change the group ownership alone, use the chgrp command. For exam-
ple, here’s how you can change the group ownership of a file from whatever
it was earlier to the group named accounting:

chgrp accounting ledger.out

Book VI
Chapter 2

Securing Linux

Protecting Files and Directories 403

Changing file permissions
Use the chmod command to set the file permissions. To use chmod effectively,
you have to specify the permission settings. One way is to concatenate one or
more letters from each column of Table 2-1, in the order shown (Who/Action/
Permission).

Table 2-1	 File Permission Codes
Who Action Permission

u (user) + (add) r (read)

g (group) - (remove) w (write)

o (others) = (assign) x (execute)

a (all) s (set user ID)

To give everyone read and write access to all files in a directory, type chmod
a+rw *. On the other hand, to permit everyone to execute a specific file,
type chmod a+x filename.

Another way to specify a permission setting is to use a three-digit sequence
of numbers. In a detailed listing, the read, write, and execute permission set-
tings for the user, group, and others appear as the sequence

rwxrwxrwx

with dashes in place of letters for disallowed operations. Think of rwxrwxrwx
as three occurrences of the string rwx. Now assign the values r=4, w=2,
and x=1. To get the value of the sequence rwx, simply add the values of
r, w, and x. Thus rwx = 7. With this formula, you can assign a three-digit
value to any permission setting. For example, if the user can read and write
the file but everyone else can only read the file, the permission setting is
rw-r--r-- (that’s how it appears in the listing), and the value is 644. Thus,
if you want all files in a directory to be readable by everyone but writable
only by the user, use the following command:

chmod 644 *

Setting default permission
What permission setting does a file get when you (or a program) create a
new file? The answer is in what is known as the user file-creation mask, which
you can see and set by using the umask command.

Type umask, and the command prints a number showing the current file-
creation mask. For the root user, the mask is set to 022, whereas the mask

Protecting Files and Directories404

for other users is 002. To see the effect of this file-creation mask and to
interpret the meaning of the mask, follow these steps:

	 1.	 Log in as root and type the following command:

touch junkfile

		 This command creates a file named junkfile with nothing in it.

	 2.	 Type ls -l junkfile to see that file’s permissions.

		 You see a line similar to the following:
-rw-r--r-- 1 root root 0 Aug 24 10:56 junkfile

		 Interpret the numerical value of the permission setting by converting each
three-letter permission in the first field (excluding the very first letter) to a
number between 0 and 7. For each letter that’s present, the first letter gets
a value of 4, the second letter is 2, and the third is 1. For example, rw-
translates to 4+2+0 (because the third letter is missing), or 6. Similarly,
r-- is 4+0+0 = 4. Thus the permission string -rw-r--r-- becomes 644.

	 3.	 Subtract the numerical permission setting from 666 and what you get
is the umask setting.

		 In this case, 666 – 644 results in a umask of 022.

Thus a umask of 022 results in a default permission setting of 666 – 022 = 644.
When you rewrite 644 in terms of a permission string, it becomes rw-r--r--.

To set a new umask, type umask followed by the numerical value of the
mask. Here is how you go about it:

	 1.	 Figure out what permission settings you want for new files.

		 For example, if you want new files that can be read and written only by
the owner and no one else, the permission setting looks like this:

rw-------

	 2.	 Convert the permissions into a numerical value by using the conver-
sion method that assigns 4 to the first field, 2 to the second, and 1 to
the third.

		 Thus, for files that are readable and writable only by their owner, the
permission setting is 600.

	 3.	 Subtract the desired permission setting from 666 to get the value of
the mask.

		 For a permission setting of 600, the mask becomes 666 – 600 = 066.

	 4.	 Use the umask command to set the file-creation mask by typing

umask 066

Book VI
Chapter 2

Securing Linux

Protecting Files and Directories 405

	 A default umask of 022 is good for system security because it translates to
files that have read and write permission for the owner and read permissions
for everyone else. The bottom line is that you don’t want a default umask that
results in files that are writable by the whole world.

Checking for set user ID permission
Another permission setting can be a security hazard. This permission set-
ting, called the set user ID (or setuid and/or suid for short), applies to exe-
cutable files. When the suid permission is enabled, the file executes under
the user ID of the file’s owner. In other words, if an executable program is
owned by root and the suid permission is set, the program runs as if root
is executing it — no matter who executed the program. The suid permission
means that the program can do a lot more (for example, read all files, create
new files, and delete files) than what a normal user program can do. Another
risk is that if a suid program file has a security hole, crackers can do a lot
more damage through such programs than through other vulnerabilities.

You can find all suid programs with a simple find command:

find / -type f -perm +4000

You see a list of files such as the following:

/bin/su
/bin/ping
/bin/eject
/bin/mount
/bin/ping6
/bin/umount
/opt/kde4/bin/fileshareset
/opt/kde4/bin/artswrapper
/opt/kde4/bin/kcheckpass
. . . lines deleted . . .

Many of the programs have the suid permission because they need it, but
check the complete list and make sure that there are no strange suid pro-
grams (for example, suid programs in a user’s home directory).

For example, if you type ls -l /bin/su, you see the following permission settings:

-rwsr-xr-x 1 root root 25756 Aug 19 17:06 /bin/su

The s in the owner’s permission setting (-rws) tells you that the suid per-
mission is set for the /bin/su file, which is the executable file for the su
command that you can use to become root or another user.

Encrypting and Signing Files with GnuPG406

Encrypting and Signing Files with GnuPG
Linux comes with the GNU Privacy Guard (GnuPG, or simply GPG) encryption
and authentication utility. With GPG, you can create your public and private
key pair, encrypt files using your key, and also digitally sign a message to
authenticate that it’s really from you. If you send a digitally signed message
to someone who has your public key, the recipient can verify that it was you
who signed the message.

Understanding public key encryption
The basic idea behind public key encryption is to use a pair of keys — one
private and the other public — that are related but can’t be used to guess one
from the other. Anything encrypted with the private key can be decrypted
only with the corresponding public key, and vice versa. The public key is for
distribution to other people while you keep the private key in a safe place.

You can use public key encryption to communicate securely with others;
Figure 2-1 illustrates the basic idea. Suppose Alice wants to send secure
messages to Bob. Each of them generates public key and private key pairs,
after which they exchange their public keys. Then, when Alice wants to
send a message to Bob, she simply encrypts the message using Bob’s public
key and sends the encrypted message to him. Now the message is secure
from eavesdropping because only Bob’s private key can decrypt the mes-
sage — and only Bob has that key. When Bob receives the message, he uses
his private key to decrypt the message and read it.

	

Figure 2-1:
Bob and
Alice can
com-
municate
securely
with
public key
encryption.

	

Book VI
Chapter 2

Securing Linux

Encrypting and Signing Files with GnuPG 407

At this point, you need to stop and think and say, “Wait a minute! How does
Bob know the message really came from Alice? What if someone else uses
Bob’s public key and sends a message as if it came from Alice?” This situa-
tion is where digital signatures come in.

Understanding digital signatures
The purpose of digital, or electronic, signatures is the same as pen-and-ink
signatures, but how you sign digitally is different. Unlike a pen-and-ink signa-
ture, your digital signature depends on the message you’re signing. The first
step in creating a digital signature is to apply a mathematical function to the
message and reduce it to a fixed-size message digest (also called a hash or a
fingerprint). No matter how big your message, the message digest is usually
128 or 160 bits, depending on the hashing function.

The next step is to apply public key encryption. Simply encrypt the message
digest with your private key, and you get the digital signature for the mes-
sage. Typically, the digital signature is added to the end of the message, and
voilà — you get an electronically signed message.

What good does the digital signature do? Well, anyone who wants to verify that
the message is indeed signed by you takes your public key and decrypts the
digital signature. What that person gets is the message digest (the encrypted
hash) of the message. Then he or she applies the same hash function to the
message and compares the computed hash with the decrypted value. If the two
match, no one has tampered with the message. Because your public key was
used to verify the signature, the message must have been signed with the pri-
vate key known only to you. So the message must be from you!

In the theoretical scenario of Alice sending private messages to Bob, Alice can
digitally sign her message to make sure that Bob can tell that the message is
really from her. Figure 2-2 illustrates the use of digital signatures along with
normal public key encryption.

Here’s how Alice sends her private message to Bob with the assurance that
Bob can really tell it’s from her:

	 1.	 Alice uses software to compute the message digest of the message and
then encrypts the digest by using her private key. This is her digital sig-
nature for the message.

	 2.	 Alice encrypts the message (again, using some convenient software and
Bob’s public key).

	 3.	 She sends both the encrypted message and the digital signature to Bob.

	 4.	 Bob decrypts the message, using his private key.

	 5.	 Bob decrypts the digital signature, using Alice’s public key. This gives
him the message digest.

Encrypting and Signing Files with GnuPG408

	

Figure 2-2:
Alice can
digitally
sign her
message
so that Bob
can tell
it’s really
from her.

	

	 6.	 Bob computes the message digest of the message and compares it with
what he got by decrypting the digital signature.

	 7.	 If the two message digests match, Bob can be sure that the message
really came from Alice.

Using GPG
GPG includes the tools you need to use public key encryption and digital
signatures. You can figure out how to use GPG gradually as you begin using
encryption. The following shows you some of the typical tasks you can per-
form with GPG.

Generating the key pair
The steps for generating the key pairs are as follows:

	 1.	 Type gpg - -gen-key.

		 If you’re using gpg for the first time, it creates a .gnupg directory in
your home directory and a file named gpg.conf in that directory. Then
GPG asks what kind of keys you want:

Please select what kind of key you want:
(1) DSA and ElGamal (default)
(2) DSA (sign only)
(4) RSA (sign only)
Your selection?

Book VI
Chapter 2

Securing Linux

Encrypting and Signing Files with GnuPG 409

	 2.	 Press Enter for the default choice because it’s good enough.

		 GPG then prompts you for the key size (the number of bits).

	 3.	 Press Enter again to accept the default value of 2,048 bits.

		 GPG asks you when the keys expire. The default is to never expire.

	 4.	 If the default is what you want (and why not?), press Enter.

	 5.	 When GPG asks if you really want the keys to never expire, press the
Y key to confirm.

		 GPG prompts you for your name, your e-mail address, and finally a com-
ment to make it easier to associate the key pair with your name.

	 6.	 Type each piece of requested information and press Enter.

	 7.	 When GPG gives you a chance to change the information or confirm it
as is, confirm by typing o and pressing Enter.

		 GPG next prompts you for a passphrase that protects your private key.

	 8.	 Type a long phrase that includes lowercase and uppercase letters,
numbers, and punctuation marks — the longer the better — and then
press Enter.

		 Be careful to choose a passphrase that you can easily remember.

		 GPG generates the keys. It may ask you to perform some work on the
PC so that the random-number generator can generate enough random
numbers for the key-generation process.

Exchanging keys
To communicate with others, you have to give them your public key. You
also have to get public keys from those who may send you a message (or
someone who might sign a file and you want to verify the signature). GPG
keeps the public keys in your key ring. (The key ring is simply the public
keys stored in a file, but it sounds nice to call it a key ring because everyone
has a key ring in the real world, and these are keys of a sort, right?) To list
the keys in your key ring, type

gpg --list-keys

To send your public key to someone or to place it on a website, you have to
export the key to a file. The best way is to put the key in what GPG documen-
tation calls an ASCII-armored format, with a command like this:

gpg --armor --export kdualney@insightbb.com > kdulaneykey.asc

This command saves the public key in an ASCII-armored format (it basically
looks like garbled text) in the file named kdulaneykey.asc. You would
replace the e-mail address with your e-mail address (the one you used when
you created the key) and replace the output filename to something different.

Encrypting and Signing Files with GnuPG410

After you export the public key to a file, you can mail that file to others or
place it on a website for use by others.

When you import a key from someone, you typically get it in an ASCII-
armored format as well. For example, if you have a us-cert@us-cert.gov
GPG public key in a file named uscertkey.asc (obtained from the link at
www.us-cert.gov/pgp/email.html), you then import it into the key ring
with the following command:

gpg --import uscertkey.asc

Use the gpg --list-keys command to verify that the key is in your key
ring. For example, here’s what you might see when typing gpg --list-keys on
the system:

/home/kdulaney/.gnupg/pubring.gpg

pub 1024D/7B38A728 2013-08-28
uid Kristin Dulaney <kdulaney@insightbb.com>
sub 2048g/3BD6D418 2013-08-28
pub 2048R/F0E187D0 2014-09-08 [expires: 2014-10-01]
uid US-CERT Operations Key <us-cert@us-cert.gov>

The next step is to check the fingerprint of the new key. Type the following
command to get the fingerprint of the US-CERT key:

gpg --fingerprint us-cert@us-cert.gov

GPG prints the fingerprint:

pub 2048R/F0E187D0 2013-09-08 [expires: 2014-10-01]
Key fingerprint = 049F E3BA 240B 4CF1 3A76 06DC 1868 49EC F0E1 87D0
uid US-CERT Operations Key <us-cert@us-cert.gov>

At this point, you need to verify the key fingerprint with someone at the
US-CERT organization.

If you think the key fingerprint is good, you can sign the key and validate it.
Here’s the command you use to sign the key:

gpg --sign-key us-cert@us-cert.gov

GPG asks for confirmation and then prompts you for your passphrase. After
that, GPG signs the key.

	 Because key verification and signing is a potential weak link in GPG, be care-
ful about what keys you sign. By signing a key, you basically say that you
trust the key to be from that person or organization.

mailto:us-cert@us-cert.gov
http://www.us-cert.gov/pgp/email.html

Book VI
Chapter 2

Securing Linux

Encrypting and Signing Files with GnuPG 411

Signing a file
You may find signing files useful if you send a file to someone and want to
assure the recipient that no one tampered with the file and that you did, in
fact, send the file. GPG makes signing a file easy. You can compress and sign
a file named message with the following command:

gpg -o message.sig -s message

To verify the signature, type

gpg --verify message.sig

To get back the original document, simply type

gpg -o message --decrypt message.sig

Sometimes you don’t care about keeping a message secret, but you simply
want to sign it to indicate that the message is from you. In such a case, you
can generate and append a clear-text signature with the following command:

gpg -o message.asc --clearsign message

This command basically appends a clear-text signature to the text message.
Here’s a typical clear-text signature block:

-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.2 (GNU/Linux)
iD8DBQFDEhAtaHWlHHs4pygRAhiqAJ9Qj0pPMgKVBuokDyUZaEYVsp6RIQCfaoBm
9zCwrSAG9mo2DXJvbKS3ri8=
=2uc/
-----END PGP SIGNATURE-----

When a message has a clear-text signature appended, you can use GPG to
verify the signature with the following command:

gpg --verify message.asc

If you had indeed signed the message, the last line of the output says that it’s
a good signature.

Encrypting and decrypting documents
To encrypt a message meant for a recipient, you can use the --encrypt (or -e)
GPG command. Here’s how you might encrypt a message for US-CERT using its
GPG key:

gpg -o message.gpg -e -r us-cert@us-cert.gov message

Monitoring System Security412

The message is encrypted using the US-CERT public key (without a signa-
ture, but you can add the signature with the -s command).

When US-CERT receives the message.gpg file, the recipient has to decrypt
it using US-CERT’s private key. Here’s the command someone at US-CERT
can use:

gpg -o message --decrypt message.gpg

GPG then prompts for the passphrase to unlock the US-CERT private key,
decrypts the message, and saves the output in the file named message.

If you simply want to encrypt a file and no one else has to decrypt the file,
you can use GPG to perform symmetric encryption. In this case, you provide a
passphrase to encrypt the file with the following GPG command:

gpg -o secret.gpg -c somefile

GPG prompts you for the passphrase and asks you to repeat the passphrase
(to make sure that you didn’t mistype anything). Then GPG encrypts the file
using a key generated from the passphrase.

To decrypt a file encrypted with a symmetric key, type

gpg -o myfile --decrypt secret.gpg

GPG prompts you for the passphrase. If you enter the correct passphrase,
GPG decrypts the file and saves the output (in this example) in the file
named myfile.

Monitoring System Security
Even if you secure your system, you have to monitor the log files periodi-
cally for signs of intrusion. You may want to use Tripwire (a good tool for
detecting any changes made to the system files) so that you can monitor the
integrity of critical system files and directories. Your Linux system probably
doesn’t come with the Tripwire package. To use Tripwire, you have to buy it
from www.tripwire.com. After you purchase and install Tripwire, you can
configure it to monitor any changes to specified system files and directories
on your system.

Periodically examine the log files in the /var/log directory and its sub-
directories. Many Linux applications, including some servers, write log
information by using the logging capabilities of syslogd or rsyslogd. On
Linux systems, the log files written by syslogd and rsyslogd reside in the
/var/log directory. Make sure that only the root user can read and write
these files.

http://www.tripwire.com

Book VI
Chapter 2

Securing Linux

Securing Internet Services 413

	 The syslogd configuration file is /etc/syslog.conf, and the rsyslogd
configuration file (existing on many newer systems) is /etc/rsyslog.
conf. The default configuration of syslogd generates the necessary log
files; however, if you want to examine and understand the configuration file,
type man syslog.conf for more information.

Securing Internet Services
For an Internet-connected Linux system (or even one on a TCP/IP LAN that’s not
connected to the Internet), a significant threat is that someone could use one of
many Internet services to gain access to your system. Each service — such as
mail, web, or FTP — requires running a server program that responds to client
requests arriving over the TCP/IP network. Some of these server programs have
weaknesses that can allow an outsider to log in to your system — maybe with
root privileges. Luckily, Linux comes with some facilities that you can use to
make the Internet services more secure.

	 Potential intruders can employ a port-scanning tool — a program that attempts
to establish a TCP/IP connection at a port and then looks for a response — to
check which Internet servers are running on your system. Then, to gain access
to your system, the intruders can potentially exploit any known weaknesses of
one or more services.

Turning off standalone services
To provide Internet services, such as web, e-mail, and FTP, your Linux system
has to run server programs that listen to incoming TCP/IP network requests.
Some of these servers start when your system boots, and they run all the time.
Such servers are standalone servers. The web server and mail server are exam-
ples of standalone servers.

Another server, xinetd, starts other servers that are configured to work
under xinetd. Some Linux systems use the inetd server instead of xinetd
to start other servers.

Some servers can be configured to run standalone or under a super server
such as xinetd. For example, the vsftpd FTP server can be configured to
run standalone or to run under the control of xinetd.

	 In Debian, Ubuntu, and Xandros, use the update-rc.d command to turn off
standalone servers and use the invoke-rc.d command to start or stop
servers interactively. To get a clue about the available services, type ls /etc/
init.d and look at all the script files designed to turn services on or off. You
have to use these filenames when you want to turn a service on or off. For
example, to turn off Samba service, type update-rc.d -f samba remove. If the
service was already running, type invoke-rc.d samba stop to stop the ser-
vice. You can use the invoke-rc.d command to stop any service in a simi-
lar manner.

Securing Internet Services414

	 In Fedora and SUSE, you can turn standalone servers on or off by using the
chkconfig command. You can get the names of the service scripts by typing
ls /etc/init.d. Then you can turn off a service (for example, Samba) by typing
chkconfig - -del smb. If the service was already running, type /etc/init.d/smb
stop to stop the service. You can run scripts from the /etc/init.d directory
with the stop argument to stop any service in a similar manner.

Configuring the Internet super server
In addition to standalone servers such as a web server or mail server, other
servers — inetd or xinetd — have to be configured separately. These
servers are Internet super servers because they can start other servers on
demand.

	 Type ps ax | grep inetd to see which Internet super server — inetd or
xinetd — your system runs.

	 Debian, Ubuntu, and Xandros use inetd, and Fedora and SUSE use xinetd.

The inetd server is configured through the /etc/inetd.conf file. You can
disable a service by locating the appropriate line in that file and commenting
it out by placing a pound sign (#) at the beginning of the line. After saving
the configuration file, type /etc/init.d/inetd restart to restart the inetd
server.

Configuring the xinetd server is a bit more complicated. The xinetd server
reads a configuration file named /etc/xinetd.conf at startup. This file, in
turn, refers to configuration files stored in the /etc/xinetd.d directory. The
configuration files in /etc/xinetd.d tell xinetd which ports to listen to and
which server to start for each port. Type ls /etc/xinetd.d to see a list of the
files in the /etc/xinetd.d directory on your system. Each file represents
a service that xinetd can start. To turn off any of these services, edit the
file in a text editor and add a disable = yes line in the file. After you make
any changes to the xinetd configuration files, you must restart the xinetd
server; otherwise, the changes don’t take effect. To restart the xinetd server,
type /etc/init.d/xinetd restart. This command stops the xinetd server and
then starts it again. When it restarts, it reads the configuration files, and the
changes take effect.

Configuring TCP wrapper security
A security feature of both inetd and xinetd is their use of the TCP wrap-
per to start various services. The TCP wrapper is a block of code that pro-
vides an access-control facility for Internet services, acting like a protective
package for your message. The TCP wrapper can start other services, such
as FTP and TELNET; but before starting a service, it consults the /etc/
hosts.allow file to see whether the host requesting the service is allowed

Book VI
Chapter 2

Securing Linux

Using Secure Shell (SSH) for Remote Logins 415

to use that service. If nothing appears in /etc/hosts.allow about that
host, the TCP wrapper checks the /etc/hosts.deny file to see if it denies
the service. If both files are empty, the TCP wrapper provides access to the
requested service.

Here are the steps to follow to tighten access to the services that inetd or
xinetd are configured to start:

	 1.	 Use a text editor to edit the /etc/hosts.deny file, adding the follow-
ing line into that file:

ALL:ALL

		 This setting denies all hosts access to any Internet services on your
system.

	 2.	 Edit the /etc/hosts.allow file and add to it the names of hosts that
can access services on your system.

		 For example, to enable only hosts from the 192.168.1.0 network and the
localhost (IP address 127.0.0.1) to access the services on your system,
place the following line in the /etc/hosts.allow file:

ALL: 192.168.1.0/255.255.255.0 127.0.0.1

	 3.	 If you want to permit a specific remote host access to a specific Internet
service, use the following syntax for a line in /etc/hosts.allow:

server_program_name: hosts

		 Here server_program_name is the name of the server program, and
hosts is a comma-separated list of the hosts that can access the service.
You may also write hosts as a network address or an entire domain
name, such as .mycompany.com.

Using Secure Shell (SSH) for Remote Logins
Linux comes with the Open Secure Shell (OpenSSH) software, a suite of pro-
grams that provides a secure replacement for the Berkeley r commands:
rlogin (remote login), rsh (remote shell), and rcp (remote copy). OpenSSH
uses public key cryptography to authenticate users and to encrypt the com-
munication between two hosts, so users can securely log in from remote sys-
tems and copy files securely.

This section briefly describes how to use the OpenSSH software in Linux. To
find out more about OpenSSH and read the latest news about it, visit www.
openssh.com or www.openssh.org.

The OpenSSH software is installed during Linux installation. Table 2-2 lists
the main components of the OpenSSH software.

http://www.openssh.com
http://www.openssh.com
http://www.openssh.org

Using Secure Shell (SSH) for Remote Logins416

Table 2-2	 Components of the OpenSSH Software
Component Description

/usr/sbin/sshd This Secure Shell daemon must run on a host if
you want users on remote systems to use the ssh
client to log in securely. When a connection from
the ssh client arrives, sshd performs authentica-
tion using public key cryptography and establishes
an encrypted communication link with the ssh
client.

/usr/bin/ssh Users can run this Secure Shell client to log in to a
host that is running sshd. Users can also use ssh
to execute a command on another host.

/usr/bin/slogin This component is a symbolic link to /usr/bin/
ssh.

/usr/bin/scp This secure-copy program works like rcp but
securely. The scp program uses ssh for data
transfer and provides the same authentication and
security as ssh.

/usr/bin/
ssh-keygen

You use this program to generate the public and
private key pairs you need for the public key cryp-
tography used in OpenSSH. The ssh-keygen
program can generate key pairs for both RSA and
DSA (Digital Signature Algorithm) authentication.
(RSA comes from the initial of the last name of Ron
Rivest, Adi Shamir, and Leonard Adleman — the
developers of the RSA algorithm.)

/etc/ssh/
sshd_config

This configuration file for the sshd server speci-
fies many parameters for sshd, including the port
to listen to, the protocol to use, and the location of
other files. (There are two versions of SSH proto-
cols: SSH1 and SSH2, both supported by OpenSSH.)

/etc/ssh/
ssh_config

This configuration file is for the ssh client. Each
user can also have an ssh configuration file
named config in the .ssh subdirectory of the
user’s home directory.

OpenSSH uses public key encryption, in which the sender and receiver both
have a pair of keys — a public key and a private key. The public keys are
freely distributed, and each party knows the other’s public key. The sender
encrypts data by using the recipient’s public key. Only the recipient’s private
key can then decrypt the data.

Book VI
Chapter 2

Securing Linux

Using Secure Shell (SSH) for Remote Logins 417

To use OpenSSH, you first need to start the sshd server and then generate
the host keys. Here’s how:

	 ✦	 If you want to support SSH-based remote logins on a host, start the sshd
server on your system. Type ps ax | grep sshd to see if the server is
already running. If not, log in as root and turn on the SSH service.

	 ✦	 Generate the host keys with the following command:

ssh-keygen -d -f /etc/ssh/ssh_host_key -N ''

		 The -d flag causes the ssh-keygen program to generate DSA keys, which
the SSH2 protocol uses. If you see a message saying that the file /etc/
ssh/ssh_host_key already exists, it means that the key pairs were
generated during Linux installation. You can use the existing file without
having to regenerate the keys.

A user who wants to log in using SSH can simply use the ssh command. For
example:

ssh 192.168.0.4 -l kdulaney

where 192.168.0.4 is the IP address of the other Linux system. SSH then dis-
plays a message:

The authenticity of host '192.168.0.4 (192.168.0.4)' can't be established.
RSA key fingerprint is 7b:79:f2:dd:8c:54:00:a6:94:ec:fa:8e:7f:c9:ad:66.
Are you sure you want to continue connecting (yes/no)?

Type yes and press Enter. SSH then adds the host to its list of known hosts
and prompts you for a password on the other Linux system:

kdulaney@192.168.0.4's password:

After entering the password, you have a secure login session with that system.
You can also log in to this account with the following equivalent command:

ssh kdulaney@192.168.0.4

If you simply want to copy a file securely from another system on the LAN
(identified by its IP address, 192.168.0.4), you can use scp like this:

scp 192.168.0.4:/etc/X11/xorg.conf

This command prompts for a password and securely copies the /etc/X11/
xorg.conf file from the 192.168.0.4 host to the system from which the scp
command was typed, as follows:

kdulaney@192.168.0.4's password: (type the password.)
xorg.conf 100% 2814 2.8KB/s 00:00

Setting Up Simple Firewalls418

Setting Up Simple Firewalls
A firewall is a network device or host with two or more network interfaces —
one connected to the protected internal network and the other connected to
unprotected networks, such as the Internet. The firewall controls access to
and from the protected internal network.

If you connect an internal network directly to the Internet, you have to make
sure that every system on the internal network is properly secured — which
can be nearly impossible because a single careless user can render the
entire internal network vulnerable. A firewall is a single point of connection
to the Internet: You can direct all your efforts toward making that firewall
system a daunting barrier to unauthorized external users. Essentially, a
firewall is like a protective fence that keeps unwanted external data and soft-
ware out and sensitive internal data and software in. (See Figure 2-3.)

	

Figure 2-3: A
firewall pro-
tects hosts
on a private
network
from the
Internet.

	

The firewall runs software that examines the network packets arriving at
its network interfaces, and then takes appropriate action based on a set of
rules. The idea is to define these rules so they allow only authorized network
traffic to flow between the two interfaces. Configuring the firewall involves
setting up the rules properly. A configuration strategy is to reject all network
traffic and then enable only a limited set of network packets to go through
the firewall. The authorized network traffic would include the connections
necessary to enable internal users to do things such as visit websites and
receive electronic mail.

To be useful, a firewall has the following general characteristics:

	 ✦	 It must control the flow of packets between the Internet and the internal
network.

	 ✦	 It must not provide dynamic routing because dynamic routing tables are
subject to route spoofing — the use of fake routes by intruders. Instead,
the firewall uses static routing tables (which you can set up with the
route command on Linux systems).

Book VI
Chapter 2

Securing Linux

Setting Up Simple Firewalls 419

	 ✦	 It must not allow any external user to log in as root. That way, even if
the firewall system is compromised, the intruder is blocked from using
root privileges from a remote login.

	 ✦	 It must be kept in a physically secure location.

	 ✦	 It must distinguish between packets that come from the Internet and
packets that come from the internal protected network. This feature
allows the firewall to reject packets that come from the Internet but have
the IP address of a trusted system on the internal network.

	 ✦	 It acts as the SMTP mail gateway for the internal network. Set up the
sendmail software so that all outgoing mail appears to come from the
firewall system.

	 ✦	 Its user accounts are limited to a few user accounts for those internal
users who need access to external systems. External users who need
access to the internal network should use SSH for remote login (see
“Using Secure Shell (SSH) for Remote Logins,” earlier in this chapter).

	 ✦	 It keeps a log of all system activities, such as successful and unsuccess-
ful login attempts.

	 ✦	 It provides DNS name-lookup service to the outside world to resolve any
hostnames that are known to the outside world.

	 ✦	 It provides good performance so that it doesn’t hinder the internal users’
access to specific Internet services (such as HTTP and FTP).

A firewall can take many different forms. Here are three common forms of a
firewall:

	 ✦	 Packet filter firewall: This simple firewall uses a router capable of filter-
ing (blocking or allowing) packets according to a number of their charac-
teristics, including the source and destination IP addresses, the network
protocol (TCP or UDP), and the source and destination port numbers.
Packet filter firewalls are usually placed at the outermost boundary with
an untrusted network, and they form the first line of defense. An exam-
ple of a packet filter firewall is a network router that employs filter rules
to screen network traffic.

		 Packet filter firewalls are fast and flexible, but they can’t prevent attacks
that exploit application-specific vulnerabilities or functions. They can log
only a minimal amount of information, such as source IP address, destina-
tion IP address, and traffic type. Also, they’re vulnerable to attacks and
exploits that take advantage of flaws within the TCP/IP protocol, such as
IP address spoofing, which involves altering the address information in
network packets to make them appear to come from a trusted IP address.

	 ✦	 Stateful inspection firewall: This type of firewall keeps track of the net-
work connections that network applications are using. When an applica-
tion on an internal system uses a network connection to create a session
with a remote system, a port is also opened on the internal system. This
port receives network traffic from the remote system. For successful

Setting Up Simple Firewalls420

connections, packet filter firewalls must permit incoming packets from
the remote system. Opening up many ports to incoming traffic creates
a risk of intrusion by unauthorized users who abuse the expected con-
ventions of network protocols such as TCP. Stateful inspection firewalls
solve this problem by creating a table of outbound network connections,
along with each session’s corresponding internal port. This state table
is then used to validate any inbound packets. This stateful inspection
is more secure than a packet filter because it tracks internal ports indi-
vidually rather than opening all internal ports for external access.

	 ✦	 Application-proxy gateway firewall: This firewall acts as an intermediary
between internal applications that attempt to communicate with external
servers such as a web server. For example, a web proxy receives requests
for external web pages from web browser clients running inside the fire-
wall and relays them to the exterior web server as though the firewall was
the requesting web client. The external web server responds to the fire-
wall, and the firewall forwards the response to the inside client as though
the firewall was the web server. No direct network connection is ever
made from the inside client host to the external web server.

		 Application-proxy gateway firewalls have some advantages over packet
filter firewalls and stateful inspection firewalls. First, application-proxy
gateway firewalls examine the entire network packet rather than only
the network addresses and ports. This enables these firewalls to provide
more extensive logging capabilities than packet filters or stateful inspec-
tion firewalls. Another advantage is that application-proxy gateway fire-
walls can authenticate users directly, whereas packet filter firewalls and
stateful inspection firewalls normally authenticate users on the basis of
the IP address of the system (that is, source, destination, and protocol
type). Given that network addresses can be easily spoofed, the authenti-
cation capabilities of application-proxy gateway firewalls are superior to
those found in packet filter and stateful inspection firewalls.

		 The advanced functionality of application-proxy gateway firewalls,
however, results in some disadvantages when compared with packet
filter or stateful inspection firewalls. First, because of the full packet
awareness found in application-proxy gateways, the firewall is forced to
spend significant time reading and interpreting each packet. Therefore
application-proxy gateway firewalls are generally not well suited to high-
bandwidth or real-time applications. To reduce the load on the firewall,
a dedicated proxy server can be used to secure less time-sensitive ser-
vices, such as e-mail and most web traffic. Another disadvantage is that
application-proxy gateway firewalls are often limited in terms of support
for new network applications and protocols. An individual application-
specific proxy agent is required for each type of network traffic that
needs to go through the firewall. Most vendors of application-proxy
gateways provide generic proxy agents to support undefined network
protocols or applications. However, those generic agents tend to negate
many of the strengths of the application-proxy gateway architecture, and
they simply allow traffic to tunnel through the firewall.

Book VI
Chapter 2

Securing Linux

Setting Up Simple Firewalls 421

Most firewalls implement a combination of these firewall functionalities. For
example, many vendors of packet filter firewalls or stateful inspection firewalls
have also implemented basic application-proxy functionality to offset some of
the weaknesses associated with their firewalls. In most cases, these vendors
implement application proxies to provide better logging of network traffic
and stronger user authentication. Nearly all major firewall vendors have intro-
duced multiple firewall functions into their products in some manner.

	 In a large organization, you may also have to isolate smaller internal networks
from the corporate network. You can set up such internal firewalls the same
way that you set up Internet firewalls.

Using NAT
Network Address Translation (NAT) is an effective tool that enables you
to hide the network addresses of an internal network behind a firewall.
In essence, NAT allows an organization to use private network addresses
behind a firewall while maintaining the ability to connect to external sys-
tems through the firewall.

Here are the three methods for implementing NAT:

	 ✦	 Static: In static NAT, each internal system on the private network has
a corresponding external, routable IP address associated with it. This
particular technique is seldom used because unique IP addresses are in
short supply.

	 ✦	 Hiding: With hiding NAT, all systems behind a firewall share the same
external, routable IP address, while the internal systems use private IP
addresses. Thus, with a hiding NAT, a number of systems behind a fire-
wall still appear to be a single system.

	 ✦	 Port address translation: With port address translation, you can place
hosts behind a firewall system and still make them selectively accessible
to external users.

In terms of strengths and weaknesses, each type of NAT — static, hiding, or
port address translation — is applicable in certain situations; the variable
is the amount of design flexibility offered by each type. Static NAT offers
the most flexibility, but it’s not always practical because of the shortage of
IP addresses. Hiding NAT technology is seldom used because port address
translation offers additional features. Port address translation is often the
most convenient and secure solution.

Enabling packet filtering on your Linux system
The Linux kernel has built-in packet filtering software in the form of some-
thing called netfilter. You use the iptables command to set up the
rules for what happens to the packets based on the IP addresses in their
header and the network connection type.

Setting Up Simple Firewalls422

	 To find out more about netfilter and iptables, visit the documentation
section of the netfilter website at www.netfilter.org/documentation.

The built-in packet filtering capability is handy when you don’t have a dedi-
cated firewall between your Linux system and the Internet. This is the case,
for example, when you connect your Linux system to the Internet through
a DSL or cable modem. Essentially, you can have a packet filtering firewall
inside your Linux system, sitting between the kernel and the applications.

Using the security level configuration tool
Some Linux distributions, such as Fedora and SUSE, include GUI tools to turn
on a packet filtering firewall.

	 In Fedora, you can turn on different levels of packet filtering through the
graphical Firewall Configuration tool. To run the tool, log in as root and
choose Activities then type in Firewall. The Firewall Configuration window
appears (see Figure 2-4) along with an authentication window.

	

Figure 2-4:
In Fedora,
you can
configure
the firewall
with this
tool.

	

From the Firewall Configuration dialog box, you can select two predefined
levels of simple firewalling (more precisely, packet filtering):

	 ✦	 Disabled: This option doesn’t perform any filtering and allows all con-
nections. (You can still turn off Internet services by not running the serv-
ers or disabling them in the xinetd configuration files.) This security

http://www.netfilter.org/documentation

Book VI
Chapter 2

Securing Linux

Setting Up Simple Firewalls 423

level is fine if your Linux system is inside a protected local area network
or if you have a separate firewall device.

	 ✦	 Enabled: This option turns on packet filtering. You can then select the
services that you want to allow and the network devices that you trust.

You can allow incoming packets meant for specific Internet services such
as SSH, TELNET, and FTP. If you select a network interface such as eth0
(the first Ethernet card) as trusted, all network traffic over that interface is
allowed without any filtering.

	 In SUSE, to set up a firewall, choose Main Menu➪System➪YaST. In the YaST
Control Center window that appears, click Security and Users on the left side
of the window and then click Firewall on the right side. YaST opens a window
that you can use to configure the firewall.

You can designate network interfaces (by device name, such as eth0, ppp0,
and so on) to one of three zones: internal, external, or demilitarized zone.
Then, for that zone, you can specify what services (such as HTTP, FTP, and
SSH) are allowed. If you have two or more network interfaces and you use
the Linux system as a gateway (a router), you can enable forwarding pack-
ets between network interfaces (a feature called masquerading). Figure 2-5
shows an example of this feature in the Firewall Configuration tool included
with Fedora.

	

Figure 2-5:
In Fedora,
you can turn
on masquer-
ading with a
single click.

	

Setting Up Simple Firewalls424

You can also turn on different levels of logging (for example, logging all
dropped packets that attempt connection at specific ports). If you make
changes to firewall settings, click the Startup category and click Save
Settings and Restart Firewall Now.

Using the iptables command
The GUI firewall configuration tools use the iptables command to imple-
ment the firewall. If your Linux system doesn’t have a GUI tool, you can use
iptables directly to configure firewalling on your Linux system.

Using the iptables command is somewhat complex. The iptables
command uses the concept of a chain, which is a sequence of rules. Each
rule says what to do with a packet if the header contains certain informa-
tion (such as the source or destination IP address). If a rule doesn’t apply,
iptables consults the next rule in the chain. By default, there are three
chains:

	 ✦	 INPUT chain: The first set of rules against which packets are tested.
The packets continue to the next chain only if the INPUT chain doesn’t
specify DROP or REJECT.

	 ✦	 FORWARD chain: Contains the rules that apply to packets attempting to
pass through this system to another system (when you use your Linux
system as a router between your LAN and the Internet, for example).

	 ✦	 OUTPUT chain: Includes the rules applied to packets before they are sent
out (either to another network or to an application).

When an incoming packet arrives, the kernel uses iptables to make a rout-
ing decision based on the destination IP address of the packet. If the packet
is for this server, the kernel passes the packet to the INPUT chain. If the
packet satisfies all the rules in the INPUT chain, the packet is processed by
local processes such as an Internet server that is listening for packets of
this type.

If the kernel has IP forwarding enabled and the packet has a destination IP
address of a different network, the kernel passes the packet to the FORWARD
chain. If the packet satisfies the rules in the FORWARD chain, it’s sent out to
the other network. If the kernel doesn’t have IP forwarding enabled and the
packet’s destination address isn’t for this server, the packet is dropped.

If the local processing programs that receive the input packets want to send
network packets out, those packets pass through the OUTPUT chain. If the
OUTPUT chain accepts those packets, they’re sent out to the specified desti-
nation network.

You can view the current chains, add rules to the existing chains, or create
new chains of rules by using the iptables command. When you view the
current chains, you can also save them to a file. For example, if you had

Book VI
Chapter 2

Securing Linux

Setting Up Simple Firewalls 425

configured nothing else and your system has no firewall configured, typing
iptables -L should show the following:

Chain INPUT (policy ACCEPT)
target prot opt source destination
Chain FORWARD (policy ACCEPT)
target prot opt source destination
Chain OUTPUT (policy ACCEPT)
target prot opt source destination

In this case, all three chains — INPUT, FORWARD, and OUTPUT — show the
same ACCEPT policy, which means everything is wide open.

If you’re setting up a packet filter, the first thing you do is specify the packets
that you want to accept. For example, to accept packets from the 192.168.0.0
network address, add the following rule to the INPUT chain:

iptables -A INPUT -s 192.168.0.0/24 -j ACCEPT

Now add a rule to drop everything except local loopback (the lo network
interface) traffic and stop all forwarding with the following commands:

iptables -A INPUT -i ! lo -j REJECT
iptables -A FORWARD -j REJECT

The first iptables command, for example, appends to the INPUT chain
(-A INPUT) the rule that if the packet does not come from the lo interface
(-i ! lo), iptables rejects the packet (-j REJECT).

Before rejecting all other packets, you may also add more rules to each INPUT
chain to allow specific packets in. You can select packets to accept or reject
based on many parameters, such as IP addresses, protocol types (TCP, UDP),
network interface, and port numbers.

You can do all sorts of specialized packet filtering with iptables. For exam-
ple, suppose you set up a web server and want to accept packets meant for
only HTTP (port 80) and Secure Shell (SSH) services. The Secure Shell service
(port 22) is for you to securely log in and administer the server. Suppose the
server’s IP address is 192.168.0.10. Here is how you might set up the rules for
this server:

iptables -P INPUT DROP
iptables -A INPUT -s 0/0 -d 192.168.0.10 -p tcp --dport 80 -j ACCEPT
iptables -A INPUT -s 0/0 -d 192.168.0.10 -p tcp --dport 22 -j ACCEPT

In this case, the first rule sets up the default policy of the INPUT chain to
DROP, which means that if none of the specific rules match, the packet will
be dropped. The next two rules say that packets addressed to 192.168.0.10
and meant for ports 80 and 22 are accepted.

Security Files to Be Aware Of426

	 Don’t type iptables commands from a remote login session. A rule that
begins denying packets from all addresses can also stop what you type
from reaching the system; if that happens, you may have no way of access-
ing the system over the network. To avoid unpleasant surprises, always
type iptables rules at the console — the keyboard and monitor con-
nected directly to your Linux PC that is running the packet filter. If you
want to delete all filtering rules in a hurry, type iptables -F to flush them. To
change the default policy for the INPUT chain to ACCEPT, type iptables -t
filter -P INPUT ACCEPT. This causes iptables to accept all incoming
packets by default.

	 Not every iptables command is discussed in this section. You can type
man iptables to read a summary of the commands. You can also read about
netfilter and iptables at www.iptables.org.

After you define the rules by using the iptables command, they’re in
memory and are gone when you reboot the system. Use the iptables-
save command to store the rules in a file. For example, you can save the
rules in a file named iptables.rules by using the following command:

iptables-save > iptables.rules

Here’s a listing of the iptables.rules file generated on a Fedora system:

Generated by iptables-save v1.3.0 on Sun Dec 28 16:10:12 2014
*filter
:FORWARD ACCEPT [0:0]
:INPUT ACCEPT [0:0]
:OUTPUT ACCEPT [6:636]
-A FORWARD -j REJECT --reject-with icmp-port-unreachable
-A INPUT -s 192.168.0.0/255.255.255.0 -j ACCEPT
-A INPUT -i ! lo -j REJECT --reject-with icmp-port-unreachable
COMMIT
Completed on Sun Dec 28 16:10:12 2014

These rules correspond to the following iptables commands used to con-
figure the filter:

iptables -A INPUT -s 192.168.0.0/24 -j ACCEPT
iptables -A INPUT -i ! lo -j REJECT
iptables -A FORWARD -j REJECT

If you want to load these saved rules into iptables, use the following
command:

iptables-restore < iptables.rules

Security Files to Be Aware Of
Table 2-3 lists eleven files, or directories, that security administrators should
be aware of and able to explain the purpose of.

http://www.iptables.org

Book VI
Chapter 2

Securing Linux

Security Files to Be Aware Of 427

Table 2-3	 Key Security Files
File Description

/etc/nologin If this file exists, it denies login to all users except
root. This can be handy when maintenance needs
to be done and users need to stay off the system for a
period of time. Removing the file restores login capa-
bility for all users. The file can be created as a text file
with any editor, or you can often use the nologin
command to create it.

/etrc/passwd This file holds much of the user account information
and is addressed heavily in this chapter.

/etc/shadow When shadowing is turned on – which it almost always
is – then password values (hashes) are stored in this
file (which is more secure) as opposed to in /etrc/
passwd.

/etrc/
xinetd.d/*

This directory can be used to store configuration files
used by xinetd, the server daemon.

/etrc/xinetd.
conf

This is the main configuration file used by xinetd,
the server daemon.

/etrcxinetd.d/* This directory can be used to store configuration files
used by inetd, the Internet daemon. In almost all dis-
tributions, inetd has been replaced by xinetd.

/etrc/inetd.
conf

This is the main configuration file used by inetd, the
Internet daemon.

/etrc/inittab This is the initial startup (initialization) table used to
identify what starts and stops as the system is booted
and changes run states.

/etrc/init.d/* This directory can hold configuration files that are
used during the change of run states/level and refer-
enced by the inittab file.

/etrc/hosts.
allow

If this file exists, then it specifically lists the hosts that
are allowed to network with this one. If the file does
not exist, then the default is that all hosts are allowed
to network with this one.

/etrc/hosts.
deny

If this file exists, then it specifically lists the hosts that
are not allowed to network with this one. If the file
does not exist, then the default is that all hosts are
allowed to network with this one.

The three possibilities are that there is an allow file
identifying only hosts that can, a deny file that identifies
only hosts that cannot, or neither file – in which case all
other hosts are allowed to network with this one.

428 Book VI: Security

Chapter 3: Computer Security
Audits and Vulnerability
Testing Types

In This Chapter
Understanding computer security audits

✓	Learning a security test methodology

✓	Reviewing host and network security

✓	Appreciating vulnerability testing

✓	Exploring different security testing tools

W
hen you see the term audit, the odds are good you think of the kind
involving taxes. In actuality, many types of audits exist, and one of

them is a computer security audit. The purpose of a computer security audit, in
its simplest form, is to test your system and network security. For larger orga-
nizations, an independent auditor (much like with the auditing of financial
statements) can do the security audit. If you have only a few Linux systems
or a small network, you can do the security audit as a self-assessment, just to
figure out if you’re doing everything okay.

This chapter explains how to perform computer security audits and shows
you a number of free tools and resources to help you test your system’s
security.

Understanding Security Audits
An audit is simply an independent assessment of whatever it is you’re audit-
ing. So a computer security audit is an independent assessment of computer
security. If someone conducts a computer security audit of your organiza-
tion, he or she focuses typically on two areas:

	 ✦	 Independent verification of whether your organization complies with
its existing policies and procedures for computer security. This part is
the nontechnical aspect of the security audit.

	 ✦	 Independent testing of how effective your security controls (any hard-
ware and software mechanisms you use to secure the system) are. This
part is the technical aspect of the security audit.

Understanding Security Audits430

Why do you need security audits? For the same reason you need financial
audits — mainly to verify that everything is being done the way it’s sup-
posed to be done. For public as well as private organizations, management
may want to have independent security audits done so as to assure them-
selves that their security is A-OK. Irrespective of your organization’s size,
you can always perform security audits on your own, either to prepare for
independent security audits or simply to know that you’re doing everything
correctly.

No matter whether you have independent security audits or a self-assessment,
here are some of the benefits you get from security audits:

	 ✦	 Periodic risk assessments that consider internal and external threats to
systems and data

	 ✦	 Periodic testing of the effectiveness of security policies, security controls,
and techniques

	 ✦	 Identification of any significant deficiencies in your system’s security
(so you know what to fix)

	 ✦	 In the case of self-assessments, preparation for any annual independent
security testing that your organization might have to face

Nontechnical aspects of security audits
The nontechnical side of computer security audits focuses on your
organization-wide security framework. The audit examines how well the
organization has set up and implemented the policies, plans, and procedures
for computer security. Here’s a list of some items to be verified:

	 ✦	 Risks are periodically assessed.

	 ✦	 An entity-wide security program plan is in place.

	 ✦	 A security program-management structure is in place.

	 ✦	 Computer security responsibilities are clearly assigned.

	 ✦	 Effective security-related personnel policies are in place.

	 ✦	 The security program’s effectiveness is monitored and changes are made
when needed.

As you may expect, the nontechnical aspects of the security audit involve
reviewing documents and interviewing appropriate individuals to find out
how the organization manages computer security. For a small organization
or a home PC, expecting plans and procedures in documents is ridiculous.
In those cases, simply make sure that you have some technical controls in
place to secure your system and your network connection.

Book VI
Chapter 3

Com
puter

Security Audits
and Vulnerability

Testing Types
Implementing a Security Test Methodology 431

Technical aspects of security audits
The technical side of computer security audits focuses on testing the tech-
nical controls that secure your hosts and network. The testing involves
determining

	 ✦	 How well the host is secured. Are all operating system patches applied?
Are the file permissions set correctly? Are user accounts protected? Are
file changes monitored? Are log files monitored? And so on.

	 ✦	 How well the network is secured. Are unnecessary Internet services
turned off? Is a firewall installed? Are remote logins secured with tools
such as SSH? Are TCP wrapper access controls used? And so on.

Typically, security experts use automated tools to perform these two secu-
rity reviews, for individual hosts and for the entire network.

Implementing a Security Test Methodology
A key element of a computer security audit is a security test that checks the
technical mechanisms used to secure a host and the network. The security-
test methodology follows these high-level steps:

	 1.	 Take stock of the organization’s networks, hosts, network devices (rout-
ers, switches, firewalls, and so on), and Internet connection.

	 2.	 If there are many hosts and network connections, determine which are
the important hosts and network devices that need to be tested. The
importance of a host depends on the kinds of applications it runs. For
example, a host that runs the corporate database would be more impor-
tant than the hosts that serve as desktop systems.

	 3.	 Test the hosts individually. Typically, this step involves logging in as
a system administrator and checking various aspects of host security,
from passwords to system log files.

	 4.	 Test the network. This step is usually performed by attempting to break
through the network defenses from another system on the Internet. If
there’s a firewall, the testing checks that the firewall is indeed configured
correctly.

	 5.	 Analyze the test results of both host and network tests to determine vul-
nerabilities and risks.

Each of the two types of testing — host and network — focuses on three areas
of overall computer security:

	 ✦	 Prevention: Includes the mechanisms (nontechnical and technical) that
help prevent attacks on the system and the network.

Implementing a Security Test Methodology432

	 ✦	 Detection: Refers to techniques such as monitoring log files, checking
file integrity, and using intrusion detection systems that can detect when
someone is about to break into (or has already broken into) your system.

	 ✦	 Response: Includes the steps for tasks such as reporting an incident to
authorities and restoring important files from backup after a computer
security incident occurs.

For host and network security, each of these areas has some overlaps. For
example, prevention mechanisms for host security (such as good passwords
or file permissions) can also provide network security. Nevertheless, think-
ing in terms of the three areas — prevention, detection, and response —
does help.

Some common computer vulnerabilities
Before you can think of prevention, however, you have to know the types of
problems you’re trying to prevent — the common security vulnerabilities.
The prevention and detection steps typically depend on the specific vulner-
abilities. Basically, the idea is to check whether a host or a network has the
vulnerabilities that crackers exploit.

Online resources on computer vulnerabilities
Several online resources identify and categorize computer security
vulnerabilities:

	 ✦	 SANS Institute publishes a list of the top 20 most critical Internet security
vulnerabilities — the Top Cyber Security Risks index — at www.sans.
org/top20.

	 ✦	 CVE (Common Vulnerabilities and Exposures) is a list of standardized
names of vulnerabilities. For more information on CVE, see http://
cve.mitre.org. Using the CVE name to describe vulnerabilities is
common practice.

	 ✦	 National Vulnerability Database (NVD) is a searchable index of informa-
tion on computer vulnerabilities, published by the National Institute of
Standards and Technology (NIST), a United States government agency.
NVD is online at http://nvd.nist.gov.

Typical computer vulnerabilities
The SANS Internet security vulnerabilities list includes several types of vul-
nerabilities, such as Windows, cross-platform, and Unix. Of these, Unix and
cross-platform vulnerabilities are relevant to Linux.

	 Table 3-1 summarizes some common Unix and cross-platform vulnerabilities
that apply to Linux.

http://www.sans.org/top20
http://www.sans.org/top20
http://cve.mitre.org
http://cve.mitre.org
http://nvd.nist.gov

Book VI
Chapter 3

Com
puter

Security Audits
and Vulnerability

Testing Types
Implementing a Security Test Methodology 433

Table 3-1	 Some Common Vulnerabilities to Unix Systems
Vulnerability Type Description

BIND DNS Berkeley Internet Name Domain (BIND)
is a package that implements Domain
Name System (DNS), the Internet’s name
service that translates a name to an IP
address. Some versions of BIND have
vulnerabilities.

Apache Web Server Some Apache Web Server modules (such
as mod_ssl) have known vulnerabilities.
Any vulnerability in Common Gateway
Interface (CGI) programs used with web
servers to process interactive web pages
can provide attackers a way to gain
access to a system.

Authentication User accounts often have no passwords
or have weak passwords that are easily
cracked by password-cracking programs.

CVS, Subversion Concurrent Versions System (CVS) is a
popular source-code control system used
in Linux systems. Subversion is another
version control system for Linux that is
becoming popular. These version control
systems have vulnerabilities that can
enable an attacker to execute arbitrary
code on the system.

sendmail sendmail is a complex program used
to transport mail messages from one
system to another, and some versions of
sendmail have vulnerabilities.

SNMP Simple Network Management Protocol
(SNMP) is used to remotely monitor and
administer various network-connected
systems ranging from routers to comput-
ers. SNMP lacks good access control, so
an attacker may be able to reconfigure
or shut down your system if it is running
SNMP.

Open Secure Sockets Layer
(OpenSSL)

Many applications, such as Apache Web
Server, use OpenSSL to provide crypto-
graphic security for a network connection.
Unfortunately, some versions of OpenSSL
have known vulnerabilities that could be
exploited.

(continued)

Implementing a Security Test Methodology434

Vulnerability Type Description

Network File System (NFS) and
Network Information Service (NIS)

Both NFS and NIS have many security
problems (for example, buffer overflow,
potential for denial-of-service attacks,
and weak authentication). Also, NFS and
NIS are often misconfigured, which could
allow local and remote users to exploit the
security holes.

Databases Databases such as MySQL and
PostgreSQL are complex applications and
can be difficult to correctly configure and
secure. These databases have many fea-
tures that can be misused or exploited to
compromise the confidentiality, availability,
and integrity of data.

Linux kernel The Linux kernel is susceptible to many
vulnerabilities, such as denial of service,
execution of arbitrary code, and root-
level access to the system.

Host-security review
When reviewing host security, focus on assessing the security mechanisms
in each of the following areas:

	 ✦	 Prevention: Install operating system updates, secure passwords, improve
file permissions, set up a password for a boot loader, and use encryption.

	 ✦	 Detection: Capture log messages and check file integrity with Tripwire
(a tool that can detect changes to system files).

	 ✦	 Response: Make routine backups and develop incident response
procedures.

The following sections review a few of these host-security mechanisms.

Operating system updates
Linux distributions release updates soon. When security vulnerabilities
are found, Linux distributions release an update to fix the problem. Many
distributions offer online updates that you can enable and use to keep your
system up to date. The details of updating the operating system depend on
the distribution. (See Book V, Chapter 4 for information on how to update
Linux online.)

Table 3‑1 (continued)

Book VI
Chapter 3

Com
puter

Security Audits
and Vulnerability

Testing Types
Implementing a Security Test Methodology 435

File permissions
Protect important system files with appropriate file ownerships and file per-
missions. The key procedures in assigning file-system ownerships and per-
missions are as follows:

	 ✦	 Figure out which files contain sensitive information and why. Some files
may contain sensitive data related to your work or business, whereas
many other files are sensitive because they control the Linux system
configuration.

	 ✦	 Maintain a current list of authorized users and what they are authorized
to do on the system.

	 ✦	 Set up passwords, groups, file ownerships, and file permissions to allow
only authorized users to access the files.

Table 3-2 lists some important system files in Linux, showing the typical
numeric permission setting for each file (this may differ slightly, depending
on the distribution). See Chapter 2 of this minibook for more on numeric
permission settings.

Table 3-2	 Important System Files and Their Permissions
File Pathname Permission Description

/boot/grub/menu.
lst

600 GRUB boot loader menu file

/etc/cron.allow 400 List of users permitted to use
cron to submit periodic jobs

/etc/cron.deny 400 List of users who can’t use cron
to submit periodic jobs

/etc/crontab 644 System-wide periodic jobs

/etc/hosts.allow 644 List of hosts allowed to use
Internet services that are started
using TCP wrappers

/etc/hosts.deny 644 List of hosts denied access to
Internet services that are started
using TCP wrappers

/etc/logrotate.
conf

644 File that controls how log files
rotate

/etc/pam.d 755 Directory with configuration files
for pluggable authentication mod-
ules (PAMs)

/etc/passwd 644 Old-style password file with user
account information but not the
passwords

(continued)

Implementing a Security Test Methodology436

File Pathname Permission Description

/etc/rc.d 755 Directory with system-startup
scripts

/etc/securetty 600 TTY interfaces (terminals) from
which root can log in

/etc/security 755 Policy files that control system
access

/etc/shadow 400 File with encrypted passwords and
password expiration information

/etc/shutdown.
allow

400 Users who can shut down or
reboot by pressing Ctrl+Alt+Delete

/etc/ssh 755 Directory with configuration files
for the Secure Shell (SSH)

/etc/sysconfig 755 System configuration files

/etc/sysctl.conf 644 Kernel configuration parameters

/etc/syslog.conf 644 Configuration file for the syslogd
server that logs messages

/etc/udev/udev.
conf

644 Configuration file for udev — the
program that provides the capa-
bility to dynamically name hot-
pluggable devices and create the
device files in the /dev directory

/etc/vsftpd 600 Configuration file for the Very
Secure FTP server

/etc/vsftpd.
ftpusers

600 List of users who are not allowed
to use FTP to transfer files

/etc/xinetd.conf 644 Configuration file for the xinetd
server

/etc/xinetd.d 755 Directory containing configuration
files for specific services that the
xinetd server can start

/var/log 755 Directory with all log files

/var/log/lastlog 644 Information about all previous
logins

/var/log/messages 644 Main system message log file

/var/log/wtmp 664 Information about current logins

Table 3‑2 (continued)

Book VI
Chapter 3

Com
puter

Security Audits
and Vulnerability

Testing Types
Implementing a Security Test Methodology 437

Another important check is to look for executable program files that have
the setuid permission. If a program has setuid permission and is owned
by root, the program runs with root privileges, no matter who actually
runs the program. You can find all setuid programs with the following find
command:

find / -perm +4000 -print

You may want to save the output in a file (just append > filename to the
command) and then examine the file for any unusual setuid programs. For
example, a setuid program in a user’s home directory is unusual.

Password security
Verify that the password, group, and shadow password files are protected. In
particular, the shadow password file has to be write-protected and readable
only by root. The filenames and their recommended permissions are shown
in Table 3-3.

Table 3-3	 Ownership and Permission of Password Files
File Pathname Ownership Permission

/etc/group root.root 644

/etc/passwd root.root 644

/etc/shadow root.root 400

Incident response
Incident response is the policy that answers the question of what to do if
something unusual does happen to the system. The policy tells you how to
proceed if someone breaks into your system.

Your response to an incident depends on how you use your system and
how important it is to you or your business. For a comprehensive incident
response, remember these key points:

	 ✦	 Figure out how critical and important your computer and network are —
and identify who or what resources can help you protect your system.

	 ✦	 Take steps to prevent and minimize potential damage and interruption.

	 ✦	 Develop and document a comprehensive contingency plan.

	 ✦	 Periodically test the contingency plan and revise the procedures as
appropriate.

Implementing a Security Test Methodology438

Network-security review
A network-security review focuses on assessing the security mechanisms in
each of the following areas:

	 ✦	 Prevention: Set up a firewall, enable packet filtering, disable unneces-
sary inetd or xinetd services, turn off unneeded Internet services, use
TCP wrappers for access control, and use SSH for secure remote logins.

	 ✦	 Detection: Use network intrusion detection and capture system logs.

	 ✦	 Response: Develop incident response procedures.

Some key steps in assessing the network security are described in the fol-
lowing three subsections.

Services started by inetd or xinetd
Depending on your distribution, the inetd or xinetd server may be con-
figured to start some Internet services such as TELNET and FTP. The deci-
sion to turn on some of these services depends on such factors as how the
system connects to the Internet and how the system is being used. You can
usually turn off most inetd and xinetd services by commenting out the
line — just place a pound sign (#) at the beginning of the line.

If you are using xinetd, it is possible to see which services are turned off by
checking the configuration files in the /etc/xinetd.d directory for all the
configuration files that have a disable = yes line. (The line doesn’t count
if it’s commented out, which is indicated by a # character at the beginning of
the line.) You can add a disable = yes line to the configuration file of any
service that you want to turn off.

Also check the following files for any access controls used with the inetd or
xinetd services:

	 ✦	 /etc/hosts.allow lists hosts allowed to access specific services.

	 ✦	 /etc/hosts.deny lists hosts denied access to services.

Standalone services
Many services, such as apache or httpd (web server) and sendmail (mail
server), start automatically at boot time, assuming they’re configured to
start that way.

In some distributions, you can use the chkconfig command to check which
of these standalone servers are set to start at various run levels. (See Book
V, Chapter 1 for more about run levels.) Typically, most systems start up at
run level 3 (for text login) or 5 (for graphical login). Therefore, what matters
is the setting for the servers in levels 3 and 5. To view the list of servers,
type chkconfig - -list | more. When you do a self-assessment of your network

Book VI
Chapter 3

Com
puter

Security Audits
and Vulnerability

Testing Types
Implementing a Security Test Methodology 439

security and find that some servers shouldn’t be running, you can turn them
off for run levels 3 and 5 by typing chkconfig --level 35 servicename off,
where servicename is the name of the service you want to turn off.

In some distributions, you can use a GUI tool to see which services are enabled
and running at any run level. With YaST, for example, click System on the left
side of the window, and then click Runlevel Editor on the right side of the
window.

When you audit network security, make a note of all the servers that are
turned on — and then try to determine whether they should really be on,
according to what you know about the system. The decision to turn on a par-
ticular service depends on how your system is used (for example, as a web
server or as a desktop system) and how it’s connected to the Internet (say,
through a firewall or directly).

Penetration test
A penetration test is the best way to tell what services are really running
on a Linux system. Penetration testing involves trying to get access to your
system from an attacker’s perspective. Typically, you perform this test from
a system on the Internet and try to break in or, at minimum, get access to
services running on your Linux system.

One aspect of penetration testing is to see what ports are open on your
Linux system. The port number is simply a number that identifies TCP/IP
network connections to the system. The attempt to connect to a port suc-
ceeds only if a server is running, or “listening,” on that port. A port is con-
sidered to be open if a server responds when a connection request for that
port arrives.

The first step in penetration testing is to perform a port scan. The term port
scan describes the automated process of trying to connect to each port
number to see whether a valid response comes back. Many available auto-
mated tools can perform port scanning — you can install and use a popular
port-scanning tool called nmap (described later in this chapter).

After performing a port scan, you know which ports are open and could be
exploited. Not all servers have security problems, but many servers have
well-known vulnerabilities. An open port provides a cracker a way to attack
your system through one of the servers. In fact, you can use automated tools
called vulnerability scanners to identify vulnerabilities that exist in your system
(some vulnerability scanners are described in the following sections). Whether
your Linux system is connected to the Internet directly (through DSL or cable
modem) or through a firewall, use the port-scanning and vulnerability-scanning
tools to figure out whether you have any holes in your defenses.

Vulnerability Testing Types440

Vulnerability Testing Types
The number-one purpose of penetration testing is to identify vulnerabili-
ties. When viewing such a test from this angle, it is important to under-
stand that there are three ways of approaching it: black, white, or gray.
These three approaches differ in the amount of information you assume
you have in the beginning; you can use the color with almost any other
word: black box versus white box if it is a piece of software doing the test-
ing; black hat versus white hat if is an individual doing the testing; and so
on. The following discussion focuses on the individual and uses box as the
preferred noun.

	 ✦	 With black-box testing, the tests assume no knowledge of the network
and look for vulnerabilities that an outsider might stumble across, such
as open ports and weak passwords.

		 Imagine that a bored miscreant came across your network at random
and decided to bring it to its knees.

	 ✦	 With white-box testing, the test assumes that the attacker is a knowledge-
able insider who’s trying to break the system.

		 Imagine that you just fired a system administrator and they want to get
back at you by crashing your network.

	 ✦	 Between these two extremes rests the realm of gray-box testing. Here the
assumption is that an insider is behind the problem.

		 Imagine someone from shipping is angry about not getting the raise he
or she thought was deserved, and so wants to make the company pay.
The attacker doesn’t have the knowledge an administrator would, but
still knows more about the systems than a complete outsider would.

Exploring Security Testing Tools
Many automated tools are available to perform security testing. Some of
these tools are meant for finding the open ports on every system in a range
of IP addresses. Others look for the vulnerabilities associated with open
ports. Yet other tools can capture (or sniff) those weaknesses and help you
analyze them so that you can glean useful information about what’s going on
in your network.

You can browse a list of the top 100 security tools (based on an informal poll
of nmap users) at http://sectools.org. Table 3-4 lists a number of these
tools by category. A few of the freely available vulnerability scanners are
described in the next few sections.

http://sectools.org

Book VI
Chapter 3

Com
puter

Security Audits
and Vulnerability

Testing Types
Exploring Security Testing Tools 441

Table 3-4	 Some Popular Computer-Security Testing Tools
Type Names of Tools

Port scanners nmap, Strobe

Vulnerability scanners Nessus Security Scanner, SAINT, SARA,
Whisker (CGI scanner), ISS Internet Scanner,
CyberCop Scanner, Vetescan, Retina Network
Security Scanner

Network utilities Netcat, hping2, Firewalk, Cheops, ntop,
ping, ngrep, AirSnort (802.11 WEP encryption-
cracking tool)

Host-security tools Tripwire, lsof

Packet sniffers tcpdump, Ethereal, dsniff, sniffit

Intrusion detection Snort, Abacus portsentry, scanlogd,
NFR, LIDSSystems (IDSs)

Password-checking tools John the Ripper, LC4

Log analysis and monitoring
tools

logcolorise, tcpdstats, nlog,
logcheck, LogWatch, Swatch

nmap
nmap (short for network mapper) is a port-scanning tool. It can rapidly scan
large networks and determine what hosts are available on the network, what
services they offer, what operating system (and the operating system ver-
sion) they run, what type of packet filters or firewalls they use, and dozens of
other characteristics. You can read more about nmap at http://nmap.org.

If nmap is not already installed, you can easily install it on your distribution
either with the command apt-get install nmap or through the software
search facility of YaST (find nmap) or any distribution-specific interface you
may have.

If you want to try out nmap to scan your local area network, type a command
similar to the following (replace the IP address range with addresses appro-
priate for your network):

nmap -O -sS 192.168.0.4-8

Here’s a typical output listing from that command:

Starting nmap 6.40 (http://www.insecure.org/nmap/) at 2013-08-28 16:20 EDT
Interesting ports on 192.168.0.4:
(The 1659 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
21/tcp open ftp

http://nmap.org
http://www.insecure.org/nmap/

Exploring Security Testing Tools442

22/tcp open ssh
111/tcp open rpcbind
631/tcp open ipp
MAC Address: 00:C0:49:63:78:3A (U.S. Robotics)
Device type: general purpose
Running: Linux 3.9.X|3.9.X|3.9.X
OS details: Linux 2.4.18 - 2.6.7
Uptime 9.919 days (since Thu Aug 18 18:18:15 2013)
. . . Lines deleted . . .
Nmap finished: 5 IP addresses (5 hosts up) scanned in 30.846 seconds

As you can see, nmap displays the names of the open ports and hazards a
guess at the operating system name and version number.

For a very quick scan of your own machine, you can use the IP address of
127.0.0.1 (as shown in Figure 3-1); hopefully the scan will verify that the ports
are closed.

	

Figure 3-1:
You can
view any
open ports
with nmap.

	

	 Visit www.dummies.com/extras/linuxaio for great Dummies content online.

Book VII
Scripting

http://www.dummies.com/extras/linuxaio

Contents at a Glance

Contents at a Glance

Chapter 1: Introductory Shell Scripting . . 445
Trying Out Simple Shell Scripts...445
Exploring the Basics of Shell Scripting..447

Chapter 2: Advanced Shell Scripting . . 457
Trying Out sed...457
Working with awk and sed...459
Final Notes on Shell Scripting...463

Chapter 3: Programming in Linux . 465
An Overview of Programming..465
Exploring the Software-Development Tools in Linux...467
Understanding the Implications of GNU Licenses...484

Chapter 1: Introductory
Shell Scripting

In This Chapter
✓	Trying some simple shell scripts

✓	Discovering the basics of shell scripting

✓	Exploring bash’s built-in commands

L
inux gives you many small and specialized commands, along with the
plumbing necessary to connect these commands. Take plumbing to mean

the way in which one command’s output can be used as a second command’s
input. bash (short for Bourne-Again Shell) — the default shell in most Linux
systems — provides this plumbing in the form of I/O redirection and pipes.
bash also includes features such as the if statement that you can use to run
commands only when a specific condition is true, and the for statement that
repeats commands a specified number of times. You can use these features of
bash when writing programs called shell scripts — task-oriented collections
of shell commands stored in a file.

This chapter shows you how to write simple shell scripts, which are used
to automate various tasks. For example, when your Linux system boots,
many shell scripts stored in various subdirectories in the /etc directory
(for example, /etc/init.d) perform many initialization tasks.

Trying Out Simple Shell Scripts
If you’re not a programmer, you may feel apprehensive about programming.
But shell scripting (or programming) can be as simple as storing a few com-
mands in a file. In fact, you can have a useful shell program that has a single
command.

Shell scripts are popular among system administrators. If you are a system
administrator, you can build a collection of custom shell scripts that help
you automate tasks you perform often. If a hard drive seems to be getting
full, for example, you may want to find all files that exceed some size (say,
1MB) and that have not been accessed in the past 30 days. In addition,
you may want to send an e-mail message to all users who have large files,
requesting that they archive and clean up those files. You can perform

Trying Out Simple Shell Scripts446

all these tasks with a shell script. You might start with the following find
command to identify large files:

find / -type f -atime +30 -size +1000k -exec ls -l {} \; > /tmp/largefiles

This command creates a file named /tmp/largefiles, which contains
detailed information about old files taking up too much space. After you get
a list of the files, you can use a few other Linux commands — such as sort,
cut, and sed — to prepare and send mail messages to users who have large
files to clean up. Instead of typing all these commands manually, place them
in a file and create a shell script. That, in a nutshell, is the essence of shell
scripts — to gather shell commands in a file so that you can easily perform
repetitive system administration tasks.

bash scripts, just like most Linux commands, accept command-line options.
Inside the script, you can refer to the options as $1, $2, and so on. The spe-
cial name $0 refers to the name of the script itself.

Here’s a typical bash script that accepts arguments:

#!/bin/sh
echo "This script's name is: $0"
echo Argument 1: $1
echo Argument 2: $2

The first line runs the /bin/sh program, which subsequently processes the
rest of the lines in the script. The name /bin/sh traditionally refers to the
Bourne shell — the first Unix shell. In most Linux systems, /bin/sh is a sym-
bolic link to /bin/bash, which is the executable program for bash.

Save this simple script in a file named simple and make that file executable
with the following command:

chmod +x simple

Now run the script as follows:

./simple

It displays the following output:

This script's name is: ./simple
Argument 1:
Argument 2:

The first line shows the script’s name. Because you have run the script with-
out arguments, the script displays no values for the arguments.

Book VII
Chapter 1

Introductory Shell
Scripting

Exploring the Basics of Shell Scripting 447

Now try running the script with a few arguments, like this:

./simple "This is one argument" second-argument third

This time the script displays more output:

This script's name is: ./simple
Argument 1: This is one argument
Argument 2: second-argument

As the output shows, the shell treats the entire string within the double quo-
tation marks as a single argument. Otherwise the shell uses spaces as sepa-
rators between arguments on the command line.

This sample script ignores the third argument because the script is designed
to print only the first two arguments.

Exploring the Basics of Shell Scripting
Like any programming language, the bash shell supports the following
features:

	 ✦	 Variables that store values, including special built-in variables for
accessing command-line arguments passed to a shell script and other
special values.

	 ✦	 The capability to evaluate expressions.

	 ✦	 Control structures that enable you to loop over several shell commands
or to execute some commands conditionally.

	 ✦	 The capability to define functions that can be called in many places within
a script. bash also includes many built-in commands that you can use in
any script.

The next few sections illustrate some of these programming features through
simple examples. (It’s assumed that you’re already running bash, in which
case, you can try the examples by typing them at the shell prompt in a termi-
nal window. Otherwise all you have to do is open a terminal window; bash
runs and displays its prompt in that window.)

Storing stuff
You define variables in bash just as you define environment variables. Thus
you may define a variable as follows:

count=12 # note no embedded spaces allowed

To use a variable’s value, prefix the variable’s name with a dollar sign ($).
For example, $PATH is the value of the variable PATH. (This variable is the

Exploring the Basics of Shell Scripting448

famous PATH environment variable that lists all the directories that bash
searches when trying to locate an executable file.) To display the value of
the variable count, use the following command:

echo $count

bash has some special variables for accessing command-line arguments. In
a shell script, $0 refers to the name of the shell script. The variables $1, $2,
and so on refer to the command-line arguments. The variable $* stores all
the command-line arguments as a single variable, and $? contains the exit
status of the last command the shell executes.

From a bash script, you can prompt the user for input and use the read
command to read the input into a variable. Here is an example:

echo -n "Enter value: "
read value
echo "You entered: $value"

When this script runs, the read value command causes bash to read
whatever you type at the keyboard and store your input in the variable
called value.

Note: The -n option prevents the echo command from automatically adding
a new line at the end of the string that it displays.

Calling shell functions
You can group a number of shell commands that you use consistently into
a function and assign it a name. Later, you can execute that group of com-
mands by using the single name assigned to the function. Here is a simple
script that illustrates the syntax of shell functions:

#!/bin/sh
hello() {
echo -n "Hello, "
echo $1 $2
}
hello Jane Doe

When you run this script, it displays the following output:

Hello, Jane Doe

This script defines a shell function named hello. The function expects two
arguments. In the body of the function, these arguments are referenced by
$1 and $2. The function definition begins with hello() — the name of the
function, followed by parentheses. The body of the function is enclosed in
curly braces — { . . . }. In this case, the body uses the echo command
to display a line of text.

Book VII
Chapter 1

Introductory Shell
Scripting

Exploring the Basics of Shell Scripting 449

The last line of the example shows how a shell function is called with argu-
ments. In this case, the hello function is called with two arguments: Jane
and Doe. The hello function takes these two arguments and prints a line
that says Hello, Jane Doe.

Controlling the flow
In bash scripts, you can control the flow of execution — the order in which
the commands are executed — by using special commands such as if, case,
for, and while. These control statements use the exit status of a command
to decide what to do next. When any command executes, it returns an exit
status — a numeric value that indicates whether or not the command has
succeeded. By convention, an exit status of zero means the command has suc-
ceeded. (Yes, you read it right: Zero indicates success!) A nonzero exit status
indicates that something has gone wrong with the command.

For example, suppose that you want to make a backup copy of a file before
editing it with the vi editor. More importantly, you want to avoid editing the
file if a backup can’t be made. Here’s a bash script that takes care of this task:

#!/bin/sh
if cp "$1" "#$1"
then
vi "$1"
else
echo "Failed to create backup copy"
fi

This script illustrates the syntax of the if-then-else structure and shows
how the exit status of the cp command is used by the if command to deter-
mine the next action. If cp returns zero, the script uses vi to edit the file; oth-
erwise, the script displays an error message and exits. By the way, the script
saves the backup in a file whose name is the same as that of the original,
except for a hash mark (#) added at the beginning of the filename.

	 Don’t forget the final fi that terminates the if command. Forgetting fi is a
common source of errors in bash scripts.

You can use the test command to evaluate any expression and to use the
expression’s value as the exit status of the command. Suppose that you want
a script that edits a file only if it already exists. Using test, you can write
such a script as follows:

#!/bin/sh
if test -f "$1"
then
vi "$1"
else
echo "No such file"
fi

Exploring the Basics of Shell Scripting450

A shorter form of the test command is to place the expression in square
brackets ([. . .]). Using this shorthand notation, you can rewrite the
preceding script like this:

#!/bin/sh
if [-f "$1"]
then
vi "$1"
else
echo "No such file"
fi

Note: You must have spaces around the two square brackets.

Another common control structure is the for loop. The following script adds
the numbers 1 through 10:

#!/bin/sh
sum=0
for i in 1 2 3 4 5 6 7 8 9 10
do
sum='expr $sum + $i'
done
echo "Sum = $sum"

This example also illustrates the use of the expr command to evaluate an
expression.

The case statement is used to execute a group of commands based on the
value of a variable. For example, consider the following script:

#!/bin/sh
echo -n "What should I do -- (Y)es/(N)o/(C)ontinue? [Y] "
read answer
case $answer in
y|Y|"")
echo "YES"
;;
c|C)
echo "CONTINUE"
;;
n|N)
echo "NO"
;;
*)
echo "UNKNOWN"
;;
esac

Book VII
Chapter 1

Introductory Shell
Scripting

Exploring the Basics of Shell Scripting 451

Save this code in a file named confirm and type chmod +x confirm to make it
executable. Then try it out like this:

./confirm

When the script prompts you, type one of the characters y, n, or c and press
Enter. The script displays YES, NO, or CONTINUE, respectively. For example,
here’s what happens when you type c (and then press Enter):

What should I do -- (Y)es/(N)o/(C)ontinue? [Y] c
CONTINUE

The script displays a prompt and reads the input you type. Your input is stored
in a variable named answer. Then the case statement executes a block of
code based on the value of the answer variable. For example, when you type
c, the following block of commands executes:

c|C)
echo "CONTINUE"
;;

The echo command causes the script to display CONTINUE.

From this example, you can see that the general syntax of the case command
is as follows:

case $variable in
value1 | value2)
command1
command2
. . . other commands . . .
;;
value3)
command3
command4
. . . other commands . . .
;;
esac

Essentially, the case command begins with the word case and ends with
esac. Separate blocks of code are enclosed between the values of the variable,
followed by a closing parenthesis and terminated by a pair of semicolons (;;).

Exploring bash’s built-in commands
bash has more than 50 built-in commands, including common commands
such as cd and pwd, as well as many others that are used infrequently. You
can use these built-in commands in any bash script or at the shell prompt.
Table 1-1 describes most of the bash built-in commands and their arguments.
After looking through this information, type help command to read more

Exploring the Basics of Shell Scripting452

about a specific built-in command. For example, to find out more about the
built-in command test, type the following:

help test

Doing so displays the following information:

test: test [expr]
Exits with a status of 0 (true) or 1 (false) depending on
the evaluation of EXPR. Expressions may be unary or binary. Unary
expressions are often used to examine the status of a file. There
are string operators as well, and numeric comparison operators.
File operators:
-a FILE True if file exists.
-b FILE True if file is block special.
-c FILE True if file is character special.
-d FILE True if file is a directory.
-e FILE True if file exists.
-f FILE True if file exists and is a regular file.
-g FILE True if file is set-group-id.
-h FILE True if file is a symbolic link.
-L FILE True if file is a symbolic link.
-k FILE True if file has its 'sticky' bit set.
-p FILE True if file is a named pipe.
-r FILE True if file is readable by you.
-s FILE True if file exists and is not empty.
-S FILE True if file is a socket.
-t FD True if FD is opened on a terminal.
-u FILE True if the file is set-user-id.
-w FILE True if the file is writable by you.
-x FILE True if the file is executable by you.
-O FILE True if the file is effectively owned by you.
-G FILE True if the file is effectively owned by your group.
(. . . Lines deleted . . .)

Where necessary, the online help from the help command includes a con-
siderable amount of detail.

Table 1-1	 Summary of Built-in Commands in bash Shell
This Function Does the Following

. filename [arguments] Reads and executes commands from
the specified filename using the
optional arguments. (Works the
same way as the source command.)

: [arguments] Expands the arguments but does
not process them.

[expr] Evaluates the expression expr and
returns zero status if expr is true.

alias
[name[=value] . . .]

Allows one value to equal another.
For example, you could set xyz to
run bg.

Book VII
Chapter 1

Introductory Shell
Scripting

Exploring the Basics of Shell Scripting 453

This Function Does the Following

bg [job] Puts the specified job in the back-
ground. If no job is specified, it puts
the currently executing command in
the background.

break [n] Exits from a for, while, or until
loop. If n is specified, the nth enclos-
ing loop is exited.

cd [dir] Changes the current directory to dir.
command [-pVv] cmd
[arg . . .]

Runs the command cmd with the
specified arguments (ignoring any
shell function named cmd).

continue [n] Starts the next iteration of the for,
while, or until loop. If n is
specified, the next iteration of the nth
enclosing loop is started.

declare [-frxi]
[name[=value]]

Declares a variable with the speci-
fied name and optionally, assigns it a
value.

dirs [-l] [+/-n] Displays the list of currently remem-
bered directories.

echo [-neE] [arg . . .] Displays the arguments,
arg . . . , on standard output.

enable [-n] [-all] Enables or disables the specified built-
in commands.

eval [arg . . .] Concatenates the arguments,
arg . . . , and executes them as
a command.

exec [command
[arguments]]

Replaces the current instance of the
shell with a new process that runs the
specified command. with the given
arguments.

exit [n] Exits the shell with the status code n.
export [-nf]
[name[=word]] . . .

Defines a specified environment vari-
able and exports it to future processes.

fc -s [pat=rep] [cmd] Re-executes the command after
replacing the pattern pat with rep.

fg [jobspec] Puts the specified job, jobspec,
in the foreground. If no job is speci-
fied, it puts the most recent job in the
foreground.

(continued)

Exploring the Basics of Shell Scripting454

This Function Does the Following

hash [-r] [name] Remembers the full pathname of a
specified command.

help [cmd . . .] Displays help information for specified
built-in commands, cmd. . . .

history [n] Displays past commands or past n
commands, if you specify a number n.

jobs [-lnp]
[jobspec . . .]

Lists currently active jobs.

kill [-s sigspec |
-sigspec] [pid |
jobspec] . . . let arg
[arg . . .]

Evaluates each argument and returns
1 if the last arg is 0.

local
[name[=value] . . .]

Creates a local variable with the
specified name and value (used in
shell functions).

logout Exits a login shell.

popd [+/-n] Removes the specified number of
entries from the directory stack.

pushd [dir] Adds a specified directory, dir, to the
top of the directory stack.

pwd Prints the full pathname of the current
working directory.

read [-r] [name . . .] Reads a line from standard input and
parses it.

readonly [-f]
[name . . .]

Marks the specified variables as read-
only so that the variables cannot be
changed later.

return [n] Exits the shell function with the return
value n.

set
[--abefhkmnptuvxldCHP]
[-o option] [arg . . .]

Sets various flags.

shift [n] Makes the n+1 argument $1, the n+2
argument $2, and so on.

times Prints the accumulated user and
system times for processes run from
the shell.

trap [-l] [cmd] [sigspec] Executes cmd when the signal
sigspec is received.

Table 1‑1 (continued)

Book VII
Chapter 1

Introductory Shell
Scripting

Exploring the Basics of Shell Scripting 455

This Function Does the Following

type [-all] [-type
|-path] name
[name . . .]

Indicates how the shell interprets
each name.

ulimit [-SHacdfmstpnuv
[limit]]

Controls resources available to the
shell.

umask [-S] [mode] Sets the file creation mask — the
default permission to the mode speci-
fied for the files.

unalias [-a]
[name . . .]

Undefines a specified alias.

unset [-fv] [name . . .] Removes the definition of specified
variables.

wait [n] Waits for a specified process (n repre-
sents its PID) to terminate.

	 Some external programs may have the same name as bash built-in com-
mands. If you want to run any such external program, you have to specify
explicitly the full pathname of that program. Otherwise bash executes the
built-in command of the same name.

456 Book VII: Scripting

Chapter 2: Advanced
Shell Scripting

In This Chapter
✓	Trying out the sed command

✓	Working with the awk and sed commands

✓	Reading some final notes on shell scripting

T
he preceding chapter introduces you to some of the power available
through shell scripting. All the scripts in that chapter are simple bash

routines that allow you to run commands and repeat operations a number
of times.

This chapter builds upon that knowledge by showing how to incorporate two
powerful tools — sed and awk — into your scripts. These two utilities move
your scripts to the place where the only limit to what you can do becomes
your ability to figure out how to ask for the output you need. Although sed is
the stream editor and awk is a quick programming language, they complement
each other so well that it’s not uncommon to use one with the other. The best
way to show how these tools work is to walk through some examples.

Trying Out sed
The following are sample lines of a colon-delimited employee database that
has five fields: unique id number, name, department, phone number, and
address.

1218:Kris Cottrell:Marketing:219.555.5555:123 Main Street
1219:Nate Eichhorn:Sales:219.555.5555:1219 Locust Avenue
1220:Joe Gunn:Payables:317.555.5555:21974 Unix Way
1221:Anne Heltzel:Finance:219.555.5555:652 Linux Road
1222:John Kuzmic:Human Resources:219.555.5555:984 Bash Lane

This database has been in existence since the beginning of the company
and has grown to include everyone who now works, or has ever worked,
for the company. A number of proprietary scripts read from the database,
and the company cannot afford to be without it. The problem is that the
telephone company has changed the 219 prefix to 260, so all entries in the
database need to be changed.

Trying Out sed458

This is precisely the task for which sed was created. As opposed to standard
(interactive) editors, a stream editor works its way through a file and makes
changes based on the rules it is given. The rule in this case is to change 219
to 260. It’s not quite that simple, however, because if you use the command

sed 's/219/260/'

the result is not completely what you want (changes are in bold):

1218:Kris Cottrell:Marketing:260.555.5555:123 Main Street
1260:Nate Eichhorn:Sales:219.555.5555:1219 Locust Avenue
1220:Joe Gunn:Payables:317.555.5555:26074 Unix Way
1221:Anne Heltzel:Finance:260.555.5555:652 Linux Road
1222:John Kuzmic:Human Resources:260.555.5555:984 Bash Lane

The changes in the first, fourth, and fifth lines are correct. But in the second
line, the first occurrence of 219 appears in the employee id number rather
than in the phone number and was changed to 260. If you wanted to change
more than the very first occurrence in a line, you could slap a g (for global)
into the command:

sed 's/219/260/g'

That is not what you want to do in this case, however, because the employee
id number should not change. Similarly, in the third line, a change was made
to the address because it contains the value that is being searched for; no
change should have been made because the employee does not have the 219
telephone prefix.

The first rule of using sed is to identify what makes the location of the string
you are looking for unique. If the telephone prefix were encased in parenthe-
ses, it would be much easier to isolate. In this database, though, that is not
the case; the task becomes a bit more complicated.

If you said that the telephone prefix must appear at the beginning of the field
(denoted by a colon), the result would be much closer to what you want:

sed 's/:219/:260/'

Again, bolding has been added to show the changes:

1218:Kris Cottrell:Marketing:260.555.5555:123 Main Street
1219:Nate Eichhorn:Sales:260.555.5555:1219 Locust Avenue
1220:Joe Gunn:Payables:317.555.5555:26074 Unix Way
1221:Anne Heltzel:Finance:260.555.5555:652 Linux Road
1222:John Kuzmic:Human Resources:260.555.5555:984 Bash Lane

The accuracy has increased, but there is still the problem of the third line.
Because the colon helped to identify the start of the string, it may be tempting
to turn to the period to identify the end:

sed 's/:219./:260./'

Book VII
Chapter 2

Advanced Shell
Scripting

Working with awk and sed 459

But the result still isn’t what was hoped for (note the third line):

1218:Kris Cottrell:Marketing:260.555.5555:123 Main Street
1219:Nate Eichhorn:Sales:260.555.5555:1219 Locust Avenue
1220:Joe Gunn:Payables:317.555.5555:260.4 Unix Way
1221:Anne Heltzel:Finance:260.555.5555:652 Linux Road
1222:John Kuzmic:Human Resources:260.555.5555:984 Bash Lane

Because the period has a special meaning of any character, a match is found
whether the 219 is followed by a period, a 7, or any other single character.
Whatever the character, it is replaced with a period. The replacement side
of things isn’t the problem; the search needs to be tweaked. By using the \
character, we can override the special meaning of the period and specify that
you are indeed looking for a period and not any single character:

sed 's/:219\./:260./'

The result becomes:

1218:Kris Cottrell:Marketing:260.555.5555:123 Main Street
1219:Nate Eichhorn:Sales:260.555.5555:1219 Locust Avenue
1220:Joe Gunn:Payables:317.555.5555:21974 Unix Way
1221:Anne Heltzel:Finance:260.555.5555:652 Linux Road
1222:John Kuzmic:Human Resources:260.555.5555:984 Bash Lane

And the mission is accomplished.

Working with awk and sed
The second example involves a database of books that includes the ISBN
number of each title. In the old days, ISBN numbers were ten digits and
included an identifier for the publisher and a unique number for each book.
ISBN numbers are now thirteen digits for new books. Old books (those pub-
lished before the first of 2007) have both the old 10-digit and a new 13-digit
number that can be used to identify them. For this example, the existing
10-digit number will stay in the database and a new field — holding the
ISBN-13 number — will be added to the end of each entry.

To come up with the ISBN-13 number for the existing entries in the database,
you start with 978, then use the first 9 digits of the old ISBN number. The
thirteenth digit is a mathematical calculation (a check digit) obtained by
doing the following:

	 1.	 Add all odd-placed digits (the first, the third, the fifth, and so on).

	 2.	 Multiply all even-placed digits by 3 and add them.

	 3.	 Add the total of Step #2 to the total of Step #1.

	 4.	 Find out what you need to add to round the number up to the nearest 10.
This value becomes the thirteenth digit.

Working with awk and sed460

For example, consider the 10-digit ISBN 0743477103. It first becomes
978074347710, and then the steps work out like this:

	 1.	 9+8+7+3+7+1=35

	 2.	 7*3=21 ; 0*3=0; 4*3=12; 4*3=12; 7*3=21; 0*3=0; 21+0+12+12+21+0=66

	 3.	 66+35=101

	 4.	 110-101=9. The ISBN-13 thus becomes 9780743477109.

The beginning database resembles:

0743477103:Macbeth:Shakespeare, William
1578518520:The Innovator's Solution:Christensen, Clayton M.
0321349946:(SCTS) Symantec Certified Technical Specialist:Alston, Nik
1587052415:Cisco Network Admission Control, Volume I:Helfrich, Denise

And you want the resulting database to change so each line resembles some-
thing like this:

0743477103:Macbeth:Shakespeare, William:9780743477109

The example that follows accomplishes this goal. It’s not the prettiest thing
ever written, but it walks through the process of tackling this problem, illus-
trating the use of awk and sed. I have also included writing to temporary
files so you can examine those files and see the contents at various stages.
Clean programming would mitigate the use of temporary files everywhere
possible, but that practice also makes it difficult to follow the action at
times. That said, here is one solution out of dozens. Read on.

Step 1: Pull out the ISBN
Given the database as it now exists, the first order of business is to pull out
the existing ISBN — only the first nine digits because the tenth digit, which
was just a checksum, no longer matters — and slap 978 onto the beginning.
The nine digits we want are the first nine characters of each line, so we can
pull them out by using the cut utility:

cut -c1e-9 books

Because a mathematical operation will be performed on the numbers com-
prising this value, and that operation works with each digit, I’ll add a space
between each number and the next in the new entry:

sed 's/[0-9]/& /g'

Now it’s time to add the new code to the beginning of each entry (the start
of every line):

sed 's/^/9 7 8 /'

Book VII
Chapter 2

Advanced Shell
Scripting

Working with awk and sed 461

And finally, I do an extra step: removing the white space at the end of the line
just to make the entry a bit cleaner:

sed 's/ $//'

Then I write the results to a temporary file that can be examined to make
sure all is working as it should. The full first step then becomes

cut -c1-9 books | sed 's/[0-9]/& /g' | sed 's/^/9 7 8 /' | sed 's/ $//' > isbn2

Note: the sed operations could be combined in a script file to increase
speed and decrease cycles. However, I am walking through each operation
step-by-step to show what’s going on, and am not worried about creating
script files for this one-time-only operation.

Examining the temporary file, the contents are as follows:

9 7 8 0 7 4 3 4 7 7 1 0
9 7 8 1 5 7 8 5 1 8 5 2
9 7 8 0 3 2 1 3 4 9 9 4
9 7 8 1 5 8 7 0 5 2 4 1

Step 2: Calculate the 13th digit
We’ve taken care of the first 12 digits of the ISBN number. Now we need to
compute those 12 digits to figure out the thirteenth value. Because the num-
bers are separated by a space, awk can interpret them as fields. The calcula-
tion will take several steps:

	 1.	 Add all the odd-placed digits: x=$1+$3+$5+$7+$9+$11.

	 2.	 Add all the even-placed digits and multiply by 3:

		 y=($2+$4+$6+$8+$10+$12)*3.

	 3.	 Add the total of Step #2 to the total of Step #1: x=x+y.

	 4.	 Find out what you need to add to round the number up to the nearest 10
by computing the modulo when divided by 10, and then subtracting it
from 10. The following awk command gets everything in place except the
transformation:

awk '{ x=$1+$3+$5+$7+$9+$11 ; y=$2+$4+$6+$8+$10+$12 ; y=y*3 ; x=x+y ;
y=x%10 ; print y }'

Everything is finished except subtracting the final result from 10. This is the
hardest part. If the modulo is 7, for example, the check digit is 3. If the modulo
is 0, however, the check digit does not become 10 (10 – 0), but stays 0. My
solution is to use the transform function of sed:

sed 'y/12346789/98764321/'

Working with awk and sed462

Combining the two operations into one, the second step thus becomes

awk '{ x=$1+$3+$5+$7+$9+$11 ; y=$2+$4+$6+$8+$10+$12 ; y=y*3 ; x=x+y ; y=x%10 ;
print y }' | sed 'y/12346789/98764321/' > isbn3

Examining the temporary file, the contents are

9
4
1
5

Step 3: Add the 13th digit to the other 12
The two temporary files can now be combined to get the correct 13-digit
ISBN number. Just as cut was used in the earlier step, paste can be used
now to combine the files. The default delimiter for paste is a tab, but we
can change that to anything with the –d option. I use a space as the delim-
iter, and then use sed to strip the spaces (remember that the isbn2 file has
spaces between the digits so that they can be read as fields):

paste -d" "isbn2 isbn3 | sed 's/ //g'

Finally, I want to add a colon as the first character of each entry to make it
easier to append the newly computed ISBN to the existing file:

sed 's/^/:/'

And the entire command becomes

paste -d" "isbn2 isbn3 | sed 's/ //g' | sed 's/^/:/' > isbn4

Examining the temporary file, the contents are

:9780743477109
:9781578518524
:9780321349941
:9781587052415

Step 4: Finish the process
The only operation remaining is to append the values in the temporary file
to the current database. I’ll use the default tab delimiter in the entry, and
then strip it out. Technically, I could specify a colon as the delimiter and
avoid the last part of the last steps. However, I would rather have my value
complete there and be confident that I am stripping characters that don’t
belong (tabs) instead of running the risk of adding more characters than
should be there. The final command is

paste books isbn4 | sed 's/\t//g' > newbooks

Book VII
Chapter 2

Advanced Shell
Scripting

Final Notes on Shell Scripting 463

The final file looks like this:

0743477103:Macbeth:Shakespeare, William:9780743477109
1578518520:The Innovator's Solution:Christensen, Clayton M.:9781578518524
0321349946:(SCTS) Symantec Certified Technical Specialist:Alston,

Nik:9780321349941
1587052415:Cisco Network Admission Control, Volume I:Helfrich,

Denise:9781587052415

Again, this result can be accomplished in many ways. This solution is not the
cleanest, but it does illustrate the down-and-dirty use of sed and awk.

Final Notes on Shell Scripting
As with any other aspect of computing, it takes a while to get used to shell
scripting. After you become comfortable writing scripts, however, you’ll find
that you can automate any number of operations and simplify your task as
an administrator. The following tips can be helpful to keep in mind:

	 ✦	 After you create a script, you can run it automatically on a one-time
basis by using at, or on a regular basis by using cron.

	 ✦	 You can use conditional expressions, such as if, while, and until,
to look for events to occur (such as certain users accessing a file they
should not) or to let you know when something that should be there
goes away (for example, a file is removed or a user terminates).

	 ✦	 You can set permissions on shell scripts in the same way you set permis-
sions for other files. For example, you can create scripts that are shared
by all members of your administrative group (use case to create menus
based upon LOGNAME).

464 Book VII: Scripting

Chapter 3: Programming in Linux

In This Chapter
✓	Figuring out programming

✓	Exploring the software-development tools in Linux

✓	Compiling and linking programs with GCC

✓	Using make

✓	Debugging programs with gdb

✓	Understanding the implications of GNU, GPL, and LGPL

L
inux comes loaded with all the tools you need to develop software. (All
you have to do is install them.) In particular, it has all the GNU software-

development tools, such as GCC (C and C++ compiler), GNU make, and the
GNU debugger. Whereas the previous two chapters look at some simple tools
and shell scripts, this chapter introduces you to programming, describes
the software-development tools, and shows you how to use them. Although
I provide examples in the C and C++ programming languages, the focus is not
on showing you how to program in those languages but on showing you how
to use various software-development tools (such as compilers, make, and
debugger).

The chapter concludes with a brief explanation of how the Free Software
Foundation’s GNU General Public License (GPL) may affect any plans you
might have to develop Linux software. You need to know about the GPL
because you use GNU tools and GNU libraries to develop software in Linux.

An Overview of Programming
If you’ve written computer programs in any programming language, even the
shell scripts from the previous two chapters, you can start writing programs
on your Linux system quickly. If you’ve never written a computer program,
however, you need two basic resources before you begin to write code: a
look at the basics of programming and a quick review of computers and their
major parts. This section offers an overview of computer programming — just
enough to get you going.

At its simplest, a computer program is a sequence of instructions for perform-
ing a specific task, such as adding two numbers or searching for some text
in a file. Consequently, computer programming involves creating that list of

An Overview of Programming466

instructions, telling the computer how to complete a specific task. The exact
instructions depend on the programming language that you use. For most
programming languages, you have to go through the following steps to create
a computer program:

	 1.	 Use a text editor to type the sequence of commands from the program-
ming language.

		 This sequence of commands accomplishes your task. This human-readable
version of the program is called the source file or source code. You can
create the source file with any application (such as a word processor) that
can save a document in plain-text form.

		 Always save your source code as plain text. (The filename depends on
the type of programming language.) Word processors can sometimes put
extra instructions in their documents that tell the computer to display
the text in a particular font or other format. Saving the file as plain text
deletes any and all such extra instructions. Trust me, your program is
much better off without such stuff.

	 2.	 Use a compiler program to convert that text file — the source code —
from human-readable form into machine-readable object code.

		 Typically, this step also combines several object code files into a single
machine-readable computer program, something that the computer
can run.

	 3.	 Use a special program called a debugger to track down any errors and
find which lines in the source file might have caused the errors.

	 4.	 Go back to Step 1 and use the text editor to correct the errors, and
repeat the rest of the steps.

These steps are referred to as the edit-compile-debug cycle of programming
because most programmers have to repeat this sequence several times
before a program works correctly.

In addition to knowing the basic programming steps, you also need to be
familiar with the following terms and concepts:

	 ✦	 Variables are used to store different types of data. You can think of each
variable as being a placeholder for data — kind of like a mailbox, with a
name and room to store data. The content of the variable is its value.

	 ✦	 Expressions combine variables by using operators. One expression may
add several variables; another may extract a part of a string (series of
sequential characters).

	 ✦	 Statements perform some action, such as assigning a value to a variable
or printing a string.

	 ✦	 Flow-control statements allow statements to execute in various orders,
depending on the value of some expression. Typically, flow-control state-
ments include for, do-while, while, and if-then-else statements.

Book VII
Chapter 3

Program
m

ing
in Linux

Exploring the Software-Development Tools in Linux 467

	 ✦	 Functions (also called subroutines or routines) allow you to group several
statements and give the group a name. You can use functions to execute
the same set of statements over and over by invoking the function that
represents those statements. Typically, a programming language provides
many predefined functions to perform tasks, such as opening (and read-
ing from) a file.

Exploring the Software-Development Tools in Linux
Linux includes the following traditional Unix software-development tools:

	 ✦	 Text editors such as vi and emacs for editing the source code. (To find
out more about vi, see Book II, Chapter 6.)

	 ✦	 A C compiler for compiling and linking programs written in C — the pro-
gramming language of choice for writing Unix applications (though nowa-
days, many programmers are turning to C++ and Java). Linux includes the
GNU C and C++ compilers. Originally the GNU C compiler was known as
GCC — which now stands for GNU Compiler Collection. (See a description
at http://gcc.gnu.org.)

	 ✦	 The GNU make utility for automating the software build process — the
process of combining object modules into an executable or a library.
(The operating system can load and run an executable; a library is a col-
lection of binary code that can be used by executables.)

	 ✦	 A debugger for debugging programs. Linux includes the GNU debugger
gdb.

	 ✦	 A version control system to keep track of various revisions of a source
file. Linux comes with RCS (Revision Control System) and CVS (Concurrent
Versions System). Nowadays, most open source projects use CVS as
their version control system, but a recent version control system called
Subversion is being developed as a replacement for CVS.

	 You can install these software-development tools in any Linux distribution:

	 ✦	 Xandros: Usually the tools are installed by default.

	 ✦	 Fedora: Select the Development Tools package during installation.

	 ✦	 Debian: Type apt-get install gcc and then apt-get install
libc6-dev in a terminal window.

	 ✦	 SUSE: Choose Main Menu➪System➪YaST, click Software on the left side
of the window, and then click Install and Remove Software. Type gcc in
the search field in YaST, select the relevant packages from the search
results, and click Accept to install. If you find any missing packages, you
can install them in a similar manner.

The next few sections briefly describe how to use these software-development
tools to write applications for Linux.

http://gcc.gnu.org

Exploring the Software-Development Tools in Linux468

GNU C and C++ compilers
The most important software-development tool in Linux is GCC — the GNU
C and C++ compiler. In fact, GCC can compile three languages: C, C++, and
Objective-C (a language that adds object-oriented programming capabilities
to C). You use the same gcc command to compile and link both C and C++
source files. The GCC compiler supports ANSI-standard C, making it easy to
port any ANSI C program to Linux. In addition, if you’ve ever used a C com-
piler on other Unix systems, you should feel right at home with GCC.

Using GCC
Use the gcc command to invoke GCC. By default, when you use the gcc
command on a source file, GCC preprocesses, compiles, and links to create
an executable file. However, you can use GCC options to stop this process at
an intermediate stage. For example, you might invoke gcc by using the -c
option to compile a source file and to generate an object file, but not to per-
form the link step.

Using GCC to compile and link a few C source files is easy. Suppose you want
to compile and link a simple program made up of two source files. To accom-
plish this task, use the following program source code; the task that is stored
in the file area.c computes the area of a circle whose radius is specified at
the command line:

#include <stdio.h>
#include <stdlib.h>
/* Function prototype */
double area_of_circle(double r);
int main(int argc, char **argv)
{
if(argc < 2)
{
printf("Usage: %s radius\n", argv[0]);
exit(1);
}
else
{
double radius = atof(argv[1]);
double area = area_of_circle(radius);
printf("Area of circle with radius %f = %f\n",
radius, area);
}
return 0;
}

You need another file that actually computes the area of a circle. Here’s the
listing for the circle.c file, which defines a function that computes the
area of a circle:

#include <math.h>
#define SQUARE(x) ((x)*(x))
double area_of_circle(double r)

Book VII
Chapter 3

Program
m

ing
in Linux

Exploring the Software-Development Tools in Linux 469

{
return 4.0 * M_PI * SQUARE(r);
}

For such a simple program, of course, we could place everything in a single file,
but this example was contrived a bit to show you how to handle multiple files.

To compile these two files and to create an executable file named area, use
this command:

gcc -o area area.c circle.c

This invocation of GCC uses the -o option to specify the name of the execut-
able file. (If you don’t specify the name of an output file with the -o option,
GCC saves the executable code in a file named a.out.)

If you have too many source files to compile and link, you can compile the
files individually and generate object files (that have the .o extension). That
way, when you change a source file, you need to compile only that file — you
just link the compiled file to all the object files. The following commands
show how to separate the compile and link steps for the sample program:

gcc -c area.c
gcc -c circle.c
gcc -o area area.o circle.o

The first two commands run gcc with the -c option compiling the source files.
The third gcc command links the object files into an executable named area.

Compiling C++ programs
GNU CC is a combined C and C++ compiler, so the gcc command also can
compile C++ source files. GCC uses the file extension to determine whether a
file is C or C++. C files have a lowercase .c extension, whereas C++ files end
with .C or .cpp.

	 Although the gcc command can compile a C++ file, that command doesn’t
automatically link with various class libraries that C++ programs typically
require. Compiling and linking a C++ program by using the g++ command is
easy because it runs gcc with appropriate options.

Suppose you want to compile the following simple C++ program stored in a
file named hello.C. (Using an uppercase C extension for C++ source files is
customary.)

#include <iostream>
int main()
{
using namespace std;
cout << "Hello from Linux!" << endl;
}

Exploring the Software-Development Tools in Linux470

To compile and link this program into an executable program named hello,
use this command:

g++ -o hello hello.C

The command creates the hello executable, which you can run as follows:

./hello

The program displays the following output:

Hello from Linux!

A host of GCC options controls various aspects of compiling C and C++
programs.

Exploring GCC options
Here’s the basic syntax of the gcc command:

gcc options filenames

Each option starts with a hyphen (-) and usually has a long name, such as
-funsigned-char or -finline-functions. Many commonly used options
are short, however, such as -c, to compile only, and -g, to generate debugging
information (needed to debug the program by using the GNU debugger, gdb).

You can view a summary of all GCC options by typing the following com-
mand in a terminal window:

man gcc

Then you can browse through the commonly used GCC options. Usually, you
don’t have to provide GCC options explicitly because the default settings are
fine for most applications. Table 3-1 lists some of the GCC options you may use.

Table 3-1	 Common GCC Options
Option Meaning

-ansi Supports only ANSI-standard C syntax. (This
option disables some GNU C-specific features,
such as the __asm__ and __typeof__ key
words.) When used with g++, supports only
ISO-standard C++.

-c Compiles and generates only the object file.

-DMACRO Defines the macro with the string "1" as its
value.

Book VII
Chapter 3

Program
m

ing
in Linux

Exploring the Software-Development Tools in Linux 471

Option Meaning

-DMACRO=DEFN Defines the macro as DEFN, where DEFN is
some text string.

-E Runs only the C preprocessor.
-fallow-single-
precision

Performs all math operations in single precision.

-fpcc-struct-return Returns all struct and union values in
memory, rather than in registers. (Returning
values this way is less efficient, but at least it’s
compatible with other compilers.)

-fPIC Generates position-independent code (PIC)
suitable for use in a shared library.

-freg-struct-return When possible, returns struct and union
values registers.

-g Generates debugging information. (The GNU
debugger can use this information.)

-I DIRECTORY Searches the specified directory for files that
you include by using the #include pre-
processor directive.

-L DIRECTORY Searches the specified directory for libraries.

-l LIBRARY Searches the specified library when linking.

-mcpu=cputype Optimizes code for a specific proces-
sor. (cputype can take many different
values — some common ones are i386, i486,
i586, i686, pentium, pentiumpro,
pentium2, pentium3, pentium4.)

-o FILE Generates the specified output file (used to des-
ignate the name of an executable file).

-00 (two zeros) Does not optimize.

-O or -O1 (letter O) Optimizes the generated code.

-O2 (letter O) Optimizes even more.

-O3 (letter O) Performs optimizations beyond those done
for -O2.

-Os (letter O) Optimizes for size (to reduce the total amount
of code).

-pedantic Generates errors if any non-ANSI-standard
extensions are used.

-pg Adds extra code to the program so that, when
run, this program generates information that
the gprof program can use to display timing
details for various parts of the program.

(continued)

Exploring the Software-Development Tools in Linux472

Option Meaning

-shared Generates a shared object file (typically used to
create a shared library).

-UMACRO Undefines the specified macros.

-v Displays the GCC version number.

-w Doesn’t generate warning messages.

-W1, OPTION Passes the OPTION string (containing multiple
comma-separated options) to the linker. To
create a shared library named libXXX.so.1,
for example, use the following flag: -Wl,-
soname,libXXX.so.1.

The GNU make utility
When an application is made up of more than a few source files, compiling
and linking the files by manually typing the gcc command can get tiresome.
Also, you don’t want to compile every file whenever you change something
in a single source file. These situations are where the GNU make utility
comes to your rescue.

The make utility works by reading and interpreting a makefile — a text file
that describes which files are required to build a particular program as well
as how to compile and link the files to build the program. Whenever you
change one or more files, make determines which files to recompile — and
it issues the appropriate commands for compiling those files and rebuilding
the program.

Makefile names
By default, GNU make looks for a makefile that has one of the following
names, in the order shown:

	 ✦	 GNUmakefile

	 ✦	 makefile

	 ✦	 Makefile

In Unix systems, using Makefile as the name of the makefile is customary
because it appears near the beginning of directory listings, where uppercase
names appear before lowercase names.

When you download software from the Internet, you usually find a Makefile,
together with the source files. To build the software, you only have to type
make at the shell prompt and make takes care of all the steps necessary to
build the software.

Table 3‑1 (continued)

Book VII
Chapter 3

Program
m

ing
in Linux

Exploring the Software-Development Tools in Linux 473

If your makefile doesn’t have a standard name (such as Makefile), you
have to use the -f option with make to specify the makefile name. If your
makefile is called myprogram.mak, for example, you have to run make
using the following command line:

make -f myprogram.mak

The makefile
For a program made up of several source and header files, the makefile
specifies the following:

	 ✦	 The items that make creates — usually the object files and the execut-
able. Using the term target to refer to any item that make has to create is
common.

	 ✦	 The files or other actions required to create the target.

	 ✦	 Which commands to execute to create each target.

Suppose that you have a C++ source file named form.C that contains the fol-
lowing preprocessor directive:

#include "form.h" // Include header file

The object file form.o clearly depends on the source file form.C and the
header file form.h. In addition to these dependencies, you must specify how
make converts the form.C file to the object file form.o. Suppose that you
want make to invoke g++ (because the source file is in C++) with these options:

	 ✦	 -c (compile only)

	 ✦	 -g (generate debugging information)

	 ✦	 -O2 (optimize some)

In the makefile, you can express these options with the following rule:

This a comment in the makefile
The following lines indicate how form.o depends
on form.C and form.h and how to create form.o.
form.o: form.C form.h
g++ -c -g -O2 form.C

In this example, the first noncomment line shows form.o as the target and
form.C and form.h as the dependent files.

	 The line following the dependency indicates how to build the target from its
dependents. This line must start with a tab. Otherwise the make command
exits with an error message, and you’re left scratching your head because
when you look at the makefile in a text editor, you can’t tell the difference
between a tab and a space. Now that you know the secret, the fix is to replace
the space at the beginning of the offending line with a single tab.

Exploring the Software-Development Tools in Linux474

The benefit of using make is that it prevents unnecessary compilations. After
all, you can run g++ (or gcc) from a shell script to compile and link all the
files that make up your application, but the shell script compiles everything,
even if the compilations are unnecessary. GNU make, on the other hand,
builds a target only if one or more of its dependents have changed since the
last time the target was built. make verifies this change by examining the
time of the last modification of the target and the dependents.

make treats the target as the name of a goal to be achieved; the target
doesn’t have to be a file. You can have a rule such as this one:

clean:
rm -f *.o

This rule specifies an abstract target named clean that doesn’t depend on
anything. This dependency statement says that to create the target clean,
GNU make invokes the command rm -f *.o, which deletes all files that
have the .o extension (namely, the object files). Thus, the effect of creating
the target named clean is to delete the object files.

Variables (or macros)
In addition to the basic capability of building targets from dependents, GNU
make includes many features that make it easy for you to express the depen-
dencies and rules for building a target from its dependents. If you need to
compile a large number of C++ files by using GCC with the same options, for
example, typing the options for each file is tedious. You can avoid this repeti-
tive task by defining a variable or macro in make as follows:

Define macros for name of compiler
CXX= g++
Define a macro for the GCC flags
CXXFLAGS= -O2 -g -mcpu=i686
A rule for building an object file
form.o: form.C form.h
$(CXX) -c $(CXXFLAGS) form.C

In this example, CXX and CXXFLAGS are make variables. (GNU make prefers
to call them variables, but most Unix make utilities call them macros.)

To use a variable anywhere in the makefile, start with a dollar sign ($)
followed by the variable within parentheses. GNU make replaces all occur-
rences of a variable with its definition; thus, it replaces all occurrences of
$(CXXFLAGS) with the string -O2 -g -mcpu=i686.

GNU make has several predefined variables that have special meanings.
Table 3-2 lists these variables. In addition to the variables listed in Table 3-2,
GNU make considers all environment variables (such as PATH and HOME) to
be predefined variables as well.

Book VII
Chapter 3

Program
m

ing
in Linux

Exploring the Software-Development Tools in Linux 475

Table 3-2	 Some Predefined Variables in GNU make
Variable Meaning

$% Member name for targets that are archives. If the target is
libDisp.a(image.o), for example, $% is image.o.

$* Name of the target file without the extension.

$+ Names of all dependent files with duplicate dependencies, listed
in their order of occurrence.

$< The name of the first dependent file.

$? Names of all dependent files (with spaces between the names)
that are newer than the target.

$@ Complete name of the target. If the target is libDisp.a
image.o), for example, $@ is libDisp.a.

$^ Names of all dependent files, with spaces between the names.
Duplicates are removed from the dependent filenames.

AR Name of the archive-maintaining program (default value: ar).

ARFLAGS Flags for the archive-maintaining program (default value: rv).

AS Name of the assembler program that converts the assembly lan-
guage to object code (default value: as).

ASFLAGS Flags for the assembler.

CC Name of the C compiler (default value: cc).

CFLAGS Flags that are passed to the C compiler.

CO Name of the program that extracts a file from RCS
(default value: co).

COFLAGS Flags for the RCS co program.

CPP Name of the C preprocessor (default value: $(CC) -E).

CPPFLAGS Flags for the C preprocessor.

CXX Name of the C++ compiler (default value: g++).

CXXFLAGS Flags that are passed to the C++ compiler.

FC Name of the FORTRAN compiler (default value: f77).

FFLAGS Flags for the FORTRAN compiler.

LDFLAGS Flags for the compiler when it’s supposed to invoke the linker ld.

RM Name of the command to delete a file (Default value: rm -f).

A sample makefile
You can write a makefile easily if you use the predefined variables of GNU
make and its built-in rules. Consider, for example, a makefile that creates
the executable xdraw from three C source files (xdraw.c, xviewobj.c, and
shapes.c) and two header files (xdraw.h and shapes.h). Assume that

Exploring the Software-Development Tools in Linux476

each source file includes one of the header files. Given these facts, here is
what a sample makefile may look like:

###
Sample makefile
Comments start with '#'
#
###
Use standard variables to define compile and link flags
CFLAGS= -g -O2
Define the target "all"
all: xdraw
OBJS=xdraw.o xviewobj.o shapes.o
xdraw: $(OBJS)
Object files
xdraw.o: Makefile xdraw.c xdraw.h
xviewobj.o: Makefile xviewobj.c xdraw.h
shapes.o: Makefile shapes.c shapes.h

This makefile relies on GNU make’s implicit rules. The conversion of .c
files to .o files uses the built-in rule. Defining the variable CFLAGS passes
the flags to the C compiler.

	 The target named all is defined as the first target for a reason — if you run
GNU make without specifying any targets in the command line (see the make
syntax described in the following section), the command builds the first
target it finds in the makefile. By defining the first target all as xdraw,
you can ensure that make builds this executable file, even if you don’t explic-
itly specify it as a target. Unix programmers traditionally use all as the
name of the first target, but the target’s name is immaterial; what matters is
that it’s the first target in the makefile.

How to run make
Typically you run make by simply typing the following command at the shell
prompt:

make

When run this way, GNU make looks for a file named GNUmakefile, makefile,
or Makefile — in that order. If make finds one of these makefiles, it builds
the first target specified in that makefile. However, if make doesn’t find an
appropriate makefile, it displays the following error message and exits:

make: *** No targets specified and no makefile found. Stop.

If your makefile happens to have a different name from the default names,
you have to use the -f option to specify the makefile. The syntax of the
make command with this option is

make -f filename

where filename is the name of the makefile.

Book VII
Chapter 3

Program
m

ing
in Linux

Exploring the Software-Development Tools in Linux 477

Even when you have a makefile with a default name such as Makefile,
you may want to build a specific target out of several targets defined in the
makefile. In that case, you have to use the following syntax when you run
make:

make target

For example, if the makefile contains the target named clean, you can
build that target with this command:

make clean

Another special syntax overrides the value of a make variable. For example,
GNU make uses the CFLAGS variable to hold the flags used when compiling
C files. You can override the value of this variable when you invoke make.
Here’s an example of how you can define CFLAGS as the option -g -O2:

make CFLAGS="-g -O2"

In addition to these options, GNU make accepts several other command-line
options. Table 3-3 lists the GNU make options.

Table 3-3	 Options for GNU make
Option Meaning

-b Ignores the variable given but accepts that variable for compat-
ibility with other versions of make.

-C DIR Changes to the specified directory before reading the makefile.

-d Prints debugging information.

-e Allows environment variables to override definitions of similarly
named variables in the makefile.

-f FILE Reads FILE as the makefile.

-h Displays the list of make options.

-i Ignores all errors in commands executed when building a target.

-I DIR Searches the specified directory for included makefiles. (The
capability to include a file in a makefile is unique to GNU make.)

-j NUM Specifies the number of commands that make can run
simultaneously.

-k Continues to build unrelated targets, even if an error occurs when
building one of the targets.

-l LOAD Doesn’t start a new job if load average is at least LOAD (a floating-
point number).

(continued)

Exploring the Software-Development Tools in Linux478

Option Meaning

-m Ignores the variable given but accepts that variable for compat-
ibility with other versions of make.

-n Prints the commands to execute but does not execute them.

-o FILE Does not rebuild the file named FILE, even if it is older than its
dependents.

-p Displays the make database of variables and implicit rules.

-q Does not run anything, but returns 0 (zero) if all targets are up to
date, 1 if anything needs updating, or 2 if an error occurs.

-r Gets rid of all built-in rules.

-R Gets rid of all built-in variables and rules.

-s Works silently (without displaying the commands as they execute).

-t Changes the timestamp of the files.

-v Displays the version number of make and a copyright notice.

-w Displays the name of the working directory before and after pro-
cessing the makefile.

-W FILE Assumes that the specified file has been modified (used with -n
to see what happens if you modify that file).

The GNU debugger
Although make automates the process of building a program, that part of
programming is the least of your worries when a program doesn’t work cor-
rectly or when a program suddenly quits with an error message. You need a
debugger to find the cause of program errors. Linux includes gdb — the ver-
satile GNU debugger with a command-line interface.

Like any debugger, gdb lets you perform typical debugging tasks, such as the
following:

	 ✦	 Set a breakpoint so that the program stops at a specified line.

	 ✦	 Watch the values of variables in the program.

	 ✦	 Step through the program one line at a time.

	 ✦	 Change variables in an attempt to correct errors.

The gdb debugger can debug C and C++ programs.

Table 3‑3 (continued)

Book VII
Chapter 3

Program
m

ing
in Linux

Exploring the Software-Development Tools in Linux 479

Preparing to debug a program
If you want to debug a program by using gdb, you have to ensure that the
compiler generates and places debugging information in the executable. The
debugging information contains the names of variables in your program and
the mapping of addresses in the executable file to lines of code in the source
file. gdb needs this information to perform its functions, such as stopping
after executing a specified line of source code.

	 To make sure that the executable is properly prepared for debugging, use
the -g option with GCC. You can do this task by defining the variable
CFLAGS in the makefile as

CFLAGS= -g

Running gdb
The most common way to debug a program is to run gdb by using the fol-
lowing command:

gdb progname

progname is the name of the program’s executable file. After progname runs,
gdb displays the following message and prompts you for a command:

GNU gdb (GDB) 7.5.91.20130417-cvs-ubuntu
Copyright (c) 2013 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later

<http://gnu.org/licenses/gpl.html>
This is free software: you are free to change it and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.
This GDB was configured as "i686--linux-gnu".
For bug reporting instructions, please see:
http://www.gnu.org/software/gdb/bugs/.
(gdb)

You can type gdb commands at the (gdb) prompt. One useful command,
help, displays a list of commands, as the next listing shows:

(gdb) help
List of classes of commands:
aliases -- Aliases of other commands
breakpoints -- Making program stop at certain points
data -- Examining data
files -- Specifying and examining files
internals -- Maintenance commands
obscure -- Obscure features
running -- Running the program
stack -- Examining the stack
status -- Status inquiries
support -- Support facilities
tracepoints -- Tracing of program execution without stopping the program
user-defined -- User-defined commands

http://www.gnu.org/software/gdb/bugs/

Exploring the Software-Development Tools in Linux480

Type "help" followed by a class name for a list of commands in that class.
Type "help all" for the list of all commands.
Type "help" followed by command name for full documentation.
Command name abbreviations are allowed if unambiguous.
(gdb)

To quit gdb, type q and then press Enter.

gdb has a large number of commands, but you need only a few to find the
cause of an error quickly. Table 3-4 lists the commonly used gdb commands.

Table 3-4	 Common gdb Commands
This Command Does the Following

break NUM Sets a breakpoint at the specified line number,
NUM. (The debugger stops at breakpoints.)

bt Displays a trace of all stack frames. (This com-
mand shows you the sequence of function calls
so far.)

clear FILENAME: NUM Deletes the breakpoint at a specific line number,
NUM, in the source file FILENAME. For exam-
ple, clear xdraw.c:8 clears the breakpoint
at line 8 of file xdraw.c.

continue Continues running the program being debugged.
(Use this command after the program stops due
to a signal or breakpoint.)

display EXPR Displays the value of an expression, EXPR (con-
sisting of variables defined in the program) each
time the program stops.

file FILE Loads the specified executable file, FILE, for
debugging.

help NAME Displays help on the command named NAME.

info break Displays a list of current breakpoints, including
information on how many times each breakpoint
is reached.

info files Displays detailed information about the file
being debugged.

info func Displays all function names.

info local Displays information about local variables of the
current function.

info prog Displays the execution status of the program
being debugged.

info var Displays all global and static variable names.

Book VII
Chapter 3

Program
m

ing
in Linux

Exploring the Software-Development Tools in Linux 481

This Command Does the Following

kill Ends the program you’re debugging.

list Lists a section of the source code.

make Runs the make utility to rebuild the executable
without leaving gdb.

next Advances one line of source code in the current
function without stepping into other functions.

print EXPR Shows the value of the expression EXPR.

quit Quits gdb.

run Starts running the currently loaded executable.
set variable
VAR=VALUE

Sets the value of the variable VAR to VALUE.

shell CMD Executes the Unix command CMD, without leav-
ing gdb.

step Advances one line in the current function, step-
ping into other functions, if any.

watch VAR Shows the value of the variable named VAR
whenever the value changes.

where Displays the call sequence. Use this command
to locate where your program died.

x/F ADDR Examines the contents of the memory location
at address ADDR in the format specified by
the letter F, which can be o (octal), x (hex), d
(decimal), u (unsigned decimal), t (binary), f
(float), a (address), i (instruction), c (char), or
s (string). You can append a letter indicating the
size of data type to the format letter. Size letters
are b (byte), h (halfword, 2 bytes), w (word,
4 bytes), and g (giant, 8 bytes). Typically, ADDR
is the name of a variable or pointer.

Finding bugs by using gdb
To understand how you can find bugs by using gdb, you need to see an
example. The procedure is easiest to show with a simple example, so the fol-
lowing, dbgtst.c, is a contrived program that contains a typical bug.

#include <stdio.h>
static char buf[256];
void read_input(char *s);
int main(void)
{
char *input = NULL; /* Just a pointer, no storage for string */
read_input(input);

Exploring the Software-Development Tools in Linux482

/* Process command. */
printf("You typed: %s\n", input);
/* . . ._*/
return 0;
}
void read_input(char *s)
{
printf("Command: ");
gets(s);
}

This program’s main function calls the read_input function to get a line of
input from the user. The read_input function expects a character array in
which it returns what the user types. In this example, however, main calls
read_input with an uninitialized pointer — that’s the bug in this simple
program.

Build the program by using gcc with the -g option:

gcc -g -o dbgtst dbgtst.c

Ignore the warning message about the gets function being dangerous; I’m
trying to use the shortcoming of that function to show how you can use gdb
to track down errors.

To see the problem with this program, run it and type test at the Command:
prompt:

./dbgtst
Command: test
Segmentation fault

The program dies after displaying the Segmentation fault message. For
such a small program as this one, you can probably find the cause by exam-
ining the source code. In a real-world application, however, you may not
immediately know what causes the error. That’s when you have to use gdb
to find the cause of the problem.

To use gdb to locate a bug, follow these steps:

	 1.	 Load the program under gdb.

		 For example, type gdb dbgtst to load a program named dbgtst in
gdb.

	 2.	 Start executing the program under gdb by typing the run command.
When the program prompts for input, type some input text.

		 The program fails as it did previously. Here’s what happens with the
dbgtst program:

(gdb) run
Starting program: /home/edulaney/swdev/dbgtst
Command: test
Program received signal SIGSEGV, Segmentation fault.
0x400802b6 in gets () from /lib/tls/libc.so.6
(gdb)

Book VII
Chapter 3

Program
m

ing
in Linux

Exploring the Software-Development Tools in Linux 483

	 3.	 Use the where command to determine where the program died.

		 For the dbgtst program, this command yields this output:
(gdb) where
#0 0x400802b6 in gets () from /lib/tls/libc.so.6
#1 0x08048474 in read_input (s=0x0) at dbgtst.c:16
#2 0x08048436 in main () at dbgtst.c:7
(gdb)

		 The output shows the sequence of function calls. Function call #0 — the
most recent one — is to the gets C library function. The gets call origi-
nates in the read_input function (at line 16 of the file dbgtst.c), which
in turn is called from the main function at line 7 of the dbgtst.c file.

	 4.	 Use the list command to inspect the lines of suspect source code.

		 In dbgtst, you may start with line 16 of dbgtst.c file, as follows:
(gdb) list dbgtst.c:16
11 return 0;
12 }
13 void read_input(char *s)
14 {
15 printf("Command: ");
16 gets(s);
17 }
18
(gdb)

		 After looking at this listing, you can tell that the problem may be the way
read_input is called. Then you list the lines around line 7 in dbgtst.c
(where the read_input call originates):

(gdb) list dbgtst.c:7
2 static char buf[256];
3 void read_input(char *s);
4 int main(void)
5 {
6 char *input = NULL; /* Just a pointer, no storage for string */
7 read_input(input);
8 /* Process command. */
9 printf("You typed: %s\n", input);
10 /* . . . */
11 return 0;
(gdb)

		 At this point, you can narrow the problem to the variable named input.
That variable is an array, not a NULL (which means zero) pointer.

Fixing bugs in gdb
Sometimes you can fix a bug directly in gdb. For the example program in the
preceding section, you can try this fix immediately after the program dies
after displaying an error message. An extra buffer named buf is defined in
the dbgtst program, as follows:

static char buf[256];

Understanding the Implications of GNU Licenses484

We can fix the problem of the uninitialized pointer by setting the variable
input to buf. The following session with gdb corrects the problem of the
uninitialized pointer. (This example picks up immediately after the program
runs and dies, due to the segmentation fault.)

(gdb) file dbgtst
A program is being debugged already. Kill it? (y or n) y
Load new symbol table from "/home/edulaney/sw/dbgtst"? (y or n) y
Reading symbols from /home/edulaney/sw/dbgtst . . . done.
(gdb) list
1 #include <stdio.h>
2 static char buf[256];
3 void read_input(char *s);
4 int main(void)
5 {
6 char *input = NULL; /* Just a pointer, no storage for string */
7 read_input(input);
8 /* Process command. */
9 printf("You typed: %s\n", input);
10 /* . . . */
(gdb) break 7
Breakpoint 2 at 0x804842b: file dbgtst.c, line 7.
(gdb) run
Starting program: /home/edulaney/sw/dbgtst
Breakpoint 1, main () at dbgtst.c:7
7 read_input(input);
(gdb) set var input=buf
(gdb) cont
Continuing.
Command: test
You typed: test
Program exited normally.
(gdb)q

As the preceding listing shows, if the program is stopped just before read_
input is called and the variable named input is set to buf (which is a valid
array of characters), the rest of the program runs fine.

After finding a fix that works in gdb, you can make the necessary changes to
the source files and make the fix permanent.

Understanding the Implications of GNU Licenses
You have to pay a price for the bounty of Linux. To protect its developers
and users, Linux is distributed under the GNU GPL (General Public License),
which stipulates the distribution of the source code.

The GPL doesn’t mean, however, that you can’t write commercial software
for Linux that you want to distribute (either for free or for a price) in binary
form only. You can follow all the rules and still sell your Linux applications in
binary form.

Book VII
Chapter 3

Program
m

ing
in Linux

Understanding the Implications of GNU Licenses 485

When writing applications for Linux, be aware of two licenses:

	 ✦	 The GNU General Public License (GPL), which governs many Linux pro-
grams, including the Linux kernel and GCC

	 ✦	 The GNU Library General Public License (LGPL), which covers many
Linux libraries

	 The following sections provide an overview of these licenses and some sug-
gestions on how to meet their requirements. Don’t take anything in this book
as legal advice. Instead, you should read the full text for these licenses in the
text files on your Linux system, and then show these licenses to your legal
counsel for a full interpretation and an assessment of their applicability to
your business.

The GNU General Public License
The text of the GNU General Public License (GPL) is in a file named COPYING
in various directories in your Linux system. For example, type the following
command to find a copy of that file in your Linux system for various items:

find /usr -name "COPYING" -print

After you find the file, you can change to that directory and type more
COPYING to read the GPL. These are examples of the license accompany-
ing code, and you can find other examples at http://www.gnu.org/
copyleft/gpl.html.

The GPL has nothing to do with whether you charge for the software or distrib-
ute it for free; its thrust is to keep the software free for all users. GPL requires
that the software be distributed in source-code form, and stipulates that any
user can copy and distribute the software in source-code form to anyone else.
In addition, everyone is reminded that the software comes with absolutely no
warranty.

The software that the GPL covers isn’t in the public domain. Software cov-
ered by GPL is always copyrighted, and the GPL spells out the restrictions
on the software’s copying and distribution. From a user’s point of view, of
course, GPL’s restrictions aren’t really restrictions; the restrictions are ben-
efits because the user is guaranteed access to the source code.

	 If your application uses parts of any software that the GPL covers, your
application is considered a derived work, which means that your application
is also covered by the GPL and you must distribute the source code to your
application.

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html

Understanding the Implications of GNU Licenses486

Although the GPL covers the Linux kernel, the GPL doesn’t cover your appli-
cations that use the kernel services through system calls. Those applica-
tions are considered normal use of the kernel.

If you plan to distribute your application in binary form (as most commercial
software is distributed), you must make sure that your application doesn’t
use any parts of any software the GPL covers. Your application may end up
using parts of other software when it calls functions in a library. Most librar-
ies, however, are covered by a different GNU license, which is described in
the next section.

You have to watch out for only a few of the library and utility programs that
the GPL covers. The GNU dbm (gdbm) database library is one of the promi-
nent libraries that GPL covers. The GNU bison parser-generator tool is
another utility that the GPL covers. If you allow bison to generate code, the
GPL covers that code.

	 Other alternatives for the GNU dbm and GNU bison aren’t covered by GPL.
For a database library, you can use the Berkeley database library db in place
of gdbm. For a parser-generator, you may use yacc instead of bison.

The GNU Library General Public License
The text of the GNU Library General Public License (LGPL) is in a file named
COPYING.LIB. If you have the kernel source installed, a copy of COPYING.
LIB file is in one of the source directories. To locate a copy of the COPYING.
LIB file on your Linux system, type the following command in a terminal
window:

find /usr -name "COPYING*" -print

This command lists all occurrences of COPYING and COPYING.LIB in your
system. The COPYING file contains the GPL, whereas COPYING.LIB has the
LGPL.

The LGPL is intended to allow use of libraries in your applications, even if
you don’t distribute source code for your application. The LGPL stipulates,
however, that users must have access to the source code of the library you
use — and that users can make use of modified versions of those libraries.

The LGPL covers most Linux libraries, including the C library (libc.a).
Thus, when you build your application on Linux by using the GCC compiler,
your application links with code from one or more libraries that the LGPL
covers. If you want to distribute your application in only binary form, you
need to pay attention to LGPL.

	 One way to meet the intent of the LGPL is to provide the object code for
your application and a makefile that relinks your object files with any
updated Linux libraries the LGPL covers.

Book VII
Chapter 3

Program
m

ing
in Linux

Understanding the Implications of GNU Licenses 487

	 A better way to satisfy the LGPL is to use dynamic linking, in which your
application and the library are separate entities, even though your applica-
tion calls functions that reside in the library when it runs. With dynamic link-
ing, users immediately get the benefit of any updates to the libraries without
ever having to relink the application.

	 The newest version of the license is GPLv3 and a Quick Guide to it can be
found at: http://www.gnu.org/licenses/quick-guide-gplv3.html.

http://www.gnu.org/licenses/quick-guide-gplv3.html

488 Book VII: Scripting

	 Visit www.dummies.com/extras/linuxaio for great Dummies content online.

Book VIII
Linux Certification

http://www.dummies.com/extras/linuxaio

Contents at a Glance

Contents at a Glance

Chapter 1: Studying for the Linux Essentials Certification Exam . . . 491
Overview of Linux Essentials...491
The Linux Community and a Career in Open Source...492
Using the Command Line to Get Help...493
The Power of the Command Line..495
The Linux Operating System..496
Security and File Permissions...498

Chapter 2: Studying for the CompTIA Linux+ Powered by
LPI Certification Exams . 501

Overview of the CompTIA Linux+ Exams...501
System Architecture...502
Linux Installation and Package Management..503
GNU and Unix Commands..505
Devices, Linux File systems, Filesystem Hierarchy Standard....................................507
Shells, Scripting, and Data Management..509
User Interfaces and Desktops...510
Administrative Tasks...511
Essential System Services...512
Networking Fundamentals...514
Security...515

Chapter 3: Other Linux Certifications . 517
Vendor-Neutral Certifications..517
Vendor-Specific Certifications..518

Chapter 1: Studying for the Linux
Essentials Certification Exam

In This Chapter
✓	Getting an overview of the Linux Essentials Exam

✓	Looking at the details of each domain

J
ust as there are many levels of degree attainment you can achieve through
an educational institution (associate’s degree, bachelor’s, master’s, doc-

torate), there are multiple levels of Linux certification available. This book
is written primarily for the Linux+ certification from CompTIA and the LPI
LX0-101 and LX0-102 exams. As such, it covers everything you need to know
to study and pass LPI’s lower-level certification, known as Linux Essentials.

The following sections provide an overall look at the exam, and then explore
the topics beneath each of the domains.

Overview of Linux Essentials
The Linux Essentials Certificate of Achievement was created by the Linux
Professional Institute (LPI) to appeal to the academic sector. Students taking
classes in Linux may not get through all the topics necessary to pass the
two exams (LX0-101 and LX0-102) to gain the Level 1 certification, but LPI
still wanted to recognize and authenticate their knowledge. This program
was created through international collaboration with a classroom focus in
mind. As of this writing, the program is live in Europe, the Middle East, and
Africa, with plans to roll out to other regions in the near future.

	 Linux Essentials is a certificate of achievement, intended to be a much
lower-level (subset) certification than the Level 1 certification. Although
Linux Essentials is recommended, it’s not required for any of the LPIC pro-
fessional certifications.

There are five domains (called Topics) on the exam; Table 1-1 shows them,
along with the weighting for each.

The Linux Community and a Career in Open Source492

Table 1-1	 Domains on the Linux Essentials Exam
Topic Weighting

The Linux Community and a Career in Open Source 7

Finding Your Way on a Linux System 8

The Power of the Command Line 10

The Linux Operating System 8

Security and File Permissions 7

The sections that follow look at each of these topics in more detail.

The Linux Community and a Career in Open Source
Table 1-2 shows the subtopics, weight, description, and key knowledge areas
for this topic.

Table 1-2	 Breakout of Topic 1
Subtopic Weight Description Key Areas

Linux Evolution
and Popular
Operating
Systems

2 Knowledge of Linux
development and
major distributions

Open source philos-
ophy; distributions;
embedded systems

Major Open
Source
Applications

2 Awareness of major
applications and
their uses

Desktop applica-
tions; server appli-
cations; mobile
applications; devel-
opment languages;
package manage-
ment tools and
repositories

Understanding
Open Source
Software and
Licensing

1 Open communities
and licensing Open
Source Software for
business

Licensing;
Free Software
Foundation (FSF),
Open Source
Initiative (OSI)

ICT Skills and
Working in
Linux

2 Basic Information
and Communication
Technology (ICT)
skills and working in
Linux

Desktop skills;
getting to the com-
mand line; industry
uses of Linux, cloud
computing and
virtualization

Book VIII
Chapter 1

Studying for the
Linux Essentials

Certification Exam
Using the Command Line to Get Help 493

To adequately address these topics, focus on these files, terms, and utilities:
Android; Apache; Audacity; Blender; BSD; C; CentOS; Creative Commons;
Debian; DHCP; DNS; Firefox; FLOSS; FOSS; Gimp; GPR; ImageMagick; Libre
Office; MySQL; NFS; OpenLDAP; OpenOffice.org; Password issues; Perl;
PHP; Python; Postfix; PostgreSQL; Privacy issues and tools; Samba; Shell;
Terminal and Console; and Thunderbird.

In addition, focus on these topics: Use of common open source applications
in presentations and projects; using a browser; privacy concerns; configura-
tion options; searching the web; and saving content.

Here are the top ten items to know as you study for this domain:

	 1.	 Linux is the best-known example of open source software so far developed
(and still in development).

	 2.	 The shell is the command interpreter that resides between the user and
the operating system. While a number of shells are available, the most
common today is the bash shell.

	 3.	 A plethora of applications and tools is available for use with the various
Linux distributions. Many of these tools are also open source.

	 4.	 The Apache Software Foundation distributes open source software under
the Apache license that is Free and Open Source (FOSS).

	 5.	 The Free Software Foundation (FSF) supports the free (open source)
software movement and copyleft under the GNU General Public License.
Copyleft makes it possible for modifications to be made to software while
preserving the same rights in the produced derivatives.

	 6.	 The Open Source Initiative (OSI) also supports the open source software
movement, as does the GNOME Foundation, Ubuntu Foundation, and
many other organizations.

	 7.	 OpenOffice.org was a popular suite of open source office productivity
software. LibreOffice is a fork of OpenOffice that has eclipsed it in
popularity.

	 8.	 Samba makes it possible for Linux systems to share files with Windows-
based systems.

	 9.	 Thunderbird is a popular mail and news client originally created by the
Mozilla Foundation.

	 10.	 A number of web browsers are available for Linux. The most popular
currently is Firefox.

Using the Command Line to Get Help
Table 1-3 shows the subtopics, weight, description, and key knowledge areas
for this topic.

Using the Command Line to Get Help494

Table 1-3	 Breakout of Topic 2
Subtopic Weight Description Key Areas

Command Line
Basics

2 Basics of using the
Linux command line

Basic shell;
Formatting com-
mands; Working
with options;
Variables; Globbing;
Quoting

Using the
Command Line to
Get Help

2 Running help com-
mands and naviga-
tion of the various
help systems

man files; info
command

Using Directories
and Listing Files

2 Navigation of home
and system directo-
ries and listing files
in various locations

Files, directories;
hidden files and
directories; home
directory; absolute
and relative paths

Creating,
Moving, and
Deleting Files

2 Create, move, and
delete files under
the home directory

Files and directo-
ries; case sensitiv-
ity; simple globbing
and quoting

To adequately address these topics, focus on these files, terms, and utilities:
&&; . and ..; /usr/share/doc; ||; apropos; cd; common options for ls;
cp; echo; history; Home and ~; info; locate; man; man pages; mkdir;
mv; PATH env variable; recursive listings; rm; rmdir; substitutions; touch;
whatis; whereis; and which.

Here are the top ten items to know as you study for this domain:

	 1.	 Regular expressions – often referred to as globbing – can be used with the
shells available in Linux to match wildcard characters. Among the pos-
sible wildcards, the asterisk (*) will match any number of characters; the
question mark (?) will match only one character.

	 2.	 Linux is a case-sensitive operating system.

	 3.	 Files can be “hidden” by preceding their names with a single period (.). In
pathnames, however, a single period (.) specifies this directory and two
periods (..) signifies the parent directory.

	 4.	 Absolute paths give the full path to a resource, while relative paths give
directions from where you are currently working. An example of an abso-
lute path would be /tmp/eadulaney/file whereas a relative link would
be ../file.

Book VIII
Chapter 1

Studying for the
Linux Essentials

Certification Exam
The Power of the Command Line 495

	 5.	 Files can be copied using cp or moved using mv. Files can be deleted with
rm and directories (which are created with mkdir) can be removed with
rmdir. Recursive deletion can be done with rm –r.

	 6.	 To change directories, use the cd command. When used without param-
eters, this will move you to your home directory. To see what directory
you are presently working in, us the pwd (present working directory)
command.

	 7.	 The ls command has a plethora of options to allow you to list files.
The –a option will list all (including hidden) files.

	 8.	 Help is available through the manual pages (accessed with the man com-
mand) and info (which shows help files stored beneath /user/info).

	 9.	 The whatis command shows what manual pages are available for an entry
while whereis shows the location of the file and all related files (including
any manual pages).

	 10.	 Many standard utilities allow you to enter the name of the executable fol-
lowed by "--help" to obtain help only on the syntax.

The Power of the Command Line
Table 1-4 shows the subtopics, weight, description, and key knowledge areas
for this topic.

Table 1-4	 Breakout of Topic 3
Subtopic Weight Description Key Areas

Archiving Files on
the Command Line

2 Archiving files in the
user home directory

Files, directo-
ries; archives,
compression

Searching and
Extracting Data from
Files

4 Search and extract
data from files in the
home directory

Command
line pipes; I/O
re-direction

Turning Commands
into a Script

4 Turning repetitive
commands into
simple scripts

Basic text edit-
ing; basic shell
scripting

To adequately address these topics, focus on the following files, terms, and
utilities: /bin/sh; arguments; bash; bzip2; case; common tar options;
cut; exit status; extracting individual files from archives; find; for loops;
grep; gzip; head; if; less; nano; Partial POSIX Basic Regular Expressions

The Linux Operating System496

([^],^,$); Partial POSIX Extended Regular Expressions (+,(),|); pico; read;
sort; tail; tar; test; unzip; variables; vi; wc; while; xargs; and zip.

Here are the top ten items to know as you study for this domain:

	 1.	 Standard input (stdin) is traditionally the keyboard and standard output
(stdout) is traditionally the monitor. Both can be redirected, as can stan-
dard error (stderr) using the symbols >, >>, <, and |.

	 2.	 Commands can be joined on the command line by the semicolon (;) and
each command will run independent of each other. You can also use the
pipe (|) to send the output of one command as the input of another
command.

	 3.	 The cut command can pull fields from a file and they can be combined
using either paste or join. The latter offers more features than the
former and can be used with conditions.

	 4.	 The wc command can count the number of lines, words, and characters
in a file.

	 5.	 The grep utility (and its counterparts egrep and fgrep) can be used to
find matches for strings within files.

	 6.	 The find command can be used to search the system for files/directories
that meet any number of criteria. When these entities are found, the xargs
command can be used to look deeper within them for other values (such
as in conjunction with grep).

	 7.	 You can use the tar command (which can combine multiple files into a
single archive) to do backups.

	 8.	 In addition to archiving, you can also compress files with the gzip or
pack commands. To uncompress files, use uncompress, gunzip, or
unpack.

	 9.	 Variables can be given at the command line and referenced as $1, $2, and
so on, or entered into the executing file with the read command.

	 10.	 Logic can be added to scripts by testing conditions with test or [.
Commands can execute using if-then-fi deviations or through looping
(while, until, or for). You can use the exit command to leave a script
or use break to leave a loop.

The Linux Operating System
Table 1-5 shows the subtopics, weight, description, and key knowledge areas
for this topic.

Book VIII
Chapter 1

Studying for the
Linux Essentials

Certification Exam
The Linux Operating System 497

Table 1-5	 Breakout of Topic 4
Subtopic Weight Description Key Areas

Choosing an
Operating System

1 Knowledge of
major operating
systems and Linux
distributions

Windows, Mac,
Linux differ-
ences; distribu-
tion lifecycle
management

Understanding
computer hardware

2 Familiarity with the
components that
go into building
desktop and server
computers

Hardware

Where Data is
Stored

3 Where various
types of informa-
tion are stored on a
Linux system

Kernel;
processes;
syslog;
klog; dmesg;
/lib; /usr/
lib; /etc/;
/var/log

Your Computer on
the Network

2 Querying vital
networking settings
and determining the
basic requirements
for a computer on a
local area network
(LAN)

Internet; net-
work; routers;
Domain Name
Service;
network
configuration

To adequately address these topics, focus on the following files, terms, and
utilities: desktop configuration (GUI versus command line); dig; display
types; drivers; free; hard drives and partitions; ifconfig; IPv4; IPv6; librar-
ies; maintenance cycles (beta and stable); memory addresses; motherboards;
netstat; optical drives; peripherals; ping; power supplies; processes and pro-
cess tables; processors; system messaging and logging; programs; packages
and package databases; ps; resolv.conf; route; ssh; system configuration;
and top.

Here are the top ten items to know as you study for this domain:

	 1.	 When run, every command spans at least one process; processes can be
viewed with ps or top (which updates the display dynamically).

	 2.	 Jobs can run in the foreground or background and be moved between the
two. Jobs running in the foreground can be suspended by pressing Ctrl+Z.

Security and File Permissions498

	 3.	 IPv4 uses 32-bit addresses, each divided into four octets. The first octet
identifies the class of address (A, B, C). The address can be public or
private.

	 4.	 The ifconfig utility can be used to see the current IP configuration of
the network cards.

	 5.	 The ping utility is an all-purpose tool for testing connectivity. It sends
echo messages to a specified host to see whether that host can be
reached. You can use ping with the loopback address (127.0.0.1) to
test internal configuration.

	 6.	 The route utility displays the routing table and allows you to configure it.

	 7.	 The netstat utility shows the current status of ports – those that are
open, listening, and so on.

	 8.	 The system log is /var/log/messages and this is where the major-
ity of events are written to by the system log daemon (syslogd).
Messages routed there can be viewed with the dmesg command.

	 9.	 The logrotate command can be used to automatically archive log files
and perform maintenance as configured in /etc/syslog.conf.

	 10.	 You can manually write entries to log files using the logger command.

Security and File Permissions
Table 1-6 shows the subtopics, weight, description, and key knowledge areas
for this topic.

Table 1-6	 Breakout of Topic 5
Subtopic Weight Description Key Areas

Basic Security and
Identifying User
Types

2 Various types of
users on a Linux
system

Root and stan-
dard users;
system users

Creating Users and
Groups

2 Creating users and
groups on a Linux
system

User and group
commands; user
IDs

Managing Files
Permissions and
Ownership

2 Understanding and
manipulating file
permissions and
ownership settings

File/directory
permissions and
owners

Special Directories
and Files

1 Special directories
and files on a Linux
system, including
special permissions

System files;
libraries; sym-
bolic links

Book VIII
Chapter 1

Studying for the
Linux Essentials

Certification Exam
Security and File Permissions 499

To adequately address these topics, focus on the following files, terms, and
utilities: /etc; /etc/group; /etc/passwd; /etc/shadow; /tmp; /var; /
var/tmp; chgrp; chmod; chown; groupadd; groupdel; groupmod; hard
links; id; last; ls –d; ls –l; ls –s; passwd; setgid; setuid; sticky bit;
su; sudo; useradd; userdel; usermod; w; and who.

Here are the top ten items to know as you study for this domain:

	 1.	 File and directory permissions can be changed with the chmod command
(which accepts numeric and symbolic values).

	 2.	 Adding 1000 to standard permissions turns on the “sticky bit”; adding
2000 turns on the SGID permission. Adding 4000 turns on the SUID
permission.

	 3.	 Links are created with the ln command. A “hard” link is nothing more
than an alias to a file (sharing the same inode). The ln –s command cre-
ates a symbolic link that is an actual file with its own inode. The symbolic
link contains a pointer to the original file and can span across file systems;
the hard link cannot.

	 4.	 User accounts can be added by manually editing the configuration files or
by using the useradd command; they can be removed with userdel.

	 5.	 The groupadd utility can be used to create groups and groupdel can
be used to remove groups. Groups can be modified with groupmod and
users can change from one group to another with the newgrp command.

	 6.	 Passwords are changed with the passwd command. Older systems stored
passwords in /etc/passwd; now passwords are stored in /etc/shadow,
where they are more secure.

	 7.	 To see who logged on most recently and may currently still be on the
network, you can use the last command.

	 8.	 The su command allows you to become another user (returning with
exit). If no other username is specified, then the root user is implied,
hence the su for superuser.

	 9.	 Use sudo instead of su when you want to run a command as another user
(usually root) without becoming that user.

	 10.	 The who command shows who is logged on; the w command shows infor-
mation combining who with uptime.

500 Book VIII: Linux Certification

Chapter 2: Studying for the
CompTIA Linux+ Powered by
LPI Certification Exams

In This Chapter
✓	Getting an overview of the CompTIA Linux+ Exams

✓	Looking into each domain in depth

T
he previous chapter examines the Linux Essentials exam – LPI’s lower-level
certification. That certification should be viewed as a steppingstone to a

higher-level exam. The Linux+ certification exam from CompTIA – consisting
of the LPI LX0-101 and LX0-102 exams – is an ideal example of such a high-level
test.

In the following sections, we provide an overview of the two exams and then
explore the topics beneath each of the domains.

Overview of the CompTIA Linux+ Exams
The official name of the certification in question is “CompTIA Linux+ Powered
by LPI” and although that’s a mouthful to say, it’s also a meaningful addition to
a résumé. The certification is awarded by CompTIA; it consists of two exams
by the Linux Professional Institute (LPI): LX0-101 and LX0-102. Accordingly, at
the time of taking the exams, a candidate can choose to have the test scores
forwarded to LPI — and gain the Level 1 certification (LPIC-1) at the same time.

	 Records are separately maintained by LPI and CompTIA. If you choose not to
forward your scores, you can be Linux+-certified but not LPIC-1 certified.

Each of the two exams consists of 60 questions that must be answered in
90 minutes. The passing score is 500 on a scale from 200 to 800, and it is
highly recommended – but not required – that candidates have 12 months
of Linux administration experience.

There are four domains on one exam and six on the other. Table 2-1 shows the
domains on each, along with their prospective weighting.

System Architecture502

Table 2-1	 Domains on the Linux+ Exams
Exam Domain Weighting

LX0-101 101 System Architecture 14%

102 Linux Installation and Package Management 18%

103 GNU and Unix Commands 43%

104 Devices, Linux Filesystems, Filesystem
Hierachy Standard

25%

LX0-102 105 Shells, Scripting, and Data Management 17%

106 User Interfaces and Desktops 8%

107 Administrative Tasks 20%

108 Essential System Services 17%

109 Networking Fundamentals 23%

110 Security 15%

The sections that follow look at each of these topics in more detail.

System Architecture
Table 2-2 shows the subtopics, weights, descriptions, and key knowledge
areas for this topic.

Table 2-2	 Breakout of Domain 101
Subtopic Weight Description Key Areas

Determine
and configure
hardware
settings

2 Conceptual under-
standing of kernel
loading options and
boot steps

Working with
peripherals, stor-
age devices, and
the tools you use to
configure them

Boot the
system

3 How to walk through
the boot process

Common boot com-
mands; the boot
sequence; boot logs

Change run
levels and shut
down or reboot
system

3 Changing to single-
user mode, shutting
down and rebooting
the system. Knowing
that you should alert
users to changes in
run level and to the
need for properly ter-
minating processes

Default run level;
changing run levels;
how to terminate

Book VIII
Chapter 2

Studying for the
Com

pTIA Linux+
Pow

ered by LPI
Certification Exam

s
Linux Installation and Package Management 503

To adequately address these topics, focus on the following files, terms, and
utilities: /dev, /etc/init.d, /etc/inittab, /proc, /sys, /var/log/
messages, BIOS, boot loader, dmesg, init, kernel, lsmod, lspci, lsusb,
modprobe, shutdown, and telinit.

Here are the top ten items to know as you study for this domain:

	 1.	 The system log is /var/log/messages and this is where the majority
of events are written to by the system log daemon (syslogd). Messages
routed there can be viewed with the dmesg command.

	 2.	 The logrotate command can be used to automatically archive log files
and perform maintenance as configured in /etc/syslog.conf.

	 3.	 You can manually write entries to log files using the logger command.

	 4.	 The init daemon is responsible for maintaining proper running of dae-
mons at specified run levels. The system attempts to go to the run level
specified as the default in the /etc/inittab file upon each boot.

	 5.	 Run levels can be changed with the init and shutdown commands.

	 6.	 Valid run levels defined as standards are: 0 (power off), 1 (single-user
mode), 2 (multiple user without NFS), 3 (multiple user with NFS),
5 (X environment), and 6 (reboot).

	 7.	 The lsmod command is used to list loaded modules. The insmod com-
mand is used to install a module. The rmmod command is used to remove
a module from the system. The modinfo command will show information
about a module.

	 8.	 The modprobe utility can probe and install a module and its dependents,
while the depmod utility will determine and show any module dependen-
cies that exist.

	 9.	 Kernel software is typically named linux-x.y.z where x.y.z represents
the version number.

	 10.	 The make config command executes a command-line-oriented view and
allows you to respond interactively with the kernel build.

Linux Installation and Package Management
Table 2-3 shows the subtopics, weights, descriptions, and key knowledge areas
for this topic.

Linux Installation and Package Management504

Table 2-3	 Breakout of Domain 102
Subtopic Weight Description Key Areas

Design hard disk
layout

2 Designing a
disk-partitioning
scheme for a
Linux system

Allocating file systems
and swap space, tailor-
ing the design to the
intended use of the
system

Install a boot
manager

2 Select, install,
and configure a
boot manager

Boot loaders; GRUB
and GRUB 2

Manage shared
libraries

1 Determine the
shared libraries
that executable
programs
depend on
and install
them when
necessary

Shared library locations
and how to load

Use Debian pack-
age management

3 Know the
Debian package
tools

Install, upgrade, and
uninstall Debian binary
packages

Use RPM and
Yum package
management

3 Know the RPM
and Yum tools

Install, upgrade, and
remove packages with
RPM and Yum

To adequately address these topics, focus on the following files, terms, and
utilities: /(root) file system, /boot/grub/menu.lst, /etc/apt/sources.
list, /etc/ld.so.conf, /etc/yum.conf, /etc/yum.repos.d/, /home
file system, /var file system, apt-cache, apt-get, aptitude, dpkg, dpkg-
reconfigure, grub-install, LD_LIBRARY_PATH, ldconfig, ldd, MBR,
mount points, partitions, rpm, rpm2cpio, superblock, swap space, yum,
yumdownloader.

Here are the top ten items to know as you study for this domain:

	 1.	 The ldd command is used to see what shared libraries a program is
dependent upon.

	 2.	 The ldconfig command is used to update and maintain the cache of
shared library data. You can see the current cache by using the com-
mand ldconfig –p.

	 3.	 Popular package managers include Red Hat’s Package Manager (RPM) and
Debian’s (dpkg). The purpose of both is to simplify working with software.

Book VIII
Chapter 2

Studying for the
Com

pTIA Linux+
Pow

ered by LPI
Certification Exam

s
GNU and Unix Commands 505

	 4.	 Options available with RPM include –i (for installing packages), -e (for
removing packages), -q (for querying what packages belong to what
files), -b (for building a package), and –p (to print/display information).

	 5.	 With dpkg, you use the dselect command to use the graphical interface.
You can also use command-line options that include –i (to install pack-
ages), -l (to list information about the package), -r (to remove the pack-
age), and –c (to list all files in the package).

	 6.	 The Advanced Packaging Tool (APT) was designed as a front end for
dpkg but now works with both .deb and .rpm packages.

	 7.	 The Yellow dog Updater, Modified is more commonly known as Yum and
can be used at the command line to download RPM packages.

	 8.	 The superblock contains information about the type of file system, the
size, status, and metadata information.

	 9.	 The GRUB bootloader (an acronym for GNU’s Grand Unified Bootloader)
allows multiple operating systems to exist on the same machine and a
user to choose which one they want to boot on startup. The latest ver-
sion is GRUB 2.

	 10.	 Linux uses both a swap partition and a swap file for swap space. The
swapon command can be used to toggle designated swap space on and
off. Areas for swap space can be created with mkswap.

GNU and Unix Commands
Table 2-4 shows the subtopics, weights, descriptions, and key knowledge areas
for this topic.

Table 2-4	 Breakout of Domain 103
Subtopic Weight Description Key Areas

Work on the
command line

4 Interact with shells
and commands
using the command
line and the bash
shell

Use single shell com-
mands and one-line
command sequences
as well as modify the
shell environment and
use/edit command
history

Process text
streams using
filters

3 Apply filters to text
streams

Send text files and
output streams through
text utility filters

Perform
basic file
management

4 Use the basic
Linux commands to
manage files and
directories

Copy, move, and
delete files and
directories individu-
ally and recursively

(continued)

GNU and Unix Commands506

Subtopic Weight Description Key Areas

Use streams,
pipes, and
redirects

4 Redirect streams
and connect
them – including
standard output,
standard input, and
standard error

Pipe the output of one
command to the input
of another

Create, monitor,
and kill
processes

4 Perform basic pro-
cess management

Run jobs in the fore-
ground and back-
ground; send signals
to processes

Modify process
execution
priorities

2 Manage process
execution priorities

Run programs with
higher and lower pri-
orities than the default

Search text
files using regu-
lar expressions

2 Understand regular
expressions and
how to use them

Create simple regular
expressions and per-
form searches

Perform basic
file editing
operations
using vi

3 Understand vi
navigation, editing,
copying, deleting,
etc.

Use basic vi modes
to insert, edit, copy,
delete, and find text.

To adequately address these topics, focus on the following files, terms, and
utilities: &, ., bash, bg, bzip2, cat, cp, cpio, cut, dd, echo, egrep, env,
exec, expand, export, fg, fgrep, file, file globbing, find, fmt, free, grep,
gunzip, gzip, head, history, jobs, join, kill, killall, ls, man, mkdir,
mv, nice, nl, nohup, od, paste, pr, ps, pwd, regex(7), renice, rm, rmdir,
sed, set, sort, split, tail, tar, tee, top, touch, tr, uname, unexpand,
uniq, unset, uptime, vi, wc, and xargs.

Here are the top ten items to know as you study for this domain:

	 1.	 When run, every command spans at least one process and processes
can be viewed with ps or top (which continues to update the display
dynamically).

	 2.	 Jobs can run in the foreground or background and be moved between the
two. Jobs running in the foreground can be suspended by pressing Ctrl+Z.

	 3.	 Files can be copied using cp or moved using mv. Files can be deleted with
rm and directories (which are created with mkdir) can be removed with
rmdir. Recursive deletion can be done with rm –r.

	 4.	 To change directories, use the cd command. When used without param-
eters, this will move you to your home directory. To see what directory
you are presently working in, use the pwd (present working directory)
command.

Table 2‑4 (continued)

Book VIII
Chapter 2

Studying for the
Com

pTIA Linux+
Pow

ered by LPI
Certification Exam

s
Devices, Linux File Systems, Filesystem Hierarchy Standard 507

	 5.	 The ls command has a plethora of options to allow you to list files.
The –a option will list all (including hidden) files.

	 6.	 The cut command can pull fields from a file and they can be combined
using either paste or join. The latter offers more features than the
former and can be used with conditions.

	 7.	 The wc command can count the number of lines, words, and characters
in a file.

	 8.	 The grep utility (and its counterparts egrep and fgrep) can be used to
find matches for strings within files.

	 9.	 The find command can be used to search the system for files/directories
that meet any number of criteria. When these entities are found, the xargs
command can be used to look deeper within them for other values (such
as in conjunction with grep).

	 10.	 It’s possible to convert data from one value to another by using a number
of utilities. The most popular would include the tr (translate) utility and
sed (the stream editor).

Devices, Linux File Systems, Filesystem
Hierarchy Standard

Table 2-5 shows the subtopics, weights, descriptions, and key knowledge areas
for this topic.

Table 2-5	 Breakout of Domain 104
Subtopic Weight Description Key Areas

Create partitions
and file-systems

2 Configure disk
partitions

Use various mkfs
commands to set-up
partitions and
create file-systems

Maintain the
integrity of
file-systems

2 Maintain a standard
file-system and the
extra data associ-
ated with journaling

File-system monitor-
ing, integrity, and
repair

Control mounting
and unmounting
of file-systems

3 Configure the
mounting of
file-systems

Manually mount
and unmount and
configure remov-
able file-systems

Manage disk
quotas

1 Manage user
quotas

Configure quotas,
edit and check
reports

(continued)

Devices, Linux File Systems, Filesystem Hierarchy Standard508

Subtopic Weight Description Key Areas

Manage file
permissions and
ownership

3 Control file access
with permissions
and ownership

Change the file-
creation mask, work
with special files

Create and
change hard and
symbolic links

2 Manage links to
a file

Use links to sup-
port system
administration

Find system files
and place files
in the correct
location

2 Filesystem
Hierarchy Standard
(FHS)

Correct location of
files and the pur-
pose of important
directories

To adequately address these topics, focus on the following files, terms, and
utilities: /etc/fstab, /etc/updated.conf, /media, chgrp, chmod, chown, debugfs,
df, du, dump32fs, e2fsck, edquota, ext2/ext3/ext4, find, fsck, ln, locate, mke2fs,
mkfs, mkswap, mount, quota, quotaon, reiserfs v3, repquota, tune2fs, type,
umask, umount, updated, vfat, whereis, which, xfs, xfs tools

Here are the top ten items to know as you study for this domain:

	 1.	 File and directory permissions can be changed with the chmod command
(which accepts numeric and symbolic values).

	 2.	 The owner of a group can be changed with the chown command whereas
the chgrp command allows changing he group associated with a file.

	 3.	 The du command can show how much of a disk is used.

	 4.	 The df command shows how much of a disk is free.

	 5.	 The main tool for troubleshooting disk issues is fsck which can check
file-system structure, including inodes.

	 6.	 To mount file-systems, use the mount command and to unmount them use
umount. To have mounting occur automatically at startup, add the entries
to /etc/fstab.

	 7.	 Quotas can restrict the amount of space users or groups can use on the
disk. Quotas are initialized with the quota command and they are toggled
on and off with quotaon and quotaoff. They can be changed with
edquota and reports can be generated with repquota.

	 8.	 When files are first created, the default permissions are equal to
666 minus any umask values. The default permissions for directories
is equal to 777 minus any umask values.

	 9.	 The mke2fs utility can be used to make the file-system.

	 10.	 Linux supports numerous file-systems including ext2, ext3, ext4, and
reiserfs.

Table 2‑5 (continued)

Book VIII
Chapter 2

Studying for the
Com

pTIA Linux+
Pow

ered by LPI
Certification Exam

s
Shells, Scripting, and Data Management 509

Shells, Scripting, and Data Management
Table 2-6 shows the subtopics, weights, descriptions, and key knowledge areas
for this topic — the first of the 102 exam.

Table 2-6	 Breakout of Domain 105
Subtopic Weight Description Key Areas

Customize and
use the shell
environment

4 Be able to modify
global and user
profiles

Set environment vari-
ables and work within
bash

Customize or
write simple
scripts

4 Customize existing
bash scripts and
write new ones

Be able to write code
that includes loops and
tests

SQL data
management

2 Query databases
and manipulate
data with SQL

Know basic SQL
commands

To adequately address these topics, focus on the following files, terms, and
utilities: /etc/profile, ~/.bash_login, ~/.bash_logout, ~/.bash_
profile, ~/.bashrc, ~/.profile, alias, delete, env, export, for,
from, function, group by, if, insert, join, lists, order by, read,
select, seq, set, test, unset, update, where, and while.

Here are the top ten items to know as you study for this domain:

	 1.	 Logic can be added to scripts by testing conditions with test or [.
Commands can execute using if-then-fi deviations or through loop-
ing (while, until, or for). You can leave a script with the exit com-
mand or leave a loop with break.

	 2.	 Variables can be given at the command line and referenced as $1, $2, and
so on, or entered into the executing file with the read command.

	 3.	 The alias command can be used to create an alias for a command to
operate by another name (for example, being able to type dir and
have ls –l performed).

	 4.	 Environmental variables can be viewed with the env command.

	 5.	 Variables can be added to the environment using the set command and
export; they are removed using unset.

	 6.	 The /etc/profile configuration file is executed whenever a user logs in.

	 7.	 For those using the bash shell, the shell first looks for .bash_profile;
if it does not file that profile, it looks for .bash_login.

	 8.	 When the bash user logs out, the shell will look for .bash_logout and
execute any commands found there.

User Interfaces and Desktops510

	 9.	 While other configuration files run only when the user logs in or out, the
.bashrc file can execute each time a shell is run.

	 10.	 Shell scripts must have executable permissions to run, or be called by a
shell (for example: sh script). The normal exit status of any script or
application is 0 and anything else signifies a non-normal exit.

User Interfaces and Desktops
Table 2-7 shows the subtopics, weights, descriptions, and key knowledge areas
for this topic.

Table 2-7	 Breakout of Domain 106
Subtopic Weight Description Key Areas

Install and
configure X11

2 Be able to install
and configure X11

Basic understand-
ing of X Window
configuration

Set up a display
manager

2 Set up and cus-
tomize a display
manager

Work with XDM
(X Display Manager),
GDM (Gnome Display
Manager), and
KDM (KDE Display
Manager)

Accessibility 1 Knowledge and
awareness of
accessibility
technologies

Assistive Technology
(ATs) and keyboard
settings

To adequately address these topics, focus on the following files, terms, and
utilities: /etc/initab, /etc/x11/xorg.conf, braille display, DISPLAY, emacspeak,
gdm configuration files, gestures, GOK, high contrast desktop themes, kdm
configuration files, large screen desktop themes, mouse keys, on-screen
reader, orca, screen magnifier, screen reader, slow/bounce/toggle keys,
sticky/repeat keys, X, xdm configuration files, xdpyinfo, xhost, xwininfo

Here are the top ten items to know as you study for this domain:

	 1.	 The emacspeak speech interface is one of the most popular speech inter-
faces available for Linux.

	 2.	 The xdpyinfo utility can be used to view information about an X server.
It can be used with the all option to see information about all the exten-
sions supported by the server.

	 3.	 Window information for X can be viewed with the xwininfo utility. Using
the -all option shows all the possible information.

Book VIII
Chapter 2

Studying for the
Com

pTIA Linux+
Pow

ered by LPI
Certification Exam

s
Administrative Tasks 511

	 4.	 The server access-control program for X is xhost. This is used to connect
to a host across the network and work within the graphical interface.

	 5.	 The X Display Manager (XDM) is the default display manager included
with the X Window System.

	 6.	 The /etc/x11/xorg.conf file is the X configuration file used for initial
setup.

	 7.	 Several assistive technology projects have been developed for both KDE
(the KDE Accessibility Project) and GNOME (the GNOME Accessibility
Projects).

	 8.	 Orca is a screen reader from the GNOME project intended to help individ-
uals who are blind or impaired. Orca will work with Firefox, Thunderbird,
OpenOffice.org/LibreOffice, and other applications.

	 9.	 The GNOME onscreen keyboard reader (GOK) is another assistive tech-
nology. It works with XML files and can dynamically create keyboards to
adapt to a user’s needs.

	 10.	 Slow keys can be configured for a keyboard preference to accept input
only if a key is held; this prevents accidental presses from counting
as input. Bounce keys can be configured to ignore fast duplicate key
presses; sticky keys can be used to simulate simultaneous key presses.

Administrative Tasks
Table 2-8 shows the subtopics, weights, descriptions, and key knowledge areas
for this topic.

Table 2-8	 Breakout of Domain 107
Subtopic Weight Description Key Areas

Manage user and
group accounts
and related system
files

5 Add, remove, sus-
pend, and change
user accounts

Work with user and
group accounts —
including those for
special purposes
and limited accounts

Automate system
administration
tasks by schedul-
ing jobs

4 Use cron and
anacron

Run jobs at regular
intervals and at spe-
cific times

Localization and
Internationalization

3 Localize a system
in a language
other than English

Understand why
LANG=C is useful in
scripts

Essential System Services512

To adequately address these topics, focus on the following files, terms, and
utilities: /etc/at.allow, /etc/at.deny, /etc/cron, /etc/cron.allow,
/etc/cron.deny, /etc/crontab, /etc/group, /etc/localtime, /etc/
passwd, /etc/shadow, /etc/skel, /etc/timezone, /usr/bin/locale,
/usr/share/zoneinfo, /var/spool/cron/*, ASCII, at, atq, atrm, chage,
crontab, date, environment variables, groupadd, groupdel, groupmod,
iconv, ISO-8859, passwd, tzconfig, tzselect, Unicode, useradd, userdel,
usermod, and UTF-8.

Here are the top ten items to know as you study for this domain:

	 1.	 Users can be added by manually editing the configuration files or by using
the useradd command (and they can be removed with userdel).

	 2.	 The groupadd utility can be used to create groups and groupdel can
be used to remove groups. Groups can be modified with groupmod and
users can change between groups with the newgrp command.

	 3.	 To schedule a job to run only once in unattended mode, you can use the
at command.

	 4.	 Scheduled jobs can be viewed with the atq command and deleted prior
to execution with atrm.

	 5.	 Restrictions can be placed on who can use the at service (atd) by creat-
ing an at.allow file and only placing valid usernames beneath it.

	 6.	 You can create an at.deny file – instead of at.allow – and place in it the
names of users who cannot use that at service (meaning that everyone
not listed in there can still use it).

	 7.	 If you need to schedule an unattended job to run at any sort of regular
interval, you can create a crontab (cron table) entry for it.

	 8.	 Crontab files are read by the cron daemon, which looks every minute to
see whether any jobs need to run.

	 9.	 Restrictions can be placed on who can use cron by creating a cron.
allow or a cron.deny file.

	 10.	 There are six fields to each entry in the cron tables: the minute the job is
to run (0 to 59), the hour the job is to run (0 to 23), the day of the month
(1 to 31), the month of the year (1 to 12), the day of the week (0 to 6), and
the path to the executable that is to run.

Essential System Services
Table 2-9 shows the subtopics, weights, descriptions, and key knowledge areas
for this topic.

Book VIII
Chapter 2

Studying for the
Com

pTIA Linux+
Pow

ered by LPI
Certification Exam

s
Essential System Services 513

Table 2-9	 Breakout of Domain 108
Subtopic Weight Description Key Areas

Maintain system
time

3 Properly maintain
the system time and
synchronize the
clock

NTP

System logging 2 Configure the
syslog daemon

Configure the
logging daemon
to send log output to
a server

Mail Transfer
Agent (MTA)
basics

3 Commonly available
MTA programs

Be able to perform
basic forward and
alias configuration
on a host

Manage printers
and printing

2 Manage print
queues and user
print jobs

Use both CUPS and
LPD

To adequately address these topics, focus on the following files, terms, and
utilities: /etc/cups, /etc/localtime, /etc/ntp.conf, /etc/timezone, /usr/share/
zoneinfo, ~/.forward, CUPS config files/tools/utils, date, exim, hwclock, klogd,
logger, lpd legacy interface (lpr, lprm, lpq), mail, mailq, newaliases, ntpd,
ntpdate, pool.ntp.org, postfix, qmail, sendmail, syslog.conf, syslogd.

Here are the top ten items to know as you study for this domain:

	 1.	 The Network Time Protocol daemon (ntpd) maintains the time on all
servers using NTP.

	 2.	 The hwclock command can be used to display the date and time of a
system’s hardware clock (also known as the real-time clock).

	 3.	 The time zone is configured in the /etc/timezone file. Local time is
likewise configured in /etc/localtime.

	 4.	 The sendmail service is a general purpose SMTP program used for
sending e-mail between servers.

	 5.	 The mailq command shows a list of messages in the mail queue and
works sendmail.

	 6.	 The newaliases command builds a database for the mail aliases file.

	 7.	 Mail can be forwarded from one e-mail address to another using
a .forward file.

Networking Fundamentals514

	 8.	 Line printers are rarely used anymore, but support for them remains. The
primary utilities associated with them were/are as follows: lpr (to submit
a print job), lpq (to see the print queue), and lprm (to remove queued
print jobs).

	 9.	 The Common Unix Printing System (CUPS) is the most common printing
interface used on Linux today. It provides support for the line-printer
daemon as well as for Server Message Block (SMB).

	 10.	 The kernel logging daemon (klogd) logs Linux kernel messages.

Networking Fundamentals
Table 2-10 shows the subtopics, weights, descriptions, and key knowledge
areas for this topic.

Table 2-10	 Breakout of Domain 109
Subtopic Weight Description Key Areas

Fundamentals of
Internet protocols

4 Demonstrate a
proper understand-
ing of TCP/IP

Know networking
fundamentals

Basic network
configuration

4 Be able to view,
change, and verify
configuration set-
tings on clients and
hosts

Manually and auto-
matically configure
network interfaces

Basic network
troubleshooting

4 Be able to trouble-
shoot networking
issues on clients
and hosts

Debug problems
associated with
the network
configuration

Configure client
side DNS

2 Be able to con-
figure DNS on a
client/host

Modify the order in
which name reso-
lution is done

To adequately address these topics, focus on the following files, terms, and util-
ities: /etc/hostname, /etc/hosts, /etc/nsswitch.conf, /etc/resolv.
conf, /etc/services, dig, ftp, host, hostname, ifconfig, ifdown,
ifup, netstat, ping, route, telnet, tracepath, and traceroute.

Here are the top ten items to know as you study for this domain:

	 1.	 IPv4 uses 32-bit addresses divided into four octets. The first octet identifies
the class of address (A, B, C). The address can be public or private.

Book VIII
Chapter 2

Studying for the
Com

pTIA Linux+
Pow

ered by LPI
Certification Exam

s
Security 515

	 2.	 The ifconfig utility can be used to see the current IP configuration of the
network cards.

	 3.	 The ping utility is an all purpose tool for testing connectivity. It will send
echo messages to a specified host to see if it can be reached. It can be
used with the loopback address (127.0.0.1) to test internal configuration.

	 4.	 Instead of using ping, one can use traceroute to see the route taken to
reach a particular host.

	 5.	 The route utility will display the routing table and allow you to config-
ure it.

	 6.	 The netstat utility will show the current status of ports — those that
open, those that are listening, and so on.

	 7.	 The name of the network host is configured in /etc/hostname and can
be viewed with the hostname command.

	 8.	 You can remotely log in to to another host with telnet, but it’s highly rec-
ommended that this utility no longer be used due to very weak security.

	 9.	 FTP servers can be used to transfer files from one host to another.

	 10.	 DNS is used for resolving names to addresses. Utilities that can be used
in conjunction with it include dig (for DNS lookup).

Security
Table 2-11 shows the subtopics, weights, descriptions, and key knowledge
areas for this topic.

Table 2-11	 Breakout of Domain 110
Subtopic Weight Description Key Areas

Perform security
administration
tasks

3 Review system con-
figuration to ensure
host security

Understand local
security policies

Setup host security 3 Know how to setup
a basic level of host
security

Understand TCP
wrappers

Securing data with
encryption

3 Key techniques that
secure data

OpenSSh and
GnuPG

To adequately address these topics, focus on the following files, terms, and
utilities: /etc/hosts.allow, /etc/hosts.deny, /etc/inetd.conf,
/etc/inetd.d/*, /etc/init.d/*, /etc/inittab, /etc/nologin,
/etc/passwd, /etc/shadow, /etc/ssh/ssh_host_dsa_key, /etc/

Security516

ssh/ssh_host_rsa_key, /etc/ssh_known_hosts, /etc/sudoers,
/etc/xinetd.conf, /etc/xinetd.d/*, ~/.gnupg/*, ~/.ssh/
authorized_keys, ~/.ssh/id_dsa, ~/.ssh/id_rsa, chage, find, gpg,
id_dsa.pub, id_rsa.pub, lsof, netstat, nmap, passwd, ssh, ssh_
host_dsa_key.pub, ssh_host_rsa_key.pub, ssh-add, ssh-agent,
ssh-keygen, su, sudo, ulimit, and usermod.

Here are the top ten items to know as you study for this domain:

	 1.	 Adding 1000 to standard permissions turns on the “sticky bit”, whereas
2000 turns on the SGID permission and 4000 turns on the SUID permission.

	 2.	 Links are created with the ln command. A hard link is nothing more than
an alias to a file (sharing the same inode). A symbolic link is created with
ln –s and is an actual file with its own inode. The symbolic link contains
a pointer to the original file and can span across file systems (while the
hard link cannot).

	 3.	 Passwords are changed with the passwd command. While older systems
stored passwords in /etc/passwd, they are now in /etc/shadow where
they are more secure.

	 4.	 To see who logged on most recently and may currently still be logged on,
you can use the last command.

	 5.	 The su command allows you to become another user (returning with
exit). If no other username is specified, then the root user is implied,
hence su for superuser.

	 6.	 To run a command as another user (usually root) rather than become
them, sudo should be used instead of su.

	 7.	 The who command shows who is logged on; the w command shows infor-
mation combining who with uptime.

	 8.	 You can limit which hosts can remotely connect by using either a hosts.
allow file (only those hosts specifically listed can connect) or a hosts.
deny file (only those hosts specifically listed cannot connect).

	 9.	 The ulimit utility can show the limit on the number of open files allowed
in Linux. You can also change that value by using this same command.

	 10.	 The usermod command changes attributes for a user and modifies the
user account.

Chapter 3: Other Linux
Certifications

In This Chapter
✓	Overview of vendor-neutral certifications

✓	Overview of vendor-specific certifications

P
revious chapters look at the Linux Essentials exam – LPI’s lower-level
certification – and then at the the higher entry-level CompTIA Linux+

certification (consisting of the LPI LX0-101 and LX0-102 exams). As important
as those exams are, they are far from the only Linux certifications available.

In the following sections, we will look first at other vendor-neutral certifica-
tions, and then an overview of some of the more popular vendor-specific
Linux certification.

Vendor-Neutral Certifications
Just as the CompTIA Linux+ Powered by LPI certification is a great entry-
level authentication of basic knowledge, so too are most other certifications
from CompTIA. The only operating system-specific one they have is Linux+,
but they also offer such other certifications as A+ (hardware), Network+
(computer networking), Security+ (host and client security), and Green IT
(sustainability). All are well recognized and represented in the market and
good choices for adding to a resume.

LPI also offers a number of certifications above the LPIC-1 level. LPIC-2, which
requires passing another two exams (referenced as 201 and 202), focuses on
such advanced topics as network configuration, file storage, troubleshooting,
and system security. LPIC-3 is for senior-level administrators and requires
you to take one exam of your choice — on top of having attained the LPIC-2
certification. The exam you choose to take is the one that hones in on a spe-
cific area of expertise, such as virtualization and high availability or security.

Some other vendor-neutral Linux certifications once existed and were popular,
but most of those have now fallen by the wayside – either no longer offered or
no longer kept current. Although those certifications may hold value for those
who currently hold them, they should be avoided by those who are currently
looking to have a third-party authenticate their knowledge/skills.

Vendor-Specific Certifications518

Vendor-Specific Certifications
A number of vendors offer certifications that authenticate specialization in
their specific distributions of Linux. The three most popular are discussed in
this section.

One of the most recognized is those from Red Hat. At the entry level, the
company offers the Red Hat Certified System Administrator (RHCSA) certifi-
cation. The more recognized Red Hat Certified Engineer (RHCE) builds upon
RHCSA, and the pinnacle certification is Red Hat Certified Architect (RHCA).

Novell/SUSE certification is available at four levels: SUSE Certified Linux
Administrator (CLA), SUSE Certified Linux Desktop Administrator, SUSE
Certified Linux Professional (CLP), and SUSE Certified Linux Engineer (CLE).
Most of these certifications build on each other — CLA leads to CLP with
another exam, and then you move on to CLE, and so on.

Oracle — now having acquired Sun Microsystems — offers both Oracle
Certified Associate (OCA) and Oracle Certified Professional (OCP), and
Certified Specialist (CS) certifications.

Index

Symbols and
Numerics

- command, 144
; command, 144
: command, 452
:! command, 149
! command, 238
? command, 238
. command, 144, 452
' command, 144
{ command, 452
% command, 144
^ command, 144
+ command, 144
= command, 144
$ command, 144
/ directory, 111
$< variable, 475
$? variable, 475
$* variable, 475
$% variable, 475
$^ variable, 475
$+ variable, 475
* (asterisks), 95–96, 305, 494
@ (at sign), 116
\ (backslash), 91, 272
: (colon), 91, 142, 272,

343, 399
{} (curly braces), 249, 264,

448–449
$ (dollar sign), 289, 474
.. (dot-dot), 115, 494
= (equal sign), 348
! (exclamation point),

97, 273
/ (forward slash), 109, 111
> (greater-than sign), 93–94
(hash mark), 249, 380, 449
- (hyphen), 117, 470
< (less-than sign), 93–94
. (period), 111, 119–120,

144, 494

| (pipe), 92, 105, 496
(pound sign), 189, 208,

264, 271, 438
? (question marks), 95–96,

208, 494
; (semicolon), 380, 451, 496
/ (slash), 116, 143, 147,

352–353
[] (square brackets), 95–96
~ (tilde) character, 115, 146
-00 option, 471
10Base2, 173
10Base5, 173
10BaseT, 173
24-bit IV, 182
32-bit cyclic redundancy

code (CRC-32), 182
127.0.0.1, reverse

mapping, 295
802.11a standard, 180
802.11b standard, 179–180
802.11g standard, 180

A
a command, 145, 148
A command, 148
A resource record type,

290, 292
AAAA resource record

type, 290
Abacus portsentry, 441
accessing DOS/Windows file

system, 368–371
acpid service, 254
acpi=off boot option, 44
action field, 311
Active Window icon

(KDE), 85
ad hoc modes, 180–181
adding newsgroups,

276–277
administrative tasks, in

CompTIA Linux+
Exam, 511–512

ADSL (Asymmetric DSL), 157
Advanced Packaging Tool

(APT), 50
AirSnort, 441
alias command, 98, 452, 509
allowcddma boot

option, 44
allownewnews

parameter, 272
all_squash option, 375
alt category, 219
anongid=GID option, 376
anonuid=UID option, 376
-ansi option, 470
apache service, 254, 438
Apache Web Server

vulnerability, 433
apic boot option, 44
apmd service, 254
append command, 238
applets, 121
application gateway, 392
Application layer, of TCP/

IP, 168
Application Starter, 82–85
application-proxy gateway

firewall, 420
applications

about, 19–21, 127–128
calculators, 132–133
calendars, 132
graphics and imaging

about, 136
GIMP, 18, 20, 136–137
GNOME Ghostview,

18, 138
multimedia

about, 133
burning CDs/DVDs,

135–136
digital camera, 133–134
playing audio CDs,

134–135
playing sound files, 135

office, 128–132

Index

Linux All-in-One For Dummies, 5th Edition520

Applications category
(KickOff), 83

Applixware, 20
apropos command, 98
APT (Advanced Packaging

Tool), 50
apt-get command,

11, 50, 128
AR variable, 475
ARFLAGS variable, 475
arguments, 61, 91
Arkeia utility, 363
ARPANET, 169, 279
AS variable, 290, 475
ascii command, 238
ASCII-armored format, 409
ASFLAGS variable, 475
associates, 244
asterisks (*), 95–96,

305, 494
Asymmetric DSL

(ADSL), 157
async option, 375
at command, 331–333, 512
at sign (@), 116
atd service, 254, 331
atq command, 512
atrm command, 333, 512
audio CDs, playing, 134–135
audit, 429
authentication

defined, 392
in security policy, 387
vulnerability, 433

authorization, in security
policy, 387

autoconf software
package, 17

autofs service, 254
automake software

package, 17
automated backups, 367
automatic command

completion, 95
automatically starting

servers, 313–314
awk command, 459–463

B
b command, 149
-b option, 477
backdoor, 392
backing up

files
about, 361
commercial backup

utilities, 362–363
selecting backup

strategy and media,
361–362

tar command, 363–367
hard drive before

installation, 33
backslash (\), 91, 272
bash shell. See also shell

scripting
about, 17, 90, 509
asterisks in, 95–96
automatic command

completion, 95
combining commands, 92
command syntax, 90–92
controlling command

input and output, 92–94
question marks in, 95–96
repeating previously

typed commands, 97
starting, 60–61

bastion host, 392
batch files, 106
bc software package, 17
Berkeley Internet Name

Domain (BIND)
about, 282
DNS vulnerability, 433
named daemon, 254,

282–283, 296
resolver library, 280, 283
utility programs, 284–285

Berkeley sockets
interface, 242

bg command, 100, 453
/bin directory, 111, 354
binary command, 238

BIND. See Berkeley Internet
Name Domain (BIND)

Binutils software
package, 17

bionet category, 219
BIOS, reconfiguring, 36
bison, 486
bit bucket, 94
bit category, 219
biz category, 220
black box, 440
block devices, 326
BogoMIPS, 58, 59
Bookmarks menu

(Firefox), 212
/boot directory, 111, 354
boot loader, 57–58
boot messages, 58
boot: prompt, 44
bootable flash drive,

creating, 35
/boot/grub file, 314
/boot/grub/menu.lst

file, 314, 435
BOOTPROTO parameter,

186, 200
boots

automatically starting
servers, 313–314

/etc/inittab file,
310–311

init command, 311–312
init process, 308–310
manually starting/

stopping servers, 313
startup scripts, 312–313

/boot/System.map
file, 314

/boot/vmlinuz file, 314
bottom panel (GNOME),

73–74
bounce keys, 511
break command, 453,

480, 509
BRU utility, 362
bt command, 480
buffer, 145

Index 521

buffer overflow, 392
built-in commands, bash,

451–455
burning CDs/DVDs,

135–136
business requirements, for

security, 385–386
bye command, 238

C
c command, 145
C command, 148
C++ compiler, 17, 468–472
C operator, 265
-c option, 470
-C option, 477
CA (certificate

authority), 392
CA ARCserve Backup for

Linux utility, 363
cable modem

about, 155
connecting with

about, 161
how it works, 161–163
setup, 163–166

Cable Modem Termination
System (CMTS),
162–163

cable/DSL router,
161, 165

cables, Ethernet, 173–175
caching name server

configuring, 286–296
starting and testing,

295–296
cal command, 101
Calc (LibreOffice.org),

130–131
calculator apps, 132–133
calendar apps, 132
careers, on Linux Essentials

Certification Exam,
492–493

Carrier-Sense Multiple
Access/Collision
detection (CSMA/
CD), 172

case statement, 450–451
cat command, 92, 95, 99
categories

of shielded and
unshielded twisted-pair
cables, 173–174

tasks by in YaST Control
Center, 305

cc command, 148
CC variable, 475
cd command, 98, 115, 238,

453, 495, 506
cd images command, 121
cdrdao, 136
cdrecord, 136
CD-ROM, mounting, 357
CDs

audio, playing, 134–135
burning, 135–136
installing from, 29–31
mounting, 25

central processing unit
(CPU), 9

CERT Coordination
Center (CERT/CC)
(website), 397

CERT resource record
type, 291

certificate, defined, 392
certificate authority (CA), 392
certifications

vendor-neutral, 517
vendor-specific, 518

CFLAGS variable, 475
chage command, 396,

400–401
chain, 424
changing

directories, 495
file ownerships, 118–119,

350, 402

file permissions,
118–119, 403

home page in Firefox,
212–215

CHANNEL parameter, 186
character devices, 327
characters, substituting/

deleting from files,
105–106

check digit, 459
checking

connectivity to host, 195
disk performance/disk

usage, 321–322
IP routing table, 194
network interfaces,

193–194
network status, 195–197
PC hardware, 31–33
for set user ID

permission, 405
Cheops, 441
chgrp command,

402, 508
chkconfig command,

251–252, 314, 438
chmod command, 98,

118–119, 238, 499, 508
chown command, 98,

402, 508
chsh command, 100
Cinnamon, 69–70, 75–76
clari category, 220
clear command, 480
client architecture, 241
client/server model,

sockets and, 243–244
close command, 238
CMTS (Cable Modem

Termination System),
162–163

CNAME resource record
type, 291

CO variable, 475
coaxial cable, 162

Linux All-in-One For Dummies, 5th Edition522

CodeWeavers CrossOver
Office, 21

COFLAGS variable, 475
Collier-Brown, David

(author)
Using Samba, 3rd

Edition, 380
colon (:), 91, 142, 272,

343, 399
colon command mode, 146
combining shell

commands, 92
!command, 144
command command, 453
COMMAND heading, 319
command history, 97
command input/output,

controlling, 92–94
command interpreter, 60
command line, 61, 91,

493–496, 495–496
command mode, 142
COMMAND.COM, 90
command-line

FTP client, 236–240
options, 91

commands
- command, 144
; command, 144
: command, 452
:! command, 149
! command, 238
? command, 238
. command, 144, 452
‘ command, 144
{ command, 452
% command, 144
^ command, 144
+ command, 144
= command, 144
$ command, 144
a, 145, 148
A, 148
at, 331–333, 512
alias, 98, 452, 509

append, 238
apropos, 98
apt-get, 11, 50, 128
ascii, 238
atq, 512
atrm, 333, 512
awk, 459–463
b, 149
bash built-in, 451–455
bg, 100, 453
binary, 238
break, 453, 480, 509
bt, 480
bye, 238
c, 145
C, 148
cal, 101
cat, 92, 95, 99
cc, 148
cd, 98, 115, 238, 453,

495, 506
cd images, 121
chage, 396, 400–401
chgrp, 402, 508
chkconfig, 251–252,

314, 438
chmod, 98, 118–119, 238,

499, 508
chown, 98, 402, 508
chsh, 100
clear, 480
close, 238
!command, 144
command command, 453
compress, 100
continue, 453, 480
cp, 98, 119–120,

369–370, 506
cpio, 17, 100
crontab, 333–336,

367, 512
Ctrl+D, 149
Ctrl+L, 149
Ctrl+U, 149

cut, 99, 496, 507
d, 143, 145
D, 148, 268
date, 101, 103–104
dd, 44, 99, 148
declare, 453
delete, 239
depmod, 328
df, 101, 123–125, 508
dG, 148
diff, 17, 99
dir, 239
for directory navigation,

114–115
dirs, 453
disconnect, 239
display, 480
dselect, 505
du, 101, 123–125, 365, 508
dw, 148
echo, 453
enable, 453
env, 348, 509
eval, 453
exec, 453
exit, 453
expand, 99
export, 453, 509
expr, 450
failsafe Knoppix boot

command, 40
fb1280x1024 Knoppix

boot command, 40
fc, 453
fdformat, 101
fdisk, 101
fg, 100, 453
file, 99, 480
find, 99, 121–122, 396,

496, 507
fold, 99
free, 100
fsck, 101, 508
gcc, 18, 468–469, 469–470

Index 523

get, 239
gpg, 390, 408–412
grep, 18, 51, 62, 91, 92,

96, 99
groups, 100
gunzip, 100
gzip, 18, 100, 496
h, 149
halt, 100
hash, 239, 454
help, 239, 452, 454, 480
history, 97, 454
hwclock, 513
i, 143, 145, 148
I, 148
id, 101, 311
ifconfig, 193,

498, 515
image, 239
info, 98, 495
info break, 480
info files, 480
info func, 480
info local, 480
info prog, 480
info var, 480
init, 102, 311–312, 503
insmod, 328
iptables, 164, 421–422,

424–426
j, 149
J, 148
jobs, 454
join, 496, 507
k, 149
kill, 100, 454, 481
knoppix 1, 41
knoppix 2, 41
knoppix acpi=off, 41
knoppix atapicd, 41
knoppix

desktop=wmname, 41
knoppix dma, 41
knoppix

floppyconfig, 41
knoppix fromhd=/dev/

hdal, 41

knoppix hsync=80, 41
knoppix lang=xx, 41
knoppix mem=256M, 41
knoppix myconf=/dev/

hdal, 41
knoppix myconf=

scan, 41
knoppix noeject, 42
knoppix noprompt, 42
knoppix nowheel, 42
knoppix noxxx, 42
knoppix pci=bios, 42
knoppix pnpbios=

off, 42
knoppix screen=

resolution, 42
knoppix testcd, 42
knoppix tohd=/dev/

hdal, 42
knoppix toram, 42
knoppix vga=ext, 42
knoppix vsync=60, 42
knoppix

wheelmouse, 42
knoppix

xmodule=modname, 43
knoppix xserver=

progname, 43
ksyms, 328
l, 149
last, 499, 516
lcd, 239
ldconfig, 504
ldd, 100, 504
less, 19, 99
Linux

about, 62–63, 98–101
date, 103–104
managing processes,

102–103
processing files,

104–106
time, 103–104

list, 481
ln, 98, 499, 516
local, 454
locate, 99, 122

logger, 498, 503
logout, 454
logrotate, 498, 503
lpq, 514
lpr, 99, 514
lprm, 514
ls, 98, 116–118, 119, 239,

350, 402, 495, 507
lsmod, 328, 329, 503
mail, 258
mailq, 513
make, 19, 476–478, 481
make config, 503
man, 98, 495
managing user accounts

with, 342–343
mdelete, 239
mdir, 239
mget, 239
mkdir, 98, 120–121, 239
mkfs, 101
mknod, 101
mkswap, 101
mls, 239
modinfo, 328, 503
modprobe, 328, 329,

330, 503
more, 63, 99
mount, 101, 356, 357, 358,

368–369, 508
mput, 239
mv, 98, 495, 506
-n, 144
n, 145
^n, 145
+n, 144
netstat, 195, 397,

498, 515
newaliases, 513
newgrp, 499, 512
next, 481
nice, 100
nl, 99
open, 240
p, 149
P, 149, 265
pack, 496

Linux All-in-One For Dummies, 5th Edition524

commands (continued)
passwd, 101, 397, 516
paste, 99, 496, 507
patch, 19, 99
ping, 195, 441, 498, 515
popd, 454
print, 481
printenv, 100, 347
prompt, 240
ps, 63, 100, 496, 506
pstree, 100
pushd, 454
put, 240
pwd, 98, 115, 240, 454, 506
q, 144, 145
:q, 149
Q, 145
:q!, 149
quit, 240, 481
quota, 508
r file, 145
:r filename, 149
read, 454, 509
readonly, 454
reboot, 100
recv, 240
rename, 240
repeating previously

typed, 97
return, 454
rm, 98, 120, 495, 506
rmdir, 98, 240, 506
rmmod, 328, 503
run, 481
runlevel, 310, 311
rx, 148
/sbin/ifconfig, 193
/sbin/route, 194
sed, 19, 99, 457–463, 507
send, 240
server, 250–251
set, 454, 509
set variable, 481
shell, 61–62, 92
shell, 481

shift, 454
shutdown, 100, 503
size, 240
s/old/new/, 145
sort, 99, 105
split, 99, 106
status, 240
step, 481
/string, 149
?string, 149
su, 101, 102, 306, 397,

499, 516
swapoff, 101
swapon, 101
sync, 101, 375
tac, 99
tail, 99
tar, 19, 100, 363–367, 496
tcpdump, 197, 441
telinit, 312
test, 449–450, 509
testparm, 378, 379
/text/, 144
?text?, 144
time, 19, 103–104
times, 454
top, 100, 496, 506
touch, 98
tr, 99, 105–106, 507
trap, 454
tty, 101
type, 455
u, 145, 149
U, 149
ulimit, 397, 455, 516
umask, 403–405, 455
umount, 101, 356–357
unalias, 98, 455
uname, 62, 100
uncompress, 100
uniq, 99
unset, 455, 509
update-rc.d,

252–253, 314
uptime, 319–320, 516

user, 240
useradd, 499, 512
userdel, 499
w, 149, 499
w file, 145
W file, 145
:w filename, 149
wait, 455
watch, 481
wc, 100, 104–105, 496, 507
whatis, 98, 495
where, 481
whereis, 99
which, 99
who, 499, 516
:wq, 149
x, 148, 481
xargs, 496
yy, 149
zcat, 100
zless, 100
zmore, 100

commercial backup
utilities, 362–363

Common Unix Printing
System (CUPS), 514

Common Vulnerabilities
and Exposures (CVE)
(website), 432

community, on Linux
Essentials Certification
Exam, 492–493

comp category, 220
compress command, 100
CompTIA Linux+ exams

about, 501–502
administrative tasks,

511–512
devices, Linux file

systems, file system
hierarchy standard,
507–508

essential system services,
512–514

GNU and Unix commands,
505–507

Index 525

Linux installation and
package management,
503–505

networking, 514–515
security, 515–516
shells, scripting, and data

management, 509–510
system architecture,

502–503
user interfaces and

desktops, 510–511
Computer category

(KickOff), 83
computer program, 465
computer security, 391–397
computer security audit

about, 429–430
defined, 429
implementing

methodology for
about, 431–432
common vulnerabilities,

432–434
host-security review,

434–437
network security review,

438–439
nontechnical aspects

of, 430
security testing tools,

440–442
technical aspects of, 431
vulnerability testing

types, 440
concatenate, 118
conditional

expressions, 463
confidentiality, 392
configuration files, 314–317
configuration lists, 276
configuring. See

also installing;
troubleshooting

caching name server,
286–296

INN server, 269–275
Internet super server, 414

KDE bottom panel, 85–86
KDE desktop, 86–88
networks at boot time,

199–201
primary name server,

296–298
resolver, 285–286
Samba, 379–380
TCP wrapper security,

414–415
wireless access point, 184
wireless networking,

185–188
connecting LAN to Internet,

177–178
connectionless

protocols, 243
connection-oriented

protocols, 242–243
console, 89
context menus (KDE)

desktop, 80–81
icons, 81–82

continue command,
453, 480

controls statement, 288
copying files, 495
Coreutils software

package, 17
counting words/lines in

text files, 104–105
cp command, 98, 119–120,

369–370, 506
cpio command, 17, 100
CPP variable, 475
CPPFLAGS variable, 475
CPU (central processing

unit), 9
cpu field name, 321
%CPU heading, 319
cracker, 392
creating

bootable flash drive, 35
key pair, 408–409
working configuration

file, 39
cron daemon, 254, 333–336

crontab command,
333–336, 367, 512

CrossOver Office, 21
CSMA/CD (Carrier-Sense

Multiple Access/
Collision
detection), 172

ctlinnd, 270
Ctrl+D command, 149
Ctrl+L command, 149
Ctrl+U command, 149
CUPS (Common Unix

Printing System), 514
curly braces ({}), 249, 264,

448–449
current directory, 114–115
cut command, 99, 496, 507
CVE (Common

Vulnerabilities and
Exposures)
(website), 432

CVS (Subversion,
Concurrent Versions
System), 23, 433

CXX variable, 475
CXXFLAGS variable, 475
CyberCop Scanner, 441

D
d command, 143, 145
D command, 148, 268
-d option, 477
daemon, 270
data management, in

CompTIA Linux+ Exam,
509–510

data protection, in security
policy, 387

databases, vulnerability
of, 434

datagrams, 243
date, working with, 103–104
date command, 101,

103–104
dd command, 44, 99, 148

Linux All-in-One For Dummies, 5th Edition526

DDoS (Distributed Denial of
Service), 383, 393

Debian
about, 11
BIND, 282
configuring networks, 199
distributions, 38
init process, 310
installing

INN server, 268
Samba, 379
software in, 50–52
software-development

tools, 467
mounting CD-ROM, 357
runlevel command, 310
starting
innd, 275
NFS server, 359, 376
Samba, 380
standalone servers

in, 251
stopping standalone

servers in, 251
turning off standalone

servers, 413
update-rc.d command,

252–253, 314
updates, 398

debug parameter, 330
declare command, 453
decrypting

defined, 392
documents, 411–412

delay loop, 59
delete command, 239
deleting characters from

files, 105–106
Denial of Service (DoS),

383, 386, 393
depmod command, 328
derived work, 485
DES, 345
desktop, GNOME, 70–71
desktop context menus

(KDE), 80–81

Desktop Pager icon (KDE), 85
detection concept, in

security programs, 389,
432, 434, 438

/dev directory, 111, 326, 354
device drivers, 325
device files, 325, 326–327
DEVICE parameter, 186
devices

in CompTIA Linux+ Exam,
507–508

Linux
about, 325–326
device files, 326–327
persistent device naming

with udev, 327–328
mounting on file system,

355–357
peripheral, 25–26

/dev/null file, 94
df command, 101,

123–125, 508
dG command, 148
DHCP (Dynamic Host

Configuration
Protocol), 170, 245

dial-up, compared with DSL
and cable, 155

diff command, 17, 99
dig utility program,

284–285
digiKam app, 133–134
digital camera apps, 133–134
digital signatures, 393,

407–408
Digital Subscriber Line. See

DSL (Digital Subscriber
Line)

dir command, 239
directories

about, 351–352
changing, 495
commands for listings and

permissions, 116–118
commands for working

with, 120–121

defined, 109
navigating with

commands, 114–115
in /proc, 324–325
protecting

about, 402
changing file

ownerships, 402
changing file

permissions, 403
checking for set user ID

permission, 405
setting default

permission, 403–405
viewing ownerships and

permissions, 402
standard in Linux file

system, 354
top-level, 111–112

directory path, 208
dirs command, 453
disclosure of information to

public, 386
disconnect

command, 239
disk partition, 29
disk-space usage,

commands for, 123–125
display command, 480
DISPLAY environment

variable, 349
display=IP_address:0

boot option, 44
distributed database, 279
Distributed Denial of

Service (DDoS),
383, 393

distributed
responsibility, 280

distribution list, 273
distribution media, 25
Distribution Specific icon, 4
distributions

about, 16
contents of, 16–24
GNU software, 16–19

Index 527

GUIs and applications,
19–21

Internet servers, 21–22
Linux, 10–14
networks, 21
online documentation,

22–23
software development, 22

distribution-specific
version numbers, 15

DistroWatch (website), 11
DIX standard, 173
-DMACRO option, 470
-DMACRO=DEFN option, 471
DMZ, 393
DNAME resource record

type, 291
dnl (delete through

newline) macro,
260–261

DNS. See Domain Name
System (DNS)

DOCSIS, 163
documents, decrypting and

encrypting, 411–412
dollar sign ($), 289, 474
domain name, 208
domain name system (DNS)

about, 171, 279–280
Berkeley Internet Name

Domain (BIND)
about, 282
named daemon, 282–283
resolver library, 283
utility programs,

284–285
configuring

caching name server,
286–296

primary name server,
296–298

resolver, 285–286
hierarchical domain

names, 281–282
domain parameter, 272
domains, on Linux+

Exams, 502

DoS (Denial of Service),
383, 386, 393

DOS file system, accessing,
368–371

DOS floppy disks,
mounting, 369–370

DOS/Windows disk
partition, mounting,
368–369

dot-dot (..), 115, 494
dotted-decimal

notation, 169
dotted-quad notation, 169
downstream data, 161
driverdisk boot

option, 44
dselect command, 505
DSL (Digital Subscriber

Line)
about, 154
connecting with

about, 156
ADSL, IDSL, SDSL,

157–158
how it works, 156–157

modem, 156
setup, 158–161

DSL/cable modem NAT
router, 177

dsniff, 441
du command, 101, 123–125,

365, 508
dual-homed host, 393
Dummies (website), 5
dumps, 197
DVD drive, checking for

installation, 31
DVDs

burning, 135–136
installing from, 29–31
mounting, 25

dw command, 148
Dynamic Host

Configuration Protocol
(DHCP), 170

dynamically linked, shared
libraries, 23

E
-e option, 477
-E option, 471
echo command, 453
Eckstein, Robert (author)

Using Samba, 3rd
Edition, 380

ed, 18, 141–145
Edit menu (Firefox), 212
802.11a standard, 180
802.11b standard, 179–180
802.11g standard, 180
electronic mail (e-mail),

21–22
emacs software package,

18, 467
e-mail, 153
enable command, 453
enabling packet filtering,

421–426
encrypting

defined, 393
documents, 411–412
files with GnuPG, 406–412

enforcing=0 boot
option, 44

Enter, 145
env command, 348, 509
environment variable, 348
Epiphany, 209
equal sign (=), 348
error messages, saving in

files, 94
Esc, 149
essential system services,

in CompTIA Linux+
Exam, 512–514

ESSID parameter, 186
establishing security

policies, 387–388
/etc directory, 111, 354
/etc/apache2/httpd.

conf file, 315
/etc/apt/sources.list

file, 315

Linux All-in-One For Dummies, 5th Edition528

/etc/at.allow file, 315
/etc.bashrc file, 315
/etc/cron.allow file, 435
/etc/cron.deny file, 435
/etc/crontab file, 435
/etc/cups/cupsd.conf

file, 315
/etc/exports file,

375–376
/etc/fonts file, 315
/etc/fstab file, 315,

357–358
/etc/group file, 315
/etc/grub.conf file, 315
/etc/host.conf file,

190, 191
/etc/hosts file,

189–190, 315
/etc/hosts.allow file,

190, 192, 315, 435
/etc/hosts.deny file,

190, 192–193, 315, 435
/etc/httpd/conf/

httpd.conf file, 315
/etc/init.d file, 315
/etc/init.d/rcs file, 316
/etc/inittab file,

310–311, 315
/etc/issue file, 316
/etc/lilo.conf file, 316
/etc/login.defs file, 316
/etc/logrotate.conf

file, 435
/etc/mail directory, 267
/etc/modprobe.conf file,

95, 316, 329–330
/etc/modules.conf

file, 316
/etc/mtab file, 316
/etc/named.conf file,

287–289
/etc/networks file, 190
/etc/nologin file, 427
/etc/nsswitch.conf file,

190, 193

/etc/pam.d file, 435
/etc/passwd file, 316,

343–344, 399–400, 435
/etc/profile file, 316, 509
/etc/profile.d file, 316
/etc.rc.d file, 436
/etc/resolv.conf file,

190, 191
/etc/samba/smb.conf,

377, 379
/etc/samba/

smbusers, 377
/etc/securetty file, 436
/etc/security file, 436
/etc/shadow file, 316,

400–401, 427, 436
/etc/shells file, 316
/etc/shutdown.allow

file, 436
/etc/skel file, 316
/etc/ssh file, 436
/etc/ssh/

ssh_config, 416
/etc/ssh/

sshd_config, 416
/etc/sysconfig file,

316, 436
/etc/sysctl.conf file,

316, 436
/etc/syslog.conf

file, 436
/etc/termcap file, 316
/etc/udev file, 317
/etc/udev/udev.conf

file, 436
/etc/vsftpd file, 436
/etc/vsftpd.ftpusers

file, 436
/etc/X11 file, 317
/etc/X11/xorg.conf

file, 317
/etc/xinetd.conf file,

317, 436
/etc/xinetd.d file, 436
/etc/yum.conf file, 317

Ethereal, 441
Ethernet

about, 157, 172
cables, 173–175
how it works, 172–173

Ethernet hub, 174
Ethernet LAN, setting up,

172–175
about, 172
cables, 173–175
how it works, 172–173

/etrc/hosts.allow
file, 427

/etrc/hosts.deny
file, 427

/etrc/inetd.conf file, 427
/etrc/init.d/* file, 427
/etrc/inittab file, 427
/etrc/passwd file, 427
/etrc/xinetd/conf

file, 427
/etrc/xinetd.d/*

file, 427
eval command, 453
Excel (Microsoft), 130–131
exchanging keys, 409–410
exclamation point (!), 97, 273
exec command, 453
exit command, 453
expand command, 99
expert boot option, 40, 45
expire, 270
exploit tools, 393
export command, 453, 509
exporting file systems with

NFS, 360, 374–376
expr command, 450
expressions, 466

F
F operator, 265
-f option, 477
failsafe Knoppix boot

command, 40

Index 529

-fallow-single-
precision option, 471

FAT (file allocation
table), 36

Favorites category
(KickOff), 83

fb1280x1024 Knoppix
boot command, 40

fc command, 453
FC variable, 475
fdformat command, 101
fdisk command, 101
fdiv (floating point

division), 324
FEATURE macro, 263
Fedora

about, 12
BIND, 282
chkconfig command,

251–252, 314
configuring

networks, 199
Samba, 379

distributions, 38
/etc/fstab file, 358
init process, 310
installing

Samba, 379
software in, 52–54
software-development

tools, 467
reading RSS feeds, 230
security level

configuration tool, 422
starting
innd, 275
NFS server, 359, 376
Samba, 380

turning off standalone
servers, 414

updates, 398
Fedora Core (website), 12
FFLAGS variable, 475
fg command, 100, 453
FHS (Filesystem Hierarchy

Standard), 353

file allocation table
(FAT), 36

file command, 99, 480
File menu (Firefox), 212
file sharing

about, 26
with NFS

about, 358–359, 373–374
exporting file systems,

360, 374–376
mounting NFS file

systems, 360–361,
376–377

file systems
about, 26, 109–114
for checking disk-space

usage, 123–125
managing

about, 351–352, 361
accessing DOS or

Windows file system,
368–371

backing up, 361–367
/etc/fstab file, 357–358
hierarchy, 352–355
mounting devices,

355–357
sharing with NFS,

358–361
for mounting and

unmounting, 122–123
navigating with Linux

commands
about, 114
for changing

permissions and
ownerships, 118–119

for directory listings and
permissions, 116–118

for directory navigation,
114–115

for finding files, 121–122
for working with

directories, 120–121
for working with files,

119–120

File Transfer Protocol
(FTP)

about, 170, 231
command-line client,

236–240
graphical clients

about, 231–232
FileZilla, 234–236
gFTP, 231, 232–233

port numbers and, 245
file transfer utilities, 21–22
filenames

about, 208
in Linux, 110

files. See also specific files
backing up

about, 361
commercial backup

utilities, 362–363
selecting backup

strategy and media,
361–362

tar command, 363–367
batch, 106
changing

permissions, 118–119, 403
user/group ownership

of, 350, 402
commands

for filing, 121–122
for working with,

119–120
copying, 495
deleting characters from,

105–106
encrypting with GnuPG,

406–412
getting command input

from, 93
getting command output

from, 93–94
hiding, 494
listings, 495
moving, 495
permissions, security

and, 435–437

Linux All-in-One For Dummies, 5th Edition530

in /proc, 324–325
processing, 104–106
protecting, 402–405
saving error messages

in, 94
signing with GnuPG,

406–412
slitting into smaller

files, 106
substituting characters

from, 105–106
Filesystem Hierarchy

Standard (FHS), 353
FileZilla, 234–236
find command, 99, 121–122,

396, 496, 507
finding bugs in gbd,

482–483
Findutils software

package, 18
finger software

package, 18
fingerprint, 401, 407
Firefox

changing home page,
212–215

user interface, 210–212
web surfing in, 215–216

Firewalk, 441
firewall

about, 384
defined, 27, 393
setting up

about, 418–421
enabling packet filtering,

421–426
NAT, 421

fixing bugs in gbd, 483–484
flash drive

creating bootable, 35
installing on a, 34–35

floating-point division, 324
flow, controlling in shell

scripting, 449–451

flow-control statements, 466
FOCUS-LINUX mailing

list, 398
fold command, 99
for loop, 450
forgotten root password,

307–308
FORWARD chain, 424–426
.forward file, 267–268
forward slash (/), 109, 111
-fpcc-struct-return

option, 471
-fPIC option, 471
FQDN (fully qualified domain

name), 281–282
framework, security

about, 384–385
business requirements,

385–386
managing, 389
mitigation, 388–389
policy, 387–388
risk analysis, 386–387

free command, 100
Free Software Foundation

(FSF), 16
-freg-struct-return

option, 471
fsck command, 101, 508
FSF (Free Software

Foundation), 16
FTP. See File Transfer

Protocol (FTP)
full packet awareness, 420
fully qualified domain name

(FQDN), 281–282
functions

defined, 467
shell, 448–449

G
-g option, 471
Games subcategory

(KickOff), 84
gawk software package, 18

gcc command, 18, 468–469,
469–470

gdb software package, 18,
478–484

gdbm software package, 18
GECOS, /etc/passwd

file, 343
General Public License

(GPL), 16
Gentoo Linux, 12
get command, 239
gets function, 482
gettext software

package, 18
getting started, 27–28
gFTP, 231, 232–233
ghostscript software

package, 18
ghostview software

package, 18, 138
GID
/etc/passwd file, 343
in group definitions, 344

GIMP (GNU Image
Manipulation Program),
18, 20, 136–137

The GIMP User Manual
(GUM), 137

globbing, 494
GNOME

about, 11, 18, 20, 69–70
Add or Remove Software

Utility, 52–54
bash shell, 60, 61
desktop, 70–71
logging out of, 65
onscreen keyboard

reader, 511
panels, 71–74
text editor, 139–140

GNOME calculator, 132
GNOME Ghostview, 138
GNOME Strae (website), 229
GNU C compiler, 23,

468–472
GNU C++ compiler (g++), 23

files. See also specific files
(continued)

Index 531

GNU C Library software
package, 18

GNU commands, in
CompTIA Linux+ Exam,
505–507

GNU compiler for Java, 23
GNU debugger (gdb), 23,

467, 478–484
GNU emacs editor, 23
GNU General Public License

(GPL), 485–486
GNU Library General Public

License (LGPL), 485,
486–487

GNU licenses, 14, 484–487
GNU make utility, 23, 467,

472–478
GNU Privacy Guard

(GnuPG), 390, 406–412
GNU profiling utility

(gprof), 23
GNU Project, 16
GNU software, 16–19
GNUchess software

package, 18
Gnumeric software

package, 18
GnuPG, 390, 406–412
Google (website), 227
Google Groups (website),

220, 227, 228
gpg command, 390, 408–412
GPL (General Public

License), 16
GPL (GNU General Public

License), 485–486
GPLv3 (website), 487
gpm service, 254
graphical desktop, 11
graphical FTP clients

about, 231–232
FileZilla, 234–236
gFTP, 231, 232–233

graphical user interfaces
(GUIs)

about, 19–21, 69–70
Cinnamon, 75–76

GNOME
desktop, 70–71
panels, 71–74

MATE, 76–77
Unity, 74–75

graphics and imaging
applications

about, 136
GIMP, 18, 20, 136–137
GNOME Ghostview,

18, 138
Graphics subcategory

(KickOff), 84
gray box, 440
greater-than sign (>), 93–94
grep command, 18, 51, 62,

91, 92, 96, 99
grep utility, 496, 507
groff software

package, 18
groupadd utility, 499, 512
groupdel utility, 499, 512
groupmod utility, 499, 512
Groupname, in group

definitions, 344
groups. See also users

about, 337
administration values,

345–347
changing ownership of

files, 350
managing, 344–345

groups command, 100
GRUB boot loader, 57, 505
gtk+ software package, 18
GUI service-configuration

utility, 253–255
gui text editors, 139–141
GUI tools, 198, 303–305
GUI user manager,

338–342
GUI utilities, 307
GUIs. See graphical user

interfaces (GUIs)
gunzip command, 100
gzip command, 18, 100, 496

H
h command, 149
H operator, 265
-h option, 477
halt command, 100
hard disk, 24
hard drive

backing up, 33
checking for

installation, 31
hard link, 516
hardware

checking for installation,
31–33

defined, 9
wireless, 183–184

hash, 393, 407
hash command, 239, 454
hash mark (#), 249, 380,

449. See also pound
sign (#)

head end, 162
hello function, 448–449
help command, 239, 452,

454, 480
Help menu (Firefox), 212
hexadecimal digit, 184
hidden files, 494
hide option, 375
hierarchical domain names,

281–282
hierarchy

directory, 111
file system, 352–355

HINFO resource record
type, 291

hiscachesize
parameter, 272

history command,
97, 454

History menu (Firefox), 212
/home directory, 111, 354
HOME environment

variable, 349
home page, 210, 212–215

Linux All-in-One For Dummies, 5th Edition532

homedir, /etc/passwd
file, 344

host
checking connectivity

to, 195
defined, 394
security issues, 389, 390

host address, 169
host utility program,

284–285
HOSTNAME environment

variable, 348, 349
host-security

about, 434–437
recommended tools, 441

hot plug, 26
hping2, 441
HTML anchor, 208
HTTP (HyperText Transfer

Protocol), 171, 206, 245
httpd service,

22, 254, 438
HWADDR parameter, 186
hwclock command, 513
HyperText Markup

Language (HTML),
206, 208

HyperText Transfer
Protocol (HTTP),
171, 206, 245

hyphen (-), 117, 470

I
i command, 143, 145, 148
I command, 148
-i option, 477
-I option, 471, 477
i386, 10
IA32 architecture

processors, 10
IBM, 10
IC (Integrity Check)

field, 182
ICMP (Internet Control

Message Protocol), 195

icon context menus (KDE),
81–82

icons, explained, 4
id command, 101, 311
ide=nodma boot option, 45
IDSL (ISDN DSL), 157
ieee category, 220
IETF (Internet Engineering

Task Force), 170, 280
ifconfig command, 193,

498, 515
image command, 239
images

accessing on USB digital
camera, 134

opening in GIMP, 137
IMAP (Internet Message

Access Protocol), 171
implementing

security solutions,
388–389

security test methodology
about, 431–432
common vulnerabilities,

432–434
host-security review,

434–437
network security review,

438–439
Impress (LibreOffice.org),

131–132
incident handling, in

security policy, 387
incident response, 437
incoming.conf file, 274
incremental backups,

366–367
indent software

package, 19
inetd server, 247–248, 413,

415, 438
info break

command, 480
info command, 98, 495
info files

command, 480

info func command, 480
info local

command, 480
info prog command, 480
info var command, 480
information sharing, 154
infrastructure, wireless

Ethernet networks,
180–181

init command, 102,
311–312, 503

init process, 308–310
Initialization Vector (IV), 182
INN server

configuring and starting,
269–275

installing, 268–269
website, 269

inn.conf file, 271–272
innd service, 22, 254, 270
innflags parameter, 272
input and output

redirection (I/O
redirection), 92–94

INPUT chain, 424–426
insecure option, 375
insecure_locks

option, 375
insmod command, 328
installing

about, 29, 50
checking PC hardware,

31–33
creating bootable flash

drive, 35
on a flash drive, 34–35
INN server, 268–269
Live CD, 34
mail servers, 257–268
Samba, 378–379
software

in Debian and Ubuntu,
50–52

in Fedora, 52–54
in SUSE, 54
in Xandros, 55

Index 533

space needed for Linux,
32–34

steps for, 29–31
troubleshooting

about, 40
Knoppix boot

commands, 40–43
Linux kernel boot

options, 44–47
PC reboot problem, 44
signal 11 error, 43

troubleshooting
workstation, 36

working with new
drive, 36

integrity, 394
Integrity Check (IC)

field, 182
Intel 80x86 processor, 9, 10
in.telnetd, 22
InterBulletin (website), 227
Internet access, in security

policy, 387
Internet Assigned Numbers

Authority
(website), 247

Internet connection
about, 153–154
cable modem

about, 161
how it works, 161–163
setup, 163–166

DSL
about, 156
ADSL, IDSL, SDSL,

157–158
how it works, 156–157
setup, 158–161

ways to connect, 154–155
Internet Control Message

Protocol (ICMP), 195
Internet Engineering Task

Force (IETF), 170, 280
Internet Message Access

Protocol (IMAP), 171
Internet servers, 21–22

Internet services
about, 170–171, 241–242
Internet Super Server,

247–250
port numbers and,

245–247
securing, 413–415
in security policy, 387
standalone servers,

250–255
TCP/IP and sockets,

242–245
Internet subcategory

(KickOff), 84
Internet Super Server,

247–250, 414
InterNetNews

components of, 270–274
startup, 274–275

internetworking, 169
intrusion detection, 441
io field name, 321
IP addresses, 169–170
IP routing table, 194
IP spoofing, 394
IPSec (IP Security

Protocol), 394
iptables command, 164,

421–422, 424–426
IPv4, 497
IPv6, 170
IPV6INIT parameter, 186
isdn service, 254
Isof, 441
ISOLINUX boot loader, 57, 58
ISP, reading newsgroups

from, 222–227
ISS Internet Scanner, 441
IV (Initialization Vector), 182

J
j command, 149
J command, 148
-j option, 477

jobs, scheduling
about, 330–331
one-time, 331–333
recurring, 333–336

jobs command, 454
John the Ripper, 441
join command, 496, 507

K
k command, 149
K Desktop Environment.

See KDE (K Desktop
Environment)

K operator, 265
-k option, 477
k12 category, 220
Kbps, 154
KDE, 11, 60, 61

logging out of, 65
KDE (K Desktop

Environment), 20
about, 79–80
configuring

about, 86–88
KDE bottom panel, 85–86

desktop context menus,
80–81

icon context menus, 81–82
panel

about, 82
icons, 85
Main Menu button,

82–85
KDE Akregator

(website), 229
KDE calculator, 132–133
key pair, generating,

408–409
KEY resource record

type, 291
key ring, 409
keyboard, checking for

installation, 31
keys, exchanging, 409–410

Linux All-in-One For Dummies, 5th Edition534

keyword, 50–51
KickOff application, 83–85
kill command, 100,

454, 481
klogd daemon, 514
KNode, 223, 226–227
Knopper, Klaus

(developer), 12
Knoppix

about, 12, 14
boot commands, 40–43
distributions, 38
root user, 306
update-rc.d command,

252–253
knoppix 1 Knoppix boot

command, 41
knoppix 2 Knoppix boot

command, 41
knoppix acpi=off

Knoppix boot
command, 41

knoppix atapicd
Knoppic boot
command, 41

knoppix
desktop=wmname
Knoppix boot
command, 41

knoppix dma Knoppix
boot command, 41

knoppix floppyconfig
Knoppix boot
command, 41

knoppix fromhd=/dev/
hdal Knoppix boot
command, 41

knoppix hsync=80
Knoppix boot
command, 41

knoppix lang=xx
Knoppix boot
command, 41

knoppix mem=256M
Knoppix boot
command, 41

knoppix myconf=/dev/
hdal Knoppix boot
command, 41

knoppix myconf=scan
Knoppix boot
command, 41

knoppix noeject
Knoppix boot
command, 42

knoppix noprompt
Knoppix boot
command, 42

knoppix nowheel
Knoppix boot
command, 42

knoppix noxxx Knoppix
boot command, 42

knoppix pci=bios
Knoppix boot
command, 42

knoppix pnpbios=off
Knoppix boot
command, 42

knoppix
screen=resolution
Knoppix boot
command, 42

knoppix testcd Knoppix
boot command, 42

knoppix tohd=/dev/
hdal Knoppix boot
command, 42

knoppix toram Knoppix
boot command, 42

knoppix vga=ext
Knoppix boot
command, 42

knoppix vsync=60
Knoppix boot
command, 42

knoppix wheelmouse
Knoppix boot
command, 42

knoppix xmodule=
modname Knoppix boot
command, 43

knoppix
xserver=progname
Knoppix boot
command, 43

Konqueror, 209
Kontact app, 132
ks boot option, 45
ks=kickstartfile boot

option, 45
ksyms command, 328
KWrite text editor,

140–141

L
l command, 149
-l option, 471, 477
-L option, 471
LAN. See local area network

(LAN)
LANANA (Linux Assigned

Names And Numbers
Authority), 326

last command, 499, 516
LC4, 441
lcd command, 239
ldconfig command, 504
ldd command, 100, 504
LDFLAGS variable, 475
least privilege, 345
Leave category (KickOff), 83
less command, 19, 99
less-than sign (<), 93–94
LGPL (GNU Library General

Public License), 485,
486–487

/lib directory, 111, 354
libpng software package, 19
LibreOffice (website),

20, 21
LibreOffice Suite, 128–132
licenses, GNU, 484–487
LIDSSystems, 441
LILO boot loader, 57
links, 117, 206–208
Linspire, 12

Index 535

Linux. See also specific
topics

about, 1, 9–10
boots

automatically starting
servers, 313–314

/etc/inittab file,
310–311

init command, 311–312
init process, 308–310
manually starting/

stopping servers, 313
startup scripts, 312–313

commands
about, 62–63, 98–101
date, 103–104
managing processes,

102–103
navigating file system

with, 114–121
processing files, 104–106
root, 101–102
time, 103–104

computer systems for, 10
configuration files,

314–317
devices

about, 325–326
device files, 326–327
persistent device naming

with udev, 327–328
distributions, 10–14, 16–24
getting started, 27–28
installation and package

management, in
CompTIA Linux+ Exam,
503–505

installing, 29–36
managing PC with, 24–27
space needed for, 32–34
starting, 57–60
versions, 14–15
web browsing in, 209–216

Linux Assigned Names And
Numbers Authority
(LANANA), 326

linux category, 220
Linux Essentials

Certification Exam
about, 491–492
career, 492–493
command line, 493–496
community, 492–493
operating system,

496–498
security and file

permissions, 498–499
Linux IPv6 HOWTO, 170
Linux kernel. See also

operating system
boot options, 44–47
defined, 9, 57
versions, 14
vulnerability, 434

Linux Professional Institute
(LPI), 2

Linux Standard Base (LSB),
15–16, 353

list command, 481
listings

directory, 116–118
files, 495

Live CD, 34, 40
Live version, 14
ln command, 98,

499, 516
loadable driver modules,

managing
about, 328
/etc/modprobe.conf

file, 329–330
loading/unloading

modules, 328–329
loadable kernel

modules, 328
loading modules, 328–329
local area network (LAN)

about, 26, 167
configuring TCP/IP

networking, 175–177
connecting to Internet,

177–178

Ethernet
about, 172
cables, 173–175
how it works, 172–173

TCP/IP
about, 167–169
Internet services,

170–171
IP, 170
IP addresses, 169–170
port numbers, 170–171

local command, 454
local loop, 156
localhost.zone file,

294–295
locate command, 99, 122
log analysis/monitoring

tools, 441
logcheck, 441
logcolorise, 441
logger command, 498, 503
logic bombs, 394
LOGNAME environment

variable, 349
logout command, 454
logrotate command, 498,

503
LogWatch, 441
LONE-TAR utility, 362
loop length, 158
loops per jiffy (LPJ), 59
/lost+found

directory, 111
lowres boot option, 45
LPI (Linux Professional

Institute), 2
LPJ (loops per jiffy), 59
lpq command, 514
lpr command, 99, 514
lprm command, 514
ls command, 98, 116–118,

119, 239, 350, 402,
495, 507

LSB (Linux Standard Base),
15–16

Linux All-in-One For Dummies, 5th Edition536

lsmod command, 328,
329, 503

lsof tool, 397
LXO-101 Exam icon, 4
LXO-102 Exam icon, 4

M
M operator, 265
-m option, 478
m4 software package, 19,

260–261
macro processor, 260
macros, 260, 474–475
mail command, 258
MAIL environment

variable, 349
mail exchanger, 293
mail servers, 257–268
mail transport agent

(MTA), 257
mail user agent (MUA), 257
mail-delivery

mechanism, 259
mail-delivery test, 258
MAILER macro, 263
mailq command, 513
Main Menu button (KDE),

82–85
make command, 19,

476–478, 481
make config

command, 503
makefile

about, 473–474
names, 472–473
sample, 475–476

man command, 98, 495
managing

CD-ROMs, 49–50
CDs, 49–50
command input/output,

92–94
file systems

about, 351–352, 361

accessing DOS or
Windows file system,
368–371

backing up, 361–367
/etc/fstab file,

357–358
hierarchy, 352–355
mounting devices,

355–357
sharing with NFS,

358–361
flash drives, 49–50
flow in shell scripting,

449–451
groups, 344–345
loadable driver modules

about, 328
/etc/modprobe.conf

file, 329–330
loading/unloading

modules, 328–329
networks. See network

management
PC with Linux, 24–27
processes, 102–103
security, 389
user accounts

using commands,
342–343

using GUI user manager,
338–342

Mandrakelinux, 12
Mandriva Linux One, 12
manually starting/stopping

servers, 313
MASQUERADE_AS macro, 263
MASQUERADE_DOMAIN

macro, 264
masquerading, 423
MATE, 69–70, 76–77
Mbps, 154
-mcpu=cputype

option, 471
MD5 encryption, 345, 401
mdelete command, 239
mdir command, 239

media, selecting, 361–362
/media directory, 112, 354
/media/cdrom directory, 96
mediacheck boot option, 45
%MEM heading, 319
Membership, in group

definitions, 344
memory field name, 320
mem=xxxM boot option, 45
menus, Firefox, 212
MEPIS Linux, 13, 14
message digest, 393, 401
Metcalfe, Robert

(inventor), 173
mget command, 239
Microsoft Excel, 130–131
Microsoft PowerPoint,

131–132
Microsoft Word, 129
misc category, 220
misc.test newsgroup, 226
mitigation approach,

388–389
mkdir command, 98,

120–121, 239
mkfs command, 101
mknod command, 101
mkswap command, 101
mls command, 239
/mnt directory, 112, 354
Mockapetris, Paul (computer

scientist), 280
MODE parameter, 186
modinfo command,

328, 503
modprobe command, 328,

329, 330, 503
monitor, checking for

installation, 32
monitoring

system performance
about, 317
checking disk

performance/disk
usage, 321–322

Index 537

top utility, 318–319
uptime command,

319–320
vmstat utility, 320–321

system security, 412–413
monolithic program, 328
more command, 63, 99
mount command, 101, 356,

357, 358, 368–369, 508
mount point, 123, 356, 360,

376
mounting

CDs/DVDs, 25, 122–123,
355–357

DOS floppy disks, 369–370
DOS/Windows disk

partition, 368–369
NFS file systems, 360–361,

376–377
NTFS partition, 370–371

mouse, checking for
installation, 32

moving files, 495. See also
mv command

mput command, 239
MTA (mail transport

agent), 257
mta parameter, 271
MUA (mail user agent), 257
multi option, 191
multihomed, 191
multimedia, defined, 127
multimedia applications

about, 133
burning CDs/DVDs, 135–136
digital camera, 133–134
playing audio CDs, 134–135
playing sound files, 135

Multimedia subcategory
(KickOff), 84

multivolume archive,
backing up and
restoring, 365

mv command, 98, 495, 506
MX resource record type,

291, 292

N
-n command, 144
n command, 145
^n command, 145
+n command, 144
-n option, 478
NAME environment variable,

348
NAME parameter, 187
name servers, 280, 283
named daemon, 254,

282–283, 296
namespace, 281
NAT (Network Address

Translation), 159–161,
165–166, 421

National Vulnerability
Database (NVD)
(website), 432

Nautilus File Manager, 135
navigating file system

about, 114
for changing permissions

and ownerships,
118–119

for directory listings and
permissions, 116–118

for directory navigation,
114–115

for finding files, 121–122
for working with

directories, 120–121
for working with files,

119–120
ncurses software

package, 19
Nessus Security

Scanner, 441
NETBIOS, 171
Netcat, 441
netfilter, 421–422
netstat command, 195,

397, 498, 515
network address, 169, 242

Network Address
Translation (NAT),
159–161, 165–166, 421

Network Basic Input/
Output System, 378

network card, checking for
installation, 32

Network Configuration tool,
185

Network connection icon
(KDE), 85

network devices, 327
Network File System (NFS),

26, 373, 434
Network Information

Service (NIS), 434
Network layer, of TCP/IP,

168
network management

about, 189
configuring networks at

boot time, 199–201
TCP/IP configuration files

about, 189
/etc/host.conf file,

190, 191
/etc/hosts file, 189–190
/etc/hosts.allow file,

190, 192, 315, 435
/etc/hosts.deny file,

190, 192–193, 315, 435
/etc/networks file, 190
/etc/nsswitch.conf

file, 190, 193
/etc/resolv.conf

file, 190, 191
TCP/IP networks

about, 193
connectivity to host, 195
GUI tools, 198
IP routing table, 194
network interfaces,

193–194
network status, 195–197
sniffing network packets,

197–198

Linux All-in-One For Dummies, 5th Edition538

Network News Transfer
Protocol (NNTP),
171, 246

network packets, sniffing,
197–198

network security issues,
389, 390–391

network service, 254
networking, in CompTIA

Linux+ Exam, 514–515
NETWORKING variable, 199
networks

about, 21, 26–27
checking status, 195–197
information systems, 193
interfaces, 193–194
recommended

utilities, 441
security review, 438–439

newaliases
command, 513

newgrp command, 499, 512
news, security and, 397–398
news category, 220
news servers, 268–269
news services, 21–22
newsfeeds file, 272–274
newsgroups

about, 153, 217–218
adding, 276–277
hierarchy of, 218–219,

275–276
Linux-related, 221–222
posting news, 225–226
reading and searching at

websites, 227–228
reading from ISP, 222–227
reading with Thunderbird,

223–225
setting up, 275–277
subscriptions to, 225
testing, 277
top-level categories of,

219–220
NewsMonster (website), 229
newsreader, 222–223

Newzbot (website), 222
next command, 481
NFR, 441
NFS (Network File System)

about, 26, 171, 373, 434
file sharing with

about, 373–374
exporting file systems,

374–376
mounting NFS file

systems, 376–377
port numbers and, 246
sharing files with

about, 358–359
exporting file

systems, 360
mounting NFS file

systems, 360–361
nfs service, 254
nfslock service, 255
NFSv4 implementation

(website), 374
ngrep, 441
NI heading, 319
nice command, 100
NIS (Network Information

Service), 434
nl command, 99
nlog, 441
nmap tool, 397, 441–442
nmbd, 378
nmblookup, 378
nmi_watchdog=1 boot

option, 45
nnrpd, 270
NNTP (Network News

Transfer Protocol),
171, 246

nntpsend, 270
no_all_squash option, 375
noapic boot option, 45
nofirewire boot

option, 45
no_hide option, 375
noht boot option, 45
nomce boot option, 45

nomount boot option, 46
nonrepudiation, 394
nopass boot option, 46
nopcmcia boot option, 46
noprobe boot option, 46
no_root_squash

option, 376
noshell boot option, 46
no_subtree_check

option, 375
Notifications and Jobs icon

(KDE), 85
nousb boot option, 46
nousbstorage boot

option, 46
Novell certifications, 518
no_wdelay option, 375
NS resource record type,

291, 292, 295
NTFS partition, mounting,

370–371
ntop, 441
NTP, port numbers and, 246
ntpd, 513
NVD (National Vulnerability

Database) (website), 432

O
O operator, 265
-o option, 471, 478
-O option, 471
-O1...O3 options, 471
object files, 469
office applications, 128–132
Office subcategory

(KickOff), 84
ONBOOT parameter, 187, 200
10Base2, 173
10Base5, 173
10BaseT, 173
127.0.0.1, reverse

mapping, 295
one-time job scheduling,

331–333

Index 539

online documentation,
22–24

open command, 240
Open Secure Shell

(OpenSSH) software,
415–417

Open Secure Sockets Layer
(Open SSL), 433

Open Source Initiative
(website), 11

open source projects, 11
Open Windows icon

(KDE), 85
opening terminal windows

and virtual consoles,
89–90

operating system
defined, 9
on Linux Essentials

Certification Exam,
496–498

updates to, 434
/opt directory, 112, 354
options statement, 288
Oracle certifications, 518
order option, 191
organization

parameter, 271
-Os option, 471
OSTYPE macro, 263
OUTPUT chain, 424–426
ovmethod parameter, 271
ownerships

changing, 118–119, 350, 402
viewing, 402

P
p command, 149
P command, 149, 265
-p option, 478
pack command, 496
packet filter firewall, 419
packet filtering

defined, 394
enabling, 421–426

packet sniffers,
recommended, 441

packets, 173, 394
PAMs (pluggable

authentication
modules), 401

Pan, 223
Panel toolbox (KDE), 85
panels

defined, 80
GNOME, 71–74
KDE

about, 82
icons, 85
Main Menu button,

82–85
PARC (Xerox Palo Alto

Research Center), 173
Partial POSIX Extended

Regular Expressions,
495–496

partition, 30
passwd command, 101,

397, 516
password, /etc/passwd

file, 343
Password, in group

definitions, 344
password security, 437
password-checking tools,

recommended, 441
paste command, 99,

496, 507
patch command, 19, 99
PATH environment variable,

348, 349, 447–448
pathhost parameter, 271
pathname, 110–111
pathnews parameter, 272
patterns, newsgroup, 273
PC

checking hardware for
installation, 31–33

managing with Linux,
24–27

reboot problem, 44

pci=biosirq boot
option, 46

pci=noacpi boot
option, 46

pcmcia service, 255
-pedantic option, 471
PEERDNS parameter, 187
penetration test, 439
Pentium processor, 9, 10
performing risk analysis,

386–387
perimeter network, 394
period (.), 111, 119–120,

144, 494
peripheral, defined, 24
peripheral devices, 25–26
Perl, 23
permissions

changing, 118–119, 403
checking for set user

ID, 405
directory, 116–118
security and file,

498–499
setting default, 403–405
viewing, 402

persistent device naming
with udev, 327–328

-pg option, 471
physical console, 89
Physical layer, of TCP/IP, 168
PID heading, 319
ping command, 195, 441,

498, 515
pipe (|), 92, 105, 496
pkgname, 50
PKI (Public Key

Infrastructure), 395
playing

audio CDs, 134–135
sound files, 135

pluggable authentication
modules (PAMs), 401

plug-ins, 137
Point-to-Point Protocol

(PPP), 327

Linux All-in-One For Dummies, 5th Edition540

POP3 (Post Office Protocol
version 3), 171

popd command, 454
port numbers, 170–171,

242, 245–247, 439
port scanners

defined, 394
recommended, 441
tool, 413

portmap service, 255
ports, 208
post access, 274
Post Office Protocol version

3 (POP3), 171
posting to newsgroups,

225–226
pound sign (#), 189, 208,

264, 271, 438. See also
hash mark (#)

PowerPoint (Microsoft),
131–132

PPP (Point-to-Point
Protocol), 327

PPP over Ethernet
(PPPoE), 161

PPPoE (PPP over
Ethernet), 161

PR heading, 319
prevention concept, in

security programs,
434, 438

primary name server,
configuring, 296–298

print command, 481
printenv command,

100, 347
printers

about, 25
checking for installation, 32
setting up, 47–49

/proc directory, 112
/proc file system, 322–325
process field, 311
process file system, 323
process ID (PID),

102–103, 309

processes, managing,
102–103

processing files, 104–106
processors, 9, 10, 32
procs field name, 320
programming

about, 465–467
software-development

tools
about, 467
C++ compiler, 468–472
GNU C compiler,

468–472
GNU debugger, 478–484
GNU make utility,

472–478
implications of GNU

licenses, 484–487
prompt command, 240
protection concept, in

security programs,
389, 431

protocols
about, 207–208
connectionless, 243
connection-oriented,

242–243
defined, 168

proxy server, 395
ps command, 63, 100,

496, 506
pstree command, 100
PTR resource record

type, 291, 292
public key

cryptography, 395
public key encryption,

406–407
Public Key Infrastructure

(PKI), 395
pushd command, 454
put command, 240
pwd command, 98, 115, 240,

454, 506
Python, 23

Q
q command, 144, 145
:q command, 149
:q! command, 149
Q command, 145
-q option, 478
QTParted tool, 30
question marks (?), 95–96,

208, 494
quit command, 240, 481
quota command, 508
quotation marks, 91

R
r file command, 145
:r filename

command, 149
R operator, 265
-r option, 478
-R option, 478
RAM (random-access

memory), 24, 32
random-access memory

(RAM), 24, 32
RATE parameter, 187
RC4 encryption

algorithm, 182
RCS (Revision Control

System), 23
rcs software package, 19
reaction concept, in

security programs, 389
read access, 274
read command, 454, 509
readers.conf file, 274
reading. See newsgroups;

RSS feeds
read_input function, 482
readonly command, 454
real-time clock, 513
reboot command, 100
reboot=b boot option, 46

Index 541

rec category, 220
Recently Used category

(KickOff), 83
reconfiguring BIOS, 36
recurring job scheduling,

333–336
recv command, 240
Red Hat certifications, 518
Red Hat Linux 9, 12
Red Hat Package Manager

(RPM), 12, 52
regular expressions, 494
Remember icon, 4
remote access, 154
remote login, 21–22
rename command, 240
Rendezvous Directory

Service, 171
repeating previously typed

commands, 97
RES heading, 319
rescue boot option, 46
resolution=HHHxVVV

boot option, 46
resolver, configuring,

285–286
resolver library, 280, 283
resource records (RR),

289–293
resources, Samba, 380
response concept, in

security programs, 389,
432, 434, 438

responsibilities, in security
policy, 387

Retina Network Security
Scanner, 441

return command, 454
reverse mapping, zone file

for, 295
Revision Control System

(RCS), 23
rewinding tape device, 366
Rhythbox, 135
risk analysis, 386–387

rm command, 98, 120,
495, 506

RM variable, 475
rmdir command, 98,

240, 506
rmmod command,

328, 503
rndc utility, 288
ro option, 375
root, becoming

about, 101–102, 305
forgotten root password,

307–308
for GUI utilities, 307
su - command, 306

root access, 64
/root directory, 111,

112, 354
root domain, 281
root password, 55
root username, 58–59
root zone file, 293–294
root_squash

option, 375
route utility, 498, 515
RP resource record

type, 291
RPM (Red Hat Package

Manager), 12, 52
RR (resource records),

289–293
RSS feeds

about, 217–218, 228–229
reading, 229–230

rsyslogd file, 413
run command, 481
runlevel command,

310, 311
running
gbd, 479–481
make, 476–478

rw option, 375
rwx group, 117–118
rx command, 148

S
S heading, 319
S operator, 265
-s option, 478
SAINT, 441
Samba

about, 26, 373
configuring, 379–380
installing, 378–379
resources, 380
setting up Windows

server using, 377–380
trying, 380

samba service, 255
SANS Institute, 432
SARA, 441
saving error messages in

files, 94
/sbin directory, 112, 354
/sbin/hdparm

program, 321
/sbin/hotplug

program, 327
/sbin/ifconfig

command, 193
/sbin/route

command, 194
/sbin/udev program, 327
sbpcd file, 92
scanlogd, 441
scheduling jobs

about, 330–331
one-time, 331–333
recurring, 333–336

sci category, 220
screening router, 395
screenshot, 51
script directories, for cron

jobs, 336
scripting, 445
scripts, writing, 106–108
SCSI controller, checking

for installation, 32
SDSL (Symmetric DSL), 157

Linux All-in-One For Dummies, 5th Edition542

searching newsgroups at
websites, 227–228

secure option, 375
Secure Shell, 391
Secure Shell (SSH), 171, 246
Secure Sockets Layer

(SSL), 267
security

about, 383, 399
in CompTIA Linux+ Exam,

515–516
defined, 25
encrypting and signing

files with GnuPG
digital signatures,

407–408
GPG, 408–412
public key encryption,

406–407
files and directories

about, 402
changing file

ownership, 402
changing file

permissions, 403
checking for set user ID

permission, 405
setting default

permission, 403–405
viewing ownerships and

permissions, 402
files to be aware of,

426–427
framework for

about, 384–385
business requirements,

385–386
managing, 389
mitigation, 388–389
policy, 387–388
risk analysis, 386–387

importance of, 383–384
Internet services

about, 413
configuring Internet

super server, 414

configuring TCP
wrapper, 414–415

standalone services,
413–414

monitoring for system,
412–413

news, 397–398
passwords

about, 399–400, 437
pluggable authentication

modules (PAMs), 401
shadow, 400–401

securing the Linux
system, 389–391

setting up firewalls
about, 418–421
enabling packet filtering,

421–426
NAT, 421

terminology and tools,
391–397

testing tools, 440–442
updates, 397–398
using Secure Shell (SSH)

for remote logins,
415–417

security audits, in security
policy, 387. See also
computer security
audit

security level configuration
tool, 422–424

security policy, 384,
387–388

sed command, 19, 99,
457–463, 507

Segment Violation Signal
(SIGSEGV), 43

selecting backup strategies
and media, 361–362

selinux=0 boot option, 46
semicolon (;), 380, 451, 496
send command, 240
sendmail

about, 22
alias file, 268

configuration file, 259–264
files, 266–267
macro, 261–264
mail transport agent, 259
service, 255, 438, 513
using, 257–258
vulnerability, 433

sendmail/cf file, 264–265
serial boot option, 46
server command, 250–251
server process, 171, 246
servers, automatically

starting, 313–314
services, Internet. See

Internet services
set command, 454, 509
set variable

command, 481
setting default permission,

403–405
setuid program, 395, 437
setup

Ethernet LAN, 172–175
local newsgroups, 275–277
printers, 47–49
Windows server with

Samba, 377–380
SGID permission, 499
SHA-512, 345
shadow passwords,

400–401
-shared option, 472
sharing files. See file

sharing
Sharutils software

package, 19
shell

about, 17, 60, 89
bash

about, 90
asterisks, 95–96
automatic command

completion, 95
combining

commands, 92

Index 543

command syntax, 90–92
controlling command

input and output, 92–94
question marks, 95–96
repeating previously

typed commands, 97
commands, 61–62
Linux commands

about, 62–63, 98–101
date, 103–104
managing processes,

102–103
processing files, 104–106
root, 101–102
time, 103–104

opening terminal windows
and virtual consoles,
89–90

starting bash shell, 60–61
writing scripts, 106–108

shell, /etc/passwd
file, 344

shell command, 481
SHELL environment

variable, 349
shell functions, 448–449
shell scripting

about, 445–447
advanced

about, 463
awk, 459–463
sed, 457–463

basics of
about, 447
bash built-in commands,

451–455
controlling flow, 449–451
shell functions, 448–449
storing, 447–448

shell scripts, 61, 445,
509–510

shift command, 454
SHR heading, 319
shutdown command,

100, 503
shutting down, 64–65

Shuttleworth, Mark
(developer), 74

SIG resource record
type, 291

signal 11 error, 43, 115
SIGSEGV (Segment

Violation Signal), 43
simple file, 107
Simple Mail Transfer

Protocol (SMTP),
171, 246

Simple Network
Management Protocol
(SNMP), 171, 246, 433

single dot (.), 115
single-volume archive,

backing up and
restoring, 363–365

size command, 240
skipddc boot option, 46
Slackware Linux, 13
slash (/), 116, 143, 147,

352–353
Slashdot (website), 230
smbadduser, 378
smbcacls, 378
smbclient, 378
smbcontrol, 378
smbd, 378
smbmount, 378
smbpasswd, 378
smbprint, 378
smbstatus, 378
smbtar, 378
smbumount, 378
SMTP (Simple Mail Transfer

Protocol), 171, 246
sniffer, defined, 395
sniffing network packets,

197–198
sniffit, 441
SNMP (Simple Network

Management Protocol),
171, 246, 433

snmpd service, 255
Snort, 441

SOA resource record type,
291, 295

soc category, 220
sockets

client/server model and,
243–244

TCP/IP and, 242–245
software

defined, 9
GNU, 16–19
installing

about, 50
in Debian and Ubuntu,

50–52
in Fedora, 52–54
in SUSE, 54
in Xandros, 55

software development, 22
software-development tools

about, 467
C++ compiler, 468–472
GNU C compiler, 468–472
GNU debugger, 478–484
GNU make utility, 472–478
implications of GNU

licenses, 484–487
s/old/new/

command, 145
sort command, 99, 105
sorting text files, 105
sound card

about, 26
checking for

installation, 32
sound files, playing, 135
source code, 11
spamassassin service, 255
split command, 99, 106
splitting files into smaller

files, 106
spoofing, 418
spyware, 395
square brackets ([]), 95–96
/srv directory, 112, 354
SRV resource record

type, 291

Linux All-in-One For Dummies, 5th Edition544

ssh, 391
SSH (Secure Shell), 171, 246
ssh service, 255
sshd, 22
SSL (Secure Sockets

Layer), 267
stable releases, 15
standalone servers

about, 250
starting and stopping

manually, 250–251
starting automatically,

251–255
turning off, 413–414

standalone services,
security of, 438–439

standard error, 92–94
standard input, 92–94
standard output, 92–94
standards, wireless

Ethernet, 179–180
starting
bash shell, 60–61
caching name server,

295–296
INN server, 269–275
Linux, 57–60

STARTTLS extension, 267
startup, InterNetNews,

274–275
startup scripts, 312–313
stateful inspection firewall,

419–420
statements, 466
statistical attacks, 182
status bar, Firefox, 211
status command, 240
stderr, 92–94, 496
stdin, 92–94, 496
stdout, 92–94
step command, 481
sticky keys, 511
storing, in shell scripting,

447–448
stream cipher, 182
stream editor, 458

stream-based macro, 260
/string command, 149
?string command, 149
Strobe, 441
su command, 101, 102, 306,

397, 499, 516
subscriptions, to

newsgroups, 225
substituting characters

from files, 105–106
subtree_check

option, 375
Subversion, Concurrent

Versions System (CVS),
23, 433

subversion,
vulnerability, 433

sudo tool, 397, 499, 516
suid permission, 405
superuser, 101–102, 516
SUSE

about, 13
BIND, 282
certifications from, 518
chkconfig command,

251–252, 314
configuring

networks, 200
Samba, 379
wireless network in, 187

directory option, 288
distributions, 38
/etc/fstab file, 357–358
init process, 310
installing

INN server, 268
software in, 54
software-development

tools, 467
reading RSS feeds, 230
recovering from forgotten

root password, 308
security level configuration

tool, 422, 423
starting
innd, 275

NFS server, 359, 376
Samba, 380
standalone servers in, 251

stopping standalone
servers in, 251

turning off standalone
servers, 414

updates, 398
swap field name, 321
swapoff command, 101
swapon command, 101
swapping, 321
Swatch, 441
symbolic links, 117, 252, 516
Symmetric DSL

(SDSL), 157
symmetric key

encryption, 395
Synaptic Package

Manager, 51
sync command, 101, 375
/sys directory, 112
sysfs program, 327
syslog service, 255
syslogd file, 413
system administration

about, 25
becoming root

about, 305
forgotten root

password, 307–308
for GUI utilities, 307
su command, 306

GUI tools, 303–305
Linux boots

automatically starting
servers, 313–314

/etc/inittab file,
310–311

init command, 311–312
init process, 308–310
manually starting/

stopping servers, 313
startup scripts, 312–313

Linux configuration files,
314–317

Index 545

Linux devices
about, 325–326
device files, 326–327
persistent device

naming with udev,
327–328

managing loadable
driver modules

about, 328
/etc/modprobe.conf

file, 329–330
loading/unloading

modules, 328–329
monitoring system

performance,
318–321

scheduling jobs
about, 330–331
one-time, 331–333
recurring, 333–336

tasks, 301–302
viewing system

information with /
proc file system,
322–325

system architecture, in
CompTIA Linux+ Exam,
502–503

system field name, 321
system information,

viewing with /proc file
system, 322–325

system performance,
monitoring

about, 317
checking disk

performance/disk
usage, 321–322

top utility, 318–319
uptime command,

319–320
vmstat utility, 320–321

System subcategory
(KickOff), 84

T
T operator, 265
-t option, 478
tabbed browsing, 210
tac command, 99
tail command, 99
talk category, 220
tapes, backing up on, 366
tar command, 19, 100,

363–367, 496
tasks

by category in YaST
Control Center, 305

system administration,
301–302

TCP wrapper
access control files, 391
security, configuring,

414–415
tcpdstats, 441
tcpdump command,

197, 441
TCP/IP (Transmission

Control Protocol/
Internet Protocol)

about, 21, 167–169
configuration files

about, 189
/etc/host.conf file,

190, 191
/etc/hosts file,

189–190
/etc/hosts.allow

file, 190, 192
/etc/hosts.deny file,

190, 192–193
/etc/networks file,

190
/etc/nsswitch.conf

file, 190, 193
/etc/resolv.conf

file, 190, 191

configuring networking,
175–177

four-layer network model,
168–169

Internet services,
170–171

IP, 170
IP addresses, 169–170
networks

about, 193
checking connectivity to

host, 195
checking IP routing

table, 194
checking network

interfaces, 193–194
checking network status,

195–197
sniffing network packets,

197–198
using GUI tools, 198

port numbers, 170–171
sockets and, 242–245

Technical Stuff icon, 4
telinit command, 312
telnet, 515
TELNET, 171, 246
Temporal Key Integrity

Protocol (TKIP), 181
TERM environment variable,

348, 349
terminal, 89
terminal windows, opening,

89–90
test command,

449–450, 509
testing

caching name server,
295–296

newsgroups, 277
vulnerabilities, 440

testing releases, 15
testparm command,

378, 379

Linux All-in-One For Dummies, 5th Edition546

texinfo software
package, 19

/text/ command, 144
?text? command, 144
text editors

about, 139, 467
with ed, 141–145
GUI, 139–141
with vi, 141, 145–149

text files
counting words/lines in,

104–105
sorting, 105

text input mode, 142, 146
text mode installation, 38
text terminal, 16
TFTP (Trivial File Transfer

Protocol), 171, 246
thick Ethernet, 173
thicknet, thickwire, 173
thinwire, 173
32-bit cyclic redundancy

code (CRC-32), 182
threats

defined, 395
typical, 386

Thunderbird, 222, 223–225
tilde (~) character, 115, 146
time, working with, 103–104
time command, 19,

103–104
TIME+ heading, 319
Time icon (KDE), 85
Time To Live (TTL), 289
times command, 454
Tip icon, 4
TKIP (Temporal Key

Integrity Protocol), 181
/tmp directory, 112, 354
Tool Command Language

and graphical toolkit
(Tcl/Tl), 23

toolbars, Firefox, 211
tools, GUI, 198, 303–305
Tools menu (Firefox), 212
top command, 100,

496, 506

Top Cyber Security Risks
index (website), 432

top panel (GNOME), 72
top utility, 318–319
top-level directories,

111–112
Torvalds, Linus (Linux

developer), 1, 10
touch command, 98
tr command, 99,

105–106, 507
traceroute, 515
Transmission Control

Protocol/Internet
Protocol. See TCP/IP
(Transmission Control
Protocol/Internet
Protocol)

Transport layer, of
TCP/IP, 168

trap command, 454
Tripwire, 390, 412, 441
Trivial File Transfer

Protocol (TFTP),
171, 246

Trojan horse, 396
troubleshooting

about, 37
CD-ROMs, 49–50
DVDs, 49–50
flash drives, 49–50
installation

about, 40
Knoppix boot

commands, 40–43
Linux kernel boot

options, 44–47
PC reboot, 44
signal 11 error, 43

printer setup, 47–49
text mode installation, 38
workstation, 36
X, 38–40

Ts, Jay (author)
Using Samba,

3rd Edition, 380
TTL (Time To Live), 289

tty command, 101
turning off standalone

servers, 413–414
24-bit IV, 182
TXT resource record

type, 291
type command, 455
TYPE parameter, 187

U
u command, 145, 149
U command, 149
Ubuntu

BIND, 282
configuring networks, 199
distributions, 38
init process, 310
installing

INN server, 268
Samba, 379
software in, 50–52

starting
innd, 275
Samba, 380
standalone servers

in, 251
stopping standalone

servers in, 251
turning off standalone

servers, 413
update-rc.d command,

252–253, 314
updates, 398

Ubuntu Linux, 13
udev, persistent device

naming with, 327–328
UDP (User Datagram

Protocol), 243
UID, /etc/passwd

file, 343
ulimit command, 397,

455, 516
-UMACRO option, 472
umask command,

403–405, 455

Index 547

umount command, 101,
356–357

unalias command, 98, 455
uname command, 62, 100
unauthorized access, 386
uncompress command, 100
Uniform Resource Locators

(URLs), 206–208
uniq command, 99
United States Computer

Emergency Readiness
Team (website), 397

Unity, 69–70, 74–75
Unix commands, in

CompTIA Linux+ Exam,
505–507

Unix-to-Unix Copy Protocol
(UUCP), 218

unloading modules,
328–329

unmounting, 122–123,
369–370

unset command, 455, 509
unshielded twisted-pair

cable (UTP), 173
unstable releases, 15
update-rc.d command,

252–253, 314
updates, security, 397–398
updating

configuration lists, 276
operating systems, 434

upstream data, 161
uptime command,

319–320, 516
URLs (Uniform Resource

Locators), 206–208
USB interface, 26
US-CERT National Cyber

Alert System mailing
list, 398

Usenet, 218
Usenet Replayer

(website), 227
user command, 240
User Datagram Protocol

(UDP), 243

user file-creation mask, 403
USER heading, 319
user interfaces and

desktops, in CompTIA
Linux+ Exam, 510–511

useradd command,
499, 512

USERCTL parameter, 187
userdel command, 499
usermod tool, 397, 516
username, /etc/passwd

file, 343
users. See also groups

about, 337
adding user accounts

about, 337–338
using commands,

342–343
using GUI user manager,

338–342
administration values,

345–347
changing ownership of

files, 350
environment, 347–349
/etc/passwd file,

343–344
Using Samba, 3rd Edition

(Ts, Eckstein & Collier-
Brown), 380

/usr directory, 112, 113, 354
/usr/bin/scp, 416
/usr/bin/slogin, 416
/usr/bin/ssh, 416
/usr/bin/ssh-keygen,

416
/usr/sbin/sshd, 416
utilities, commercial

backup, 362–363. See
also specific utilities

Utilities subcategory
(KickOff), 84

utility programs, 284–285
UTP (unshielded twisted-

pair cable), 173
UUCP (Unix-to-Unix Copy

Protocol), 218

V
V operator, 265
-v option, 472, 478
/var directory, 112,

113–114, 354
variables

about, 474–475
defined, 466

/var/log dmesg file, 317
/var/log file, 412, 436
/var/log/apache2

file, 317
/var/log/boot.msg

file, 317
/var/log/cron file, 317
var/log/httpd file, 317
/var/log/lastlog

file, 436
/var/log/messages file,

317, 436, 503
/var/log/wtmp file, 436
vendor-neutral

certifications, 517
vendor-specific

certifications, 518
version-control

system, 467
VERSIONID macro, 263
versions, 14–15, 228
Vetescan, 441
vi text editor, 141,

145–149, 467
video card, checking for

installation, 32
View menu (Firefox), 212
viewing

online help in vi, 147
ownerships and

permissions, 402
system information with

/proc file system,
322–325

VIRT heading, 319
virtual consoles, opening,

89–90

Linux All-in-One For Dummies, 5th Edition548

virus, 396
visual command mode, 146
vmstat utility, 320–321
vnc boot option, 46
Volume icon (KDE), 85
vsftpd service, 22, 255
vulnerabilities

common, 432–434
defined, 396
testing, 440
typical, 387

vulnerability scanners,
439, 441

W
w command, 149, 499
w file command, 145
W file command, 145
:w filename command,

149
-w option, 472, 478
-W option, 478
-W1 option, 472
wait command, 455
WAP (wireless access

point), 184
war-dialing, 396
war-driving, 396
Warning! icon, 4
watch command, 481
wc command, 100, 104–105,

496, 507
wdelay option, 375
Web, 153
web browsing

about, 205–206
links, 206–208
in Linux, 209–216
URLs, 206–208
web servers, 209

web servers, 209
web surfing, in Firefox,

215–216

websites. See also specific
websites

distance limits, 154
downstream transfer

speed, 163
reading newsgroups at,

227–228
searching newsgroups at,

227–228
signal 11 error, 43

WEP (Wired Equivalent
Privacy), 181–182

whatis command, 98, 495
where command, 481
whereis command, 99
which command, 99
Whisker, 441
white box, 440
who command, 499, 516
Wi-Fi (Wireless

Fidelity), 179
Wi-Fi Alliance

(website), 180
Wi-Fi Protected Access

(WPA), 181
Wi-Fi Protected Access 2

(WPA2), 181
wildcards, 95–96, 494
wildmat pattern, 273
WIMP (windows, icons,

mouse, and pointer), 60
winbind service, 255
winbindd, 378
windows, icons, mouse, and

pointer (WIMP), 60
Windows file system,

accessing, 368–371
Windows partition,

reducing size of, 33–34
Windows server, setting up

using Samba, 377–380
Wired Equivalent Privacy

(WEP), 181–182
wireless access point

(WAP), 184

wireless Ethernet networks
about, 179–180
ad hoc modes, 180–181
infrastructure, 180–181
Wired Equivalent Privacy

(WEP), 181–182
wireless local area network

(WLAN), 179
wireless networks

configuring
about, 185–188
wireless access

point, 184
setting up wireless

hardware, 183–184
wireless Ethernet

networks
about, 179–180
ad hoc modes, 180–181
infrastructure, 180–181
Wired Equivalent Privacy

(WEP), 181–182
Wireshark (website), 198
WLAN (wireless local area

network), 179
Word (Microsoft), 129
working configuration

file, 39
workstation,

troubleshooting, 36
World Wide Web, 21–22
worm, 396
WPA (Wi-Fi Protected

Access), 181
:wq command, 149
Writer (LibreOffice.org), 129
writing shell scripts,

106–108

X
X, troubleshooting, 38–40
x command, 148, 481
X Window System, 11,

19–20

Index 549

Xandros
about, 12
BIND, 282
configuring networks, 199
distributions, 38
init process, 310
installing

INN server, 268
software in, 55
software-development

tools, 467
starting
innd, 275
NFS server, 359
Samba, 380

turning off standalone
servers, 413

update-rc.d command,
252–253, 314

updates, 398

Xandros Desktop OS, 13
Xandros File Manager, 135
xargs command, 496
xdpyinfo utility, 510
Xerox Palo Alto Research

Center (PARC), 173
XFree86 Project, 20
xfs service, 255
xinetd server, 248–250,

255, 413, 415, 438
XMMS, 135
xwininfo utility, 510

Y
YaST Control Center, 187,

259, 282, 303–305
Yellowdog Update,

Modified (yum), 505

ypbind service, 255
yy command, 149

Z
zcat command, 100
zless command, 100
zmore command, 100
zone statement, 288, 293–294
zone transfer, 283

Linux All-in-One For Dummies, 5th Edition550

About the Author
Emmett Dulaney is the author of several books on operating systems and
certifications, and an associate professor at Anderson University. Other
books he has written include CompTIA A+ Complete Study Guide (Sybex) and
the CompTIA Security + Study Guide (Sybex).

Emmett is a columnist for Certification Magazine and Campus Technology. He
is also contributor to a number of other magazines.

Dedication
For Karen, Kristin, Evan, and Spencer.

Author’s Acknowledgments
I would like to thank Naba Barkakati, who wrote the first two editions and did
a fantastic job of condensing a wealth of information into a small tome.

I would also like to thank Elizabeth Zinkann for being one of the best techni-
cal editors in the business, and Pat O’Brien for keeping everything on track
and on time.

Publisher’s Acknowledgments
Senior Acquisitions Editor: Kyle Looper

Project Editor: Pat O’Brien

Copy Editor: Barry Childs-Helton

Technical Editor: Elizabeth Zinkann

Editorial Assistant: Annie Sullivan

Sr. Editorial Assistant: Cherie Case

Project Coordinator: Patrick Redmond

Cover Image: ©iStock.com/Coldimages

http://iStock.com/Coldimages

Start with FREE Cheat Sheets
Cheat Sheets include
	 • Checklists
	 • Charts
	 • Common Instructions
	 • And Other Good Stuff!

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s
of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
	 • Videos
	 • Illustrated Articles
	 • Step-by-Step Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
	 • Digital Photography
	 • Microsoft Windows & Office
	 • Personal Finance & Investing
	 • Health & Wellness
	 • Computing, iPods & Cell Phones
	 • eBay
	 • Internet
	 • Food, Home & Garden

Find out “HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

Get More and Do More at Dummies.com®

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/linuxaio

www.facebook.com/fordummies
www.twitter.com/fordummies

From eLearning to e-books, test prep to test banks,
language learning to video training, mobile apps, and more,

Dummies makes learning easier.

At home, at work, or on the go,
Dummies is here to help you
go digital!

http://www.facebook.com/fordummies
http://www.twitter.com/fordummies

