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This book is for people who want to learn the fundamentals of electricity, electronics, and related
fields without taking a formal course. The book can also serve as a classroom text. This edition con-
tains new material on transducers, sensors, antennas, monitoring, security, and navigation. Material
from previous editions has been updated where appropriate.

As you take this course, you’ll encounter hundreds of quiz, test, and exam questions that can
help you measure your progress. They are written like the questions found in standardized tests used
by educational institutions.

There is a short multiple-choice quiz at the end of every chapter. The quizzes are “open-book.”
You may refer to the chapter texts when taking them. When you have finished a chapter, take the
quiz, write down your answers, and then give your list of answers to a friend. Have the friend tell
you your score, but not which questions you got wrong. Because you’re allowed to look at the text
when taking the quizzes, some of the questions are rather difficult.

At the end of each section, there is a multiple-choice test. These tests are easier than chapter-
ending quizzes. Don’t look back at the text when taking the tests. A satisfactory score is at least
three-quarters of the answers correct.

You will find a final exam at the end of this course. As with the section-ending tests, the ques-
tions are not as difficult as those in the chapter-ending quizzes. Don’t refer back to the text while
taking the final exam. A satisfactory score is at least three-quarters of the answers correct.

The answers to all of the multiple-choice quiz, test, and exam questions are listed in an appen-
dix at the back of this book.

You don’t need a mathematical or scientific background for this course. Middle-school algebra,
geometry, and physics will suffice. There’s no calculus here! I recommend that you complete one
chapter a week. That way, in a few months, you’ll finish the course. You can then use this book, with
its comprehensive index, as a permanent reference.

Suggestions for future editions are welcome.
Stan Gibilisco
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IT IS IMPORTANT TO UNDERSTAND SOME SIMPLE, GENERAL PHYSICS PRINCIPLES IN ORDER TO HAVE A

full grasp of electricity and electronics. It is not necessary to know high-level mathematics. In sci-
ence, you can talk about qualitative things or quantitative things, the “what” versus the “how
much.” For now, we are concerned only about the “what.” The “how much” will come later.

Atoms
All matter is made up of countless tiny particles whizzing around. These particles are extremely
dense; matter is mostly empty space. Matter seems continuous because the particles are so small,
and they move incredibly fast.

Each chemical element has its own unique type of particle, known as its atom. Atoms of differ-
ent elements are always different. The slightest change in an atom can make a tremendous differ-
ence in its behavior. You can live by breathing pure oxygen, but you can’t live off of pure nitrogen.
Oxygen will cause metal to corrode, but nitrogen will not. Wood will burn furiously in an atmos-
phere of pure oxygen, but will not even ignite in pure nitrogen. Yet both are gases at room temper-
ature and pressure; both are colorless, both are odorless, and both are just about of equal weight.
These substances are so different because oxygen has eight protons, while nitrogen has only seven.
There are many other examples in nature where a tiny change in atomic structure makes a major dif-
ference in the way a substance behaves.

Protons, Neutrons, and Atomic Numbers
The part of an atom that gives an element its identity is the nucleus. It is made up of two kinds of
particles, the proton and the neutron. These are extremely dense. A teaspoonful of either of these par-
ticles, packed tightly together, would weigh tons. Protons and neutrons have just about the same
mass, but the proton has an electric charge while the neutron does not.

The simplest element, hydrogen, has a nucleus made up of only one proton; there are usually
no neutrons. This is the most common element in the universe. Sometimes a nucleus of hydrogen
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has a neutron or two along with the proton, but this does not occur very often. These “mutant”
forms of hydrogen do, nonetheless, play significant roles in atomic physics.

The second most abundant element is helium. Usually, this atom has a nucleus with two pro-
tons and two neutrons. Hydrogen is changed into helium inside the sun, and in the process, energy
is given off. This makes the sun shine. The process, called fusion, is also responsible for the terrific
explosive force of a hydrogen bomb.

Every proton in the universe is just like every other. Neutrons are all alike, too. The number of
protons in an element’s nucleus, the atomic number, gives that element its identity. The element with
three protons is lithium, a light metal that reacts easily with gases such as oxygen or chlorine. The el-
ement with four protons is beryllium, also a metal. In general, as the number of protons in an ele-
ment’s nucleus increases, the number of neutrons also increases. Elements with high atomic numbers,
like lead, are therefore much denser than elements with low atomic numbers, like carbon. Perhaps
you’ve compared a lead sinker with a piece of coal of similar size, and noticed this difference.

Isotopes and Atomic Weights
For a given element, such as oxygen, the number of neutrons can vary. But no matter what the num-
ber of neutrons, the element keeps its identity, based on the atomic number. Differing numbers of
neutrons result in various isotopes for a given element.

Each element has one particular isotope that is most often found in nature. But all elements
have numerous isotopes. Changing the number of neutrons in an element’s nucleus results in a dif-
ference in the weight, and also a difference in the density, of the element. Thus, hydrogen contain-
ing a neutron or two in the nucleus, along with the proton, is called heavy hydrogen.

The atomic weight of an element is approximately equal to the sum of the number of protons
and the number of neutrons in the nucleus. Common carbon has an atomic weight of about 12, and
is called carbon 12 or C12. But sometimes it has an atomic weight of about 14, and is known as car-
bon 14 or C14.

Electrons
Surrounding the nucleus of an atom are particles having opposite electric charge from the protons.
These are the electrons. Physicists arbitrarily call the electrons’ charge negative, and the protons’
charge positive. An electron has exactly the same charge quantity as a proton, but with opposite po-
larity. The charge on a single electron or proton is the smallest possible electric charge. All charges,
no matter how great, are multiples of this unit charge.

One of the earliest ideas about the atom pictured the electrons embedded in the nucleus, like
raisins in a cake. Later, the electrons were seen as orbiting the nucleus, making the atom like a
miniature solar system with the electrons as the planets (Fig. 1-1). Still later, this view was modified
further. Today, the electrons are seen as so fast-moving, with patterns so complex, that it is not even
possible to pinpoint them at any given instant of time. All that can be done is to say that an elec-
tron will just as likely be inside a certain sphere as outside. These spheres are known as electron
shells. Their centers correspond to the position of the atomic nucleus. The farther away from the nu-
cleus the shell, the more energy the electron has (Fig. 1-2).
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Electrons can move rather easily from one atom to another in some materials. In other sub-
stances, it is difficult to get electrons to move. But in any case, it is far easier to move electrons than
it is to move protons. Electricity almost always results, in some way, from the motion of electrons in
a material. Electrons are much lighter than protons or neutrons. In fact, compared to the nucleus of
an atom, the electrons weigh practically nothing.

Generally, the number of electrons in an atom is the same as the number of protons. The neg-
ative charges therefore exactly cancel out the positive ones, and the atom is electrically neutral. But

Electrons 5

1-1 An early model of the
atom, developed around
the year 1900,
resembled a miniature
solar system. The
electrons were held in
their orbits around the
nucleus by electrostatic
attraction.

1-2 Electrons move around the nucleus of an atom at defined levels,
called shells, which correspond to discrete energy states. This is a
simplified illustration of an electron gaining energy within an atom.



under some conditions, there can be an excess or shortage of electrons. High levels of radiant energy,
extreme heat, or the presence of an electric field (discussed later) can “knock” or “throw” electrons
loose from atoms, upsetting the balance.

Ions
If an atom has more or less electrons than protons, that atom acquires an electrical charge. A
shortage of electrons results in positive charge; an excess of electrons gives a negative charge. The
element’s identity remains the same, no matter how great the excess or shortage of electrons. In
the extreme case, all the electrons might be removed from an atom, leaving only the nucleus.
However, it would still represent the same element as it would if it had all its electrons. A
charged atom is called an ion. When a substance contains many ions, the material is said to be
ionized.

A good example of an ionized substance is the atmosphere of the earth at high altitudes.
The ultraviolet radiation from the sun, as well as high-speed subatomic particles from space, re-
sult in the gases’ atoms being stripped of electrons. The ionized gases tend to be found in lay-
ers at certain altitudes. These layers are responsible for long-distance radio communications at
some frequencies.

Ionized materials generally conduct electricity well, even if the substance is normally not a good
conductor. Ionized air makes it possible for a lightning stroke to take place, for example. The ion-
ization, caused by a powerful electric field, occurs along a jagged, narrow channel. After the light-
ning flash, the nuclei of the atoms quickly attract stray electrons back, and the air becomes
electrically neutral again.

An element might be both an ion and an isotope different from the usual isotope. For example,
an atom of carbon might have eight neutrons rather than the usual six, thus being the isotope C14,
and it might have been stripped of an electron, giving it a positive unit electric charge and making
it an ion.

Compounds
Different elements can join together to share electrons. When this happens, the result is a chemical
compound. One of the most common compounds is water, the result of two hydrogen atoms join-
ing with an atom of oxygen. There are literally thousands of different chemical compounds that
occur in nature.

A compound is different than a simple mixture of elements. If hydrogen and oxygen are mixed,
the result is a colorless, odorless gas, just like either element is a gas separately. A spark, however, will
cause the molecules to join together; this will liberate energy in the form of light and heat. Under
the right conditions, there will be a violent explosion, because the two elements join eagerly. Water
is chemically illustrated in Fig. 1-3.

Compounds often, but not always, appear greatly different from any of the elements that make
them up. At room temperature and pressure, both hydrogen and oxygen are gases. But water under
the same conditions is a liquid. If it gets a few tens of degrees colder, water turns solid at standard
pressure. If it gets hot enough, water becomes a gas, odorless and colorless, just like hydrogen or
oxygen.
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Another common example of a compound is rust. This forms when iron joins with oxygen.
While iron is a dull gray solid and oxygen is a gas, rust is a maroon-red or brownish powder, com-
pletely unlike either of the elements from which it is formed.

Molecules
When atoms of elements join together to form a compound, the resulting particles are molecules.
Figure 1-3 is an example of a molecule of water, consisting of three atoms put together.

The natural form of an element is also known as its molecule. Oxygen tends to occur in pairs
most of the time in the earth’s atmosphere. Thus, an oxygen molecule is sometimes denoted by the
symbol O2. The “O” represents oxygen, and the subscript 2 indicates that there are two atoms per
molecule. The water molecule is symbolized H2O, because there are two atoms of hydrogen and one
atom of oxygen in each molecule.

Sometimes oxygen atoms exist all by themselves; then we denote the molecule simply as O.
Sometimes there are three atoms of oxygen grouped together. This is the gas called ozone, which has
received much attention lately in environmental news. It is written O3.

All matter, whether solid, liquid, or gas, is made of molecules. These particles are always mov-
ing. The speed with which they move depends on the temperature. The hotter the temperature, the
more rapidly the molecules move around. In a solid, the molecules are interlocked in a sort of rigid
pattern, although they vibrate continuously (Fig. 1-4A). In a liquid, they slither and slide around
(Fig. 1-4B). In a gas, they rush all over the place, bumping into each other and into solids and liq-
uids adjacent to the gas (Fig. 1-4C).

Molecules 7

1-3 A simplified diagram of a water molecule.
Note the shared electrons.



Conductors
In some materials, electrons move easily from atom to atom. In others, the electrons move with dif-
ficulty. And in some materials, it is almost impossible to get them to move. An electrical conductor
is a substance in which the electrons are mobile.

The best conductor at room temperature is pure elemental silver. Copper and aluminum are
also excellent electrical conductors. Iron, steel, and various other metals are fair to good conductors
of electricity. In most electrical circuits and systems, copper or aluminum wire is used. (Silver is im-
practical because of its high cost.)

Some liquids are good electrical conductors. Mercury is one example. Salt water is a fair con-
ductor. Gases or mixtures of gases, such as air, are generally poor conductors of electricity. This is
because the atoms or molecules are usually too far apart to allow a free exchange of electrons. But if
a gas becomes ionized, it can be a fair conductor of electricity.

Electrons in a conductor do not move in a steady stream, like molecules of water through a gar-
den hose. Instead, they are passed from one atom to another right next to it (Fig. 1-5). This happens
to countless atoms all the time. As a result, literally trillions of electrons pass a given point each sec-
ond in a typical electrical circuit.

Insulators
An insulator prevents electrical currents from flowing, except occasionally in tiny amounts. Most gases
are good electrical insulators. Glass, dry wood, paper, and plastics are other examples. Pure water is a

8 Basic Physical Concepts
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good electrical insulator, although it conducts some current with even the slightest impurity. Metal
oxides can be good insulators, even though the metal in pure form is a good conductor.

Electrical insulators can be forced to carry current. Ionization can take place; when electrons are
stripped away from their atoms, they move more or less freely. Sometimes an insulating material gets
charred, or melts down, or gets perforated by a spark. Then its insulating properties are lost, and
some electrons flow. An insulating material is sometimes called a dielectric. This term arises from the
fact that it keeps electrical charges apart, preventing the flow of electrons that would equalize a
charge difference between two places. Excellent insulating materials can be used to advantage in cer-
tain electrical components such as capacitors, where it is important that electrons not flow.

Porcelain or glass can be used in electrical systems to keep short circuits from occurring. These
devices, called insulators, come in various shapes and sizes for different applications. You can see
them on high-voltage utility poles and towers. They hold the wire up without running the risk of a
short circuit with the tower or a slow discharge through a wet wooden pole.

Resistors
Some substances, such as carbon, conduct electricity fairly well but not really well. The conductiv-
ity can be changed by adding impurities like clay to a carbon paste, or by winding a thin wire into
a coil. Electrical components made in this way are called resistors. They are important in electronic
circuits because they allow for the control of current flow. The better a resistor conducts, the lower
its resistance; the worse it conducts, the higher the resistance.

Electrical resistance is measured in units called ohms. The higher the value in ohms, the greater
the resistance, and the more difficult it becomes for current to flow. For wires, the resistance is some-
times specified in terms of ohms per unit length (foot, meter, kilometer, or mile). In an electrical
system, it is usually desirable to have as low a resistance, or ohmic value, as possible. This is because
resistance converts electrical energy into heat.

Semiconductors
In a semiconductor, electrons flow, but not as well as they do in a conductor. Some semiconductors
carry electrons almost as well as good electrical conductors like copper or aluminum; others are al-
most as bad as insulating materials.

Semiconductors 9

1-5 In an electrical
conductor, certain
electrons can pass easily
from atom to atom.



Semiconductors are not the same as resistors. In a semiconductor, the material is treated so that
it has very special properties.

Semiconductors include certain substances such as silicon, selenium, or gallium, that have been
“doped” by the addition of impurities such as indium or antimony. Have you heard of such things
as gallium arsenide, metal oxides, or silicon rectifiers? Electrical conduction in these materials is always
a result of the motion of electrons. But this can be a quite peculiar movement, and sometimes engi-
neers speak of the movement of holes rather than electrons. A hole is a shortage of an electron—you
might think of it as a positive ion—and it moves along in a direction opposite to the flow of elec-
trons (Fig. 1-6).

When most of the charge carriers are electrons, the semiconductor is called N-type, because elec-
trons are negatively charged. When most of the charge carriers are holes, the semiconductor mate-
rial is known as P-type because holes have a positive electric charge. But P-type material does pass
some electrons, and N-type material carries some holes. In a semiconductor, the more abundant
type of charge carrier is called the majority carrier. The less abundant kind is known as the minority
carrier. Semiconductors are used in diodes, transistors, and integrated circuits. These substances are
what make it possible for you to have a computer or a television receiver in a package small enough
to hold in your hand.

Current
Whenever there is movement of charge carriers in a substance, there is an electric current. Current
is measured in terms of the number of electrons or holes passing a single point in 1 second.

A great many charge carriers go past any given point in 1 second, even if the current is small. In
a household electric circuit, a 100-watt light bulb draws a current of about six quintillion (6 followed
by 18 zeros) charge carriers per second. Even the smallest bulb carries quadrillions (numbers fol-
lowed by 15 zeros) of charge carriers every second. It is impractical to speak of a current in terms of
charge carriers per second, so it is measured in coulombs per second instead. A coulomb is equal to
approximately 6,240,000,000,000,000,000 electrons or holes. A current of 1 coulomb per second
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is called an ampere, and this is the standard unit of electric current. A 100-watt bulb in your desk
lamp draws about 1 ampere of current.

When a current flows through a resistance—and this is always the case because even the best con-
ductors have resistance—heat is generated. Sometimes light and other forms of energy are emitted as
well. A light bulb is deliberately designed so that the resistance causes visible light to be generated.

Electric current flows at high speed through any conductor, resistor, or semiconductor. Never-
theless, it is considerably less than the speed of light.

Static Electricity
Charge carriers, particularly electrons, can build up, or become deficient, on things without flow-
ing anywhere. You’ve experienced this when walking on a carpeted floor during the winter, or in a
place where the humidity was low. An excess or shortage of electrons is created on and in your body.
You acquire a charge of static electricity. It’s called “static” because it doesn’t go anywhere. You don’t
feel this until you touch some metallic object that is connected to earth ground or to some large fix-
ture; but then there is a discharge, accompanied by a spark.

If you were to become much more charged, your hair would stand on end, because every hair
would repel every other. Like charges are caused either by an excess or a deficiency of electrons; they
repel. The spark might jump an inch, 2 inches, or even 6 inches. Then it would more than startle
you; you could get hurt. This doesn’t happen with ordinary carpet and shoes, fortunately. But a de-
vice called a Van de Graaff generator, found in physics labs, can cause a spark this large (Fig. 1-7). Be
careful when using this device for physics experiments!
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In the extreme, lightning occurs between clouds, and between clouds and ground in the earth’s
atmosphere. This spark, called a stroke, is a magnified version of the spark you get after shuffling
around on a carpet. Until the stroke occurs, there is a static charge in the clouds, between different
clouds or parts of a cloud, and the ground. In Fig. 1-8, cloud-to-cloud (A) and cloud-to-ground (B)
static buildups are shown. In the case at B, the positive charge in the earth follows along beneath the
storm cloud. The current in a lightning stroke is usually several tens of thousands, or hundreds of
thousands, of amperes. But it takes place only for a fraction of a second. Still, many coulombs of
charge are displaced in a single bolt of lightning.

Electromotive Force
Current can only flow if it gets a “push.” This can be caused by a buildup of static electric charges,
as in the case of a lightning stroke. When the charge builds up, with positive polarity (shortage of
electrons) in one place and negative polarity (excess of electrons) in another place, a powerful elec-
tromotive force (EMF) exists. This force is measured in units called volts.

Ordinary household electricity has an effective voltage of between 110 and 130; usually it is
about 117. A car battery has an EMF of 12 to 14 volts. The static charge that you acquire when
walking on a carpet with hard-soled shoes is often several thousand volts. Before a discharge of light-
ning, millions of volts exist. An EMF of 1 volt, across a resistance of 1 ohm, will cause a current of
1 ampere to flow. This is a classic relationship in electricity, and is stated generally as Ohm’s Law. If

12 Basic Physical Concepts

1-8 Electrostatic charges can build up between clouds in a thunderstorm (A), or
between a cloud and the surface of the earth (B).



the EMF is doubled, the current is doubled. If the resistance is doubled, the current is cut in half.
This important law of electrical circuit behavior is covered in detail later in this book.

It is possible to have an EMF without having any current. This is the case just before a light-
ning stroke occurs, and before you touch a metal object after walking on a carpet. It is also true be-
tween the two wires of an electric lamp when the switch is turned off. It is true of a dry cell when
there is nothing connected to it. There is no current, but a current is possible given a conductive
path between the two points. Voltage, or EMF, is sometimes called potential or potential difference
for this reason.

Even a huge EMF does not necessarily drive much current through a conductor or resistance.
A good example is your body after walking around on the carpet. Although the voltage seems deadly
in terms of numbers (thousands), there are not many coulombs of static-electric charge that can ac-
cumulate on an object the size of your body. Therefore, in relative terms, not that many electrons
flow through your finger when you touch a radiator. This is why you don’t get a severe shock.

If there are plenty of coulombs available, a small voltage, such as 117 volts (or even less) can
cause a lethal current. This is why it is dangerous to repair an electrical device with the power on.
The power plant will pump an unlimited number of coulombs of charge through your body if you
are not careful.

Nonelectrical Energy
In electricity and electronics, there are phenomena that involve other forms of energy besides elec-
trical energy. Visible light is an example. A light bulb converts electricity into radiant energy that
you can see. This was one of the major motivations for people like Thomas Edison to work with
electricity. Visible light can also be converted into electric current or voltage. A photovoltaic cell
does this.

Light bulbs always give off some heat, as well as visible light. Incandescent lamps actually give
off more energy as heat than as light. You are certainly acquainted with electric heaters, designed for
the purpose of changing electricity into heat energy. This heat is a form of radiant energy called
infrared (IR). It is similar to visible light, except that the waves are longer and you can’t see them.

Electricity can be converted into other radiant-energy forms, such as radio waves, ultraviolet
(UV), and X rays. This is done by specialized devices such as radio transmitters, sunlamps, and elec-
tron tubes. Fast-moving protons, neutrons, electrons, and atomic nuclei are an important form of
energy. The energy from these particles is sometimes sufficient to split atoms apart. This effect
makes it possible to build an atomic reactor whose energy can be used to generate electricity.

When a conductor moves in a magnetic field, electric current flows in that conductor. In this
way, mechanical energy is converted into electricity. This is how an electric generator works. Gener-
ators can also work backward. Then you have a motor that changes electricity into useful mechani-
cal energy.

A magnetic field contains energy of a unique kind. The science of magnetism is closely related
to electricity. Magnetic phenomena are of great significance in electronics. The oldest and most uni-
versal source of magnetism is the geomagnetic field surrounding the earth, caused by alignment of
iron atoms in the core of the planet.

A changing magnetic field creates a fluctuating electric field, and a fluctuating electric field pro-
duces a changing magnetic field. This phenomenon, called electromagnetism, makes it possible to
send wireless signals over long distances. The electric and magnetic fields keep producing one an-
other over and over again through space.
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Chemical energy is converted into electricity in dry cells, wet cells, and batteries. Your car battery
is an excellent example. The acid reacts with the metal electrodes to generate an electromotive force.
When the two poles of the batteries are connected, current results. The chemical reaction contin-
ues, keeping the current going for a while. But the battery can only store a certain amount of chem-
ical energy. Then it “runs out of juice,” and the supply of chemical energy must be restored by
charging. Some cells and batteries, such as lead-acid car batteries, can be recharged by driving cur-
rent through them, and others, such as most flashlight and transistor-radio batteries, cannot.

Quiz
Refer to the text in this chapter if necessary. A good score is at least 18 correct answers out of these
20 questions. The answers are listed in the back of this book.

1. The atomic number of an element is determined by
(a) the number of neutrons.
(b) the number of protons.
(c) the number of neutrons plus the number of protons.
(d) the number of electrons.

2. The atomic weight of an element is approximately determined by
(a) the number of neutrons.
(b) the number of protons.
(c) the number of neutrons plus the number of protons.
(d) the number of electrons.

3. Suppose there is an atom of oxygen, containing eight protons and eight neutrons in the
nucleus, and two neutrons are added to the nucleus. What is the resulting atomic weight?

(a) 8
(b) 10
(c) 16
(d) 18

4. An ion
(a) is electrically neutral.
(b) has positive electric charge.
(c) has negative electric charge.
(d) can have either a positive or negative charge.

5. An isotope
(a) is electrically neutral.
(b) has positive electric charge.
(c) has negative electric charge.
(d) can have either a positive or negative charge.
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6. A molecule
(a) can consist of a single atom of an element.
(b) always contains two or more elements.
(c) always has two or more atoms.
(d) is always electrically charged.

7. In a compound,
(a) there can be a single atom of an element.
(b) there must always be two or more elements.
(c) the atoms are mixed in with each other but not joined.
(d) there is always a shortage of electrons.

8. An electrical insulator can be made a conductor
(a) by heating it.
(b) by cooling it.
(c) by ionizing it.
(d) by oxidizing it.

9. Of the following substances, the worst conductor is
(a) air.
(b) copper.
(c) iron.
(d) salt water.

10. Of the following substances, the best conductor is
(a) air.
(b) copper.
(c) iron.
(d) salt water.

11. Movement of holes in a semiconductor
(a) is like a flow of electrons in the same direction.
(b) is possible only if the current is high enough.
(c) results in a certain amount of electric current.
(d) causes the material to stop conducting.

12. If a material has low resistance, then
(a) it is a good conductor.
(b) it is a poor conductor.
(c) the current flows mainly in the form of holes.
(d) current can flow only in one direction.

13. A coulomb
(a) represents a current of 1 ampere.
(b) flows through a 100-watt light bulb.
(c) is equivalent to 1 ampere per second.
(d) is an extremely large number of charge carriers.
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14. A stroke of lightning
(a) is caused by a movement of holes in an insulator.
(b) has a very low current.
(c) is a discharge of static electricity.
(d) builds up between clouds.

15. The volt is the standard unit of
(a) current.
(b) charge.
(c) electromotive force.
(d) resistance.

16. If an EMF of 1 volt is placed across a resistance of 2 ohms, then the current is
(a) half an ampere.
(b) 1 ampere.
(c) 2 amperes.
(d) impossible to determine.

17. A backward-working electric motor, in which mechanical rotation is converted to electricity,
is best described as

(a) an inefficient, energy-wasting device.
(b) a motor with the voltage connected the wrong way.
(c) an electric generator.
(d) a magnetic field.

18. In a battery, chemical energy can sometimes be replenished by
(a) connecting it to a light bulb.
(b) charging it.
(c) discharging it.
(d) no means known; when a battery is dead, you must throw it away.

19. A fluctuating magnetic field
(a) produces an electric current in an insulator.
(b) magnetizes the earth.
(c) produces a fluctuating electric field.
(d) results from a steady electric current.

20. Visible light is converted into electricity
(a) in a dry cell.
(b) in a wet cell.
(c) in an incandescent bulb.
(d) in a photovoltaic cell.
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THIS CHAPTER EXPLAINS, IN MORE DETAIL, STANDARD UNITS THAT DEFINE THE BEHAVIOR OF DIRECT-
current (dc) circuits. Many of these rules also apply to utility alternating-current (ac) circuits.

The Volt
In Chap. 1, you learned a little about the volt, the standard unit of electromotive force (EMF) or
potential difference.

An accumulation of electrostatic charge, such as an excess or shortage of electrons, is always as-
sociated with a voltage. There are other situations in which voltages exist. Voltage can be generated
at a power plant, produced in an electrochemical reaction, or caused by light rays striking a semi-
conductor chip. It can be produced when an object is moved in a magnetic field, or is placed in a
fluctuating magnetic field.

A potential difference between two points produces an electric field, represented by electric lines
of flux (Fig. 2-1). There is a pole that is relatively positive, with fewer electrons, and one that is rel-
atively negative, with more electrons. The positive pole does not necessarily have a deficiency of
electrons compared with neutral objects, and the negative pole does not always have a surplus of
electrons relative to neutral objects. But the negative pole always has more electrons than the posi-
tive pole.

The abbreviation for volt (or volts) is V. Sometimes, smaller units are used. The millivolt (mV)
is equal to a thousandth (0.001) of a volt. The microvolt (µV) is equal to a millionth (0.000001) of
a volt. It is sometimes necessary to use units larger than the volt. One kilovolt (kV) is one thousand
volts (1000 V). One megavolt (MV) is 1 million volts (1,000,000 V) or one thousand kilovolts
(1000 kV).

In a dry cell, the voltage is usually between 1.2 and 1.7 V; in a car battery, it is 12 to 14 V. In
household utility wiring, it is a low-frequency alternating current of about 117 V for electric lights
and most appliances, and 234 V for a washing machine, dryer, oven, or stove. In television sets,
transformers convert 117 V to around 450 V for the operation of the picture tube. In some broad-
cast transmitters, the voltage can be several kilovolts.
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The largest voltages on our planet occur between clouds, or between clouds and the ground, in
thundershowers. This potential difference can build up to several tens of megavolts. The existence
of a voltage always means that charge carriers, which are electrons in a conventional circuit, flow be-
tween two points if a conductive path is provided. Voltage represents the driving force that impels
charge carriers to move. If all other factors are held constant, high voltages produce a faster flow of
charge carriers, and therefore larger currents, than low voltages. But that’s an oversimplification in
most real-life scenarios, where other factors are hardly ever constant!

Current Flow
If a conducting or semiconducting path is provided between two poles having a potential difference,
charge carriers flow in an attempt to equalize the charge between the poles. This flow of current con-
tinues as long as the path is provided, and as long as there is a charge difference between the poles.

Sometimes the charge difference is equalized after a short while. This is the case, for example,
when you touch a radiator after shuffling around on the carpet while wearing hard-soled shoes. It is
also true in a lightning stroke. In these instances, the charge is equalized in a fraction of a second.
In other cases, the charge takes longer to be used up. This happens if you short-circuit a dry cell.
Within a few minutes, the cell “runs out of juice” if you put a wire between the positive and nega-
tive terminals. If you put a bulb across the cell, say with a flashlight, it takes an hour or two for the
charge difference to drop to zero.

In household electric circuits, the charge difference is never equalized, unless there’s a power
failure. Of course, if you short-circuit an outlet (don’t!), the fuse or breaker will blow or trip, and the
charge difference will immediately drop to zero. But if you put a 100-watt bulb at the outlet, the
charge difference will be maintained as the current flows. The power plant can keep a potential dif-
ference across a lot of light bulbs indefinitely.
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Have you heard that it is current, not voltage, that kills? This is a literal truth, but it plays on
semantics. It’s like saying “It’s the heat, not the fire, that burns you.” Naturally! But there can only
be a deadly current if there is enough voltage to drive it through your body. You don’t have to worry
when handling flashlight cells, but you’d better be extremely careful around household utility cir-
cuits. A voltage of 1.2 to 1.7 V can’t normally pump a dangerous current through you, but a volt-
age of 117 V almost always can.

In an electric circuit that always conducts equally well, the current is directly proportional to
the applied voltage. If you double the voltage, you double the current. If the voltage is cut in half,
the current is cut in half too. Figure 2-2 shows this relationship as a graph in general terms. It as-
sumes that the power supply can provide the necessary number of charge carriers.

The Ampere
Current is a measure of the rate at which charge carriers flow. The standard unit is the ampere. This
represents one coulomb (6,240,000,000,000,000,000) of charge carriers flowing every second past
a given point.

An ampere is a comparatively large amount of current. The abbreviation is A. Often, current
is specified in terms of milliamperes, abbreviated mA, where 1 mA = 0.001 A, or a thousandth of
an ampere. You will also sometimes hear of microamperes (µA), where 1 µA = 0.000001 A or
0.001 mA, which is a millionth of an ampere. It is increasingly common to hear about nanoam-
peres (nA), where 1 nA = 0.001 µA = 0.000000001 A, which is a thousandth of a millionth of an
ampere.

A current of a few milliamperes will give you a startling shock. About 50 mA will jolt you se-
verely, and 100 mA can cause death if it flows through your chest cavity. An ordinary 100-watt light
bulb draws about 1 A of current in a household utility circuit. An electric iron draws approximately
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10 A; an entire household normally uses between 10 and 50 A, depending on the size of the house
and the kinds of appliances it has, and also on the time of day, week, or year.

The amount of current that flows in an electrical circuit depends on the voltage, and also on the
resistance. There are some circuits in which extremely large currents, say 1000 A, can flow. This will
happen through a metal bar placed directly at the output of a massive electric generator. The resistance
is extremely low in this case, and the generator is capable of driving huge numbers of charge carriers
through the bar every second. In some semiconductor electronic devices, such as microcomputers, a
few nanoamperes will suffice for many complicated processes. Some electronic clocks draw so little
current that their batteries last as long as they would if left on the shelf without being put to any use.

Resistance and the Ohm
Resistance is a measure of the opposition that a circuit offers to the flow of electric current. You can
compare it to the diameter of a hose. In fact, for metal wire, this is an excellent analogy: small-
diameter wire has high resistance (a lot of opposition to current), and large-diameter wire has low
resistance (not much opposition to current). The type of metal makes a difference too. For example,
steel wire has higher resistance for a given diameter than copper wire.

The standard unit of resistance is the ohm. This is sometimes symbolized by the uppercase
Greek letter omega (Ω). You’ll sometimes hear about kilohms (symbolized k or kΩ), where 1 kΩ =
1000 Ω, or about megohms (symbolized M or MΩ), where 1 MΩ = 1000 kΩ = 1,000,000 Ω.

Electric wire is sometimes rated for resistivity. The standard unit for this purpose is the ohm per
foot (ohm/ft or Ω/ft) or the ohm per meter (ohm/m or Ω/m). You might also come across the unit
ohm per kilometer (ohm/km or Ω/km). Table 2-1 shows the resistivity for various common sizes of
solid copper wire at room temperature, as a function of the wire size as defined by a scheme known
as the American Wire Gauge (AWG).
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Table 2-1. Approximate resistivity at room
temperature for solid copper wire as a function of

the wire size in American Wire Gauge (AWG).

Wire size, AWG # Resistivity, ohms/km

2 0.52
4 0.83
6 1.3
8 2.7
10 3.3
12 5.3
14 8.4
16 13
18 21
20 34
22 54
24 86
26 140
28 220
30 350



When 1 V is placed across 1 Ω of resistance, assuming that the power supply can deliver an un-
limited number of charge carriers, there is a current of 1 A. If the resistance is doubled to 2 Ω, the
current decreases to 0.5 A. If the resistance is cut by a factor of 5 to 0.2 Ω, the current increases by
the same factor, to 5 A. The current flow, for a constant voltage, is said to be inversely proportional
to the resistance. Figure 2-3 is a graph that shows various currents, through various resistances, given
a constant voltage of 1 V across the whole resistance.

Resistance has another property. If there is a current flowing through a resistive material, there
is always a potential difference across the resistive component (called a resistor). This is shown in 
Fig. 2-4. In general, this voltage is directly proportional to the current through the resistor. This be-
havior of resistors is useful in the design of electronic circuits, as you will learn later in this book.

Electrical circuits always have some resistance. There is no such thing as a perfect conductor.
When some metals are chilled to temperatures near absolute zero, they lose practically all of their re-
sistance, but they never become absolutely perfect, resistance-free conductors. This phenomenon,
about which you might have heard, is called superconductivity.
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Just as there is no such thing as a perfectly resistance-free substance, there isn’t a truly infinite
resistance, either. Even air conducts to some extent, although the effect is usually so small that it can
be ignored. In some electronic applications, materials are selected on the basis of how “nearly infi-
nite” their resistance is.

In electronics, the resistance of a component often varies, depending on the conditions under
which it is operated. A transistor, for example, might have high resistance some of the time, and low
resistance at other times. High/low resistance variations can be made to take place thousands, mil-
lions, or billions of times each second. In this way, oscillators, amplifiers, and digital devices func-
tion in radio receivers and transmitters, telephone networks, digital computers, and satellite links
(to name just a few applications).

Conductance and the Siemens
Electricians and electrical engineers sometimes talk about the conductance of a material, rather than
about its resistance. The standard unit of conductance is the siemens, abbreviated S. When a com-
ponent has a conductance of 1 S, its resistance is 1 Ω. If the resistance is doubled, the conductance
is cut in half, and vice versa. Therefore, conductance is the reciprocal of resistance.

If you know the resistance of a component or circuit in ohms, you can get the conductance in
siemens: divide 1 by the resistance. If you know the conductance in siemens, you can get the resist-
ance: divide 1 by the conductance. Resistance, as a variable quantity, is denoted by an italicized, up-
percase letter R. Conductance, as a variable quantity, is denoted as an italicized, uppercase letter G. If
we express R in ohms and G in siemens, then the following two equations describe their relationship:

G = 1/R
R = 1/G

Units of conductance much smaller than the siemens are often used. A resistance of 1 kΩ is
equal to 1 millisiemens (1 mS). If the resistance is 1 MΩ, the conductance is one microsiemens (1 µS).
You’ll sometimes hear about kilosiemens (kS) or megasiemens (MS), representing resistances of 0.001
Ω and 0.000001 Ω (a thousandth of an ohm and a millionth of an ohm, respectively). Short lengths
of heavy wire have conductance values in the range of kilosiemens. Heavy metal rods can have con-
ductances in the megasiemens range.

Suppose a component has a resistance of 50 Ω. Then its conductance, in siemens, is 1/50 S,
which is equal to 0.02 S. We can call this 20 mS. Or imagine a piece of wire with a conductance
of 20 S. Its resistance is 1/20 Ω, which is equal to 0.05 Ω. You will not often hear the term mil-
liohm. But you could say that this wire has a resistance of 50 mΩ, and you would be technically
right.

Determining conductivity is tricky. If wire has a resistivity of 10 Ω/km, you can’t say that it has
a conductivity of 1/10, or 0.1, S/km. It is true that a kilometer of such wire has a conductance of
0.1 S, but 2 km of the wire has a resistance of 20 Ω (because there is twice as much wire). That is
not twice the conductance, but half. If you say that the conductivity of the wire is 0.1 S/km, then
you might be tempted to say that 2 km of the wire has 0.2 S of conductance. That would be a mis-
take! Conductance decreases with increasing wire length.

Figure 2-5 illustrates the resistance and conductance values for various lengths of wire having a
resistivity of 10 Ω/km.
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Power and the Watt
Whenever current flows through a resistance, heat results. The heat can be measured in watts (sym-
bolized W) and represents electrical power. (As a variable quantity in equations, power is denoted by
the uppercase italic letter P.) Power can be manifested in many forms, such as mechanical motion,
radio waves, visible light, or noise. But heat is always present, in addition to any other form of
power, in an electrical or electronic device. This is because no equipment is 100 percent efficient.
Some power always goes to waste, and this waste is almost all in the form of heat.

Look again at Fig. 2-4. There is a certain voltage across the resistor, not specifically indicated.
There’s also a current flowing through the resistance, and it is not quantified in the diagram, either.
Suppose we call the voltage E and the current I, in volts (V) and amperes (A), respectively. Then the
power in watts dissipated by the resistance, call it P, is the product of the voltage in volts and the
current in amperes:

P = EI

If the voltage E across the resistance is caused by two flashlight cells in series, giving 3 V, and if
the current I through the resistance (a light bulb, perhaps) is 0.1 A, then E = 3 V and I = 0.1 A, and
we can calculate the power P in watts as follows:

P = EI = 3 × 0.1 = 0.3 W

Suppose the voltage is 117 V, and the current is 855 mA. To calculate the power, we must con-
vert the current into amperes: 855 mA = 855/1000 A = 0.855 A. Then:

P = EI = 117 × 0.855 = 100 W
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You will often hear about milliwatts (mW), microwatts (µW), kilowatts (kW), and megawatts
(MW). By now, you should be able to tell from the prefixes what these units represent. Otherwise,
you can refer to Table 2-2. This table lists the most commonly used prefix multipliers in electricity
and electronics.

Sometimes you need to use the power equation to find currents or voltages. Then you should
use I = P/E to find current, or E = P/I to find voltage. Always remember to convert, if necessary, to
the standard units of volts, amperes, and watts before performing the calculations.

A Word about Notation
Have you noticed some strange things about the notation yet? If you’re observant, you have! Why,
you might ask, are italics sometimes used, and sometimes not used? Something should be said early
in this course about notation, because it can get confusing with all the different symbols and abbre-
viations. Sometimes, symbols and abbreviations appear in italics, and sometimes they do not. You’ll
see subscripts often, and sometimes even they are italicized! Here are some rules that apply to nota-
tion in electricity and electronics:

• Symbols for specific units, such as volts, amperes, and ohms, are not italicized.
• Symbols for objects or components, such as resistors, batteries, and meters, are not italicized.
• Quantifying prefixes, such as “kilo-” or “micro-,” are not italicized.
• Labeled points in drawings might or might not be italicized; it doesn’t matter as long as a di-

agram is consistent with itself.
• Symbols for mathematical constants and variables, such as time, are italicized.
• Symbols for electrical quantities, such as voltage, current, resistance, and power, are itali-

cized.
• Symbols and abbreviations for modifiers might or might not be italicized; it doesn’t matter

as long as a document is consistent with itself.
• Numeric subscripts are not italicized.
• For nonnumeric subscripts, the same rules apply as for general symbols.

Some examples are R (not italicized) for resistor, R (italicized) for resistance, P (italicized) for power,
W (not italicized) for watts, V (not italicized) for volts, E or V (italicized) for voltage, A (not itali-
cized) for amperes, I (italicized) for current, f (italicized) for frequency, and t (italicized) for time.
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Table 2-2. Prefix multipliers from 0.000000000001
(trillionths, or units of 10−12) to 1,000,000,000,000

(trillions, or units of 1012).

Prefix Symbol Multiplier

pico- p 0.000000000001 (or 10−12)
nano- n 0.000000001 (or 10−9)
micro- µ 0.000001 (or 10−6)
milli- m 0.001 (or 10−3)
kilo- k 1000 (or 103)
mega- M 1,000,000 (or 106)
giga- G 1,000,000,000 (or 109)
tera- T 1,000,000,000,000 (or 1012)



Once in a while you will see the same symbol italicized in one place and not in another—in the
same circuit diagram or discussion! We might, for example, talk about “resistor number 3” (symbol-
ized R3), and then later in the same paragraph talk about its value as “resistance number 3” (Sym-
bolized R3). Still later we might talk about “the nth resistor in a series connection” (Rn) and then “the
nth resistance in a series combination of resistances” (Rn).

These differences in notation, while subtle (and, some people will say, picayune) are followed
in this book, and they are pretty much agreed upon by convention. They are important because they
tell the reader exactly what a symbol stands for in a diagram, discussion, or mathematical equation.
“Resistor” and “resistance” are vastly different things—as different from each other as a garden hose
(the object) and the extent to which it impedes the flow of water (the phenomenon). With this in
mind, let us proceed!

Energy and the Watt-Hour
Have you heard the terms “power” and “energy” used interchangeably, as if they mean the same
thing? They don’t! Energy is power dissipated over a length of time. Power is the rate at which energy
is expended. Physicists measure energy in units called joules. One joule (1 J) is the equivalent of a
watt-second, which is the equivalent of 1 watt of power dissipated for 1 second of time (1 W � s or
Ws). In electricity, you’ll more often encounter the watt-hour (symbolized W � h or Wh) or the
kilowatt-hour (symbolized kW � h or kWh). As their names imply, a watt-hour is the equivalent of
1 W dissipated for 1 h, and 1 kWh is the equivalent of 1 kW of power dissipated for 1 h.

A watt-hour of energy can be dissipated in an infinite number of different ways. A 60-W bulb
consumes 60 Wh in 1 h, the equivalent of a watt-hour per minute (1 Wh/min). A 100-W bulb con-
sumes 1 Wh in 1/100 h, or 36 s. Besides these differences, the rate of power dissipation in real-life
circuits often changes with time. This can make the determination of consumed energy compli-
cated, indeed.

Figure 2-6 illustrates two hypothetical devices that consume 1 Wh of energy. Device A uses its
power at a constant rate of 60 W, so it consumes 1 Wh in 1 min. The power consumption rate of
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2-6 Two devices that burn 1
Wh of energy. Device A
dissipates a constant
amount of power.
Device B dissipates a
variable amount of
power.



device B varies, starting at zero and ending up at quite a lot more than 60 W. How do you know
that this second device really consumes 1 Wh of energy? You must determine the area under the
curve in the graph. In this case, figuring out this area is easy, because the enclosed object is a trian-
gle. The area of a triangle is equal to half the product of the base length and the height. Device B is
powered up for 72 s, or 1.2 min; this is 1.2/60 = 0.02 h. Then the area under the curve is 1/2 ×
100 × 0.02 = 1 Wh.

When calculating energy values, you must always remember the units you’re using. In this case
the unit is the watt-hour, so you must multiply watts by hours. If you multiply watts by minutes, or
watts by seconds, you’ll get the wrong kind of units in your answer.

Often, the curves in graphs like these are complicated. Consider the graph of power consump-
tion in your home, versus time, for a day. It might look like the curve in Fig. 2-7. Finding the area
under this curve is not easy. But there is another way to determine the total energy burned by your
household over a period of time. That is by means of a meter that measures electrical energy in kilo-
watt-hours. Every month, without fail, the power company sends its representative to read your
electric meter. This person takes down the number of kilowatt-hours displayed, subtracts the num-
ber from the reading taken the previous month, and a few days later you get a bill. This meter au-
tomatically keeps track of total consumed energy, without anybody having to go through high-level
mathematical calculations to find the areas under irregular curves such as the graph of Fig. 2-7.

Other Energy Units
The joule, while standard among scientists, is not the only energy unit in existence! Another unit is
the erg, equivalent to one ten-millionth (0.0000001) of a joule. The erg is used in lab experiments
involving small amounts of expended energy.
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amount of power
consumed by a
hypothetical household,
as a function of the time 
of day.



Most folks have heard of the British thermal unit (Btu), equivalent to 1055 joules. This is the
energy unit commonly used to define the cooling or heating capacity of air-conditioning equip-
ment. To cool your room from 85 to 78°F needs a certain amount of energy, perhaps best specified
in Btu. If you are getting an air conditioner or furnace installed in your home, an expert will come
look at your situation, and determine the size of air-conditioning/heating unit that best suits your
needs. That person will likely tell you how powerful the unit should be in terms of its ability to heat
or cool in Btu per hour (Btu/h).

Physicists also use, in addition to the joule, a unit of energy called the electron volt (eV). This is
a tiny unit of energy, equal to just 0.00000000000000000016 joule (there are 18 zeroes after the
decimal point and before the 1). The physicists write 1.6 × 10−19 to represent this. It is the energy
gained by a single electron in an electric field of 1 V. Machines called particle accelerators (or atom
smashers) are rated by millions of electron volts (MeV), billions of electron volts (GeV), or trillions
of electron volts (TeV) of energy capacity.

Another energy unit, employed to denote work, is the foot-pound (ft-lb). This is the work
needed to raise a weight of one pound by a distance of one foot, not including any friction. It’s equal
to 1.356 joules.

All of these units, and conversion factors, are given in Table 2-3. Kilowatt-hours and watt-hours
are also included in this table. In electricity and electronics, you need to be concerned only with the
watt-hour and the kilowatt-hour for most purposes.

Alternating Current and the Hertz
This chapter, and this whole first section, is mostly concerned with direct current (dc). That’s elec-
tric current that always flows in the same direction and that does not change in intensity (at least
not too rapidly) with time. But household utility current is not of this kind. It reverses direction pe-
riodically, exactly once every 1/120 second. It goes through a complete cycle every 1/60 second.
Every repetition is identical to every other. This is alternating current (ac).

Figure 2-8 shows the characteristic wave of ac, as a graph of voltage versus time. Notice that the
maximum positive and negative voltages are not 117 V, as you’ve heard about household electricity,
but close to 165 V. There is a reason for this difference. The effective voltage for an ac wave is never
the same as the instantaneous maximum, or peak, voltage. In fact, for the common waveform shown
in Fig. 2-8, the effective value is 0.707 times the peak value. Conversely, the peak value is 1.414
times the effective value.
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Table 2-3. Conversion factors between joules and various other energy units.

To convert energy To convert energy
in this unit to energy in in joules to energy in

Unit joules, multiply by this unit, multiply by

British thermal units (Btu) 1055 0.000948
Electron volts (eV) 1.6 × 10−19 6.2 × 1018

Ergs 0.0000001 (or 10−7) 10,000,000 (or 107)
Foot-pounds (ft-lb) 1.356 0.738
Watt-hours (Wh) 3600 0.000278
Kilowatt-hours (kWh) 3,600,000 (or 3.6 × 106) 0.000000278 (or 2.78 × 10−7)



Because the whole cycle repeats itself every 1/60 second, the frequency of the utility ac wave is
said to be 60 hertz, abbreviated 60 Hz. The German word hertz literally translates to “cycles per sec-
ond.” In the United States, this is the standard frequency for ac. In some places it is 50 Hz.

In wireless communications, higher frequencies are common, and you’ll hear about kilohertz
(kHz), megahertz (MHz), and gigahertz (GHz). The relationships among these units are as follows:

1 kHz = 1000 Hz
1 MHz = 1000 kHz = 1,000,000 Hz

1 GHz = 1000 MHz = 1,000,000 kHz = 1,000,000,000 Hz

Usually, but not always, the waveshapes are of the type shown in Fig. 2-8. This waveform is known
as a sine wave or a sinusoidal waveform.

Rectification and Pulsating Direct Current
Batteries and other sources of direct current (dc) produce constant voltage. This can be represented
by a straight, horizontal line on a graph of voltage versus time (Fig. 2-9). For pure dc, the peak and
effective values are identical. But sometimes the value of dc voltage fluctuates rapidly with time.
This happens, for example, if the waveform in Fig. 2-8 is passed through a rectifier circuit.

Rectification is a process in which ac is changed to dc. The most common method of doing this
uses a device called the diode. Right now, you need not be concerned with how the rectifier circuit
is put together. The point is that part of the ac wave is either cut off, or turned around upside down,
so the output is pulsating dc. Figure 2-10 illustrates two different waveforms of pulsating dc. In the
waveform at A, the negative (bottom) part has been cut off. At B, the negative portion of the wave
has been inverted and made positive. The situation at A is known as half-wave rectification, because
it involves only half the waveform. At B, the ac has been subjected to full-wave rectification, because
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2-8 One cycle of utility
alternating current (ac).
The instantaneous
voltage is the voltage at
any particular instant in
time. The peak voltages
are approximately plus
and minus 165 V.



all of the original current still flows, even though the alternating nature has been changed so that the
current never reverses.

The effective value, compared with the peak value, for pulsating dc depends on whether half-
wave or full-wave rectification is applied to an ac wave. In Fig. 2-10A and B, effective voltage is
shown as dashed lines, and the instantaneous voltage is shown as solid curves. The instantaneous volt-
age changes all the time, from instant to instant. (That’s how it gets this name!) The peak voltage is
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2-10 At A, half-wave rectification of common utility ac. At B, full-wave
rectification of common utility ac. Effective voltages are shown by the
dashed lines.

2-9 A representation of pure
direct current (dc).



the maximum instantaneous voltage. Instantaneous voltage is never any greater than the peak volt-
age for any wave.

In Fig. 2-10B, the effective voltage is 0.707 times the peak voltage, just as is the case with ordi-
nary ac. The direction of current flow, for many kinds of devices, doesn’t make any difference. But
in Fig. 2-10A, half of the wave has been lost. This cuts the effective value in half, so that it’s only
0.354 times the peak value.

In household ac that appears in wall outlets for conventional appliances in the United States,
the peak voltage is about 165 V; the effective value is 117 V. If full-wave rectification is used, the ef-
fective value is still 117 V. If half-wave rectification is used, the effective voltage is about 58.5 V.

Safety Considerations in Electrical Work
For our purposes, one rule applies concerning safety around electrical apparatus:

If you have any doubt about whether or not something is safe, leave it alone. Let a professional
electrician work on it.

Household voltage, normally about 117 V (but sometimes twice that for large appliances such
as electric ranges and laundry machines), is more than sufficient to kill you if it appears across your
chest cavity. Certain devices, such as automotive spark coils, can produce lethal currents even from
the low voltage (12 to 14 V) in a car battery.

Consult the American Red Cross or your electrician concerning what kinds of circuits, proce-
dures, and devices are safe and which aren’t.

Magnetism
Electric currents and magnetic fields are closely related. Whenever an electric current flows—that is,
when charge carriers move—a magnetic field accompanies the current. In a straight wire that car-
ries electrical current, magnetic lines of flux surround the wire in circles, with the wire at the center,
as shown in Fig. 2-11. (The lines of flux aren’t physical objects; this is just a convenient way to rep-
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2-11 Magnetic flux lines
around a straight,
current-carrying wire.
The arrows indicate
current flow.



resent the magnetic field.) You’ll sometimes hear or read about a certain number of flux lines per
unit cross-sectional area, such as 100 lines per square centimeter. This is a relative way of talking
about the intensity of the magnetic field.

Magnetic fields are produced when the atoms of certain materials align themselves. Iron is the
most common metal that has this property. The atoms of iron in the core of the earth have become
aligned to some extent; this is a complex interaction caused by the rotation of our planet and its mo-
tion with respect to the magnetic field of the sun. The magnetic field surrounding the earth is re-
sponsible for various effects, such as the concentration of charged particles that you see as the aurora
borealis just after a solar eruption.

When a wire is coiled up, the resulting magnetic flux takes a shape similar to the flux field sur-
rounding the earth, or the flux field around a bar magnet. Two well-defined magnetic poles develop,
as shown in Fig. 2-12.

The intensity of a magnetic field can be greatly increased by placing a special core inside of a
coil. The core should be of iron or some other material that can be readily magnetized. Such sub-
stances are called ferromagnetic. A core of this kind cannot actually increase the total quantity of
magnetism in and around a coil, but it will cause the lines of flux to be much closer together inside
the material. This is the principle by which an electromagnet works. It also makes possible the op-
eration of electrical transformers for utility current.

Magnetic lines of flux are said to emerge from the magnetic north pole, and to run inward to-
ward the magnetic south pole.
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2-12 Magnetic flux lines around a current-carrying coil of
wire. The flux lines converge at the magnetic poles.



Magnetic Units
The overall magnitude of a magnetic field is measured in units called webers, abbreviated Wb. One
weber is mathematically equivalent to one volt-second (1 V � s). For weaker magnetic fields, a
smaller unit, called the maxwell (Mx), is used. One maxwell is equal to 0.00000001 (one hundred-
millionth) of a weber, or 0.01 microvolt-second (0.01 µV � s).

The flux density of a magnetic field is given in terms of webers or maxwells per square meter or
per square centimeter. A flux density of one weber per square meter (1 Wb/m2) is called one tesla
(1 T). One gauss (1 G) is equal to 0.0001 T, or one maxwell per square centimeter (1 Mx/cm2).

In general, as the electric current through a wire increases, so does the flux density near the wire.
A coiled wire produces a greater flux density for a given current than a single, straight wire. And the
more turns in the coil, the stronger the magnetic field will be.

Sometimes, magnetic field strength is specified in terms of ampere-turns (At). This is actually a
unit of magnetomotive force. A one-turn wire loop, carrying 1 A of current, produces a field of 1 At.
Doubling the number of turns, or the current, doubles the number of ampere-turns. Therefore, if
you have 10 A flowing in a 10-turn coil, the magnetomotive force is 10 × 10, or 100 At. Or, if you
have 100 mA flowing in a 100-turn coil, the magnetomotive force is 0.1 × 100, or 10 At. (Remem-
ber that 100 mA = 0.1 A.)

A less common unit of magnetomotive force is the gilbert (Gb). This unit is the equivalent of
0.796 At. Conversely, 1 At = 1.26 Gb.

Quiz
Refer to the text in this chapter if necessary. A good score is at least 18 correct answers. The answers
are listed in the back of this book.

1. A positive electric pole
(a) has a deficiency of electrons.
(b) has fewer electrons than the negative pole.
(c) has an excess of electrons.
(d) has more electrons than the negative pole.

2. An EMF of 1 V
(a) cannot drive much current through a circuit.
(b) represents a low resistance.
(c) can sometimes produce a large current.
(d) drops to zero in a short time.

3. A potentially lethal electric current is on the order of
(a) 0.01 mA.
(b) 0.1 mA.
(c) 1 mA.
(d) 0.1 A.
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4. A current of 25 A is most likely drawn by
(a) a flashlight bulb.
(b) a typical household.
(c) a utility power plant.
(d) a small radio set.

5. A piece of wire has a conductance of 20 S. Its resistance is
(a) 20 Ω.
(b) 0.5 Ω.
(c) 0.05 Ω.
(d) 0.02 Ω.

6. A resistor has a value of 300 Ω. Its conductance is
(a) 3.33 mS.
(b) 33.3 mS.
(c) 333 µS.
(d) 0.333 S.

7. A span of wire 1 km long has a conductance of 0.6 S. What is the conductance of a span of
this same wire that is 3 km long?
(a) 1.8 S
(b) 0.6 S
(c) 0.2 S
(d) More information is necessary to determine this.

8. Approximately how much current can a 2-kW generator reliably deliver at 117 V?
(a) 17 mA
(b) 234 mA
(c) 17 A
(d) 234 A

9. A circuit breaker is rated for 15 A at 117 V. Approximately how much power does this represent?
(a) 1.76 kW
(b) 1760 kW
(c) 7.8 kW
(d) 0.0078 kW

10. You are told that an air conditioner has cooled a room by 500 Btu over a certain period of
time. What is this amount of energy in kWh?
(a) 147 kWh
(b) 14.7 kWh
(c) 1.47 kWh
(d) 0.147 kWh
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11. Of the following energy units, the one most often used to define electrical energy is
(a) the Btu.
(b) the erg.
(c) the foot-pound.
(d) the kilowatt-hour.

12. The frequency of common household ac in the United States is
(a) 60 Hz.
(b) 120 Hz.
(c) 50 Hz.
(d) 100 Hz.

13. Half-wave rectification means that
(a) half of the ac wave is inverted.
(b) half of the ac wave is cut off.
(c) the whole ac wave is inverted.
(d) the effective voltage is half the peak voltage.

14. In the output of a half-wave rectifier,
(a) half of the ac input wave is inverted.
(b) the effective voltage is less than that of the ac input wave.
(c) the effective voltage is the same as that of the ac input wave.
(d) the effective voltage is more than that of the ac input wave.

15. In the output of a full-wave rectifier,
(a) half of the ac input wave is inverted.
(b) the effective voltage is less than that of the ac input wave.
(c) the effective voltage is the same as that of the ac input wave.
(d) the effective voltage is more than that of the ac input wave.

16. A low voltage, such as 12 V,
(a) is never dangerous.
(b) is always dangerous.
(c) is dangerous if it is ac, but not if it is dc.
(d) can be dangerous under certain conditions.

17. Which of the following units can represent magnetomotive force?
(a) The volt-turn
(b) The ampere-turn
(c) The gauss
(d) The gauss-turn
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18. Which of the following units can represent magnetic flux density?
(a) The volt-turn
(b) The ampere-turn
(c) The gauss
(d) The gauss-turn

19. A ferromagnetic material
(a) concentrates magnetic flux lines within itself.
(b) increases the total magnetomotive force around a current-carrying wire.
(c) causes an increase in the current in a wire.
(d) increases the number of ampere-turns in a wire.

20. A coil has 500 turns and carries 75 mA of current. The magnetomotive force is
(a) 37,500 At.
(b) 375 At.
(c) 37.5 At.
(d) 3.75 At.
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NOW THAT YOU’RE FAMILIAR WITH THE PRIMARY UNITS COMMON IN ELECTRICITY AND ELECTRONICS,
let’s look at the instruments that are employed to measure these quantities. Many measuring devices
work because electric and magnetic fields produce forces proportional to the intensity of the field.
Such meters work by means of electromagnetic deflection or electrostatic deflection. Sometimes, elec-
tric current is measured by the extent of heat it produces in a resistance. Such meters work by
thermal heating principles. Some meters have small motors whose speed depends on the measured
quantity. The rotation rate, or the number of rotations in a given time, can be measured or counted.
Still other kinds of meters tally up electronic pulses, sometimes in thousands, millions, or billions.
These are electronic counters.

Electromagnetic Deflection
Early experimenters with electricity and magnetism noticed that an electric current produces a mag-
netic field. When a magnetic compass is placed near a wire carrying a direct electric current, the
compass doesn’t point toward magnetic north. The needle is displaced. The extent of the displace-
ment depends on how close the compass is brought to the wire, and also on how much current the
wire is carrying.

When this effect was first observed, scientists tried different arrangements to see how much the
compass needle could be displaced, and how small a current could be detected. An attempt was
made to obtain the greatest possible current-detecting sensitivity. Wrapping the wire in a coil
around the compass resulted in a device that could indicate a tiny electric current (Fig. 3-1). This
effect is known as galvanism, and the meter so devised was called a galvanometer. Once this device
was made, the scientists saw that the extent of the needle displacement increased with increasing
current. Then, the only challenge was to calibrate the galvanometer somehow, and to find a stan-
dard so a universal meter could be engineered.

You can make your own galvanometer. Buy a cheap compass, about 2 feet of insulated bell wire,
and a 6-volt lantern battery. Set it up as shown in Fig. 3-1. Wrap the wire around the compass four
or five times, and align the compass so that the needle points along the wire turns while the wire is
disconnected from the battery. Connect one end of the wire to the negative (−) terminal of the bat-
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tery. Touch the other end to the positive (+) terminal for a second or two, and watch the compass
needle. Don’t leave the wire connected to the battery for any length of time unless you want to drain
the battery in a hurry.

You can buy a resistor and a potentiometer at a place like RadioShack, and set up an experiment
that shows how galvanometers measure current. For a 6-V lantern battery, the fixed resistor should
have a value of at least 330 Ω and should be rated for at least 1⁄ 4 W. The potentiometer should have
a maximum value of 10 kΩ. Connect the resistor and potentiometer in series between one end of
the bell wire and one terminal of the battery, as shown in Fig. 3-2. The center contact of the poten-
tiometer should be short-circuited to one of the end contacts, and the resulting two terminals used
in the circuit.

When you adjust the potentiometer, the compass needle should deflect more or less, depend-
ing on the current through the wire. Early experimenters calibrated their meters by referring to the
degrees scale around the perimeter of the compass.
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3-1 A simple galvanometer. The compass must lie flat.

3-2 A circuit for
demonstrating how a
galvanometer indicates
relative current.



Electrostatic Deflection
Electric fields produce forces, just as magnetic fields do. You have noticed this when your hair feels
like it’s standing on end in very dry or cold weather. You’ve heard that people’s hair really does stand
straight out just before a lightning bolt hits nearby. (This is no myth!)

The most common device for demonstrating electrostatic forces is the electroscope. It consists of
two foil leaves, attached to a conducting rod, and placed in a sealed container so that air currents can-
not move the foil leaves (Fig. 3-3). When a charged object is brought near, or touched to, the contact
at the top of the rod, the leaves stand apart from each other. This is because the two leaves become
charged with like electric poles—either an excess or a deficiency of electrons—and like poles always
repel. The extent to which the leaves stand apart depends on the amount of electric charge. It is dif-
ficult to measure this deflection and correlate it with charge quantity; electroscopes do not make very
good meters. But variations on this theme can be employed, so that electrostatic forces can operate
against tension springs or magnets, and in this way, electrostatic meters can be made.

An electrostatic meter can quantify alternating (or ac) electric charges as well as direct (or dc)
charges. This gives electrostatic meters an advantage over electromagnetic meters such as the gal-
vanometers. If you connect a source of ac to the coil of the galvanometer device in Fig. 3-1 or 
Fig. 3-2, the compass needle will not give a clear deflection; current in one direction pulls the meter
needle one way, and current in the other direction pushes the needle the opposite way. But if a
source of ac is connected to an electrostatic meter, the plates repel whether the charge is positive or
negative at any given instant in time.

Most electroscopes aren’t sensitive enough to show much deflection with ordinary 117-V util-
ity ac. Don’t try connecting 117 V to an electroscope anyway. It can present an electrocution hazard
if you bring it out to points where you can easily come into physical contact with it.

An electrostatic meter has another property that is sometimes an advantage in electrical or elec-
tronic work. This is the fact that the device does not draw any current, except a tiny initial current
needed to put a charge on the plates. Sometimes, an engineer or experimenter doesn’t want a meas-
uring device to draw current, because this affects the behavior of the circuit under test. Galvanome-
ters, by contrast, always need some current to produce an indication.
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If you have access to a laboratory electroscope, try charging it up with a glass rod that has been
rubbed against a cloth. When the rod is pulled away from the electroscope, the foil leaves remain
standing apart. The charge just sits there! If the electroscope drew any current, the leaves would fall
back together again, just as the galvanometer compass needle returns to magnetic north the instant
you take the wire from the battery.

Thermal Heating
Another phenomenon, sometimes useful in the measurement of electric currents, is the fact that
whenever current flows through a conductor having any resistance, that conductor is heated. All
conductors have some resistance; none are perfect. The extent of this heating is proportional to the
amount of current being carried by the wire.

By choosing the right metal or alloy, and by making the wire a certain length and diameter, and
by employing a sensitive thermometer, and by putting the entire assembly inside a thermally insu-
lating package, a hot-wire meter can be made. The hot-wire meter can measure ac as well as dc, be-
cause the current-heating phenomenon does not depend on the direction of current flow.

A variation of the hot-wire principle can be used to advantage by placing two different metals
into contact with each other. If the right metals are chosen, the junction heats up when a current
flows through it. This is called the thermocouple principle. As with the hot-wire meter, a thermome-
ter can be used to measure the extent of the heating. But there is also another effect. A thermocou-
ple, when it gets warm, generates dc. This dc can be measured with a galvanometer. This method is
useful when it is necessary to have a fast meter response time.

The hot-wire and thermocouple effects are sometimes used to measure ac at high frequencies,
in the range of hundreds of kilohertz up to tens of gigahertz.

Ammeters
A magnetic compass doesn’t make a very convenient meter. It has to be lying flat, and the coil has
to be aligned with the compass needle when there is no current. But of course, electrical and elec-
tronic devices aren’t all oriented so as to be aligned with the north geomagnetic pole! But the exter-
nal magnetic field doesn’t have to come from the earth. It can be provided by a permanent magnet
near or inside the meter. This supplies a stronger magnetic force than does the earth’s magnetic field,
and therefore makes it possible to make a meter that can detect much weaker currents. Such a meter
can be turned in any direction, and its operation is not affected. The coil can be attached directly to
the meter pointer, and suspended by means of a spring in the field of the magnet. This type of me-
tering scheme, called the D’Arsonval movement, has been around since the earliest days of electricity,
but it is still used in some metering devices today. The assembly is shown in Fig. 3-4. This is the
basic principle of the ammeter.

A variation of the D’Arsonval movement can be obtained by attaching the meter needle to a
permanent magnet, and winding the coil in a fixed form around the magnet. Current in the coil
produces a magnetic field, and this in turn generates a force if the coil and magnet are aligned cor-
rectly with respect to each other. This works all right, but the mass of the permanent magnet causes
a slower needle response. This type of meter is also more prone to overshoot than the true D’Arson-
val movement; the inertia of the magnet’s mass, once overcome by the magnetic force, causes the
needle to fly past the actual point for the current reading, and then to wag back and forth a couple
of times before coming to rest in the right place.
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It is possible to use an electromagnet in place of the permanent magnet in the meter assembly.
This electromagnet can be operated by the same current that flows in the coil attached to the meter
needle. This gets rid of the need for a massive, permanent magnet inside the meter. It also eliminates
the possibility that the meter sensitivity will change in case the strength of the permanent magnet
deteriorates (such as might be caused by heat, or by severe mechanical vibration). The electromag-
net can be either in series with, or in parallel with, the meter movement coil.

The sensitivity of the D’Arsonval-type meter, and of similar designs, depends on several factors.
First is the strength of the permanent magnet (if the meter uses a permanent magnet). Second is the
number of turns in the coil. The stronger the magnet, and the larger the number of turns in the coil,
the less current is needed in order to produce a given magnetic force. If the meter is of the electromag-
net type, the combined number of coil turns affects the sensitivity. Remember that the strength of a
magnetomotive force is given in terms of ampere-turns. For a given current (number of amperes), the
force increases in direct proportion to the number of coil turns. The more force in a meter, the greater
the needle deflection for a given amount of current, and the smaller the current necessary to cause a
certain amount of needle movement. The most sensitive ammeters can detect currents of just a mi-
croampere or two. The amount of current for full-scale deflection (the needle goes all the way up with-
out banging against the stop pin) can be as little as about 50 µA in commonly available meters.

Sometimes, it is desirable to have an ammeter that will allow for a wide range of current mea-
surements. The full-scale deflection of a meter assembly cannot easily be changed, because that
would mean changing the number of coil turns and/or the strength of the magnet. But all amme-
ters have a certain amount of internal resistance. If a resistor, having the same internal resistance as
the meter, is connected in parallel with the meter, the resistor will draw half the current. Then it will
take twice the current through the assembly to deflect the meter to full scale, as compared with the
meter alone. By choosing a resistor of just the right value, the full-scale deflection of an ammeter can
be increased by a large factor, such as 10, or 100, or 1000. This resistor must be capable of carrying
the current without burning up. It might have to draw practically all of the current flowing through
the assembly, leaving the meter to carry only 1/10, or 1/100, or 1/1000 of the current. This is called
a shunt resistance or meter shunt (Fig. 3-5). Meter shunts are used when it is necessary to measure
very large currents, such as hundreds of amperes. They also allow microammeters or milliammeters
to be used in a versatile multimeter, with many current ranges.
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a D’Arsonval meter
movement (spring
bearing not shown).



Voltmeters
Current, as we have seen, consists of a flow of charge carriers. Voltage, or electromotive force
(EMF), or potential difference, is the “pressure” that makes current possible. Given a circuit whose
resistance is constant, the current that flows in the circuit is directly proportional to the voltage
placed across it. Early electrical experimenters recognized that an ammeter could be used to meas-
ure voltage, because an ammeter is a form of constant-resistance circuit. If you connect an ammeter
directly across a source of voltage such as a battery, the meter needle deflects. In fact, a milliamme-
ter needle will probably be “pinned” if you do this with it, and a microammeter might well be
wrecked by the force of the needle striking the pin at the top of the scale. For this reason, you should
never connect milliammeters or microammeters directly across voltage sources. An ammeter, per-
haps with a range of 0 to 10 A, might not deflect to full scale if it is placed across a battery, but it’s
still a bad idea to do this, because it will rapidly drain the battery. Some batteries, such as automo-
tive lead-acid cells, can explode under these conditions.

Ammeters have low internal resistance. They are designed that way deliberately. They are meant
to be connected in series with other parts of a circuit, not right across a power supply. But if you
place a large resistor in series with an ammeter, and then connect the ammeter across a battery or
other type of power supply, you no longer have a short circuit. The ammeter will give an indication
that is directly proportional to the voltage of the supply. The smaller the full-scale reading of the am-
meter, the larger the resistance that is needed to get a meaningful indication on the meter. Using a
microammeter and a very large value of resistance in series, a voltmeter can be devised that will draw
only a little current from the source.

A voltmeter can be made to have various ranges for the full-scale reading, by switching differ-
ent values of resistance in series with the microammeter (Fig. 3-6). The internal resistance of the
meter is large because the values of the resistors are large. The greater the supply voltage, the larger
the internal resistance of the meter, because the necessary series resistance increases as the voltage
increases.

A voltmeter should have high internal resistance, and the higher the better! The reason for this
is that you don’t want the meter to draw much current from the power source. This current should
go, as much as possible, toward operating whatever circuit is hooked up to the power supply, and
not into getting a reading of the voltage. Also, you might not want, or need, to have the voltmeter
constantly connected in the circuit; you might need the voltmeter for testing many different cir-
cuits. You don’t want the behavior of a circuit to be affected the instant you connect the voltmeter
to the supply. The less current a voltmeter draws, the less it affects the behavior of anything that is
working from the power supply.
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3-5 A resistor, called a meter
shunt, can be connected
across a current-
detecting meter to
reduce the sensitivity.



A completely different type of voltmeter uses the effect of electrostatic deflection, rather than elec-
tromagnetic deflection. Remember that electric fields produce forces, just as do magnetic fields. There-
fore, a pair of plates attract or repel each other if they are charged. The electrostatic voltmeter takes
advantage of the attractive force between two plates having opposite electric charge, or having a large
potential difference. Figure 3-7 is a simplified drawing of the mechanics of an electrostatic voltmeter.
It draws almost no current from the power supply. The only thing between the plates is air, and air is
a nearly perfect insulator. The electrostatic meter can indicate ac voltage as well as dc voltage. The con-
struction tends to be fragile, however, and mechanical vibration can influence the reading.
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3-7 A functional drawing of
an electrostatic
voltmeter movement.

3-6 A simple circuit using a
microammeter (µA) to
measure dc voltage.



Ohmmeters
If all other factors are held constant, the current through a circuit depends on the resistance. This
provides us with a means for measuring resistance. An ohmmeter can be constructed by placing a
milliammeter or microammeter in series with a set of fixed, switchable resistances and a battery that
provides a known, constant voltage (Fig. 3-8). By selecting the resistances appropriately, the meter
gives indications in ohms over any desired range. The zero point on the milliammeter or microam-
meter is assigned the value of infinity ohms, meaning a perfect insulator. The full-scale value is set at
a certain minimum, such as 1 Ω, 100 Ω, 1 kΩ, or 10 kΩ.

An ohmmeter must be calibrated at the factory where it is made, or in an electronics lab. A
slight error in the values of the series resistors can cause gigantic errors in measured resistance.
Therefore, precise tolerances are needed for these resistors. That means their values must actually be
what the manufacturer claims they are, to within a fraction of 1 percent if possible. It is also neces-
sary that the battery provide exactly the right voltage.

The scale of an ohmmeter is nonlinear. That means the graduations are not of the same width
everywhere on the meter scale. The graduations tend to be squashed together toward the infinity
end of the scale. Because of this, it is difficult to interpolate for high values of resistance unless the
appropriate meter range is selected.

Engineers and technicians usually connect an ohmmeter in a circuit with the meter set for the
highest resistance range first. Then they switch the range down until the meter needle is in a part of
the scale that is easy to read. Finally, the reading is taken, and is multiplied (or divided) by the ap-
propriate amount as indicated on the range switch. Figure 3-9 shows an ohmmeter reading. The
meter itself indicates approximately 4.7, but the range switch says 1 kΩ. This indicates a resistance
of about 4.7 kΩ, or 4700 Ω.

Ohmmeters give inaccurate readings if there is a voltage between the points where the meter is
connected. This is because such a voltage either adds to, or subtracts from, the ohmmeter’s own bat-
tery voltage. Sometimes, in this type of situation, an ohmmeter might tell you that a circuit has
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3-8 A circuit using a milliammeter (mA) to measure dc resistance.



“more than infinity” ohms! The needle will hit the pin at the left end of the scale. Therefore, when
using an ohmmeter to measure resistance, you must always be sure that there is no voltage between
the points under test. The best way to do this is to switch off the equipment in question.

Multimeters
In the electronics lab, a common piece of test equipment is the multimeter, in which different kinds
of meters are combined into a single unit. The volt-ohm-milliammeter (VOM) is the most often
used. As its name implies, it combines voltage, resistance, and current measuring capabilities. You
should not have trouble envisioning how a single milliammeter can be used for measuring voltage,
current, and resistance. The preceding discussions for measurements of these quantities have all in-
cluded methods in which a current meter can be used to measure the intended quantity.

Commercially available multimeters have certain limits in the values they can measure. The
maximum voltage is around 1000 V. The measurement of larger voltages requires special probes and
heavily insulated wires, as well as other safety precautions. The maximum current that a common
VOM can measure is about 1 A. The maximum measurable resistance is on the order of several
megohms or tens of megohms. The lower limit of resistance indication is around 0.1 to 1 Ω.

FET Voltmeters
A good voltmeter disturbs the circuit under test as little as possible, and this requires that the meter
have high internal resistance. Besides the electrostatic-type voltmeter, there is another way to get
high internal resistance. This is to sample a tiny current, far too small for any meter to directly in-
dicate, and then amplify this current so a conventional milliammeter or microammeter can display
it. When a minuscule current is drawn from a circuit, the equivalent resistance is always extremely
high.

The most effective way to accomplish voltage amplification, while making sure that the current
drawn is exceedingly small, is to use a field-effect transistor, or FET. (Don’t worry about how such
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3-9 An example of an
ohmmeter reading. This
device shows about 
4.7 × 1 kΩ = 4.7 kΩ =
4700 Ω.



amplifiers work right now; you’ll learn all about that later in this book.) A voltmeter that uses a FET
voltage amplifier to minimize the current drain is known as a FET voltmeter (FETVM). It has ex-
tremely high input resistance, along with good sensitivity and amplification.

Wattmeters
The measurement of electrical power requires that voltage and current both be measured simulta-
neously. Remember that in a dc circuit, the power (P ) in watts is the product of the voltage (E ) in
volts and the current (I ) in amperes. That is, P = EI. In fact, watts are sometimes called volt-amperes
in dc circuits.

Do you think you can connect a voltmeter in parallel with a circuit, thereby getting a reading
of the voltage across it, and also hook up an ammeter in series to get a reading of the current through
the circuit, and then multiply volts times amperes to get watts consumed by the circuit? Well, you
can. For most dc circuits, this is an excellent way to measure power, as shown in Fig. 3-10.

Sometimes, it’s simpler yet. In many cases, the voltage from the power supply is constant and
predictable. Utility power is a good example. The effective voltage is always very close to 117 V. Al-
though it’s ac, and not dc, power in most utility circuits can be measured in the same way as power
is measured in dc circuits: by means of an ammeter connected in series with the circuit, and cali-
brated so that the multiplication (times 117) has already been done. Then, rather than 1 A, the
meter will show a reading of 117 W, because P = EI = 117 × 1 = 117 W. If the meter reading is 300
W, the current is I = P/E = 300/117 = 2.56 A. An electric iron might consume 1000 W, or a current
of 1000/117 = 8.55 A. A large heating unit might gobble up 2000 W, requiring a current of
2000/117 = 17.1 A. You should not be surprised if this blows a fuse or trips a circuit breaker, be-
cause these devices are often rated for 15 A.

Specialized wattmeters are necessary for the measurement of radio-frequency (RF) power, or for
peak audio power in a high-fidelity amplifier, or for certain other specialized applications. But al-
most all of these meters, whatever the associated circuitry, use simple ammeters, milliammeters, or
microammeters as their indicating devices.
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can be measured with
a voltmeter and an
ammeter, connected as
shown here.



Watt-Hour Meters
Electrical energy, as you now know, is measured in watt-hours or kilowatt-hours (kWh). Not
surprisingly, a metering device that indicates energy in these units is called a watt-hour meter or a
kilowatt-hour meter.

The most often used means of measuring electrical energy is by using a small electric motor, the
speed of which depends on the current, and thereby on the power at a constant voltage. The num-
ber of turns of the motor shaft, in a given length of time, is directly proportional to the number of
kilowatt-hours consumed. The motor is placed at the point where the utility wires enter the build-
ing. This is usually at a point where the voltage is 234 V. At this point the circuit is split into some
circuits with 234 V (for heavy-duty appliances such as the oven, washer, and dryer) and general
household circuits at 117 V (for smaller appliances such as lamps, clock radios, and television sets).

If you’ve observed a kilowatt-hour meter, you have seen a disk spinning, sometimes fast, other
times slowly. Its speed depends on the power being used at any given time. The total number of
turns of this little disk, every month, determines the size of the bill you will get, as a function also,
of course, of the cost per kilowatt-hour.

Kilowatt-hour meters count the number of disk turns by means of geared rotary drums or
pointers. The drum-type meter gives a direct digital readout. The pointer type has several scales cal-
ibrated from 0 to 9 in circles, some going clockwise and others going counterclockwise. Reading a
pointer-type utility meter is a little tricky, because you must think in whatever direction (clockwise
or counterclockwise) the scale goes. An example of a pointer-type utility meter is illustrated in 
Fig. 3-11. Read from left to right. For each meter scale, take down the number that the pointer has
most recently passed. Write down the rest as you go. The meter shown in the figure reads a little
more than 3875 kWh.

Digital Readout Meters
Increasingly, metering devices are being designed so that they provide a direct readout. The number
on the meter is the indication. It’s that simple. Such a meter is called a digital meter.

The main advantage of a digital meter is the fact that it’s easy for anybody to read, and there is no
chance for interpolation errors. This is ideal for utility meters, clocks, and some kinds of ammeters,
voltmeters, and wattmeters. It works well when the value of the quantity does not change often or fast.
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3-11 A utility meter with four rotary analog dials. In this example, the
reading is a little more than 3875 kWh.



There are some situations in which a digital meter is a disadvantage. One good example is the
signal-strength indicator in a radio receiver. This meter bounces up and down as signals fade, or as
you tune the radio, or sometimes even as the signal modulates. A digital meter will show nothing
but a constantly changing, meaningless set of numerals. Digital meters require a certain length of
time to lock in to the current, voltage, power, or other quantity being measured. If this quantity
never settles at any one value for a long enough time, the meter can never lock in.

Meters with a scale and pointer are known as analog meters. Their main advantages are that they
allow interpolation, they give the operator a sense of the quantity relative to other possible values,
and they follow along when a quantity changes. Some engineers and technicians prefer analog me-
tering, even in situations where digital meters would work just as well.

One potential hang-up with digital meters is being certain of where the decimal point goes. If
you’re off by one decimal place, the error will be by a factor of 10. Also, you need to be sure you
know what the units are. For example, a frequency indicator might be reading out in megahertz, and
you might forget and think it is giving you a reading in kilohertz. That’s a mistake by a factor of
1000! Of course, this latter type of error can happen with analog meters, too.

Frequency Counters
The measurement of energy used by your home is an application to which digital metering is well
suited. A digital kilowatt-hour meter is easier to read than the pointer-type meter. When measuring
frequencies of radio signals, digital metering is not only more convenient, but far more accurate.

A frequency counter measures the frequency of an ac wave by actually counting pulses, in a man-
ner similar to the way the utility meter counts the number of turns of a motor. But the frequency
counter works electronically, without any moving parts. It can keep track of thousands, millions, or
billions of pulses per second, and it shows the rate on a digital display that is as easy to read as a dig-
ital watch.

The accuracy of the frequency counter is a function of the lock-in time. Lock-in is usually done
in 0.1 second, 1 second, or 10 seconds. Increasing the lock-in time by a factor of 10 will cause the
accuracy to increase by one additional digit. Modern frequency counters are good to six, seven, or
eight digits; sophisticated lab devices can show frequency to nine or ten digits.

Other Meter Types
Here are a few of the less common types of meters that you will occasionally encounter in electrical
and electronics applications.

VU and Decibel Meters
In high-fidelity equipment, especially the more sophisticated amplifiers (“amps”), loudness meters are
sometimes used. These are calibrated in decibels, a unit that you will often have to use, and interpret,
in reference to electronic signal levels. A decibel is an increase or decrease in sound or signal level
that you can just barely detect, if you are expecting the change.

Audio loudness is given in volume units (VU), and the meter that indicates it is called a VU
meter. The typical VU meter has a zero marker with a red line to the right and a black line to the
left, and is calibrated in decibels (dB) below the zero marker and volume units above it (Fig. 3-12).
The meter might also be calibrated in watts rms, an expression for audio power. As music is played
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through the system, or as a voice comes over it, the VU meter needle kicks up. The amplifier vol-
ume should be kept down so that the meter doesn’t go past the zero mark and into the red range. If
the meter does kick up into the red scale, it means that distortion is taking place within the ampli-
fier circuit.

Sound level in general can be measured by means of a sound-level meter, calibrated in decibels
(dB) and connected to the output of a precision amplifier with a microphone of known sensitivity
(Fig. 3-13). Have you read that a vacuum cleaner will produce “80 dB” of sound, and a large truck
going by will subject your ears to “90 dB”? These figures are determined by a sound-level meter, and
are defined with respect to the threshold of hearing, which is the faintest sound that a person with
good ears can hear.

Light Meters
The intensity of visible light is measured by means of a light meter or illumination meter. It is

tempting to suppose that it’s easy to make this kind of meter by connecting a milliammeter to a solar
(photovoltaic) cell. As things work out, this is a good way to construct an inexpensive light meter
(Fig. 3-14). More sophisticated devices use dc amplifiers, similar to the type found in a FETVM, to
enhance sensitivity and to allow for several different ranges of readings.
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3-13 A meter for measuring sound levels. The output of the audio amplifier is
rectified to produce dc that the meter can detect.

3-12 A VU (volume-unit)
meter. The heavy
portion of the scale (to
the right of 0) is
usually red, indicating
the risk of audio
distortion.



One problem with this design is that solar cells are not sensitive to light at exactly the same
wavelengths as human eyes. This can be overcome by placing a colored filter in front of the solar
cell, so that the solar cell becomes sensitive to the same wavelengths, in the same proportions, as
human eyes. Another problem is calibrating the meter. This must usually be done at the factory, in
standard illumination units such as lumens or candela.

With appropriate modification, meters such as the one in Fig. 3-14 can be used to measure in-
frared (IR) or ultraviolet (UV) intensity. Various specialized photovoltaic cells have peak sensitivity
at nonvisible wavelengths, including IR and UV.

Pen Recorders
A meter movement can be equipped with a marking device to keep a graphic record of the level of
some quantity with respect to time. Such a device is called a pen recorder. The paper, with a cali-
brated scale, is taped to a rotating drum. The drum, driven by a clock motor, turns at a slow rate,
such as one revolution per hour or one revolution in 24 hours. A simplified drawing of a pen
recorder is shown in Fig. 3-15.
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3-14 A simple light meter. A
microammeter can be
substituted for the
milliammeter if greater
sensitivity is required.

3-15 A functional drawing of a pen recorder.



A device of this kind, along with a wattmeter, can be employed to get a reading of the power
consumed by your household at various times during the day. In this way you can find out when
you use the most power, and at what particular times you might be using too much.

Oscilloscopes
Another graphic metering device is the oscilloscope. This measures and records quantities that vary
rapidly, at rates of hundreds, thousands, or millions of times per second. It creates a “graph” by
throwing a beam of electrons at a phosphor screen. A cathode-ray tube, similar to the kind in a tele-
vision set, is employed. Some oscilloscopes have electronic conversion circuits that allow for the use
of a solid-state liquid crystal display (LCD).

Oscilloscopes are useful for observing and analyzing the shapes of signal waveforms, and also
for measuring peak signal levels (rather than just the effective levels). An oscilloscope can also be
used to approximately measure the frequency of a waveform. The horizontal scale of an oscillo-
scope shows time, and the vertical scale shows the instantaneous signal voltage. An oscilloscope
can indirectly measure power or current, by using a known value of resistance across the input
terminals.

Technicians and engineers develop a sense of what a signal waveform should look like, and then
they can often tell, by observing the oscilloscope display, whether or not the circuit under test is be-
having the way it should. This is a subjective measurement, because it is qualitative as well as quan-
titative.

Bar-Graph Meters
A cheap, simple kind of meter can be made using a string of light-emitting diodes (LEDs) or an
LCD along with a digital scale to indicate approximate levels of current, voltage, or power. This type
of meter, like a digital meter, has no moving parts to break. To some extent, it offers the relative-
reading feeling you get with an analog meter. Figure 3-16 is an example of a bar-graph meter that is
used to show the power output, in kilowatts, for a radio transmitter. This meter can follow along
quite well with rapid fluctuations in the reading. In this example, the meter indicates about 0.8 kW,
or 800 W.

The chief drawback of the bar-graph meter is that it isn’t very accurate. For this reason it is not
generally used in laboratory testing. In addition, the LED or LCD devices sometimes flicker when
the level is between two values given by the bars. This creates an illusion of circuit instability. With
bright LEDs, it can also be quite distracting.
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3-16 A bar-graph meter. In
this case, the
indication is about 80
percent of full-scale,
representing 0.8 kW,
or 800 W.



Quiz
Refer to the text in this chapter if necessary. A good score is 18 out of 20 correct. Answers are in the
back of the book.

1. The attraction or repulsion between two electrically charged objects is called
(a) electromagnetic deflection.
(b) electrostatic force.
(c) magnetic force.
(d) electroscopic force.

2. The change in the direction of a compass needle, when a current-carrying wire is brought
near, is called
(a) electromagnetic deflection.
(b) electrostatic force.
(c) magnetic force.
(d) electroscopic force.

3. Suppose a certain current in a galvanometer causes the compass needle to deflect by 20
degrees, and then this current is doubled while the polarity stays the same. The angle of the needle
deflection will

(a) decrease.
(b) stay the same.
(c) increase.
(d) reverse direction.

4. One important advantage of an electrostatic meter is the fact that
(a) it measures very small currents.
(b) it can handle large currents.
(c) it can detect and indicate ac voltages as well as dc voltages.
(d) it draws a large current from a power supply.

5. A thermocouple
(a) gets warm when dc flows through it.
(b) is a thin, straight, special wire.
(c) generates dc when exposed to visible light.
(d) generates ac when heated.

6. An important advantage of an electromagnet-type meter over a permanent-magnet meter is
the fact that

(a) the electromagnet meter costs much less.
(b) the electromagnet meter need not be aligned with the earth’s magnetic field.
(c) the permanent-magnet meter has a more sluggish coil.
(d) the electromagnet meter is more rugged.
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7. Ammeter shunts are useful because
(a) they increase meter sensitivity.
(b) they make a meter more physically rugged.
(c) they allow for measurement of large currents.
(d) they prevent overheating of the meter movement.

8. Voltmeters should generally have
(a) high internal resistance.
(b) low internal resistance.
(c) the greatest possible sensitivity.
(d) the ability to withstand large currents.

9. In order to measure the power-supply voltage that is applied to an electrical circuit, a
voltmeter should be placed

(a) in series with the circuit that works from the supply.
(b) between the negative pole of the supply and the circuit working from the supply.
(c) between the positive pole of the supply and the circuit working from the supply.
(d) in parallel with the circuit that works from the supply.

10. Which of the following will not normally cause a large error in an ohmmeter reading?
(a) A small voltage between points under test
(b) A slight change in switchable internal resistance
(c) A small change in the resistance to be measured
(d) A slight error in the range switch position

11. The ohmmeter in Fig. 3-17 shows a reading of approximately
(a) 34,000 Ω.
(b) 3.4 kΩ.
(c) 340 Ω.
(d) 34 Ω.

12. The main advantage of a FETVM over a conventional voltmeter is the fact that the FETVM
(a) can measure lower voltages.
(b) draws less current from the circuit under test.
(c) can withstand higher voltages safely.
(d) is sensitive to ac voltage as well as to dc voltage.

13. Which of the following is not a function of a fuse?
(a) To ensure there is enough current available for an appliance to work right
(b) To make it impossible to use appliances that are too large for a given circuit
(c) To limit the amount of power that a device can draw from the electrical circuit
(d) To make sure the current drawn by an appliance cannot exceed a certain limit
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14. A utility meter’s motor speed depends directly on
(a) the number of ampere-hours being used at the time.
(b) the number of watt-hours being used at the time.
(c) the number of watts being used at the time.
(d) the number of kilowatt-hours being used at the time.

15. A utility meter’s readout indicates
(a) voltage.
(b) power.
(c) current.
(d) energy.

16. A typical frequency counter
(a) has an analog readout.
(b) is accurate to six digits or more.
(c) works by indirectly measuring current.
(d) works by indirectly measuring voltage.

17. A VU meter is never used to get a general indication of
(a) sound intensity.
(b) decibels.
(c) power in an audio amplifier.
(d) visible light intensity.
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18. The meter movement in an illumination meter directly measures
(a) current.
(b) voltage.
(c) power.
(d) energy.

19. An oscilloscope cannot be used to indicate
(a) frequency.
(b) wave shape.
(c) energy.
(d) peak signal voltage.

20. What voltage would be expected to produce the reading on the bar-graph meter shown in
Fig. 3-18?
(a) 6.0 V
(b) 6.5 V
(c) 7.0 V
(d) There is no way to tell because the meter, as shown, is malfunctioning.
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YOU’VE ALREADY SEEN SOME SIMPLE ELECTRICAL CIRCUIT DIAGRAMS. IN THIS CHAPTER, YOU’LL GET

more acquainted with this type of diagram. You’ll also learn more about how current, voltage, resis-
tance, and power are related in dc and low-frequency ac circuits.

Schematic Symbols
In this course, the idea is to familiarize you with schematic symbols by getting you to read and use
them in action. But right now, why not check out Appendix B, which is a comprehensive table of
symbols? Then refer to it frequently in the future, especially when you see a symbol you don’t re-
member or recognize.

The simplest schematic symbol is the one representing a wire or electrical conductor : a straight,
solid line. Sometimes, dashed lines are used to represent conductors, but usually, dashed lines are
drawn to partition diagrams into constituent circuits, or to indicate that certain components interact
with each other or operate in step with each other. Conductor lines are almost always drawn either
horizontally across or vertically up and down the page. This keeps the diagram neat and easy to read.

When two conductor lines cross, they aren’t connected at the crossing point unless a heavy
black dot is placed where the two lines meet. The dot should always be clearly visible wherever con-
ductors are to be connected, no matter how many of them meet at the junction. A resistor is indi-
cated by a zigzag. A variable resistor, or potentiometer, is indicated by a zigzag with an arrow through
it, or by a zigzag with an arrow pointing at it. These symbols are shown in Fig. 4-1.

4
CHAPTER

Direct-Current 
Circuit Basics

4-1 Schematic symbols for 
a fixed resistor (A), a
two-terminal variable
resistor (B), and a 
three-terminal
potentiometer (C).
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An electrochemical cell (such as a common dime-store battery) is shown by two parallel lines, one
longer than the other. The longer line represents the plus terminal. A true battery, which is a com-
bination of two or more cells in series, is indicated by several parallel lines, alternately long and
short. It’s not necessary to use more than four lines to represent a battery, although you’ll often see
6, 8, 10, or even 12 lines. Symbols for a cell and a battery are shown in Fig. 4-2.
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4-2 Schematic symbols for
an electrochemical 
cell (A) and an
electrochemical battery
(B).

4-3 Meter symbols can have
the designator either
outside the circle (A) or
inside (B). In this case,
both symbols represent
a milliammeter (mA).

Meters are portrayed as circles. Sometimes the circle has an arrow inside it, and the meter type,
such as mA (milliammeter) or V (voltmeter) is written alongside the circle, as shown in Fig. 4-3A.
Sometimes the meter type is indicated inside the circle, and there is no arrow (Fig. 4-3B). It doesn’t
matter which way you draw them, as long as you’re consistent throughout a schematic diagram.

Some other common symbols include the incandescent lamp, the capacitor, the air-core coil, the
iron-core coil, the chassis ground, the earth ground, the ac source, the set of terminals, and the black box
(general component or device), a rectangle with the designator written inside. These are shown in
Fig. 4-4.

Schematic and Wiring Diagrams
Look back through the earlier chapters of this book and observe the electrical diagrams. These are
all simple examples of how professionals would draw schematic diagrams. In a schematic diagram,
the interconnection of the components is shown, but the actual values of the components are not
necessarily indicated. You might see a diagram of a two-transistor audio amplifier, for example, with
resistors and capacitors and coils and transistors, but without any data concerning the values or rat-
ings of the components. This is a schematic diagram, but not a true wiring diagram. It gives the
scheme for the circuit, but you can’t wire the circuit and make it work, because there isn’t enough
information.



Suppose you want to build the circuit. You go to an electronics store to get the parts. What val-
ues of resistors should you buy? How about capacitors? What type of transistor will work best? Do
you need to wind the coils yourself, or can you get ready-made coils? Are there test points or other
special terminals that should be installed for the benefit of the technicians who might have to repair
the amplifier? How many watts should the potentiometers be able to handle? All these things are in-
dicated in a wiring diagram. You might have seen this kind of diagram in the back of the instruc-
tion manual for a hi-fi amplifier, a stereo tuner, or a television set. Wiring diagrams are especially
useful when you want to build, modify, or repair an electronic device.

Voltage/Current/Resistance Circuits
Most dc circuits can be boiled down to three major components: a voltage source, a set of conduc-
tors, and a resistance. This is shown in Fig. 4-5. The voltage or EMF source is E; the current in the
conductor is I; the resistance is R.

You already know that there is a relationship among these three quantities. If one of them
changes, then one or both of the others will change. If you make the resistance smaller, the current
will get larger. If you reduce the applied voltage, the current will also decrease. If the current in the
circuit increases, the voltage across the resistor will increase. There is a simple arithmetic relation-
ship among these three quantities.
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4-4 Schematic symbols for incandescent lamp (A), fixed capacitor (B), fixed
inductor with air core (C), fixed inductor with laminated-iron core (D),
chassis ground (E), earth ground (F), signal generator or source of
alternating current (G), pair of terminals (H), and specialized component
or device (I).



Ohm’s Law
The interdependence among current, voltage, and resistance in dc circuits is called Ohm’s Law,
named after the scientist who supposedly first quantified it. Three formulas denote this law:

E = IR
I = E/R
R = E/I

You need only remember the first of these formulas in order to derive the others. The easiest way to
remember it is to learn the abbreviations E for voltage, I for current, and R for resistance, and then
remember that they appear in alphabetical order with the equal sign after the E. Sometimes the
three symbols are arranged in the so-called Ohm’s Law triangle, shown in Fig. 4-6. To find the value
of a quantity, cover it up and read the positions of the others.
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4-6 The Ohm’s Law
triangle. The voltage is
E, the current is I, and
the resistance is R. These
quantities are expressed
in volts, amperes, and
ohms, respectively.

4-5 The basic elements of a
dc circuit. The voltage is
E, the current is I, and
the resistance is R.

Remember that you must use units of volts, amperes, and ohms for the Ohm’s Law formulas to
yield a meaningful result! If you use, say, volts and microamperes to calculate a resistance, you can-
not be sure of the units you’ll end up with when you derive the final result. If the initial quantities
are given in units other than volts, amperes, and ohms, convert to these units, and then calculate.
After that, you can convert the calculated current, voltage, or resistance value to whatever size unit
you want. For example, if you get 13,500,000 Ω as a calculated resistance, you might prefer to say
that it’s 13.5 MΩ.



Current Calculations
The first way to use Ohm’s Law is to determine current in dc circuits. In order to find the current,
you must know the voltage and the resistance, or be able to deduce them. Refer to the schematic
diagram of Fig. 4-7. It consists of a dc voltage source, a voltmeter, some wire, an ammeter, and a cal-
ibrated, wide-range potentiometer.

Problem 4-1
Suppose that the dc generator in Fig. 4-7 produces 10 V and the potentiometer is set to a value of
10 Ω. What is the current?

This is solved by the formula I = E/R. Plug in the values for E and R; they are both 10, because
the units are given in volts and ohms. Then I = 10/10 = 1.0 A.

Problem 4-2
Imagine that dc generator in Fig. 4-7 produces 100 V and the potentiometer is set to 10 kΩ. What
is the current?

First, convert the resistance to ohms: 10 kΩ = 10,000 Ω. Then plug the values in: I =
100/10,000 = 0.01 A. You might prefer to express this as 10 mA.

Problem 4-3
Suppose that dc generator in Fig. 4-7 is set to provide 88.5 V, and the potentiometer is set to
477 MΩ. What is the current?

This problem involves numbers that aren’t exactly round, and one of them is huge. But you can
use a calculator. First, change the resistance value to ohms, so you get 477,000,000 Ω. Then plug
into the Ohm’s Law formula: I = E/R = 88.5 / 477,000,000 = 0.000000186 A. It is more reasonable
to express this as 0.186 µA or 186 nA.
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4-7 A circuit for working
Ohm’s Law problems.



Voltage Calculations
The second application of Ohm’s Law is to find unknown dc voltages when the current and the re-
sistance are known. Let’s work out some problems of this kind.

Problem 4-4
Suppose the potentiometer in Fig. 4-7 is set to 100 Ω, and the measured current is 10 mA. What is
the dc voltage?

Use the formula E = IR. First, convert the current to amperes: 10 mA = 0.01 A. Then multiply:
E = 0.01 × 100 = 1.0 V. That’s a little less than the voltage produced by a flashlight cell.

Problem 4-5
Adjust the potentiometer in Fig. 4-7 to a value of 157 kΩ, and suppose the current reading is 17.0
mA. What is the voltage of the source?

You must convert both the resistance and the current values to their proper units. A resistance
of 157 kΩ is 157,000 Ω, and a current of 17.0 mA is 0.0170 A. Then E = IR = 0.017 × 157,000 =
2669 V = 2.669 kV. You should round this off to 2.67 kV. This is a dangerously high voltage.

Problem 4-6
Suppose you set the potentiometer in Fig. 4-7 so that the meter reads 1.445 A, and you observe that
the potentiometer scale shows 99 Ω. What is the voltage?

These units are both in their proper form. Therefore, you can plug them right in and use your
calculator: E = IR = 1.445 × 99 = 143.055 V. This can and should be rounded off—but to what ex-
tent? This is a good time to state an important rule that should be followed in all technical calcula-
tions.

The Rule of Significant Figures
Competent engineers and scientists go by the rule of significant figures, also called the rule of signif-
icant digits. After completing a calculation, you should always round the answer off to the least num-
ber of digits given in the input data numbers.

If you follow this rule in Problem 4-6, you must round off the answer to two significant digits,
getting 140 V, because the resistance (99 Ω) is only specified to that level of accuracy. If the resist-
ance were given as 99.0 Ω, then you would round off the answer to 143 V. If the resistance were
given as 99.00 Ω, then you could state the answer as 143.1 V. However, any further precision in the
resistance value would not entitle you to go to any more digits in your answer, unless the current
were specified to more than four significant figures.

This rule takes some getting used to if you haven’t known about it or practiced it before. But
after a while, it will become a habit.

Resistance Calculations
Ohms’ Law can be used to find a resistance between two points in a dc circuit when the voltage and
the current are known.
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Problem 4-7
If the voltmeter in Fig. 4-7 reads 24 V and the ammeter shows 3.0 A, what is the resistance of the
potentiometer?

Use the formula R = E/I, and plug in the values directly, because they are expressed in volts and
amperes: R = 24/3.0 = 8.0 Ω. Note that you can specify this value to two significant figures, the 8
and the 0, rather than saying simply 8 Ω. This is because you are given both the voltage and the cur-
rent to two significant figures. If the ammeter reading had been given as 3 A, you would only be en-
titled to express the answer as 8 Ω, to one significant digit. The digit 0 can be, and often is, just as
important in calculations as any of the other digits 1 through 9.

Problem 4-8
What is the value of the resistance in Fig. 4-7 if the current is 18 mA and the voltage is 229 mV?

First, convert these values to amperes and volts. This gives I = 0.018 A and E = 0.229 V. Then
plug into the equation: R = E/I = 0.229/0.018 = 13 Ω.

Problem 4-9
Suppose the ammeter in Fig. 4-7 reads 52 µA and the voltmeter indicates 2.33 kV. What is the re-
sistance?

Convert to amperes and volts, getting I = 0.000052 A and E = 2330 V. Then plug into the for-
mula: R = E/I = 2330/0.000052 = 45,000,000 Ω = 45 MΩ.

Power Calculations
You can calculate the power P, in watts, in a dc circuit such as that shown in Fig. 4-7, by using the
formula P = EI. This formula tells us that the power in watts is the product of the voltage in volts
and the current in amperes. If you are not given the voltage directly, you can calculate it if you know
the current and the resistance.

Recall the Ohm’s Law formula for obtaining voltage: E = IR. If you know I and R but you don’t
know E, you can get the power P this way:

P = EI = (IR)I = I 2R

Suppose you’re given only the voltage and the resistance. Remember the Ohm’s Law formula for ob-
taining current: I = E/R. Therefore:

P = EI = E(E/R) = E 2/R

Problem 4-10
Suppose that the voltmeter in Fig. 4-7 reads 12 V and the ammeter shows 50 mA. What is the power
dissipated by the potentiometer?

Use the formula P = EI. First, convert the current to amperes, getting I = 0.050 A. (Note that the
last 0 counts as a significant digit.) Then multiply by 12 V, getting P = EI = 12 × 0.050 = 0.60 W.
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Problem 4-11
If the resistance in the circuit of Fig. 4-7 is 999 Ω and the voltage source delivers 3 V, what is the
power dissipated by the potentiometer?

Use the formula P = E 2/R = 3 × 3/999 = 9/999 = 0.009 W = 9 mW. You are justified in going
to only one significant figure here.

Problem 4-12
Suppose the resistance in Fig. 4-7 is 47 kΩ and the current is 680 mA. What is the power dissipated
by the potentiometer?

Use the formula P = I 2R, after converting to ohms and amperes. Then P = 0.680 × 0.680 ×
47,000 = 22,000 W = 22 kW. (This is an unrealistic state of affairs: an ordinary potentiometer, such
as the type you would use as the volume control in a radio, dissipating 22 kW, several times more
than a typical household!)

Problem 4-13
How much voltage would be necessary to drive 680 mA through a resistance of 47 kΩ, as is de-
scribed in the previous problem?

Use Ohm’s Law to find the voltage: E = IR = 0.680 × 47,000 = 32,000 V = 32 kV. That’s the
level of voltage you’d expect to find on a major utility power line, or in a high-power tube-type radio
broadcast transmitter.

Resistances in Series
When you place resistances in series, their ohmic values add together to get the total resistance. This
is easy to imagine, and it’s easy to remember!

Problem 4-14
Suppose resistors with the following values are connected in series, as shown in Fig. 4-8: 112 Ω,
470 Ω, and 680 Ω. What is the total resistance of the series combination?

Simply add up the values, getting a total of 112 + 470 + 680 = 1262 Ω. You might round this
off to 1260 Ω. It depends on the tolerances of the resistors—how precise their actual values are to the
ones specified by the manufacturer.
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4-8 Three resistors in series.
Illustration for Problem
4-14. Resistance values
are in ohms.



Resistances in Parallel
When resistances are placed in parallel, they behave differently than they do in series. One way to
look at resistances in parallel is to consider them as conductances instead. In parallel, conductances
add up directly, just as resistances add up in series. If you change all the ohmic values to siemens,
you can add these figures up and convert the final answer back to ohms.

The symbol for conductance is G. This figure, in siemens, is related to the resistance R, in ohms,
by these formulas, which you learned in Chap. 2:

G = 1/R
R = 1/G

Problem 4-15
Consider five resistors in parallel. Call them R1 through R5, and call the total resistance R as shown
in Fig. 4-9. Let the resistance values be as follows: R1 = 100 Ω, R2 = 200 Ω, R3 = 300 Ω, R4 = 400
Ω, and R5 = 500 Ω. What is the total resistance, R, of this parallel combination?
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4-9 Five resistors of values R1 through R5, connected in parallel,
produce a net resistance R. Illustration for Problems 4-15 
and 4-16.

Converting the resistances to conductance values, you get: G1 = 1/100 = 0.01 S, G2 = 1/200 =
0.005 S, G3 = 1/300 = 0.00333 S, G4 = 1/400 = 0.0025 S, and G5 = 1/500 = 0.002 S. Adding these
gives G = 0.01 + 0.005 + 0.00333 + 0.0025 + 0.002 = 0.0228 S. The total resistance is therefore 
R = 1/G = 1/0.0228 = 43.8 Ω.

Problem 4-16
Suppose you have five resistors, called R1 through R5, connected in parallel as shown in Fig. 4-9.
Suppose all the resistances, R1 through R5, are 4.70 kΩ. What is the total resistance, R, of this com-
bination?

When you have two or more resistors connected in parallel and their resistances are all the same,
the total resistance is equal to the resistance of any one component divided by the number of com-
ponents. In this example, convert the resistance of any single resistor to 4700 Ω, and then divide
this by 5. Thus, you can see that the total resistance is 4700/5 = 940 Ω.

In a situation like this, where you have a bunch of resistors connected together to operate as a
single unit, the total resistance is sometimes called the net resistance. Take note, too, that R is not
italicized when it means resistor, but R is italicized when it means resistance!



Division of Power
When combinations of resistances are connected to a source of voltage, they draw current. You can
figure out how much current they draw by calculating the total resistance of the combination, and
then considering the network as a single resistor.

If the resistors in the network all have the same ohmic value, the power from the source is evenly
distributed among them, whether they are hooked up in series or in parallel. For example, if there
are eight identical resistors in series with a battery, the network consumes a certain amount of
power, each resistor bearing 1⁄ 8 of the load. If you rearrange the circuit so that the resistors are in par-
allel, the circuit will dissipate a certain amount of power (a lot more than when the resistors were in
series), but again, each resistor will handle 1⁄ 8 of the total power load.

If the resistances in the network do not all have identical ohmic values, they divide up the power
unevenly. Situations like this are discussed in the next chapter.

Resistances in Series-Parallel
Sets of resistors, all having identical ohmic values, can be connected together in parallel sets of series
networks, or in series sets of parallel networks. By doing this, the total power-handling capacity of
the resistance can be greatly increased over that of a single resistor.

Sometimes, the total resistance of a series-parallel network is the same as the value of any one of
the resistors. This is always true if the components are identical, and are in a network called an 
n-by-n matrix. That means, when n is a whole number, there are n parallel sets of n resistors in 
series (Fig. 4-10A), or else there are n series sets of n resistors in parallel (Fig. 4-10B). Either arrange-
ment gives the same practical result.

Engineers and technicians sometimes use series-parallel networks to obtain resistances with
large power-handling capacity. A series-parallel array of n by n resistors will have n2 times that of a
single resistor. Thus, a 3 × 3 series-parallel matrix of 2 W resistors can handle up to 32 × 2 = 9 ×
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4-10 Series-parallel
resistances. At A, sets
of series resistors are
connected in parallel.
At B, sets of parallel
resistances are
connected in series.
These examples show
symmetrical n-by-n
matrices with n = 3.



2 = 18 W, for example. A 10 × 10 array of 1-W resistors can dissipate up to 100 W. The total power-
handling capacity is multiplied by the total number of resistors in the matrix. But this is true only
if all the resistors have the same ohmic values, and the same power-dissipation ratings.

It is unwise to build series-parallel arrays from resistors with different ohmic values or power
ratings. If the resistors have values and/or ratings that are even a little nonuniform, one of them
might be subjected to more current than it can withstand, and it will burn out. Then the current
distribution in the network can change so a second component fails, and then a third. It’s hard to
predict the current and power distribution in an array when its resistor values are all different.

If you need a resistance with a certain power-handling capacity, you must be sure the network
can handle at least that much power. If a 50-W rating is required, and a certain combination will
handle 75 W, that’s fine. But it isn’t good enough to build a circuit that will handle only 48 W. Some
extra tolerance, say 10 percent over the minimum rating needed, is good, but it’s silly to make a
500-W network using far more resistors than necessary, unless that’s the only convenient combina-
tion given the parts available.

Nonsymmetrical series-parallel networks, made up from identical resistors, can increase the power-
handling capability over that of a single resistor. But in these cases, the total resistance is not the same as
the value of the single resistors. The overall power-handling capacity is always multiplied by the total
number of resistors, whether the network is symmetrical or not, provided all the ohmic values are iden-
tical. In engineering work, cases sometimes arise where nonsymmetrical networks fit the need.

Quiz
Refer to the text in this chapter if necessary. A good score is at least 18 correct answers. The answers
are in the back of the book.

1. Suppose you double the voltage in a simple dc circuit, and cut the resistance in half. The
current will

(a) become four times as great.
(b) become twice as great.
(c) stay the same as it was before.
(d) become half as great.

2. You can expect to find a wiring diagram
(a) on a sticker on the back of a television receiver.
(b) in an advertisement for an electric oven.
(c) in the service/repair manual for a two-way radio.
(d) in the photograph of the front panel of a stereo hi-fi tuner.

For questions 3 through 11, please refer to Fig. 4-7. Remember to take significant figures into account
when completing your calculations!

3. Given a dc voltage source delivering 24 V and a resistance of 3.3 kΩ, what is the current?
(a) 0.73 A
(b) 138 A
(c) 138 mA
(d) 7.3 mA
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4. Suppose the resistance is 472 Ω, and the current is 875 mA. The source voltage must
therefore be

(a) 413 V.
(b) 0.539 V.
(c) 1.85 V.
(d) none of the above.

5. Suppose the dc voltage is 550 mV and the current is 7.2 mA. Then the resistance is
(a) 0.76 Ω.
(b) 76 Ω.
(c) 0.0040 Ω.
(d) none of the above.

6. Given a dc voltage source of 3.5 kV and a resistance of 220 Ω, what is the current?
(a) 16 mA
(b) 6.3 mA
(c) 6.3 A
(d) None of the above

7. Suppose the resistance is 473,332 Ω, and the current flowing through it is 4.4 mA. The best
expression for the voltage of the source is

(a) 2082 V.
(b) 110 kV.
(c) 2.1 kV.
(d) 2.08266 kV.

8. A source delivers 12 V and the current is 777 mA. The best expression for the resistance is
(a) 15 Ω.
(b) 15.4 Ω.
(c) 9.3 Ω.
(d) 9.32 Ω.

9. Suppose the voltage is 250 V and the current is 8.0 mA. The power dissipated by the
potentiometer is

(a) 31 mW.
(b) 31 W.
(c) 2.0 W.
(d) 2.0 mW.

10. Suppose the voltage from the source is 12 V and the potentiometer is set for 470 Ω. The
power dissipated in the resistance is approximately

(a) 310 mW.
(b) 25.5 mW.
(c) 39.2 W.
(d) 3.26 W.
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11. If the current through the potentiometer is 17 mA and its resistance is set to 1.22 kΩ,
what is the power dissipated by it?

(a) 0.24 µW
(b) 20.7 W
(c) 20.7 mW
(d) 350 mW

12. Suppose six resistors are hooked up in series, and each of them has a value of 540 Ω.
What is the resistance across the entire combination?

(a) 90 Ω
(b) 3.24 kΩ
(c) 540 Ω
(c) None of the above

13. If four resistors are connected in series, each with a value of 4.0 kΩ, the total 
resistance is

(a) 1 kΩ.
(b) 4 kΩ.
(c) 8 kΩ.
(d) 16 kΩ.

14. Suppose you have three resistors in parallel, each with a value of 0.069 MΩ. Then the total
resistance is

(a) 23 Ω.
(b) 23 kΩ.
(c) 204 Ω.
(d) 0.2 MΩ.

15. Imagine three resistors in parallel, with values of 22 Ω, 27 Ω, and 33 Ω. If a 12-V battery is
connected across this combination, as shown in Fig. 4-11, what is the current drawn from the
battery?

(a) 1.4 A
(b) 15 mA
(c) 150 mA
(d) 1.5 A
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4-11 Illustration for Quiz
Question 15.
Resistance values are 
in ohms.



16. Imagine three resistors, with values of 47 Ω, 68 Ω, and 82 Ω, connected in series with a 50-V
dc generator, as shown in Fig. 4-12. The total power consumed by this network of resistors is

(a) 250 mW.
(b) 13 mW.
(c) 13 W.
(d) impossible to determine from the data given.
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4-12 Illustration for Quiz
Question 16.
Resistance values 
are in ohms.

17. Suppose you have an unlimited supply of 1-W, 100-Ω resistors. You need to get a 100-Ω,
10-W resistor. This can be done most cheaply by means of a series-parallel matrix of

(a) 3 × 3 resistors.
(b) 4 × 3 resistors.
(c) 4 × 4 resistors.
(d) 2 × 5 resistors.

18. Suppose you have an unlimited supply of 1-W, 1000-Ω resistors, and you need a 500-Ω
resistance rated at 7 W or more. This can be done by assembling

(a) four sets of two resistors in series, and connecting these four sets in parallel.
(b) four sets of two resistors in parallel, and connecting these four sets in series.
(c) a 3 × 3 series-parallel matrix of resistors.
(d) a series-parallel matrix, but something different than those described above.

19. Suppose you have an unlimited supply of 1-W, 1000-Ω resistors, and you need to get a 
3000-Ω, 5-W resistance. The best way is to

(a) make a 2 × 2 series-parallel matrix.
(b) connect three of the resistors in parallel.
(c) make a 3 × 3 series-parallel matrix.
(d) do something other than any of the above.

20. Good engineering practice usually requires that a series-parallel resistive network be assembled
(a) from resistors that are all different.
(b) from resistors that are all identical.
(c) from a series combination of resistors in parallel but not from a parallel combination of

resistors in series.
(d) from a parallel combination of resistors in series, but not from a series combination of

resistors in parallel.



IN THIS CHAPTER, YOU’LL LEARN MORE ABOUT DC CIRCUITS AND HOW THEY BEHAVE UNDER VARIOUS

conditions. These principles apply to most ac utility circuits as well.

Current through Series Resistances
Have you ever used those tiny holiday lights that come in strings? If one bulb burns out, the whole
set of bulbs goes dark. Then you have to find out which bulb is bad, and replace it to get the lights
working again. Each bulb works with something like 10 V; there are about a dozen bulbs in the
string. You plug in the whole bunch and the 120-V utility mains drive just the right amount of cur-
rent through each bulb.

In a series circuit, such as a string of light bulbs (Fig. 5-1), the current at any given point is the
same as the current at any other point. The ammeter, A, is shown in the line between two of the
bulbs. If it were moved anywhere else along the current path, it would indicate the same current.
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This is true in any series dc circuit, no matter what the components actually are, and regardless of
whether or not they all have the same resistance.

If the bulbs in Fig. 5-1 had different resistances, some of them would consume more power
than others. In case one of the bulbs in Fig. 5-1 burns out, and its socket is then shorted out instead
of filled with a replacement bulb, the current through the whole chain will increase, because the
overall resistance of the string will go down. This will force each of the remaining bulbs to carry
more current, and pretty soon another bulb would burn out because of the excessive current. If it,
too, were replaced with a short circuit, the current would be increased still further. A third bulb
would blow out almost right away thereafter.

Voltages across Series Resistances
The bulbs in the string of Fig. 5-1, being all the same, each get the same amount of voltage from the
source. If there are a dozen bulbs in a 120-V circuit, each bulb has a potential difference of 10 V
across it. This will remain true even if the bulbs are replaced with brighter or dimmer ones, as long
as all the bulbs in the string are identical.

Look at the schematic diagram of Fig. 5-2. Each resistor carries the same current. Each resist-
ance Rn has a potential difference En across it equal to the product of the current and the resistance
of that particular resistor. The voltages En are in series, like cells in a battery, so they add together.
What if the voltages across all the resistors added up to something more or less than the supply volt-
age, E? Then there would have to be a “phantom EMF” someplace, adding or taking away voltage.
But that’s impossible. Voltage cannot come out of nowhere!

Look at this another way. The voltmeter V in Fig. 5-2 shows the voltage E of the battery, be-
cause the meter is hooked up across the battery. The voltmeter V also shows the sum of the voltages
En across the set of resistances, because it’s connected across the whole combination. The meter says
the same thing whether you think of it as measuring the battery voltage E or as measuring the sum
of the voltages En across the series combination of resistances. Therefore, E is equal to the sum of the
voltages En.

How do you find the voltage across any particular resistance Rn in a circuit like the one in 
Fig. 5-2? Remember Ohm’s Law for finding voltage: E = IR. Remember, too, that you must use
volts, ohms, and amperes when making calculations.

In order to find the current in the circuit, I, you need to know the total resistance and the sup-
ply voltage; then I = E/R. First find the current in the whole circuit; then find the voltage across any
particular resistor.
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Problem 5-1
In Fig. 5-2, there are 10 resistors. Five of them have values of 10 Ω, and the other five have values
of 20 Ω. The power source is 15-V dc. What is the voltage across any one of the 10-Ω resistors?
Across any one of the 20-Ω resistors?

First, find the total resistance: R = (10 × 5) + (20 × 5) = 50 + 100 = 150 Ω. Then find the cur-
rent: I = E/R = 15/150 = 0.10 A. This is the current through each of the resistances in the circuit.

• If Rn = 10 Ω, then En = IRn = 0.1 × 10 = 1.0 V.
• If Rn = 20 Ω, then En = IRn = 0.1 × 20 = 2.0 V.

Let’s check to be sure all of these voltages add up to the supply voltage. There are five resistors
with 1.0 V across each, for a total of 5.0 V; there are also five resistors with 2.0 V across each, for a
total of 10 V. So the sum of the voltages across the resistors is 5.0 + 10 = 15 V.

Problem 5-2
In the circuit of Fig. 5-2, what will happen to the voltages across the resistances if one of the 20-Ω
resistances is replaced with a short circuit?

In this case the total resistance becomes R = (10 × 5) + (20 × 4) = 50 + 80 = 130 Ω. The cur-
rent is therefore I = E/R = 15/130 = 0.12 A. This is the current at any point in the circuit, rounded
off to two significant figures.

The voltage En across any of the 10-Ω resistances Rn is equal to IRn, which is 0.12 × 10 = 1.2 V.
The voltage En across any of the 20-Ω resistances Rn is equal to IRn, which is 0.12 × 20 = 2.4 V.
Checking the total voltage, add (5 × 1.2) + (4 × 2.4) = 6.0 + 9.6 = 15.6 V. This rounds off to 
16 V when we cut it down to two significant figures.

A “Rounding-Off Bug”
Compare the result for total voltage in Problem 5-2 with the result for total voltage in Problem 5-1.
What is going on here? Where does the extra volt come from in the second calculation? Certainly,
shorting out one of the resistances cannot cause the battery voltage to change!

This is an example of what can happen when you round off to a certain number of signifi-
cant figures after calculating the value of some parameter X in a circuit, then change a different
parameter Y in the circuit, and finally calculate the value of X again, rounding off to the same
number of significant digits as you did the first time. The discrepancy is the result of a “rounding-
off bug.”

If this bug bothers you (and it should), keep all the digits your calculator will hold while you go
through the solution process for Problem 5-2. The current in the circuit, as obtained by means of a
calculator that can show 10 digits, should come out as 0.115384615 A. When you find the voltages
across all the resistances Rn, accurate to all these extra digits, and then add them up, you’ll get a final
rounded-off voltage of 15 V.

This example shows why it is a good idea to wait until you get the final answer in a calculation,
or set of calculations, involving a particular circuit before you round off to the allowed number of
significant digits. Rounding-off bugs of the sort we have just seen can be more than mere annoy-
ances. They are easy to overlook, but they can generate large errors in iterative processes involving cal-
culations that are done over and over.
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Voltage across Parallel Resistances
Imagine a set of ornamental light bulbs connected in parallel (Fig. 5-3). This is the method used for
outdoor holiday lighting or for bright indoor lighting. It’s easier to repair a parallel-wired string of
such lights if one bulb should burn out than it is to fix a series-wired string. And in the parallel con-
figuration, the failure of one bulb does not cause total system failure.

In a parallel circuit, the voltage across each component is equal to the supply or battery voltage.
The current drawn by each component depends only on the resistance of that particular device. In
this sense, the components in a parallel-wired circuit operate independently, as opposed to the se-
ries-wired circuit in which they all interact.

If any one branch of a parallel circuit opens up, is disconnected, or is removed, the conditions
in the other branches do not change. If new branches are added, assuming the power supply can
handle the load, conditions in previously existing branches are not affected.

Currents through Parallel Resistances
Refer to the schematic diagram of Fig. 5-4. The resistances are called Rn. The total parallel resistance
in the circuit is R. The battery voltage is E. The current in any particular branch n, containing re-
sistance Rn, is measured by ammeter A and is called In. The sum of all the currents In is equal to the
total current, I, drawn from the battery. The current is divided up in the parallel circuit in a man-
ner similar to the way that voltage is divided up in a series circuit.

Conventional Current
Have you noticed that the direction of current flow in Fig. 5-4 is portrayed as outward from the pos-
itive battery terminal? Don’t electrons, which are the actual charge carriers in a wire, flow out of the
minus terminal of a battery? Yes, that’s true; but scientists consider theoretical current, more often
called conventional current (because it is defined by convention), to flow from positive to negative
voltage points, rather than from negative to positive.

Problem 5-3
Suppose that the battery in Fig. 5-4 delivers 12 V. Further suppose that there are 12 resistors, each
with a value of 120 Ω in the parallel circuit. What is the total current, I, drawn from the battery?

First, find the total resistance. This is easy, because all the resistors have the same value. Just
divide Rn = 120 by 12 to get R = 10 Ω. Then the current can be found by Ohm’s Law: I = E/R =
12/10 = 1.2 A.
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Problem 5-4
In the circuit of Fig. 5-4, what does the ammeter say?

This involves finding the current in any given branch. The voltage is 12 V across every branch,
and Rn = 120 Ω. Therefore In, the ammeter reading, is found by Ohm’s Law: In = E/Rn = 12/120 =
0.10 A.

Because this is a parallel circuit, all of the branch currents In should add up to get the total cur-
rent, I. There are 12 identical branches, each carrying 0.10 A; therefore the total current is 0.10 ×
12 = 1.2 A. It checks out.

Problem 5-5
Suppose three resistors are in parallel across a battery that supplies E = 12 V. The resistances are 
R1 = 22 Ω, R2 = 47 Ω, and R3 = 68 Ω. These resistances carry currents I1, I2, and I3, respectively.
What is the current, I3, through R3?

This problem is solved by means of Ohm’s Law as if R3 is the only resistance in the circuit.
There’s no need to worry about the parallel combination. The other branches do not affect I3. Thus
I3 = E/R3 = 12/68 = 0.18 A.

Problem 5-6
What is the total current drawn by the circuit described in Problem 5-5?

There are two ways to go at this. One method involves finding the total resistance, R, of R1, R2,
and R3 in parallel, and then calculating I based on R. Another way is to find the currents through
R1, R2, and R3 individually, and then add them up.
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Using the first method, first change the resistances Rn into conductances Gn. This gives G1 =
1/R1 = 1/22 = 0.04545 S, G2 = 1/R2 = 1/47 = 0.02128 S, and G3 = 1/R3 = 1/68 = 0.01471 S. Adding
these gives G = 0.08144 S. The resistance is therefore R = 1/G = 1/0.08144 = 12.279 Ω. Use Ohm’s
Law to find I = E/R = 12/12.279 = 0.98 A. Note that extra digits are used throughout the calcula-
tion, rounding off only at the end.

Now let’s try the other method. Find I1 = E/R1 = 12/22 = 0.5455 A, I2 = E/R2 = 12/47 = 0.2553
A, and I3 = E/R3 = 12/68 = 0.1765 A. Adding these gives I = I1 + I2 + I3 = 0.5455 + 0.2553 +
0.1765 = 0.9773 A, which rounds off to 0.98 A.

Power Distribution in Series Circuits
When calculating the power in a circuit containing resistors in series, all you need to do is find out
the current, I, that the circuit is carrying. Then it’s easy to calculate the power Pn dissipated by any
one of the resistances Rn, based on the formula Pn = I 2Rn.

Problem 5-7
Suppose we have a series circuit with a supply of 150 V and three resistances: R1 = 330 Ω, R2 = 680
Ω, and R3 = 910 Ω. What is the power dissipated by R2?

First, find the current that flows through the circuit. Calculate the total resistance first.
Because the resistors are in series, the total is R = 330 + 680 + 910 = 1920 Ω. The current is I =
150/1920 = 0.07813 A. The power dissipated by R2 is therefore P2 = I 2R2 = 0.07813 × 0.07813 ×
680 = 4.151 W. Round this off to three significant digits, because that’s all we have in the data,
to obtain 4.15 W.

The total wattage dissipated in a series circuit is equal to the sum of the wattages dissipated in
each resistance.

Problem 5-8
Calculate the total dissipated power P in the circuit of Problem 5-7 by two different methods.

First, let’s figure out the power dissipated by each of the three resistances separately, and then
add the figures up. The power P2 is already known. Let’s use all the significant digits we have while
we calculate. Thus, as found in Problem 5-7, P2 = 4.151 W. Recall that the current is I = 0.07813 A.
Then P1 = 0.07813 × 0.07813 × 330 = 2.014 W, and P3 = 0.07813 × 0.07813 × 910 = 5.555 W.
Adding the three power figures gives us P = P1 + P2 + P3 = 2.014 + 4.151 + 5.555 = 11.720 W. We
should round this off to 11.7 W.

The second method is to find the total series resistance and then calculate the power. The series
resistance is R = 1920 Ω, as found in Problem 5-7. Then P = I 2R = 0.07813 × 0.07813 × 1920 =
11.72 W. Again, we should round this to 11.7 W.

Power Distribution in Parallel Circuits
When resistances are wired in parallel, they each consume power according to the same formula, 
P = I 2R. But the current is not the same in each resistance. An easier method to find the power Pn

dissipated by each of the various resistances Rn is to use the formula Pn = E 2/Rn, where E is the volt-
age of the supply or battery. This voltage is the same across every branch resistance in a parallel cir-
cuit.
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Problem 5-9
Suppose a dc circuit contains three resistances R1 = 22 Ω, R2 = 47 Ω, and R3 = 68 Ω across a battery
that supplies a voltage of E = 3.0 V. Find the power dissipated by each resistance.

Let’s find the square of the supply voltage, E 2, first. We’ll be needing this figure often: E 2 = 3.0 ×
3.0 = 9.0. Then the wattages dissipated by resistances R1, R2, and R3 respectively are P1 = 9.0/22 =
0.4091 W, P2 = 9.0/47 = 0.1915 W, and P3 = 9.0/68 = 0.1324 W. These should be rounded off to
P1 = 0.41 W, P2 = 0.19 W, and P3 = 0.13 W. (But let’s remember the values to four significant fig-
ures for the next problem!)

In a parallel circuit, the total dissipated wattage is equal to the sum of the wattages dissipated
by the individual resistances.

Problem 5-10
Find the total consumed power of the resistor circuit in Problem 5-9 using two different methods.

The first method involves adding P1, P2, and P3. Let’s use the four-significant-digit values to
avoid the possibility of encountering the rounding-off bug. The total power thus calculated is P =
0.4091 + 0.1915 + 0.1324 = 0.7330 W. Now that we’ve finished the calculation, we should round
it off to 0.73 W.

The second method involves finding the net resistance R of the parallel combination. You can
do this calculation yourself. Determining it to four significant digits, you should get a net resistance
of R = 12.28 Ω. Then P = E 2/R = 9.0/12.28 = 0.7329 W. Now that the calculation is done, this can
be rounded to 0.73 W.

It’s the Law!
In electricity and electronics, dc circuit analysis can be made easier if you are acquainted with cer-
tain axioms, or laws. Here they are:

• The current in a series circuit is the same at every point along the way.
• The voltage across any resistance in a parallel combination of resistances is the same as the

voltage across any other resistance, or across the whole set of resistances.
• The voltages across resistances in a series circuit always add up to the supply voltage.
• The currents through resistances in a parallel circuit always add up to the total current drawn

from the supply.
• The total wattage consumed in a series or parallel circuit is always equal to the sum of the

wattages dissipated in each of the resistances.

Now, let’s get acquainted with two of the most famous laws that govern dc circuits. These rules
are broad and sweeping, and they make it possible to analyze complicated series-parallel dc networks.

Kirchhoff’s First Law
The physicist Gustav Robert Kirchhoff (1824–1887) was a researcher and experimentalist in a time
when little was understood about how electric currents flow. Nevertheless, he used certain common-
sense notions to deduce two important properties of dc circuits.
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Kirchhoff reasoned that dc ought to behave something like water in a network of pipes, and
that the current going into any point ought to be the same as the current going out of that point.
This, Kirchhoff thought, must be true for any point in a circuit, no matter how many branches lead
into or out of the point.

Two examples of this principles are shown in Fig. 5-5. Examine illustration A. At point X, I, the
current going in, equals I1 + I2, the current going out. At point Y, I2 + I1, the current going in, equals
I, the current going out. Now look at illustration B. In this case, at point Z, the current I1 + I2 going
in is equal to the current I3 + I4 + I5 going out. These are examples of Kirchhoff ’s First Law. We can
also call it Kirchhoff ’s Current Law or the principle of conservation of current.
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Problem 5-11
Refer to Fig. 5-5A. Suppose all three resistors have values of 100 Ω, and that I1 = 2.0 A and I2 = 1.0
A. What is the battery voltage?

First, find the current I drawn from the battery: I = I1 + I2 = 2.0 + 1.0 = 3.0 A. Next, find the
resistance of the entire network. The two 100-Ω resistances in series give a value of 200 Ω, and this
is in parallel with 100 Ω. You can do the calculations and find that the total resistance, R, connected
across the battery is 66.67 Ω. Then E = IR = 66.67 × 3.0 = 200 V.

Problem 5-12
In Fig. 5-5B, suppose each of the two resistors below point Z has a value of 100 Ω, and all three re-
sistors above point Z have values of 10.0 Ω. Suppose the current through each 100-Ω resistor is 500
mA. What is the current through any one of the 10.0-Ω resistors, assuming that the current through
all three 10.0-Ω resistors is the same? What is the voltage across any one of the three 10.0-Ω resistors?

The total current into point Z is 500 mA + 500 mA = 1.00 A. This is divided equally among
the three 10-Ω resistors. Therefore, the current through any one of them is 1.00/3 A = 0.333 A. The
voltage across any one of the 10.0-Ω resistors can thus found by Ohm’s Law: E = IR = 0.333 × 10.0 =
3.33 V.

Kirchhoff’s Second Law
The sum of all the voltages, as you go around a circuit from some fixed point and return there from
the opposite direction, and taking polarity into account, is always zero. Does this seem counterin-
tuitive? Let’s think about it a little more carefully.

What Kirchhoff was expressing, when he wrote his second law, is the principle that voltage can-
not appear out of nowhere, nor can it vanish. All the potential differences must ultimately cancel each
other out in any closed dc circuit, no matter how complicated that circuit happens to be. This is Kirch-
hoff ’s Second Law. We can also call it Kirchhoff ’s Voltage Law or the principle of conservation of voltage.

Remember the rule you’ve already learned about series dc circuits: The sum of the voltages
across all the individual resistances adds up to the supply voltage. This statement is true as far as it
goes, but it is an oversimplification, because it ignores polarity. The polarity of the potential differ-
ence across each resistance is opposite to the polarity of the potential difference across the battery. So
when you add up the potential differences all the way around the circuit, taking polarity into ac-
count for every single component, you always get a net voltage of zero.

An example of Kirchhoff ’s Second Law is shown in Fig. 5-6. The voltage of the battery, E, has
polarity opposite to the sum of the potential differences across the resistors, E1 + E2 + E3 + E4. There-
fore, E + E1 + E2 + E3 + E4 = 0.
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Problem 5-13
Refer to the diagram of Fig. 5-6. Suppose the four resistors have values of 50 Ω, 60 Ω, 70Ω, and 
80 Ω, and that the current through each of them is 500 mA. What is the battery voltage, E ?

Find the voltages E1, E2, E3, and E4 across each of the resistors. This can be done using Ohm’s
Law. For E1, say with the 50-Ω resistor, calculate E1 = 0.500 × 50 = 25 V. In the same way, you can
calculate E2 = 30 V, E3 = 35 V, and E4 = 40 V. The supply voltage is the sum E1 + E2 + E3 + E4 =
25 + 30 + 35 + 40 = 130 V. Kirchhoff ’s Second Law tells us that the polarities of the voltages across
the resistors are in the opposite direction from that of the battery.

Problem 5-14
In the situation shown by Fig. 5-6, suppose the battery provides 20 V. Suppose the resistors labeled
with voltages E1, E2, E3, and E4 have ohmic values in the ratio 1:2:3:4 respectively. What is the volt-
age E3?

This problem does not provide any information about current in the circuit, nor does it give
you the exact resistances. But you don’t need to know these things to solve for E3. Regardless of what
the actual ohmic values are, the ratio E1:E2:E3:E4 will be the same as long as the resistances are in the
ratio 1:2:3:4. We can plug in any ohmic values we want for the values of the resistors, as long as they
are in that ratio.

Let Rn be the resistance across which the voltage is En, where n can range from 1 to 4. Now that
we have given the resistances specific names, suppose R1 = 1.0 Ω, R2 = 2.0 Ω, R3 = 3.0 Ω, and R4 =
4.0 Ω. These are in the proper ratio. The total resistance is R = R1 + R2 + R3 + R4 = 1.0 + 2.0 +
3.0 + 4.0 = 10 Ω. You can calculate the current as I = E/R = 20/10 = 2.0 A. Then the voltage E3,
across the resistance R3, is given by Ohm’s Law as E3 = IR3 = 2.0 × 3.0 = 6.0 V.

Voltage Divider Networks
Resistances in series produce ratios of voltages, and these ratios can be tailored to meet certain needs
by means of voltage divider networks.

When a voltage divider network is designed and assembled, the resistance values should be as
small as possible without causing too much current drain on the battery or power supply. (In prac-
tice, the optimum values depend on the nature of the circuit being designed. This is a matter for en-
gineers, and specific details are beyond the scope of this course.) The reason for choosing the smallest
possible resistances is that, when the divider is used with a circuit, you do not want that circuit to
upset the operation of the divider. The voltage divider “fixes” the intermediate voltages best when the
resistance values are as small as the current-delivering capability of the power supply will allow.

Figure 5-7 illustrates the principle of voltage division. The individual resistances are R1, R2,
R3, . . . , Rn. The total resistance is R = R1 + R2 + R3 + . . . + Rn. The supply voltage is E, and the cur-
rent in the circuit is therefore I = E/R. At the various points P1, P2, P3, . . . , Pn, the potential differ-
ences relative to the negative battery terminal are E1, E2, E3, . . . , En, respectively. The last voltage,
En, is the same as the battery voltage, E. All the other voltages are less than E, and ascend in succes-
sion, so that E1 < E2 < E3 < . . . < En. (The mathematical symbol < means “is less than.”)

The voltages at the various points increase according to the sum total of the resistances up to
each point, in proportion to the total resistance, multiplied by the supply voltage. Thus, the voltage
E1 is equal to ER1/R. The voltage E2 is equal to E(R1 + R2)/R. The voltage E3 is equal to E(R1 + R2 +
R3)/R. This process goes on for each of the voltages at points all the way up to En = E(R1 + R2 +
R3 + . . . + Rn)/R = ER/R = E.
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Problem 5-15
Suppose you are building an electronic circuit, and the battery supplies 9.0 V. The minus terminal
is at common (chassis) ground. You need to provide a circuit point where the dc voltage is +2.5 V.
Give an example of a pair of resistors that can be connected in a voltage divider configuration, such
that +2.5 V appears at some point.

Examine the schematic diagram of Fig. 5-8. There are infinitely many different combinations
of resistances that will work here! Pick some total value, say R = R1 + R2 = 1000 Ω. Keep in mind
that the ratio R1:R will always be the same as the ratio E1:E. In this case, E1 = 2.5 V, so E1:E =
2.5/9.0 = 0.28. This means that you want the ratio R1:R to be equal to 0.28. You have chosen to
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make R equal to 1000 Ω. This means R1 must be 280 Ω in order to get the ratio R1:R = 0.28. The
value of R2 is the difference between R and R1. That is 1000 − 280 = 720 Ω.

In a practical circuit, you would want to choose the smallest possible value for R. This might be
less than 1000 Ω, or it might be more, depending on the nature of the circuit and the current-
delivering capability of the battery. It’s not the actual values of R1 and R2 that determine the voltage
you get at the intermediate point, but their ratio.

Problem 5-16
What is the current I, in milliamperes, drawn by the entire network of series resistances in the situ-
ation described in Problem 5-15 and its solution?

Use Ohm’s Law to get I = E/R = 9.0/1000 = 0.0090 A = 9.0 mA.

Problem 5-17
Suppose that it is all right for the voltage divider network to draw up to 100 mA of current in the
situation shown by Fig. 5-8 and posed by Problem 5-15. You want to design the network to draw
this amount of current, because that will offer the best voltage regulation for the circuit to be oper-
ated from the network. What values of resistances R1 and R2 should you use?

Calculate the total resistance first, using Ohm’s Law. Remember to convert 100 mA to amperes!
That means you use the figure I = 0.100 A in your calculations. Then R = E/I = 9.0/0.100 =
90 Ω. The ratio of resistances that you need is R1:R2 = 2.5/9.0 = 0.28. You should use R1 =
0.28 × 90 = 25 Ω. The value of R2 is the difference between R and R1. That is, R2 = R −
R1 = 90 − 25 = 65 Ω.

Quiz
Refer to the text in this chapter if necessary. A good score is at least 18 correct answers. The answers
are in the back of the book.

1. In a series-connected string of ornament bulbs, if one bulb gets shorted out, which of the
following will occur?

(a) All the other bulbs will go out.
(b) The current in the string will go up.
(c) The current in the string will go down.
(d) The current in the string will stay the same.

2. Imagine that four resistors are connected in series across a 6.0-V battery, and the ohmic values
are R1 = 10 Ω, R2 = 20 Ω, R3 = 50 Ω, and R4 = 100 Ω, as shown in Fig. 5-9. What is the voltage
across the resistance R2?

(a) 0.18 V
(b) 33 mV
(c) 5.6 mV
(d) 0.67 V
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3. In the scenario shown by Fig. 5-9, what is the voltage across the combination of R3 and R4?
(a) 0.22 V
(b) 0.22 mV
(c) 5.0 V
(d) 3.3 V

4. Suppose three resistors are connected in parallel across a battery that delivers 15 V, and the
ohmic values are R1 = 470 Ω, R2 = 2.2 kΩ, and R3 = 3.3 kΩ, as shown in Fig. 5-10. The voltage
across the resistance R2 is

(a) 4.4 V.
(b) 5.0 V.
(c) 15 V.
(d) not determinable from the data given.
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5. In the situation shown by Fig. 5-10, what is the current through R2?
(a) 6.8 mA
(b) 43 mA
(c) 0.15 A
(d) 6.8 A

6. In the situation shown by Fig. 5-10, what is the total current drawn from the source?
(a) 6.8 mA
(b) 43 mA
(c) 0.15 A
(d) 6.8 A



7. In the situation shown by Fig. 5-10, suppose that resistor R2 opens up. The current through
the other two resistors will

(a) increase.
(b) decrease.
(c) drop to zero.
(d) not change.

8. Suppose that four resistors are connected in series with a 6.0-V supply, with values shown in
Fig. 5-9. What is the power dissipated by the whole combination?

(a) 0.2 W
(b) 6.5 mW
(c) 200 W
(d) 6.5 W

9. In the situation shown by Fig. 5-9, what is the power dissipated by R4?
(a) 11 mW
(b) 0.11 W
(c) 0.2 W
(d) 6.5 mW

10. Suppose that three resistors are in parallel as shown in Fig. 5-10. What is the power dissipated
by the whole set of resistors?

(a) 5.4 W
(b) 5.4 µW
(c) 650 W
(d) 0.65 W

11. In the situation shown by Fig. 5-10, what is the power dissipated in resistance R1?
(a) 32 mW
(b) 0.48 W
(c) 2.1 W
(d) 31 W

12. Fill in the blank in the following sentence to make it true: “In a series or parallel dc circuit, the
sum of the s in each component is equal to the total provided by the power supply.”

(a) current
(b) voltage
(c) wattage
(d) resistance

13. Look at Fig. 5-5A. Suppose the resistors each have values of 33 Ω and the battery supplies 24
V. What is the current I1?

(a) 1.1 A
(b) 0.73 A
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(c) 0.36 A
(d) Not determinable from the information given

14. Look at Fig. 5-5B. Let each resistor have a value of 820 Ω. Suppose the top three resistors all
lead to identical light bulbs. If I1 = 50 mA and I2 = 70 mA, what is the power dissipated in the
resistor carrying current I4?

(a) 33 W
(b) 40 mW
(c) 1.3 W
(d) It can’t be found using the information given.

15. Refer to Fig. 5-6. Suppose the resistances R1, R2, R3, and R4 are in exactly the ratio 1:2:4:8
from left to right, and the battery supplies 30 V. What is the voltage E2?

(a) 4.0 V
(b) 8.0 V
(c) 16 V
(d) It is not determinable from the data given.

16. Refer to Fig. 5-6. Suppose the resistances are each 3.3 kΩ, and the battery supplies 12 V. If the
plus terminal of a dc voltmeter is placed between resistances R1 and R2 (with voltages E1 and E2

across them, respectively), and the minus terminal of the voltmeter is placed between resistances R3

and R4 (with voltages E3 and E4 across them, respectively), what will the meter register?
(a) 0.0 V
(b) 3.0 V
(c) 6.0 V
(d) 12 V

17. In a voltage divider network, the total resistance
(a) should be large to minimize current drain.
(b) should be as small as the power supply will allow.
(c) is not important.
(d) should be such that the current is kept to 100 mA.

18. The maximum voltage output from a voltage divider
(a) is a fraction of the power supply voltage.
(b) depends on the total resistance.
(c) is equal to the supply voltage.
(d) depends on the ratio of resistances.

19. Refer to Fig. 5-7. Suppose the battery voltage E is 18.0 V, and there are four resistances in the
network such that R1 = 100 Ω, R2 = 22.0 Ω, R3 = 33.0 Ω, and R4 = 47.0 Ω. What is the voltage
E3 at P3?

(a) 4.19 V
(b) 13.8 V
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(c) 1.61 V
(d) 2.94 V

20. Refer to Fig. 5-7. Suppose the battery voltage is 12 V, and you want to obtain intermediate
voltages of 3.0 V, 6.0 V, and 9.0 V. Suppose that a maximum of 200 mA is allowed to be drawn
from the battery. What should the resistances, R1, R2, R3, and R4 be, respectively?

(a) 15 Ω, 30 Ω, 45 Ω, and 60 Ω
(b) 60 Ω, 45 Ω, 30 Ω, and 15 Ω
(c) 15 Ω, 15 Ω, 15 Ω, and 15 Ω
(d) There isn’t enough information given here to design the circuit.
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ALL ELECTRICAL COMPONENTS, DEVICES, AND SYSTEMS HAVE SOME RESISTANCE. IN EVERYDAY PRACTICE,
there is no such thing as a perfect electrical conductor. You’ve seen some examples of circuits con-
taining components that are deliberately designed to oppose the flow of current. These components
are resistors. In this chapter, you’ll learn all about them.

Purpose of the Resistor
Resistors play diverse roles in electrical and electronic equipment. Here are a few of the more com-
mon ways they are used.

Voltage Division
You’ve learned how voltage dividers can be designed using resistors. The resistors dissipate some
power in doing this job, but the resulting voltages can provide the proper biasing of electronic cir-
cuits. This ensures, for example, that an amplifier or oscillator will function in the most efficient, re-
liable way possible.

Bias
The term bias means, in the case of a bipolar transistor, a field-effect transistor, or a vacuum tube, that
the control electrode—the base, gate, or grid—is provided with a certain voltage, or made to carry a
certain current, relative to the emitter, source, or cathode. Networks of resistors can accomplish this.

A radio transmitting amplifier is biased differently than an oscillator or a low-level receiving
amplifier. Sometimes voltage division is required for biasing. Other times it isn’t necessary. Figure
6-1 shows a bipolar transistor whose base is biased using a pair of resistors in a voltage divider con-
figuration.

Current Limiting
Resistors interfere with the flow of electrons in a circuit. Sometimes this is essential to prevent
damage to a component or circuit. A good example is a receiving amplifier. A resistor can keep the
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transistor from using up a lot of power just getting hot. Without resistors to limit or control the cur-
rent, the transistor can be overstressed carrying direct current that doesn’t contribute to the signal.
Figure 6-2 shows a current-limiting resistor between the emitter of a bipolar transistor and electri-
cal ground.

Power Dissipation
The dissipation of power in the form of heat is not always a bad thing. Sometimes a resistor can be
used as a dummy component, so a circuit sees the resistor as if it were something more complicated.
When testing a radio transmitter, for example, a resistor can be used to take the place of an antenna.
This keeps the transmitter from interfering with communications on the airwaves. The transmitter
output heats the resistor without radiating any signal. But as far as the transmitter knows, it’s con-
nected to a real antenna (Fig. 6-3)—and a perfect one, too, if the resistor has just the right ohmic
value!
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6-1 A pair of resistors can
act as a voltage divider
to bias the base of a
transistor.

6-2 A resistor can limit the
current that passes
through the emitter of 
a transistor.



Another situation in which power dissipation is useful is at the input of a power amplifier, such
as the sort used in high-fidelity audio equipment. Sometimes the circuit driving the amplifier (sup-
plying its input signal) has too much power. A resistor, or network of resistors, can dissipate this
excess so that the amplifier doesn’t get too much drive. In any type of amplifier, overdrive (an exces-
sively strong input signal) can cause distortion, inefficiency, and other problems.

Bleeding Off Charge
In a high-voltage, dc power supply, capacitors are used to smooth out the fluctuations in the out-
put. These capacitors acquire an electric charge, and they store it for a while. In some power sup-
plies, these filter capacitors hold the full output voltage of the supply, say something like 750 V, even
after the supply has been turned off, and even after it is unplugged from the wall outlet. If you at-
tempt to repair such a power supply, you can be electrocuted by this voltage. Bleeder resistors, con-
nected across the filter capacitors, drain their stored charge so that servicing the supply is not
dangerous. In Fig. 6-4, the bleeder resistor, R, should have a value high enough so that it doesn’t in-
terfere with the operation of the power supply, but low enough so it will discharge the capacitor, C,
in a short time after the power supply has been shut down.
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It’s a good idea to short out all filter capacitors, using a screwdriver with an insulated handle and
wearing heavy, insulated gloves, before working on a dc power supply. Even if the supply has bleeder
resistors, they might take a while to get rid of the residual charge. In addition, bleeder resistors can,
and sometimes do, fail.

Impedance Matching
A more sophisticated application for resistors is in the coupling in a chain of amplifiers, or in the
input and output circuits of amplifiers. In order to produce the greatest possible amplification, the
impedances must agree between the output of a given amplifier and the input of the next. The same
is true between a source of signal and the input of an amplifier. Also, this applies between the out-
put of an amplifier and a load, whether that load is a speaker, a headset, or whatever.

Impedance is the ac “big brother” of dc resistance. You will learn about impedance in Part 2 of
this book.

Fixed Resistors
There are several ways in which fixed resistors (units whose resistance does not change, or cannot be
adjusted) are manufactured. Here are the most common types.

Carbon-Composition Resistors
The cheapest method of making a resistor is to mix up powdered carbon (a fair electrical conduc-
tor) with some nonconductive substance, press the resulting claylike stuff into a cylindrical shape,
and insert wire leads in the ends (Fig. 6-5). The resistance of the final product depends on the ratio
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carbon-composition
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of carbon to the nonconducting material, and also on the physical distance between the wire leads.
This results in a carbon-composition resistor.

Carbon-composition resistors can be manufactured in a wide range of resistance values. This
kind of resistor also has the advantage of being nonreactive, meaning that it introduces almost
pure resistance into the circuit, and not much capacitance or inductance. This makes carbon-
composition resistors useful in radio receivers and transmitters.

Carbon-composition resistors dissipate power according to how big, physically, they are. Most
of the carbon-composition resistors you see in electronics stores can handle 1⁄ 4 W or 1⁄ 2 W. There are
1⁄ 8-W units available for miniaturized, low-power circuitry, and 1- or 2-W units for circuits where
some electrical ruggedness is needed. Occasionally you’ll see a carbon-composition resistor with a
much higher power rating, but these are rare.

Wirewound Resistors
Another way to get resistance is to use a length of wire that isn’t a good conductor. The wire can be
wound around a cylindrical form as a coil (Fig. 6-6). The resistance is determined by how well the
wire metal conducts, by its diameter or gauge, and by its stretched-out length. This type of compo-
nent is called a wirewound resistor.
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6-6 Construction of a
wirewound resistor.

Wirewound resistors can be manufactured to have values within a very close range. They are
precision components. Also, wirewound resistors can be made to handle large amounts of power. A
disadvantage of wirewound resistors, in some applications, is that they act like inductors. This
makes them unsuitable for use in most radio-frequency circuits. Wirewound resistors usually have
low to moderate values of resistance.

Film-Type Resistors
Carbon, resistive wire, or some mixture of ceramic and metal can be applied to a cylindrical form as
a film, or thin layer, in order to obtain a specific resistance. This type of component is called a car-
bon-film resistor or metal-film resistor. Superficially, it looks like a carbon-composition resistor, but
the construction is different (Fig. 6-7).



The cylindrical form is made of an insulating substance, such as porcelain. The film is deposited
on this form by various methods, and the value tailored as desired. Metal-film resistors can be made
to have nearly exact values. Film-type resistors usually have low to medium-high resistance.

A major advantage of film-type resistors is that they, like carbon-composition resistors, do not
have much inductance or capacitance. A disadvantage, in some applications, is that they can’t han-
dle as much power as carbon-composition or wirewound types.

Integrated-Circuit (IC) Resistors
Resistors can be fabricated on a semiconductor wafer known as an integrated circuit (IC), also called
a chip. The thickness, and the types and concentrations of impurities added, control the resistance
of the component. Integrated-circuit resistors can handle only a tiny amount of power because of
their small size.

The Potentiometer
Figure 6-8 is a simplified drawing of the construction of a potentiometer, or variable resistor. A resis-
tive strip, similar to that found on film-type fixed resistors, is bent into a nearly complete circle, and
terminals are connected to either end. This forms a fixed resistance. To obtain the variable resist-
ance, a sliding contact is attached to a rotatable shaft and bearing, and is connected to a third ter-
minal. The resistance between the middle terminal and either of the end terminals can vary from
zero up to the resistance of the whole strip.

Some potentiometers use a straight strip of resistive material, and the control moves up and
down or from side to side. This type of variable resistor, called a slide potentiometer, is used in hi-fi
audio graphic equalizers, as the volume controls in some hi-fi audio amplifiers, and in other applica-
tions when a linear scale is preferable to a circular scale. Potentiometers are manufactured to handle
low levels of current, at low voltage.

Linear-Taper Potentiometer
One type of potentiometer uses a strip of resistive material whose density is constant all the way
around. This results in a linear taper. The resistance between the center terminal and either end ter-
minal changes at a steady rate as the control shaft is turned.
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Suppose a linear-taper potentiometer has a value of zero to 280 Ω. In most units the shaft can be
rotated through about 280°, or a little more than three-quarters of a circle. The resistance between
the center and one end terminal will increase right along with the number of angular degrees that
the shaft is turned. The resistance between the center and the other end terminal will be equal to
280 minus the number of degrees the shaft is turned. The resistance is a linear function of the angu-
lar shaft position.

Linear-taper potentiometers are commonly used in electronic test instruments and in various
consumer electronic devices. Figure 6-9 is a graph of relative resistance versus relative angular shaft
displacement for a linear-taper potentiometer.

Audio-Taper Potentiometer
In some applications, linear taper potentiometers don’t work well. The volume control of a radio re-
ceiver or hi-fi audio amplifier is a good example. Humans perceive sound intensity according to the
logarithm of the actual sound power. If you use a linear-taper potentiometer as the volume control
for a radio or other sound system, the sound volume will vary too slowly in some parts of the con-
trol range, and too fast in other parts of the control range.

To compensate for the way in which people perceive sound level, an audio-taper potentiometer
is used. In this device, the resistance between the center and end terminal increases as a nonlinear
function of the angular shaft position. The device is sometimes called a logarithmic-taper potentiome-
ter or log-taper potentiometer because the nonlinear function is logarithmic. This precisely compen-
sates for the way the human ear-and-brain “machine” responds to sounds of variable intensity.
Audio-taper potentiometers are manufactured so that as you turn the shaft, the sound intensity
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seems to increase in a smooth, natural way. Figure 6-10 is a graph of relative resistance versus rela-
tive angular shaft displacement for an audio-taper potentiometer.

The Rheostat
A variable resistor can be made from a wirewound element, rather than a solid strip of material. This
is called a rheostat. It can have either a rotary control or a sliding control. This depends on whether
the resistive wire is wound around a donut-shaped form (toroid ) or a cylindrical form (solenoid ).
Rheostats have inductance as well as resistance. They share the advantages and disadvantages of
fixed wirewound resistors.

A rheostat is not continuously adjustable, as is a potentiometer. This is because the movable
contact slides along from turn to turn of the wire coil. The smallest possible increment is the resist-
ance in one turn of the coil.

6-10 Resistance as a
function of angular
displacement for an
audio-taper
potentiometer.

6-9 Resistance as a function
of angular displacement
for a linear-taper
potentiometer.
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Rheostats are used in high-voltage, high-power applications. A good example is in a variable-
voltage power supply. This kind of supply uses a transformer that steps up the voltage from the 117-V
utility mains, and diodes to change the ac to dc. The rheostat can be placed between the utility outlet
and the transformer (Fig. 6-11). This results in a variable voltage at the power-supply output.

The Decibel
As stated in the preceding paragraphs, perceived levels of sound change according to the logarithm
of the actual sound power level. The same is true for various other phenomena, too, such as visible-
light intensity and radio-frequency signal strength. Specialized units have been defined to take this
into account.

The fundamental unit of sound-level change is called the decibel, symbolized as dB. A change
of +1 dB is the minimum increase in sound level that you can detect if you are expecting it. A
change of −1 dB is the minimum detectable decrease in sound volume, when you are anticipating
the change. Increases in volume are given positive decibel values, and decreases in volume are given
negative decibel values.

If you aren’t expecting the level of sound to change, then it takes about +3 dB or −3 dB to make
a noticeable difference.

Changes in intensity, when expressed in decibels, are sometimes called gain and loss. Positive
decibel changes represent gain, and negative decibel changes represent loss. The sign (plus or minus)
is usually absent when speaking of changes in terms of decibel gain or decibel loss. If you say that a
certain system causes 5 dB of loss, you are saying that the gain of that circuit is −5 dB.

Calculating Decibel Values
Decibel values are calculated according to the logarithm of the ratio of change. Suppose a sound
produces a power of P watts on your eardrums, and then it changes (either getting louder or softer)
to a level of Q watts. The change in decibels is obtained by dividing out the ratio Q/P, taking its base-
10 logarithm (symbolized as log10 or simply as log), and then multiplying the result by 10. Mathe-
matically:

dB = 10 log (Q/P)

6-11 Connection of a
rheostat in a variable-
voltage power supply.
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As an example, suppose a speaker emits 1 W of sound, and then you turn up the volume so that it
emits 2 W of sound power. Then P = 1 and Q = 2, and dB = 10 log (2/1) = 10 log 2 = 10 × 0.3 =
3 dB. This is the minimum detectable level of volume change if you aren’t expecting it: doubling of
the actual sound power!

If you turn the volume level back down again, then P/Q = 1/2 = 0.5, and you can calculate 
dB = 10 log 0.5 = 10 × −0.3 = −3 dB.

A gain or loss of 10 dB (that is, a change of +10 dB or −10 dB, often shortened to �10 dB) rep-
resents a 10-fold increase or decrease in sound power. A change of �20 dB represents a 100-fold in-
crease or decrease in sound power. It is not unusual to encounter sounds that vary in intensity over
ranges of �60 dB, which represents a 1,000,000-fold increase or decrease in sound power!

Sound Power in Terms of Decibels
The preceding formula can be worked inside out, so that you can determine the final sound power,
given the initial sound power and the decibel change. To do this, you use the inverse of the logarith-
mic function, symbolized as log−1 or antilog. This function, like the logarithmic function, can be per-
formed by any good scientific calculator, or by the calculator program in a personal computer when
set to scientific mode.

Suppose the initial sound power is P, and the change in decibels is dB. Let Q be the final sound
power. Then:

Q = P antilog (dB/10)

As an example, suppose the initial power, P, is 10 W, and the perceived volume change is −3 dB.
Then the final power, Q, is equal to 10 antilog (−3/10) = 10 × 0.5 = 5 W.

Decibels in the Real World
Sound levels are sometimes specified in decibels relative to the threshold of hearing, defined as the
faintest possible sound that a person can detect in a quiet room, assuming his or her hearing is nor-
mal. This threshold is assigned the value 0 dB. Other sound levels can then be quantified as figures
such as 30 dB or 75 dB.

If a certain noise has a loudness of 30 dB, that means it’s 30 dB above the threshold of hearing,
or 1000 times as loud as the quietest detectable noise. A noise at 60 dB is 1,000,000 (or 106) times
as powerful as a sound at the threshold of hearing. Sound-level meters are used to determine the deci-
bel levels of various noises and acoustic environments.

A typical conversation occurs at a level of about 70 dB. This is 10,000,000 (or 107) times the
threshold of hearing, in terms of actual sound power. The roar of the crowd at a rock concert might
be 90 dB, or 1,000,000,000 (109) times the threshold of hearing. A sound at 100 dB, typical of the
music at a large rock concert if you are sitting in the front row, is 10,000,000,000 (1010) times as
loud, in terms of power, as a sound at the threshold of hearing.

Resistor Specifications
When choosing a resistor for a particular application in an electrical or electronic device, it’s important
to get a unit that has the correct properties, or specifications. Here are some of the most important spec-
ifications to watch for.
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Ohmic Value
In theory, a resistor can have any ohmic value from the lowest possible (such as a shaft of solid sil-
ver) to the highest (dry air). In practice, it is unusual to find resistors with values less than about 0.1
Ω or more than about 100 MΩ.

Resistors are manufactured with ohmic values in power-of-10 multiples of 1.0, 1.2, 1.5, 1.8,
2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8, and 8.2. Thus, you will often see resistors with values of 47 Ω, 180
Ω, 6.8 kΩ, or 18 MΩ, but hardly ever with values such as 384 Ω, 4.54 kΩ, or 7.297 MΩ.

In addition to these standard values, there are others that are used for resistors made with
greater precision, or tighter tolerance. These are power-of-10 multiples of 1.1, 1.3, 1.6, 2.0, 2.4, 3.0,
3.6, 4.3, 5.1, 6.2, 7.5, and 9.1.

Tolerance
The first set of numbers above represents standard resistance values available in tolerances of plus or
minus 10 percent (�10%). This means that the resistance might be as much as 10 percent more or
10 percent less than the indicated amount. In the case of a 470-Ω resistor, for example, the value
can be larger or smaller than the rated value by as much as 47 Ω, and still be within tolerance. That’s
a range of 423 to 517 Ω.

Tolerance is calculated according to the specified value of the resistor, not the actual value. You
might measure the value of a 470-Ω resistor and find it to be 427 Ω, and it would be within �10%
of the specified value. But if it measures 420 Ω, it’s outside the rated range, and is therefore a reject.
The second set, along with the first set, of numbers represents standard resistance values available in
tolerances of plus or minus 5 percent (�5%). A 470-Ω, 5 percent resistor will have an actual value
of 470 Ω plus or minus 24 Ω, or a range of 446 to 494 Ω.

Some resistors are available in tolerances tighter than �5%. These precision units are employed
in circuits where a little error can make a big difference. In most audio and radio-frequency oscilla-
tors and amplifiers, the �10% or �5% tolerance is good enough. In many cases, even a �20%
tolerance is satisfactory.

Power Rating
All resistors are given a specification that determines how much power they can safely dissipate. Typ-
ical values are 1⁄ 4 W, 1⁄ 2 W, and 1 W. Units also exist with ratings of 1⁄ 8 W or 2 W. These dissipation
ratings are for continuous duty, meaning they can dissipate this amount of power constantly and
indefinitely.

You can figure out how much current a given resistor can handle by using the formula for power
(P) in terms of current (I ) and resistance (R). That formula, you should recall, is P = I 2R. Work this
formula backward, plugging in the power rating in watts for P and the resistance in ohms for R, and
solve for the current I in amperes. Alternatively, you can find the square root of P/R.

The power rating for a given resistor can, in effect, be increased by using a network of 2 × 2,
3 × 3, 4 × 4, or more units in series-parallel. If you need a 47-Ω, 45-W resistor, but all you have is
a bunch of 47-Ω, 1-W resistors, you can make a 7 × 7 network in series-parallel, and this will han-
dle 49 W.

Resistor power dissipation ratings are specified with a margin for error. A good engineer never
tries to take advantage of this and use, say, a 1⁄ 4-W unit in a situation that needs to draw 0.27 W. In
fact, good engineers usually include their own safety margin. Allowing 10 percent, a 1⁄ 4-W resistor
should not be called upon to handle more than about 0.225 W.
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Temperature Compensation
All resistors change value when the temperature changes dramatically. And because resistors dissi-
pate power, they can get hot just because of the current they carry. Often, this current is so tiny that
it doesn’t appreciably heat the resistor. But in some cases it does, and the resistance will change.
Then a circuit might behave differently than it did when the resistor was still cool.

There are various ways to approach problems of resistors changing value when they get hot.
One method is to use specially manufactured resistors that do not appreciably change value when
they get hot. Such units are called temperature-compensated. But one of these can cost several times
as much as an ordinary resistor. Another approach is to use a power rating that is much higher than
the actual dissipated power in the resistor. This will keep the resistor from getting very hot. Still an-
other scheme is to use a series-parallel network of identical resistors to increase the power dissipa-
tion rating. Alternatively, you can take several resistors, say three of them, each with about three
times the intended resistance, and connect them all in parallel. Or you can take several resistors, say
four of them, each with about one-fourth the intended resistance, and connect them in series.

It is unwise to combine resistors with different values. This can result in one of them taking
most of the load while the others “loaf,” and the combination will be no better than the single hot
resistor you started with.

How about using two resistors with half (or twice) the value you need, but with opposite resist-
ance-versus-temperature characteristics, and connecting them in series or parallel? It is tempting to
suppose that if you do this, the component whose resistance decreases with heat (negative tempera-
ture coefficient) will have a canceling-out effect on the component whose resistance goes up ( positive
temperature coefficient). This can sometimes work, but in practice it’s difficult to find a pair of resist-
ances that will do this job just right.

The Color Code for Resistors
Some resistors have color bands that indicate their values and tolerances. You’ll see three, four, or five
bands around carbon-composition resistors and film resistors. Other units are large enough so that
the values can be printed on them in ordinary numerals.

On resistors with axial leads (wires that come straight out of both ends), the first, second, third,
fourth, and fifth bands are arranged as shown in Fig. 6-12A. On resistors with radial leads (wires
that come off the ends at right angles to the axis of the component body), the colored regions are
arranged as shown in Fig. 6-12B. The first two regions represent numbers 0 through 9, and the third
region represents a multiplier of 10 to some power. (For the moment, don’t worry about the fourth
and fifth regions.) Refer to Table 6-1.

Suppose you find a resistor whose first three bands are yellow, violet, and red, in that order.
Then the resistance is 4700 Ω. Read yellow = 4, violet = 7, red = ×100. As another example, sup-
pose you find a resistor with bands of blue, gray, orange. Refer to Table 6-1 and determine blue = 6,
gray = 8, orange = ×1000. Therefore, the value is 68,000 Ω = 68 kΩ.

The fourth band, if there is one, indicates tolerance. If it’s silver, it means the resistor is rated
at �10%. If it’s gold, the resistor is rated at �5%. If there is no fourth band, the resistor is rated
at �20%.

The fifth band, if there is one, indicates the maximum percentage that the resistance can be ex-
pected to change after 1000 hours of use. A brown band indicates a maximum change of �1% of
the rated value. A red band indicates �0.1%. An orange band indicates �0.01%. A yellow band in-
dicates �0.001%. If there is no fifth band, it means that the resistor might deviate by more than
�1% of the rated value after 1000 hours of use.
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6-12 At A, locations of
color-code bands on a
resistor with axial
leads. At B, locations
of color code
designators on a
resistor with radial
leads.
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Table 6-1. The color code for the first three bands that appear on fixed resistors. See text
for discussion of the fourth and fifth bands.

Color of band Numeral Multiplier
(first and second bands) (third band)

Black 0 1
Brown 1 10
Red 2 100
Orange 3 1000 (1 k)
Yellow 4 104 (10 k)
Green 5 105 (100 k)
Blue 6 106 (1 M)
Violet 7 107 (10 M)
Gray 8 108 (100 M)
White 9 109 (1000 M or 1 G)



A competent engineer or technician always tests a resistor with an ohmmeter before installing
it in a circuit. If the component happens to be labeled wrong, or if it is defective, it’s easy to catch
this problem while assembling or servicing a circuit. But once the circuit is all together, and it won’t
work because some resistor is labeled wrong or is bad, it’s difficult to troubleshoot.

Quiz
Refer to the text in this chapter if necessary. A good score is at least 18 correct. Answers are in the
back of the book.

1. Proper biasing in an amplifier circuit
(a) causes it to oscillate.
(b) prevents an impedance match.
(c) can be obtained using a voltage divider network.
(d) maximizes current flow.

2. A transistor can be protected from needless overheating by
(a) a current-limiting resistor.
(b) bleeder resistors.
(c) maximizing the drive.
(d) shorting out the power supply when the circuit is off.

3. A bleeder resistor
(a) is connected across the capacitor in a power supply.
(b) keeps a transistor from drawing too much current.
(c) prevents an amplifier from being overdriven.
(d) optimizes the efficiency of an amplifier.

4. Carbon-composition resistors
(a) can handle gigantic levels of power.
(b) have capacitance or inductance along with resistance.
(c) have essentially no capacitance or inductance.
(d) work better for ac than for dc.

5. A logical place for a wirewound resistor is
(a) in a radio-frequency amplifier.
(b) in a circuit where a noninductive resistor is called for.
(c) in a low-power radio-frequency circuit.
(d) in a high-power dc circuit.

6. A metal-film resistor
(a) is made using a carbon-based paste.
(b) does not have much inductance.
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(c) can dissipate large amounts of power.

(d) has considerable inductance.

7. What type of resistor, or combination of resistors, would you use as the meter-sensitivity
control in a test instrument, when continuous adjustment is desired?

(a) A set of switchable, fixed resistors

(b) A linear-taper potentiometer

(c) An audio-taper potentiometer

(d) A wirewound resistor

8. What type of resistor, or combination of resistors, would you use as the volume control in a
stereo compact-disc (CD) player?

(a) A set of switchable, fixed resistors

(b) A linear-taper potentiometer

(c) An audio-taper potentiometer

(d) A wirewound resistor

9. If a sound triples in actual power level, approximately what is this, expressed in decibels?

(a) +3 dB

(b) +5 dB

(c) +6 dB

(d) +9 dB

10. Suppose a sound changes in volume by −13 dB. If the original sound power is 1.0 W, what is
the final sound power?

(a) 13 W

(b) 77 mW

(c) 50 mW

(d) There is not enough information given here to answer this question.

11. The sound from a portable radio is at a level of 50 dB. How many times the threshold of
hearing is this, in terms of actual sound power?

(a) 50
(b) 169
(c) 5000
(d) 100,000

12. An advantage of a rheostat over a potentiometer is the fact that
(a) a rheostat can handle higher frequencies.
(b) a rheostat is more precise.
(c) a rheostat can handle more current.
(d) a rheostat works better with dc.
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13. A resistor is specified as having a value of 68 Ω, but is measured with an ohmmeter as 63 Ω.
The value is off by which of the following percentages?

(a) 7.4%
(b) 7.9%
(c) 5%
(d) 10%

14. Suppose a resistor is rated at 3.3 kΩ �5%. This means it can be expected to have a value
between

(a) 2970 Ω and 3630 Ω.
(b) 3295 Ω and 3305 Ω.
(c) 3135 Ω and 3465 Ω.
(d) 2.8 kΩ and 3.8 kΩ.

15. A package of resistors is rated at 56 Ω �10%. You test them with an ohmmeter. Which of
the following values indicates a reject?

(a) 50.0 Ω
(b) 53.0 Ω
(c) 59.7 Ω
(d) 61.1 Ω

16. A resistor has a value of 680 Ω, and you expect that it will have to draw 1 mA maximum
continuous current in a circuit you’re building. What power rating is good for this application,
but not needlessly high?

(a) 1⁄ 4 W
(c) 1⁄ 2 W
(c) 1 W
(d) 2 W

17. Suppose a 1-kΩ resistor will dissipate 1.05 W, and you have a good supply of 1-W resistors of
various ohmic values. If there’s room for 20 percent resistance error, the cheapest solution is to use

(a) four 1-kΩ, 1-W resistors in series-parallel.
(b) a pair of 2.2-kΩ, 1-W resistors in parallel.
(c) a set of three 3.3-kΩ, 1-W resistors in parallel.
(d) a single 1-kΩ, 1-W resistor, because all manufacturers allow for a 10 percent margin of

safety when rating resistors for their power-handling capability.

18. Suppose a carbon-composition resistor has the following colored bands on it: red, red, red,
gold. This indicates a resistance of

(a) 22 Ω.
(b) 220 Ω.
(c) 2.2 kΩ.
(d) 22 kΩ.
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19. The actual resistance of the component described in the previous question can be expected to
vary above or below the specified ohmic value by up to what amount?

(a) 11 Ω
(b) 110 Ω
(c) 22 Ω
(d) 220 Ω

20. Suppose a carbon-composition resistor has the following colored bands on it: gray, red,
yellow. This unit can be expected to have a value within approximately what range?

(a) 660 kΩ to 980 kΩ
(b) 740 kΩ to 900 kΩ
(c) 7.4 kΩ to 9.0 kΩ
(d) The manufacturer does not make any claim.
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IN ELECTRICITY AND ELECTRONICS, A CELL IS A UNIT SOURCE OF DC ENERGY. WHEN TWO OR MORE

cells are connected in series, the result is known as a battery. There are many types of cells and bat-
teries, and new types are constantly being invented.

Electrochemical Energy
Early in the history of electrical science, laboratory physicists found that when metals came into
contact with certain chemical solutions, voltages appeared between the pieces of metal. These were
the first electrochemical cells.

A piece of lead and a piece of lead dioxide immersed in an acid solution (Fig. 7-1) acquire a per-
sistent potential difference. This can be detected by connecting a galvanometer between the pieces
of metal. A resistor of about 1000 Ω must be used in series with the galvanometer in experiments
of this kind, because connecting the galvanometer directly will cause too much current to flow, pos-
sibly damaging the galvanometer and causing the acid to boil.

The chemicals and the metal have an inherent ability to produce a constant exchange of charge
carriers. If the galvanometer and resistor are left hooked up between the two pieces of metal for a
long time, the current will gradually decrease, and the electrodes will become coated. All the chem-
ical energy in the acid will have been turned into electrical energy as current in the wire and gal-
vanometer. In turn, this current will have heated the resistor (another form of kinetic energy), and
escaped into the air and into space.

Primary and Secondary Cells
Some electrical cells, once their chemical energy has all been changed to electricity and used up,
must be thrown away. These are called primary cells. Other kinds of cells, such as the lead-and-acid
type, can get their chemical energy back again by means of recharging. Such a cell is a secondary cell.

Primary cells include the ones you usually put in a flashlight, in a transistor radio, and in vari-
ous other consumer devices. They use dry electrolyte pastes along with metal electrodes. They go by
names such as dry cell, zinc-carbon cell, or alkaline cell. Go into a department store and find a rack
of batteries, and you’ll see various sizes and types of primary cells, such as AAA batteries, D batteries,
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camera batteries, and watch batteries. (These are actually cells, not true batteries.) You’ll also see 9-V
transistor batteries and large 6-V lantern batteries.

Secondary cells can also be found in consumer stores. Nickel-based cells are common. The most
common sizes are AA, C, and D. These cost several times as much as ordinary dry cells, and a charg-
ing unit also costs a few dollars. But if you take care of them, these rechargeable cells can be used hun-
dreds of times and will pay for themselves several times over if you use a lot of batteries in everyday life.

The battery in your car is made from secondary cells connected in series. These cells recharge
from the alternator or from an outside charging unit. This battery has cells like the one in Fig. 7-1.
It is dangerous to short-circuit the terminals of such a battery, because the acid (sulfuric acid) can
bubble up and erupt out of the battery casing. Serious skin and eye injuries can result. In fact, it’s a
bad idea to short-circuit any cell or battery, because it can get extremely hot and cause a fire, or rup-
ture and damage surrounding materials, wiring, and components.

The Weston Standard Cell
Most electrochemical cells produce 1.2 to 1.8 V. Different types vary slightly. A mercury cell has a
voltage that is a little less than that of a zinc-carbon or alkaline cell. The voltage of a cell can also be
affected by variables in the manufacturing process. Most consumer-type dry cells can be assumed to
produce 1.5 V.

There are certain cells whose voltages are predictable and exact. These are called standard cells.
A good example is the Weston cell, which produces 1.018 V at room temperature. It has a solution
of cadmium sulfate, a positive electrode made from mercury sulfate, and a negative electrode made
from mercury and cadmium. The device is set up in a container, as shown in Fig. 7-2.

Storage Capacity
Recall that the common electrical units of energy are the watt-hour (Wh) and the kilowatt-hour
(kWh). Any electrochemical cell or battery has a certain amount of electrical energy that can be ob-
tained from it, and this can be specified in watt-hours or kilowatt-hours. More often, though, it’s
given in ampere-hours (Ah).

A battery with a rating of 2 Ah can provide 2 A for 1 h, or 1 A for 2 h, or 100 mA for 20 h.
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There are infinitely many possibilities here, as long as the product of the current in amperes and the
use time in hours is equal to 2. The limitations are the shelf life at one extreme, and the maximum
deliverable current at the other. Shelf life is the length of time the battery will last if it is never used;
this can be years. The maximum deliverable current is the highest amount of current that the bat-
tery can provide before its voltage drops because of its own internal resistance.

Small cells have storage capacity of a few milliampere-hours (mAh) up to 100 or 200 mAh.
Medium-sized cells can supply 500 mAh to 1 Ah. Large automotive or truck batteries can provide
upward of 50 Ah. The energy capacity in watt-hours is the ampere-hour capacity multiplied by the
battery voltage.

An ideal cell or ideal battery (a theoretically perfect cell or battery) delivers a constant current for
a while, and then the current starts to drop (Fig. 7-3). Some types of cells and batteries approach
this level of perfection, which is represented by a flat discharge curve. But many cells and batteries
are far from perfect; they deliver current that declines gradually, almost right from the start. When
the current that a battery can provide has tailed off to about half of its initial value, the cell or bat-
tery is said to be weak. At this time, it should be replaced. If it’s allowed to run all the way out, until
the current actually goes to zero, the cell or battery is dead. The area under the curve in Fig. 7-3 is a
graphical representation the total capacity of the cell or battery in ampere-hours.
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Grocery Store Cells and Batteries
The cells you see in grocery stores, department stores, drugstores, and hardware stores provide 
1.5 V, and are available in sizes known as AAA (very small), AA (small), C (medium large), and 
D (large). Batteries are widely available that deliver 6 or 9 V.

Zinc-Carbon Cells
Figure 7-4 is a translucent drawing of a zinc-carbon cell. The zinc forms the case and is the negative
electrode. A carbon rod serves as the positive electrode. The electrolyte is a paste of manganese diox-
ide and carbon. Zinc-carbon cells are inexpensive and are good at moderate temperatures and in ap-
plications where the current drain is moderate to high. They are not very good in extreme cold.

Alkaline Cells
The alkaline cell has granular zinc as the negative electrode, potassium hydroxide as the electrolyte,
and a device called a polarizer as the positive electrode. The construction is similar to that of the
zinc-carbon cell. An alkaline cell can work at lower temperatures than a zinc-carbon cell. It lasts
longer in most electronic devices, and is therefore preferred for use in transistor radios, calculators,
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and portable cassette players. Its shelf life is much longer than that of a zinc-carbon cell. As you
might expect, it costs more.

Transistor Batteries
A transistor battery consists of six tiny zinc-carbon or alkaline cells in series. Each of the six cells sup-
plies 1.5 V. Thus, the battery supplies 9 V. Even though these batteries have more voltage than in-
dividual cells, the total energy available from them is less than that from a C cell or D cell. This is
because the electrical energy that can be obtained from a cell or battery is directly proportional to
the amount of chemical energy stored in it, and this, in turn, is a direct function of the volume
(physical size) of the cell or the mass (quantity of chemical matter) of the cell. Cells of size C or D
have more volume and mass than a transistor battery, and therefore contain more stored energy for
the same chemical composition.

Transistor batteries are used in low-current electronic devices such as remote-control garage-
door openers, television (TV) and hi-fi remote controls, and electronic calculators.

Lantern Batteries
The lantern battery has much greater mass than a common dry cell or transistor battery, and conse-
quently it lasts much longer and can deliver more current. Lantern batteries are usually rated at 6 V,
and consist of four good-size zinc-carbon or alkaline cells. Two lantern batteries connected in series
make a 12-V battery that can power a 5-W citizens band (CB) or ham radio transceiver for a while.
They’re also good for scanner radio receivers in portable locations, for camping lamps, and for other
medium-power needs.

Miniature Cells and Batteries
In recent years, cells and batteries—especially cells—have become available in many different sizes
and shapes besides the old cylindrical cells, transistor batteries, and lantern batteries. These are used
in wristwatches, small cameras, and various microminiature electronic devices.

Silver-Oxide Cells and Batteries
A silver-oxide cell is usually found in a buttonlike shape, and can fit inside a small wristwatch. These
types of cells come in various sizes and thicknesses, all with similar appearances. They supply 1.5 V,
and offer excellent energy storage for the weight. They also have a nearly flat discharge curve, like
the one shown in the graph of Fig. 7-3. Zinc-carbon and alkaline cells and batteries, in contrast,
have current output that declines more steadily with time, as shown in Fig. 7-5. This is known as a
declining discharge curve.

Silver-oxide cells can be stacked to make batteries. Several of these miniature cells, one on top
of the other, can provide 6, 9, or even 12 V for a transistor radio or other light-duty electronic de-
vice. The resulting battery is about the size of an AAA cylindrical cell.

Mercury Cells and Batteries
A mercury cell, also called a mercuric-oxide cell, has properties similar to those of silver-oxide cells.
They are manufactured in the same general form. The main difference, often not of significance, is
a somewhat lower voltage per cell: 1.35 V. If six of these cells are stacked to make a battery, the re-
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sulting voltage will be about 8.1 V rather than 9 V. One additional cell can be added to the stack,
yielding about 9.45 V.

There has been a decline in the popularity of mercury cells and batteries in recent years, because
of the fact that mercury is toxic to humans and animals, even in trace amounts. When mercury cells
and batteries are dead, they must be discarded. Eventually the mercury or mercuric oxide leaks into
the soil and groundwater. Mercury pollution has become a significant concern throughout the
world.

Lithium Cells and Batteries
Lithium cells gained popularity in the early 1980s. There are several variations in the chemical
makeup of these cells; they all contain lithium, a light, highly reactive metal. Lithium cells can be
made to supply 1.5 to 3.5 V, depending on the particular chemistry used. These cells, like silver-
oxide and mercury cells, can be stacked to make batteries.

The first application of lithium batteries was in memory backup for electronic microcomput-
ers. Lithium cells and batteries have superior shelf life, and they can last for years in very-low-
current applications such as memory backup or the powering of a digital liquid crystal display
(LCD) watch or clock. These cells also provide high energy capacity per unit volume or mass.

Lead-Acid Batteries
You’ve seen the basic configuration for a lead-acid cell. This has a solution of sulfuric acid, along
with a lead electrode (negative) and a lead-dioxide electrode (positive). These cells are rechargeable.

Automotive batteries are made from sets of lead-acid cells having a free-flowing liquid acid. You
cannot tip such a battery on its side, or turn it upside-down, without running the risk of having
some of the acid electrolyte spill out. Lead-acid batteries are also available in a construction that
uses a semisolid electrolyte. These batteries are sometimes used in consumer electronic devices that
require a moderate amount of current. The most common example is an uninterruptible power
supply (UPS) that can keep a desktop personal computer running for a few minutes if the utility
power fails.
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A large lead-acid battery, such as the kind in your car or truck, can store several tens of ampere-
hours. The smaller ones, like those in a UPS, have less capacity but more versatility. Their main at-
tributes are that they can be charged and recharged many times, and they are not particularly
expensive.

Nickel-Based Cells and Batteries
Nickel-based cells include the nickel-cadmium (NICAD or NiCd) type and the nickel-metal-hydride
(NiMH) type. Nickel-based batteries are available in packs of cells. These packs can be plugged into
equipment, and sometimes form part of the case for a device such as a portable radio transceiver. 
All nickel-based cells are rechargeable, and can be put through hundreds or even thousands of
charge/discharge cycles if they are properly cared for.

Configurations and Applications
Nickel-based cells are found in various sizes and shapes. Cylindrical cells look like ordinary dry cells.
Button cells are those little things you find in cameras, watches, memory backup applications, and
other places where miniaturization is important. Flooded cells are used in heavy-duty applications,
and can have storage capacity in excess of 1000 Ah. Spacecraft cells are made in packages that can
withstand the rigors of a deep-space environment.

Most orbiting satellites are in darkness half the time and in sunlight half the time. Solar panels
can be used while the satellite is in sunlight, but during the times that the earth eclipses the sun, bat-
teries are needed to power the electronic equipment on board the satellite. The solar panels can
charge a nickel-based battery, in addition to powering the satellite, for the daylight half of each
orbit. The nickel-based battery can provide the power during the dark half of each orbit.

Cautions
Never discharge nickel-based cells all the way until they totally die. This can cause the polarity of a
cell, or of one or more cells in a battery, to reverse. Once this happens, the cell or battery is ruined.

A phenomenon peculiar to nickel-based cells and batteries is known as memory or memory
drain. If a nickel-based unit is used over and over, and is discharged to the same extent every time,
it might begin to die at that point in its discharge cycle. Memory problems can usually be solved.
Use the cell or battery almost all the way up, and then fully recharge it. Repeat the process several
times.

Nickel-based cells and batteries work best if used with charging units that take several hours to
fully replenish the charge. So-called high-rate or quick chargers are available, but these can some-
times force too much current through a cell or battery. It’s best if the charger is made especially for
the cell or battery type being charged. An electronics dealer, such as the manager at a RadioShack
store, should be able to tell you which chargers are best for which cells and batteries.

In recent years, concern has grown about the toxic environmental effects of discarded heavy
metals, including cadmium. For this reason, NiMH cells and batteries have replaced NICAD types
in many applications. In most practical scenarios, a NICAD battery can be directly replaced with a
NiMH battery of the same voltage and current-delivering capacity, and the powered-up device will
work satisfactorily.

Some vendors and dealers will call a nickel-based cell or battery a NICAD, even when it is ac-
tually a NiMH cell or battery.
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Photovoltaic Cells and Batteries
The photovoltaic (PV) cell is different from any electrochemical cell. It’s also known as a solar cell. This
device converts visible light, infrared (IR), and/or ultraviolet (UV) directly into electric current.

Solar Panels
Several, or many, photovoltaic cells can be combined in series-parallel to make a solar panel. An ex-
ample is shown in Fig. 7-6. Although this shows a 3 × 3 series-parallel array, the matrix does not have
to be symmetrical. And it’s often very large. It might consist of, say, 50 parallel sets of 20 series-
connected cells. The series scheme boosts the voltage to the desired level, and the parallel scheme in-
creases the current-delivering ability of the panel. It’s not unusual to see hundreds of solar cells
combined in this way to make a large panel.

Construction and Performance
The construction of a photovoltaic cell is shown in Fig. 7-7. The device is a flat semiconductor 
P-N junction, and the assembly is made transparent so that light can fall directly on the P-type sili-
con. The metal ribbing, forming the positive electrode, is interconnected by means of tiny wires.
The negative electrode is a metal backing or substrate, placed in contact with the N-type silicon.

Most solar cells provide about 0.5 V. If there is very low current demand, dim light will result
in the full-output voltage from a solar cell. As the current demand increases, brighter light is needed
to produce the full-output voltage. There is a maximum limit to the current that can be provided
from a solar cell, no matter how bright the light. This limit is increased by connecting solar cells in
parallel.

Practical Applications
Solar cells have become cheaper and more efficient in recent years, as researchers have looked to
them as an alternative energy source. Solar panels are used in satellites. They can be used in conjunc-
tion with rechargeable batteries, such as the lead-acid or nickel-cadmium types, to provide power
independent of the commercial utilities.

A completely independent solar/battery power system is called a stand-alone system. It uses large
solar panels, large-capacity lead-acid batteries, power converters to convert the dc into ac, and a
sophisticated charging circuit. These systems are best suited to environments where there is sun-
shine a high percentage of the time.
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Solar cells, either alone or supplemented with rechargeable batteries, can be connected into a home
electric system in an interactive arrangement with the electric utilities. When the solar power system
can’t provide for the needs of the household all by itself, the utility company can take up the slack.
Conversely, when the solar power system supplies more than enough for the needs of the home, the
utility company can buy the excess.

Fuel Cells
In the late 1900s, a new type of electrochemical power device emerged that is believed by some sci-
entists and engineers to hold promise as an alternative energy source: the fuel cell.

Hydrogen Fuel
The most talked-about fuel cell during the early years of research and development became known
as the hydrogen fuel cell. As its name implies, it derives electricity from hydrogen. The hydrogen
combines with oxygen (that is, it oxidizes) to form energy and water. There is no pollution, and there
are no toxic by-products. When a hydrogen fuel cell “runs out of juice,” all that is needed is a new
supply of hydrogen, because its oxygen is derived from the atmosphere.

Instead of combusting, the hydrogen in a fuel cell oxidizes in a more controlled fashion, and at
a much lower temperature. There are several schemes for making this happen. The proton exchange
membrane (PEM) fuel cell is one of the most widely used. A PEM hydrogen fuel cell generates ap-
proximately 0.7 V of dc. In order to obtain higher voltages, individual cells are connected in series.
A series-connected set of fuel cells is technically a battery, but the term used more often is stack.

Fuel-cell stacks are available in various sizes. A stack about the size and weight of an airline suit-
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case filled with books can power a subcompact electric car. Smaller cells, called micro fuel cells, can
provide dc to run devices that have historically operated from conventional cells and batteries. These
include portable radios, lanterns, and notebook computers.

Other Fuels
Hydrogen is not the only chemical that can be used to make a fuel cell. Almost anything that will
combine with oxygen to form energy has been considered.

Methanol, a form of alcohol, has the advantage of being easier to transport and store than hy-
drogen, because it exists as a liquid at room temperature. Propane is another chemical that has been
used for powering fuel cells. This is the substance that is stored in liquid form in tanks for barbecue
grills and some rural home heating systems. Methane, also known as natural gas, has been used 
as well.

Some scientists and engineers object to the use of these fuels because they, especially propane
and methane, closely resemble fuels that are already commonplace, and on which society has devel-
oped the sort of dependence that purists would like to get away from. In addition, they are derived
from so-called fossil fuel sources, the supplies of which, however great they might be today, are nev-
ertheless finite.

A Promising Technology
As of this writing (2006), fuel cells have not yet replaced conventional electrochemical cells and bat-
teries. Cost is the main reason. Hydrogen is the most abundant and simplest chemical element in
the universe, and it does not produce any toxic by-products. This would at first seem to make it the
ideal choice for use in fuel cells. But storage and transport of hydrogen has proven to be difficult and
expensive. This is especially true for fuel cells and stacks intended for systems that aren’t fixed to per-
manent pipelines.

An interesting scenario, suggested by one of my physics teachers all the way back in the 1970s,
is the piping of hydrogen gas through the lines designed to carry methane. Some modification of ex-
isting lines would be required in order to safely handle hydrogen, which escapes through small
cracks and openings more easily than methane. But hydrogen, if obtained at reasonable cost and in
abundance, could be used to power large fuel-cell stacks in common households and businesses. The
dc from such a stack could be converted to utility ac by power inverters similar to those used with
PV energy systems. The entire home power system would be about the size of a gas furnace.

Quiz
Refer to the text in this chapter if necessary. A good score is 18 correct. Answers are in the back of
the book.

1. The chemical energy in a battery or cell
(a) is a form of kinetic energy.
(b) cannot be replenished once it is gone.
(c) changes to electrical energy when the cell is used.
(d) is caused by electric current.
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2. A cell that cannot be recharged is known as
(a) a dry cell.
(b) a wet cell.
(c) a primary cell.
(d) secondary cell.

3. A Weston cell is generally used
(a) as a current reference source.
(b) as a voltage reference source.
(c) as a power reference source.
(d) as a fuel cell.

4. The voltage produced by a battery of multiple cells connected in series is
(a) less than the voltage produced by a cell of the same composition.
(b) the same as the voltage produced by a cell of the same composition.
(c) more than the voltage produced by a cell of the same composition.
(d) always a whole-number multiple of 1.018 V.

5. A direct short-circuit of a large battery can cause
(a) an increase in its voltage.
(b) no harm other than a rapid discharge of its energy.
(c) the current to drop to zero.
(d) a physical rupture or explosion.

6. Suppose a cell of 1.5 V delivers 100 mA for 7 hours and 20 minutes, and then it is replaced.
How much energy is supplied during this time?

(a) 0.49 Wh
(b) 1.1 Wh
(c) 7.33 Wh
(d) 733 mWh

7. Suppose a 12-V automotive battery is rated at 36 Ah. If a 100-W, 12-V bulb is connected
across this battery, approximately how long will the bulb stay aglow, assuming the battery has been
fully charged?

(a) 4 hours and 20 minutes
(b) 432 hours
(c) 3.6 hours
(d) 21.6 minutes

8. Alkaline cells
(a) are cheaper than zinc-carbon cells.
(b) generally work better in radios than zinc-carbon cells.
(c) have higher voltages than zinc-carbon cells.
(d) have shorter shelf lives than zinc-carbon cells.
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9. The energy in a cell or battery depends mainly on
(a) its physical size.
(b) the current drawn from it.
(c) its voltage.
(d) all of the above.

10. In which of the following devices would a lantern battery most likely be found?
(a) A heart pacemaker
(b) An electronic calculator
(c) An LCD wall clock
(d) A two-way portable radio

11. In which of the following devices would a transistor battery be the best power choice?
(a) A heart pacemaker
(b) An electronic calculator
(c) An LCD wall clock
(d) A two-way portable radio

12. For which of the following applications would you choose a lithium battery?
(a) A microcomputer memory backup
(b) A two-way portable radio
(c) A stand-alone solar-electric system
(d) A rechargeable lantern

13. Where would you most likely find a lead-acid battery?
(a) In a portable audio CD player
(b) In an uninterruptible power supply
(c) In an LCD wall clock
(d) In a flashlight

14. A cell or battery that maintains a constant current-delivering capability almost until it dies is
said to have

(a) a large ampere-hour rating.
(b) excellent energy capacity.
(c) a flat discharge curve.
(d) good energy storage capacity per unit volume.

15. Where might you find a nickel-based battery?
(a) In a satellite
(b) In a portable cassette player
(c) In a handheld radio transceiver
(d) More than one of the above
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16. A disadvantage of mercury cells and batteries is the fact that
(a) they don’t last as long as other types.
(b) they have a flat discharge curve.
(c) mercury is destructive to the environment.
(d) they need to be recharged often.

17. Which kind of battery should never be used until it dies?
(a) Silver-oxide
(b) Lead-acid
(c) Nickel-based
(d) Mercury

18. The useful current that is delivered by a solar panel can be increased by
(a) connecting capacitors in parallel with the solar cells.
(b) connecting resistors in series with the solar cells.
(c) connecting two or more groups of solar cells in parallel.
(d) connecting resistors in parallel with the solar cells.

19. An interactive solar power system
(a) allows a homeowner to sell power to the electric company.
(b) lets the batteries recharge at night.
(c) powers lights, but not electronic devices.
(d) is totally independent from the electric company.

20. An advantage of methanol over hydrogen for use in fuel cells is the fact that
(a) methanol is the most abundant element in the universe.
(b) methanol is not flammable.
(c) methanol is a solid at room temperature.
(d) methanol is easier to transport and store.
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ELECTRIC AND MAGNETIC PHENOMENA INTERACT. MAGNETISM WAS MENTIONED BRIEFLY NEAR THE

end of Chap. 2. Here, we’ll look at it more closely.

The Geomagnetic Field
The earth has a core made up largely of iron, heated to the extent that some of it is liquid. As the
earth rotates, the iron flows in complex ways. It is thought that this flow is responsible for the mag-
netic field that surrounds the earth. Some other planets, notably Jupiter, have magnetic fields as
well. Even the sun has one.

The Poles and Axis
The geomagnetic field, as it is called, has poles, just as a bar magnet does. The geomagnetic poles are
near, but not at, the geographic poles. The north geomagnetic pole is located in far northern Canada.
The south geomagnetic pole is near Antarctica. The geomagnetic axis is therefore tilted relative to the
axis on which the earth rotates.

The Solar Wind
Charged subatomic particles from the sun, streaming outward through the solar system, distort the
geomagnetic lines of flux (Fig. 8-1). This stream of particles is called the solar wind. That’s a good
name for it, because the fast-moving particles produce measurable forces on sensitive instruments in
space. This force has actually been suggested as a possible means to drive space ships, equipped with
solar sails, out of the solar system!

At and near the earth’s surface, the geomagnetic field is not affected very much by the solar
wind, so the geomagnetic field is nearly symmetrical. As the distance from the earth increases, the
distortion of the field also increases, particularly on the side of the earth away from the sun.

The Magnetic Compass
The presence of the geomagnetic field was first noticed in ancient times. Some rocks, called lode-
stones, when hung by strings, would always orient themselves a certain way. This was correctly at-
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tributed to the presence of a “force” in the air. This effect was put to use by early seafarers and land
explorers. Today, a magnetic compass can still be a valuable navigation aid, used by mariners, back-
packers, and others who travel far from familiar landmarks.

The geomagnetic field interacts with the magnetic field around a compass needle, and a force
is thus exerted on the needle. This force works not only in a horizontal plane (parallel to the earth’s
surface), but vertically at most latitudes. The vertical component is zero only at the geomagnetic
equator, a line running around the globe equidistant from both geomagnetic poles.

As the geomagnetic latitude increases, toward either the north or the south geomagnetic pole,
the magnetic force pulls up and down on the compass needle more and more. One end of the nee-
dle seems to insist on touching the compass face, while the other end tilts up toward the glass. The
needle tries to align itself parallel to the geomagnetic lines of flux. The vertical angle, in degrees, at
which the geomagnetic lines of flux intersect the earth’s surface at any given location is called the
geomagnetic inclination.

Because geomagnetic north is not the same as geographic north in most places on the earth’s
surface, there is an angular difference between the two. This horizontal angle, in degrees, is called
geomagnetic declination. It, like inclination, varies with location.

Causes and Effects
Magnets are attracted to some, but not all, metals. Iron, nickel, and alloys containing either or
both of these elements are known as ferromagnetic materials. They “stick” to magnets. They can
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wind, so the geomagnetic field is not symmetrical with respect to
the earth.



also be made into permanent magnets. When a magnet is brought near a piece of ferromagnetic ma-
terial, the atoms in the material become lined up, so that the material is temporarily magnetized.
This produces a magnetic force between the atoms of the ferromagnetic substance and those in the
magnet.

Attraction and Repulsion
If a magnet is brought near another magnet, the force can be repulsive or attractive, depending on
the way the magnets are oriented. The force gets stronger as the magnets are brought near each
other. Some magnets are so strong that no human being can pull them apart if they get stuck to-
gether, and no person can bring them all the way together against their mutual repulsive force. This
is especially true of electromagnets, discussed later in this chapter.

The tremendous forces produced by electromagnets are of use in industry. A large electromag-
net can be used to carry heavy pieces of scrap iron from place to place. Other electromagnets can
provide sufficient repulsion to suspend one object above another. This phenomenon is called mag-
netic levitation. It is the basis for low-friction, high-speed commuter trains now in use in some met-
ropolitan areas.

Charge in Motion
Whenever the atoms in a ferromagnetic material are aligned, a magnetic field exists. A magnetic field
can also be caused by the motion of electric charge carriers, either in a wire or in free space.

The magnetic field around a permanent magnet arises from the same cause as the field around
a wire that carries an electric current. The responsible factor in either case is the motion of electri-
cally charged particles. In a wire, electrons move along the conductor, being passed from atom to
atom. In a permanent magnet, the movement of orbiting electrons occurs in such a manner that an
effective electrical current is produced.

Magnetic fields are also generated by the motion of charged particles through space. The sun is
constantly ejecting protons and helium nuclei. These particles carry a positive electric charge. Be-
cause of this, and the fact that they are in motion, they are surrounded by tiny magnetic fields.
When the particles approach the earth and their magnetic fields interact with the geomagnetic field,
the particles are accelerated toward the geomagnetic poles.

When there is a solar flare, the sun ejects far more charged particles than normal. When these
approach the geomagnetic poles, the result is considerable disruption of the geomagnetic field. This
type of event is called a geomagnetic storm. It causes changes in the earth’s ionosphere, affecting long-
distance radio communications at certain frequencies. If the fluctuations are intense enough, even
wire communications and electric power transmission can be interfered with. Aurora (northern or
southern lights) are frequently observed at night during these events.

Flux Lines
Have you seen the well-known experiment in which iron filings are placed on a horizontal sheet of
paper, and then a magnet is placed underneath the paper? The filings arrange themselves in a pat-
tern that shows, roughly, the shape of the magnetic field in the vicinity of the magnet. A bar mag-
net has a field with a characteristic form (Fig. 8-2). Another popular experiment involves passing a
current-carrying wire through a horizontal sheet of paper at a right angle, as shown in Fig. 8-3. The
iron filings become grouped along circles centered at the point where the wire passes through the
paper.
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The intensity of a magnetic field is determined according to the number of flux lines passing
through a certain cross section, such as a square centimeter or a square meter. The lines don’t exist
as real objects, but it is intuitively appealing to imagine them that way. The iron filings on the paper
really do bunch themselves into lines (curves, actually) when there is a magnetic field of sufficient
strength to make them move. Sometimes lines of flux are called lines of force. But technically, this is
a misnomer.
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flux lines (dashed
curves) around a bar
magnet (rectangle). The
N and S represent north
and south magnetic
poles, respectively.

8-3 The pattern of magnetic
flux lines (dashed
curves) around a
straight, current-
carrying wire can be
seen when the wire
passes through a
horizontal sheet of 
paper sprinkled with
iron filings.



Poles
A magnetic field has a specific direction, as well as a specific intensity, at any given point in space
near a current-carrying wire or a permanent magnet. The flux lines run parallel with the direction
of the field. A magnetic field is considered to begin at the north magnetic pole, and to terminate
at the south magnetic pole. In the case of a permanent magnet, it is obvious where the magnetic
poles are. In the case of a current-carrying wire, the magnetic field goes in endless circles around
the wire.

A charged electric particle, such as a proton or electron, hovering all by itself in space, consti-
tutes an electric monopole. The electric lines of flux around an isolated, charged particle in free space
are straight, and they “run off to infinity” (Fig. 8-4). A positive electric charge does not have to be
mated with a negative electric charge.

A magnetic field is different. All magnetic flux lines, at least in ordinary real-world situations,
are closed loops. With permanent magnets, there is a starting point (the north pole) and an ending
point (the south pole). Around a straight, current-carrying wire, the loops are closed circles, even
though the starting and ending points are not obvious. A pair of magnetic poles is called a magnetic
dipole.

At first you might think that the magnetic field around a current-carrying wire is caused by a
monopole, or that there aren’t any poles at all, because the concentric circles don’t actually converge
anywhere. But you can envision a half plane, with the edge along the line of the wire, as a magnetic
dipole. Then the lines of flux go around once in a 360° circle from the “north face” of the half plane
to the “south face.”

The greatest flux density, or field strength, around a bar magnet is near the poles, where the
lines converge. Around a current-carrying wire, the greatest field strength is near the wire.
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Magnetic Field Strength
The overall magnitude of a magnetic field is measured in units called webers (Wb). A smaller unit,
the maxwell (Mx), is sometimes used if a magnetic field is weak. One weber is equivalent to
100,000,000 (108) maxwells. Conversely, 1 Mx = 0.00000001 Wb = 10−8 Wb.

The Tesla and the Gauss
If you have access to a permanent magnet or electromagnet, you might see its strength expressed in
terms of webers or maxwells. But usually you’ll hear units called teslas (T) or gauss (G). These units
are expressions of the concentration, or intensity, of the magnetic field within a certain cross section.
The flux density, or number of lines per square meter or per square centimeter, is a more useful ex-
pression for magnetic effects than the overall quantity of magnetism. A flux density of 1 tesla (1 T)
is equal to 1 weber per square meter (1 Wb/m2). A flux density of 1 gauss (1 G) is equal to 1 maxwell
per square centimeter (1 Mx/cm2). It turns out that the gauss is equal to 0.0001 tesla (10−4 T). Con-
versely, the tesla is equivalent to 10,000 gauss (104 G).

The Ampere-Turn and the Gilbert
With electromagnets, another unit is employed: the ampere-turn (At). This is technically a unit of
magnetomotive force, which is the magnetic counterpart of electromotive force. A wire, bent into a cir-
cle and carrying 1 A of current, produces 1 At of magnetomotive force. If the wire is bent into a loop
having 50 turns, and the current stays the same, the resulting magnetomotive force is 50 At. If the
current is then reduced to 1/50 A or 20 mA, the magnetomotive force will go back down to 1 At.

The gilbert (Gb) is also used to express magnetomotive force, but it is less common than the
ampere-turn. One gilbert (1 Gb) is equal to 0.796 At. Conversely, 1 At = 1.26 Gb.

Electromagnets
Any electric current, or movement of charge carriers, produces a magnetic field. This field can be-
come intense in a tightly coiled wire that has many turns and carries a large current. When a ferro-
magnetic core is placed inside the coil, the magnetic lines of flux are concentrated in the core, and the
field strength in and near the core can become tremendous. This is the principle of an electromagnet
(Fig. 8-5). Electromagnets are almost always cylindrical in shape. Sometimes the cylinder is long and
thin; in other cases it is short and fat. But whatever the ratio of diameter to length for the core, the
principle is the same: the magnetic field produced by the current results in magnetization of the core.

Direct-Current Types
You can build a dc electromagnet by taking a large bolt, such as a stove bolt, and wrapping a few
dozen or a few hundred turns of wire around it. These items are available in any good hardware
store. Be sure the bolt is made of ferromagnetic material. (If a permanent magnet sticks to the bolt,
the bolt is ferromagnetic.) Ideally, the bolt should be at least 1 cm (approximately 3⁄8 in) in diameter
and several inches long. You must use insulated wire, preferably made of solid, soft copper. “Bell
wire” works well. Be sure all the wire turns go in the same direction. A large 6-V lantern battery can
provide plenty of current to work the electromagnet. Never leave the coil connected to the battery
for more than a few seconds at a time. And never use a car battery for this experiment! The acid can
boil out of this type of battery, because the electromagnet places a heavy load on it.
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Direct-current electromagnets have defined north and south poles, just like permanent mag-
nets. The main difference is that an electromagnet can get much stronger than any permanent mag-
net. You will see evidence of this if you do the preceding experiment with a large enough bolt and
enough turns of wire.

Alternating-Current Types
Do you get the idea that an electromagnet can be made far stronger if, rather than using a lantern
battery for the current source, you plug the wires into a wall outlet? In theory, this is true. In prac-
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8-5 In an electromagnet, 
the magnetic flux is
concentrated in a
ferromagnetic rod
surrounded by a
current-carrying coil.

8-6 Polarity change in an ac
electromagnet. The
polarity changes every
1/120 second for 60-Hz
utility current.



tice, you’ll blow the fuse or circuit breaker. Do not try this! The electrical circuits in some buildings
are not adequately protected and it can create a fire hazard. Also, you can get a lethal shock from the
utility mains.

Some electromagnets use ac, and these magnets will stick to ferromagnetic objects. But the polar-
ity of the magnetic field reverses every time the direction of the current reverses. With conventional
household ac in the United States, there are 120 fluctuations, or 60 complete north-to-south-to-north
polarity changes (Fig. 8-6), per second. If a permanent magnet, or a dc electromagnet, is brought near
either “pole” of an ac electromagnet, there is no net force because the poles are alike half the time and
opposite half the time, producing an equal amount of attractive and repulsive force. But if a piece of
iron or steel is brought near a strong ac electromagnet, watch out! The attractive force will be powerful.

Magnetic Properties of Materials
There are four important properties that materials can have with respect to magnetic flux. These
properties are ferromagnetism, diamagnetism, permeability, and retentivity.

Ferromagnetism
Some substances cause magnetic lines of flux to bunch closer together than they would in the
medium of air or a vacuum. This property is called ferromagnetism, and materials that exhibit it are
called ferromagnetic. You’ve already learned something about this!

Diamagnetism
Another property is known as diamagnetism, and materials that exhibit it are called diamagnetic. This
type of substance decreases the magnetic flux density by causing the magnetic flux lines to diverge.
Wax, dry wood, bismuth, and silver are examples. No diamagnetic material reduces the strength of a
magnetic field by anywhere near the factor that ferromagnetic substances can increase it. Diamag-
netic materials are generally used to keep magnetic objects apart, while minimizing the interaction
between them. In recent years, they have also found some application in magnetic levitation devices.

Permeability
Permeability is a quantitative indicator of the extent to which a ferromagnetic material concentrates
magnetic lines of flux. It is measured on a scale relative to a vacuum, or free space. Free space is as-
signed permeability 1. If you have a coil of wire with an air core, and a current is forced through the
wire, then the flux in the coil core is at a certain density, just about the same as it would be in a vac-
uum. Therefore, the permeability of pure air is about equal to 1. If you place an iron core in the coil,
the flux density increases by a large factor. The permeability of iron can range from 60 (impure) to
as much as 8000 (highly refined).

If you use certain ferromagnetic alloys as the core material in electromagnets, you can increase
the flux density, and therefore the local strength of the field, by as much as a million times. Such
substances thus have permeability as great as 1,000,000 (106).

Table 8-1 gives permeability values for some common materials.

Retentivity
When a substance, such as iron, is subjected to a magnetic field as intense as it can handle, say by
enclosing it in a wire coil carrying a massive current, there will be some residual magnetism left
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when the current stops flowing in the coil. Retentivity, also sometimes called remanence, is a meas-
ure of how well the substance “memorizes” the magnetism and thereby becomes a permanent
magnet.

Retentivity is expressed as a percentage, and is symbolized Br. If the flux density in the material
is x tesla or gauss when it is subjected to the greatest possible magnetomotive force, and then goes
down to y tesla or gauss when the current is removed, the retentivity is equal to 100( y/x)%.

Suppose that a metal rod can be magnetized to 135 G when it is enclosed by a coil carrying an
electric current. Imagine that this is the maximum possible flux density that the rod can be forced
to have. (For any substance, there is always such a maximum.) Now suppose that the current is shut
off, and 19 G remain in the rod. Then the retentivity, Br, is calculated as follows:

Br = 100(19/135)% = (100 × 0.14)% = 14%

Some ferromagnetic substances have high retentivity. These materials are excellent for making per-
manent magnets. Other substances have low retentivity. They work well as electromagnets, but not
as permanent magnets.

If a ferromagnetic substance has poor retentivity, it is especially well-suited for use as the core
material for an ac electromagnet, because the polarity of the magnetic flux can reverse within the
material at a rapid rate. Materials with high retentivity do not work well for ac electromagnets, be-
cause they resist the polarity reversal that takes place with ac.

Practical Magnetism
Magnetism has numerous applications in common consumer devices and systems. Here are some of
the more common ways in which magnetic phenomena can be put to use.
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Table 8-1. Permeability values for some 
common materials.

Substance Permeability (approx.)

Air, dry, at sea level 1
Alloys, ferromagnetic 3000–1,000,000
Aluminum Slightly more than 1
Bismuth Slightly less than 1
Cobalt 60–70
Iron, powdered and pressed 100–3000
Iron, solid, refined 3000–8000
Iron, solid, unrefined 60–100
Nickel 50–60
Silver Slightly less than 1
Steel 300–600
Vacuum 1
Wax Slightly less than 1
Wood, dry Slightly less than 1



Permanent Magnets
Permanent magnets are manufactured by using a high-retentivity ferromagnetic material as the core
of an electromagnet for an extended period of time. The coil of the electromagnet carries a large di-
rect current, causing intense magnetic flux of constant polarity within the material. (Don’t try to do
this at home. The high current can heat the coil and overload a battery or power supply, which pro-
duces a fire hazard and/or the risk of battery explosion.)

If you want to magnetize a screwdriver a little bit so that it will hold onto screws, just stroke the
shaft of the screwdriver with the end of a bar magnet several dozen times. Once you have magnet-
ized a tool in this way, however, it is nearly impossible to demagnetize it.

A Ringer Device
Figure 8-7 is a simplified diagram of a bell ringer, also called a chime. The main functional compo-
nent is called a solenoid, and it is an electromagnet. The core has a hole going along its axis. The coil
has several layers, but the wire is always wound in the same direction, so that the electromagnet is
powerful. A movable steel rod runs through the hole in the electromagnet core.

When there is no current flowing in the coil, the steel rod is held down by the force of gravity.
When a pulse of current passes through the coil, the rod is pulled forcibly upward so that it strikes
the ringer plate. This plate is like one of the plates in a xylophone. The current pulse is short, so the
steel rod falls back down again to its resting position, allowing the plate to reverberate.
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The Relay
A relay makes use of a solenoid to allow remote-control switching of high-current circuits. A dia-
gram of a relay is shown in Fig. 8-8. The movable lever, called the armature, is held to one side by a
spring when there is no current flowing through the electromagnet. Under these conditions, termi-
nal X is connected to Y, but not to Z. When a sufficient current is applied, the armature is pulled
over to the other side. This disconnects terminal X from terminal Y, and connects X to Z.

There are numerous types of relays. Some are meant for use with dc, and others are for ac; a few
will work with either dc or ac. A normally closed relay completes the circuit when there is no current
flowing in its electromagnet coil, and breaks the circuit when current flows through the coil. A nor-
mally open relay is just the opposite, completing the circuit when current flows through the electro-
magnet coil, and opening the circuit when current ceases to flow through the coil. Normal, in this
context, refers to the condition of no current applied to the electromagnet.

The relay shown in Fig. 8-8 can be used as either a normally open or normally closed relay, de-
pending on which contacts are selected. It can also be used to switch a line between two different
circuits.
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Some relays have several sets of contacts. Some relays are meant to remain in one state (either
with current or without) for a long time, while others are meant to switch several times per second.
The fastest relays can operate several dozen times per second. In recent years, relays have been largely
supplanted by switching transistors and diodes, except in applications where extremely high current
or high voltage is involved.

The DC Motor
Magnetic forces can be harnessed to do work. One common device that converts direct-current en-
ergy into rotating mechanical energy is a dc motor. In a dc motor, the source of electricity is con-
nected to a set of coils, producing magnetic fields. The attraction of opposite poles, and the
repulsion of like poles, is switched in such a way that a constant torque, or rotational force, results.
As the current in the coils increases, the torque that the motor can provide also increases.

Figure 8-9 is a simplified, cutaway drawing of a dc motor. One set of coils, called the ar-
mature coil, rotates along with the motor shaft. The other set of coils, called the field coil, is sta-
tionary. The current direction is periodically reversed during each rotation by means of the
commutator. This keeps the rotational force going in the same angular direction, so the motor
continues to rotate rather than oscillating back and forth. The shaft is carried along by its own in-
ertia, so that it doesn’t come to a stop during those instants when the current is being switched in
polarity.

Some dc motors can also be used to generate dc. These motors contain permanent magnets in
place of one of the sets of coils. When the shaft is rotated, a pulsating dc flows in the coil.
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Magnetic Tape
Magnetic tape, also called recording tape, consists of millions of ferromagnetic particles attached to a
flexible, thin plastic strip. In the tape recorder, a fluctuating magnetic field, produced by the record-
ing head, polarizes these particles. As the field changes in strength next to the recording head, the
tape passes by at a constant speed. This produces regions in which the ferromagnetic particles are
polarized in either direction (Fig. 8-10).

When the tape is run at the same speed through the recorder in the playback mode, the
magnetic fields around the individual particles cause a fluctuating field that is detected by the
pickup head. This field has the same pattern of variations as the original field from the recording
head.

Magnetic tape is available in various widths and thicknesses. Thicker tapes result in cassettes
that don’t play as long, but the tape is more resistant to stretching. The speed of the tape determines
the fidelity of the recording. Higher speeds are preferred for music and video, and lower speeds for
voice and data.

The impulses on a magnetic tape can be distorted or erased by external magnetic fields. There-
fore, tapes should be protected from such fields. Keep the tape away from magnets. Extreme heat
can also result in loss of data, and can cause permanent physical damage to the tape.
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Magnetic Disk
Since the advent of the personal computer, ever-more compact data-storage systems have evolved.
One of the most versatile is the magnetic disk.

Hard disks, also called hard drives, store the most data, and are generally found inside of computer
units. Diskettes are 8.9 cm (3.5 in) across, and can be inserted and removed from recording/playback
machines called diskette drives. In recent years, magnetic diskettes have been largely supplanted by non-
magnetic compact disc recordable (CD-R) and compact disc rewritable (CD-RW) media.

The principle of the magnetic disk, on the microscale, is the same as that of magnetic tape.
The information is stored in binary digital form; that is, there are only two different ways that the
particles are magnetized. This results in almost perfect, error-free storage. On a larger scale, the
disk works differently than the tape because of the difference in geometry. On a tape, the informa-
tion is spread out over a long span, and some bits of data are far away from others as measured
along the medium itself. But on a disk, no two bits are ever farther apart than the diameter of the
disk. This means that data can be stored to, and retrieved from, a disk much faster than is possible
with tape.

The same precautions should be observed when handling and storing magnetic disks as are nec-
essary with magnetic tape.

Bubble Memory
Bubble memory is a sophisticated method of storing data that gets rid of the need for moving parts
such as are required in tape machines and disk drives. Data is stored as tiny magnetic fields, in a
medium that is made from magnetic film and semiconductor materials.

Bubble memory makes use of all the advantages of magnetic data storage, as well as the favor-
able aspects of electronic data storage. Advantages of electronic memory include rapid storage and
recovery, and high density (a lot of data can be put in a tiny volume of space). Advantages of mag-
netic memory include nonvolatility (it can be stored for a long time without needing a constant cur-
rent source), high density, and comparatively low cost.

Bubble memory seems to go through phases. Just as it is declared obsolete, someone comes up
with a new and improved way to make it work. Check the Internet to find out its current status;
enter “bubble memory” or “magnetic bubble memory” into a search engine.

Quiz
Refer to the text in this chapter if necessary. A good score is at least 18 correct. Answers are in the
back of the book.

1. The geomagnetic field
(a) makes the earth like a huge horseshoe magnet.
(b) runs exactly through the geographic poles.
(c) makes a compass work.
(d) makes an electromagnet work.

2. Geomagnetic lines of flux
(a) are horizontal at the geomagnetic equator.
(b) are vertical at the geomagnetic equator.
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(c) are never horizontal, no matter where you go.
(d) are perfectly symmetrical around the earth, even far out in space.

3. A material that can be permanently magnetized is generally said to be
(a) ultramagnetic.
(b) electromagnetic.
(c) diamagnetic.
(d) ferromagnetic.

4. The force between a magnet and a piece of ferromagnetic metal that has not been magnetized
(a) can be either repulsive or attractive.
(b) is never repulsive.
(c) gets smaller as the magnet gets closer to the metal.
(d) depends on the geomagnetic field.

5. The presence of a magnetic field can always be attributed to
(a) ferromagnetic materials.
(b) diamagnetic materials.
(c) motion of electric charge carriers.
(d) the north geomagnetic pole.

6. Lines of magnetic flux are said to originate
(a) in atoms of ferromagnetic materials.
(b) at a north magnetic pole.
(c) at points where the lines are straight.
(d) in electric charge carriers.

7. The magnetic flux around a straight, current-carrying wire
(a) gets stronger with increasing distance from the wire.
(b) is strongest near the wire.
(c) does not vary in strength with distance from the wire.
(d) consists of straight lines parallel to the wire.

8. The gauss is a unit of
(a) overall magnetic field strength.
(b) ampere-turns.
(c) magnetic flux density.
(d) magnetic power.

9. A unit of overall magnetic field quantity is the
(a) maxwell.
(b) gauss.
(c) tesla.
(d) ampere-turn.
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10. If a wire coil has 10 turns and carries 500 mA of current, what is the magnetomotive force?
(a) 5000 At
(b) 50 At
(c) 5.0 At
(d) 0.02 At

11. If a wire coil has 100 turns and carries 1.30 A of current, what is the magnetomotive force?
(a) 130 Gb
(b) 76.9 Gb
(c) 164 Gb
(d) 61.0 Gb

12. Which of the following can occur during a geomagnetic storm?
(a) Charged particles stream out from the sun.
(b) The earth’s magnetic field is affected.
(c) Electrical power transmission is disrupted.
(d) More than one of the above can occur.

13. An ac electromagnet
(a) attracts only permanent magnets.
(b) attracts pure, unmagnetized iron.
(c) repels all permanent magnets.
(d) either attracts or repels permanent magnets, depending on the polarity.

14. An advantage of an electromagnet over a permanent magnet is the fact that
(a) an electromagnet can be switched on and off.
(b) an electromagnet does not have specific polarity.
(c) an electromagnet requires no power source.
(d) permanent magnets must always be cylindrical, but electromagnets can have any shape.

15. A substance with high retentivity
(a) can make a good ac electromagnet.
(b) repels both north and south magnetic poles.
(c) is always a diamagnetic material.
(d) is well suited to making a permanent magnet.

16. Suppose a relay is connected into a circuit so that a device gets a signal only when the relay
coil carries current. The relay is

(a) an ac relay.
(b) a dc relay.
(c) normally closed.
(d) normally open.
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17. A device that repeatedly reverses the polarity of a magnetic field in order to keep a dc motor
rotating is known as

(a) a solenoid.
(b) an armature coil.
(c) a commutator.
(d) a field coil.

18. A high tape-recorder motor speed is generally used for
(a) voice recording and playback.
(b) video recording and playback.
(c) digital data storage and retrieval.
(d) all of the above.

19. An advantage of a magnetic disk, compared with magnetic tape, for data storage and retrieval
is that

(a) a disk lasts longer.
(b) data can be stored and retrieved more quickly with disks than with tapes.
(c) disks look better.
(d) disks are less susceptible to magnetic fields.

20. A magnetic hard disk is usually part of
(a) a computer.
(b) a dc motor.
(c) a tape recorder.
(d) an electromagnet.
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Do not refer to the text when taking this test. A good score is at least 37 correct. Answers are in the
back of the book. It’s best to have a friend check your score the first time, so you won’t memorize
the answers if you want to take the test again.

1. An application in which an analog meter would almost always be preferred over a digital
meter is

(a) the signal-strength indicator in a radio receiver.
(b) a meter that shows power-supply voltage.
(c) a utility watt-hour meter.
(d) a clock.
(e) a device in which a direct numeric display is wanted.

2. Which of the following statements is false?
(a) The current in a series dc circuit is divided up among the resistances.
(b) In a parallel dc circuit, the voltage is the same across each component.
(c) In a series dc circuit, the sum of the voltages across all the components, going once

around a complete circle and taking polarity into account, is zero.
(d) The net resistance of a parallel set of resistors is less than the value of the smallest resistor.
(e) The total wattage consumed in a series circuit is the sum of the wattages consumed by

each of the components.

3. The ohm is a unit of
(a) electrical charge quantity.
(b) the rate at which charge carriers flow.
(c) opposition to electrical current.
(d) electrical conductance.
(e) potential difference.
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4. A wiring diagram differs from a schematic diagram in that
(a) a wiring diagram is less detailed than a schematic diagram.
(b) a wiring diagram always shows the component values, but a schematic diagram might not.
(c) a schematic does not show all the interconnections between the components, but a wiring

diagram does.
(d) a schematic diagram shows pictures of components, while a wiring diagram shows the

electronic symbols.
(e) a schematic diagram shows the electronic symbols, while a wiring diagram shows pictures

of the components.

5. In which of the following places would you be most likely to find a wirewound resistor?
(a) A dc circuit location where a large amount of power must be dissipated
(b) The input circuit of a radio-frequency amplifier
(c) The output circuit of a radio-frequency amplifier
(d) In an antenna system, to limit the transmitter power
(e) Between ground and the chassis of a power supply

6. The number of protons in the nucleus of an element is known as the
(a) electron number.
(b) atomic number.
(c) valence number.
(d) charge number.
(e) proton number.

7. A hot-wire ammeter
(a) can measure ac as well as dc.
(b) registers current changes very fast.
(c) can indicate very low voltages.
(d) measures electrical energy.
(e) works only when current flows in one direction.

8. Which of the following units indicates the rate at which energy is expended?
(a) The volt
(b) The ampere
(c) The coulomb
(d) The ampere-hour
(e) The watt

9. Which of the following correctly states Ohm’s Law?
(a) Volts equal amperes divided by ohms.
(b) Ohms equal amperes divided by volts.
(c) Amperes equal ohms divided by volts.
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(d) Amperes equal ohms times volts.
(e) Ohms equal volts divided by amperes.

10. The current flowing into a point in a dc circuit is always equal to the current
(a) delivered by the power supply.
(b) through any one of the resistances.
(c) flowing out of that point.
(d) at any other point.
(e) in any single branch of the circuit.

11. A loudness meter in a hi-fi system is generally calibrated in
(a) volts.
(b) amperes.
(c) decibels.
(d) watt-hours.
(e) ohms.

12. An electrically charged atom (either positive or negative) is known as
(a) a molecule.
(b) an isotope.
(c) an ion.
(d) an electron.
(e) a fundamental particle.

13. Suppose a battery delivers 12.0 V to a bulb, and current flowing through the bulb is 3.00 A.
The resistance of the bulb is which of the following?

(a) 36.0 Ω
(b) 4.00 Ω
(c) 0.250 Ω
(d) 108 Ω
(e) 0.750 Ω

14. The peak voltage in an ac wave is always
(a) greater than the average voltage.
(b) less than the average voltage.
(c) greater than or equal to the average voltage.
(d) less than or equal to the average voltage.
(e) fluctuating.

15. Suppose a resistor is specified a having a value of 680 Ω, and a tolerance of �5%. You
measure the actual resistance with a precision digital ohmmeter. Which of the following meter
readings indicates a reject?

(a) 648 Ω
(b) 712 Ω
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(c) 699 Ω
(d) 636 Ω
(e) 707 Ω

16. A primitive device for indicating the presence of an electric current is
(a) an electrometer.
(b) a galvanometer.
(c) a voltmeter.
(d) a coulometer.
(e) a wattmeter.

17. A disadvantage of mercury cells is the fact that they
(a) can adversely affect the environment when discarded.
(b) supply dangerously high voltage.
(c) can reverse polarity unexpectedly.
(d) must be physically larger than other types of cells that have the same current-delivering

capacity.
(e) must be kept right-side up to keep the mercury from spilling out.

18. Suppose a battery supplies 6.0 V to a bulb rated at 12 W. The bulb draws how much current?
(a) 2.0 A
(b) 0.5 A
(c) 72 A
(d) 40 mA
(e) 72 mA

19. Which of the following is not a common use for a resistor or set of resistors?
(a) Biasing for a transistor
(b) Voltage division
(c) Current limiting
(d) As a dummy antenna
(e) Helping a capacitor to hold its charge for a long time

20. When an electrical charge exists but there is no flow of current, the charge is said to be
(a) ionizing.
(b) atomic.
(c) molecular.
(d) electronic.
(e) static.

21. The sum of the voltages, going around a dc circuit, but not including the power supply, has
(a) an equal value and the same polarity as the supply.
(b) a value that depends on the ratio of the resistances.
(c) a different value from, but the same polarity as, the supply.
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(d) an equal value as, but the opposite polarity from, the supply.
(e) a different value from, and the opposite polarity from, the supply.

22. A watt-hour meter measures
(a) voltage.
(b) current.
(c) power.
(d) energy.
(e) charge.

23. Every chemical element has its own unique type of particle, which is known as its
(a) neutron.
(b) electron.
(c) proton.
(d) atom.
(e) isotope.

24. An advantage of a magnetic disk over magnetic tape for data storage is the fact that
(a) data is too closely packed on the tape.
(b) the disk is immune to the effects of magnetic fields.
(c) data storage and retrieval is faster on disk.
(d) disks store computer data in analog form.
(e) tapes cannot be used to store digital data.

25. Suppose a 6-V battery is connected across a series combination of resistors. The resistance
values are 1.0 Ω, 2.0 Ω, and 3.0 Ω. What is the current through the 2.0-Ω resistor?

(a) 1.0 A
(b) 3.0 A
(c) 12 A
(d) 24 A
(e) 72 A

26. A sample of material with resistance so high that it can be considered infinite for most
practical purposes is known as

(a) a semiconductor.
(b) a paraconductor.
(c) an insulator.
(d) a resistor.
(e) a diamagnetic substance.

27. Primary cells
(a) can be used over and over.
(b) have higher voltage than other types of cells.
(c) all supply exactly 1.500 V.
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(d) cannot be recharged.
(e) are made of zinc and carbon.

28. A rheostat
(a) can be used in high-voltage and/or high-power dc circuits.
(b) is ideal for tuning a radio receiver.
(c) is often used as a bleeder resistor.
(d) is better than a potentiometer for low-power audio.
(e) offers the advantage of having no inductance.

29. How much dc voltage does a typical dry cell provide?
(a) 12 V
(b) 6 V
(c) 1.5 V
(d) 117 V
(e) Any of the above

30. A geomagnetic storm
(a) causes solar wind.
(b) causes the earth’s magnetic field to disappear.
(c) can disturb the earth’s magnetic field.
(d) can pollute the earth’s atmosphere.
(e) stabilizes the ac utility grid.

31. An advantage of an alkaline cell over a zinc-carbon cell is the fact that
(a) the alkaline cell provides more voltage.
(b) the alkaline cell can be recharged.
(c) the alkaline cell can deliver useful current at lower temperatures.
(d) the alkaline cell is far less bulky for the same amount of energy capacity.
(e) the alkaline cell can produce ac as well as dc.

32. Suppose a battery delivers 12 V across a set of six 4.0-Ω resistors in a series voltage dividing
combination. This provides six different voltages, differing by equal increments of which of the
following?

(a) 0.25 V
(b) 0.33 V
(c) 1.0 V
(d) 2.0 V
(e) 3.0 V

33. A unit of electrical charge quantity is the
(a) volt.
(b) ampere.
(c) watt.
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(d) tesla.
(e) coulomb.

34. A unit of conductance is the
(a) volt per meter.
(b) ampere per meter.
(c) anti-ohm.
(d) siemens.
(e) ohm per meter.

35. Suppose a 24-V battery is connected across a set of four resistors in parallel. Each resistor has
a value of 32 Ω. What is the total power dissipated by the set of resistors?

(a) 0.19 W
(b) 3.0 W
(c) 0.19 kW
(d) 0.33 W
(e) 72 W

36. The main difference between a lantern battery and a transistor battery is the fact that
(a) a lantern battery has higher voltage than a transistor battery.
(b) a fresh lantern battery has more energy stored in it than a fresh transistor battery.
(c) a lantern battery cannot be used with electronic devices such as transistor radios, but a

transistor battery can.
(d) a lantern battery can be recharged, but a transistor battery cannot.
(e) a lantern battery is more compact than a transistor battery.

37. Nickel-based batteries would most likely be found
(a) in disposable flashlights.
(b) in large lanterns.
(c) as car and truck batteries.
(d) in handheld radio transceivers.
(e) in electromagnets.

38. A voltmeter should have
(a) low internal resistance.
(b) electrostatic plates.
(c) a sensitive amplifier.
(d) high internal resistance.
(e) the highest possible full-scale value.

39. The purpose of a bleeder resistor is to
(a) provide bias for a transistor.
(b) serve as a voltage divider.
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(c) protect people against the danger of electric shock.
(d) reduce the current in a power supply.
(e) smooth out the ac ripple in a power supply.

40. A dc electromagnet
(a) has constant polarity.
(b) requires an air core.
(c) does not attract or repel a permanent magnet.
(d) has polarity that periodically reverses.
(e) cannot be used to permanently magnetize anything.

41. The rate at which charge carriers flow is measured in
(a) amperes.
(b) coulombs.
(c) volts.
(d) watts.
(e) watt-hours.

42. Suppose a 12-V battery is connected to a set of three resistors in series. The resistance values
are 1.0 Ω, 2.0 Ω, and 3.0 Ω. What is the voltage across the 3.0-Ω resistor?

(a) 1.0 V
(b) 2.0 V
(c) 4.0 V
(d) 6.0 V
(e) 12 V

43. Suppose nine 90-Ω resistors are connected in a 3 × 3 series-parallel network. What is the total
(net) resistance of the network?

(a) 10 Ω
(b) 30 Ω
(c) 90 Ω
(d) 270 Ω
(e) 810 Ω

44. A device commonly used for remote switching of high-current circuits is
(a) a solenoid.
(b) an electromagnet.
(c) a potentiometer.
(d) a photovoltaic cell.
(e) a relay.

45. Memory in a nickel-based cell or battery
(a) occurs whenever the battery is discharged.
(b) indicates that the cell or battery is dead.
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(c) can usually be remedied by repeated discharging and recharging.
(d) can cause an explosion.
(e) causes a reversal in polarity.

46. Suppose a 100-W bulb burns for 100 hours. It has consumed how many units of energy?
(a) 0.10 kWh
(b) 1.00 kWh
(c) 10.0 kWh
(d) 100 kWh
(e) 1000 kWh

47. A material with high permeability
(a) increases magnetic field quantity.
(b) is necessary if a coil is to produce a magnetic field.
(c) always has high retentivity.
(d) concentrates magnetic lines of flux.
(e) reduces flux density.

48. A chemical compound
(a) consists of two or more atoms.
(b) contains an unusual number of neutrons.
(c) is technically the same as an ion.
(d) has a shortage of electrons.
(e) has an excess of electrons.

49. Suppose a 6.00-V battery is connected to a parallel combination of two resistors whose values
are 8.00 Ω and 12.0 Ω. What is the power dissipated in the 8-Ω resistor?

(a) 0.300 W
(b) 0.750 W
(c) 1.25 W
(d) 1.80 W
(e) 4.50 W

50. The main problem with bar-graph meters is the fact that
(a) they are not very sensitive.
(b) they are unstable.
(c) they cannot give very precise readings.
(d) you need special training to read them.
(e) they can display only peak values.
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DIRECT CURRENT CAN BE EXPRESSED IN TERMS OF TWO VARIABLES: DIRECTION (POLARITY) AND

intensity (amplitude). Alternating current (ac) is a little more complicated. This chapter will ac-
quaint you with some common forms of ac.

Definition of Alternating Current
You have learned that dc has polarity that stays constant over time. Although the amplitude (the
number of amperes, volts, or watts) can fluctuate from moment to moment, the charge carriers al-
ways flow in the same direction at any point in the circuit.

In ac, the polarity reverses at regular intervals. The instantaneous amplitude (that is, the amplitude
at any given instant in time) of ac usually varies because of the repeated reversal of polarity. But there
are certain cases where the amplitude remains constant, even though the polarity keeps reversing.

The rate of change of polarity is the variable that makes ac so much different from dc. The be-
havior of an ac wave depends largely on this rate: the frequency.

Period and Frequency
In a periodic ac wave, the kind that is discussed in this chapter (and throughout the rest of this
book), the function of instantaneous amplitude versus time repeats itself over and over, so that the
same pattern recurs indefinitely. The length of time between one repetition of the pattern, or one
cycle, and the next is called the period of the wave. This is illustrated in Fig. 9-1 for a simple ac wave.
The period of a wave can, in theory, be anywhere from a minuscule fraction of a second to many
centuries. Period, when measured in seconds, is denoted by T.

Originally, ac frequency was specified in cycles per second (cps). High frequencies were some-
times given in kilocycles, megacycles, or gigacycles, representing thousands, millions, or billions 
(thousand-millions) of cycles per second. But nowadays, the unit is known as the hertz (Hz). Thus,
1 Hz = 1 cps, 10 Hz = 10 cps, and so on. Higher frequencies are given in kilohertz (kHz), megahertz
(MHz), or gigahertz (GHz). The relationships are as follows:
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1 kHz = 1000 Hz
1 MHz = 1000 kHz = 1,000,000 Hz = 106 Hz

1 GHz = 1000 MHz = 1,000,000,000 Hz = 109 Hz

Sometimes an even bigger unit, the terahertz (THz), is used to specify ac frequency. This is a trillion
(1,000,000,000,000, or 1012) hertz. Electrical currents generally do not attain such frequencies, al-
though some forms of electromagnetic radiation do.

The frequency of an ac wave, denoted f, in hertz is the reciprocal of the period in seconds.
Mathematically, these two equations express the relationship:

f = 1/T and T = 1/f

Some ac waves have only one frequency. These waves are called pure. But often, there are com-
ponents at multiples of the main, or fundamental, frequency. There can also be components at odd
frequencies. Some ac waves have hundreds, thousands, or even infinitely many different component
frequencies.

The Sine Wave
Sometimes, alternating current has a sine-wave, or sinusoidal, nature. This means that the direction
of the current reverses at regular intervals, and that the current-versus-time curve is shaped like the
trigonometric sine function. The waveform in Fig. 9-1 is a sine wave.

Any ac wave that consists of a single frequency has a perfectly sinusoidal shape. Any perfect si-
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nusoidal ac source has only one component frequency. In practice, a wave might be so close to a sine
wave that it looks exactly like the sine function on an oscilloscope, when in reality there are traces
of other frequencies present. Imperfections are often too small to see. But pure, single-frequency ac
not only looks perfect, but actually is a perfect replication of the trigonometric sine function.

The current at the wall outlets in your house is an almost perfect ac sine wave with a frequency
of 60 Hz.

Square Waves
Earlier in this chapter, it was said that there can be an ac wave whose instantaneous amplitude re-
mains constant, even though the polarity reverses. Does this seem counterintuitive? Think some
more! A square wave is such a wave.

On an oscilloscope, a square wave looks like a pair of parallel, dashed lines, one with positive
polarity and the other with negative polarity (Fig. 9-2A). The oscilloscope shows a graph of voltage
on the vertical scale and time on the horizontal scale. The transitions between negative and positive
for a theoretically perfect square wave would not show up on the oscilloscope, because they would
be instantaneous. But in practice, the transitions can often be seen as vertical lines (Fig. 9-2B).

True square waves have equal negative and positive peaks. Thus, the absolute amplitude of the
wave is constant. Half of the time it’s +x, and the other half of the time it’s −x (where x can be ex-
pressed in volts, amperes, or watts).

Some squared-off waves are lopsided; the negative and positive amplitudes are not the same.
Still others remain at positive polarity longer than they remain at negative polarity (or vice versa).
These are examples of asymmetrical square waves, more properly called rectangular waves.
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Sawtooth Waves
Some ac waves rise and/or fall in straight, sloping lines as seen on an oscilloscope screen. The slope
of the line indicates how fast the magnitude is changing. Such waves are called sawtooth waves be-
cause of their appearance. Sawtooth waves are generated by certain electronic test devices. They can
also be generated by electronic sound synthesizers.

Fast Rise, Slow Decay
Figure 9-3 shows a sawtooth wave in which the positive-going slope (called the rise) is extremely
steep, as with a square wave, but the negative-going slope (called the decay) is not so steep. The pe-
riod of the wave is the time between points at identical positions on two successive pulses.

Slow Rise, Fast Decay
Another form of sawtooth wave is just the opposite, with a defined, finite rise and an instantaneous
decay. This type of wave is often called a ramp because it looks like an incline going upward (Fig. 
9-4). This waveshape is useful for scanning in television sets and oscilloscopes. It tells the electron
beam to move, or trace, at constant speed from left to right across the screen during the rise. Then
it retraces, or brings the electron beam back, instantaneously during the decay so the beam can trace
across the screen again.

Variable Rise and Decay
Sawtooth waves can have rise and decay slopes in an infinite number of different combinations. One
common example is shown in Fig. 9-5. In this case, the rise and the decay are both finite and equal.
This is known as a triangular wave.
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Complex and Irregular Waveforms
As long as a wave has a definite period, and as long as the polarity keeps switching back and forth
between positive and negative, it is ac, no matter how complicated the actual shape of the waveform.
Figure 9-6 shows an example of a complex ac wave. There is a definable period, and therefore a de-
finable frequency. The period is the time between two points on succeeding wave repetitions.

With some waves, it can be difficult or almost impossible to ascertain the period. This is be-
cause the wave has two or more components that are of nearly the same amplitude. When this hap-
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pens, the frequency spectrum of the wave is multifaceted. That means the wave energy is split up
more or less equally among multiple frequencies.

Frequency Spectrum
An oscilloscope shows a graph of amplitude as a function of time. Because time is on the horizon-
tal axis and represents the independent variable or domain of the function, the oscilloscope is said to
be a time-domain instrument. But suppose you want to see the amplitude of a complex signal as a
function of frequency, rather than as a function of time? This can be done with a spectrum analyzer.
It is a frequency-domain instrument. Its horizontal axis shows frequency as the independent variable,
ranging from some adjustable minimum frequency (at the extreme left) to some adjustable maxi-
mum frequency (at the extreme right).

An ac sine wave, as displayed on a spectrum analyzer, appears as a single pip, or vertical line (Fig.
9-7A). This means that all of the energy in the wave is concentrated at one frequency. But many, if
not most, ac waves contain harmonic energy along with energy at the fundamental frequency. A har-
monic frequency is a whole-number multiple of the fundamental frequency. For example, if 60 Hz
is the fundamental frequency, then harmonics can exist at 120 Hz, 180 Hz, 240 Hz, and so on. The
120-Hz wave is the second harmonic; the 180-Hz wave is the third harmonic; the 240-Hz wave is the
fourth harmonic; and so on.

148 Alternating-Current Basics

9-6 An irregular waveform.



In general, if a wave has a frequency equal to n times the fundamental (where n is some whole
number), then that wave is called the nth harmonic. In Fig. 9-7B, a wave is shown along with sev-
eral harmonics, as it would look on the display screen of a spectrum analyzer.

Square waves and sawtooth waves contain harmonic energy in addition to energy at the funda-
mental frequency. Other waves can get more complicated. The exact shape of a wave depends on the
amount of energy in the harmonics, and the way in which this energy is distributed among them.

Irregular waves can have any imaginable frequency distribution. Figure 9-8 shows an example.
This is a spectral (frequency-domain) display of an amplitude-modulated (AM) voice radio signal.
Much of the energy is concentrated at the center of the pattern, at the frequency shown by the ver-
tical line. That is the carrier frequency. There is also plenty of energy near, but not exactly at, the car-
rier frequency. That’s the part of the signal that contains the voice.
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Fractions of a Cycle
Engineers break the ac cycle down into small parts for analysis and reference. One complete cycle
can be compared to a single revolution around a circle.

Degrees
One method of specifying the phase of an ac cycle is to divide it into 360 equal parts, called degrees
or degrees of phase, symbolized by a superscript, lowercase letter o (°). The value 0° is assigned to the
point in the cycle where the magnitude is zero and positive-going. The same point on the next cycle
is given the value 360°. The point one-fourth of the way through the cycle is 90°; the point halfway
through the cycle is 180°; the point three-fourths of the way through the cycle is 270°. This is illus-
trated in Fig. 9-9. Degrees of phase are used mainly by engineers and technicians.
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Radians
The other method of specifying phase is to divide the cycle into 2π equal parts, where π (pi) is a geo-
metric constant equal to the number of diameters of any circle that can be laid end to end around
the circumference of that circle. This constant is approximately equal to 3.14159. A radian (rad) of
phase is thus equal to about 57.3°. Sometimes, the frequency of an ac wave is measured in radians
per second (rad/s) rather than in hertz. Because there are about 6.28 radians in a complete cycle of
360°, the angular frequency of a wave, in radians per second, is equal to about 6.28 times the fre-
quency in hertz. Radians of phase are used mainly by physicists.

Phase Difference
Even if two ac waves have exactly the same frequency, they can have different effects because they
are out of sync with each other. This is especially true when ac waves are added together to produce
a third, or composite, wave.

If two pure ac sine waves have identical frequencies and identical amplitudes but differ in phase
by 180° (a half cycle), they cancel each other out, and the composite wave is zero; it ceases to exist!
If the two waves are exactly in phase, the composite wave has the same frequency, but twice the am-
plitude, of either signal alone.

If two pure ac sine waves have the same frequency but different amplitudes, and if they differ
in phase by 180°, the composite signal has the same frequency as the originals, and an amplitude
equal to the difference between the two. If two such waves are exactly in phase, the composite has
the same frequency as the originals, and an amplitude equal to the sum of the two.

If two pure ac sine waves have the same frequency but differ in phase by some odd amount such
as 75° or 110°, the resulting signal has the same frequency, but does not have the same waveshape
as either of the original signals. The variety of such cases is infinite.

Household electricity from 117-V wall outlets consists of a 60-Hz sine wave with only one
phase component. But the energy is transmitted over long distances in three phases, each differing
by 120° or one-third of a cycle. This is what is meant by three-phase ac. Each of the three ac waves
carries one-third of the total power in a utility transmission line.

Expressions of Amplitude
Amplitude is also called magnitude, level, strength, or intensity. Depending on the quantity being
measured, the amplitude of an ac wave can be specified in amperes (for current), volts (for voltage),
or watts (for power). In addition to this, there are several different ways in which amplitude can be
expressed.

Instantaneous Amplitude
The instantaneous amplitude of an ac wave is the amplitude at some precise moment, or instant, in
time. This constantly changes. The manner in which it varies depends on the waveform. Instanta-
neous amplitudes are represented by individual points on the wave curves.

Peak Amplitude
The peak (pk) amplitude of an ac wave is the maximum extent, either positive or negative, that the
instantaneous amplitude attains. In many situations, the positive and negative peak amplitudes of
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an ac wave are the same. But sometimes they differ. Figure 9-9 is an example of a wave in which the
positive peak amplitude is the same as the negative peak amplitude. Figure 9-10 is an illustration of
a wave that has different positive and negative peak amplitudes.

Peak-to-Peak Amplitude
The peak-to-peak (pk-pk) amplitude of a wave is the net difference between the positive peak am-
plitude and the negative peak amplitude (Fig. 9-11). The peak-to-peak amplitude is equal to the
positive peak amplitude plus the negative peak amplitude. When the positive and negative 
peak amplitudes of an ac wave are equal, the peak-to-peak amplitude is exactly twice the peak
amplitude.
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Root-Mean-Square Amplitude
Often, it is necessary to express the effective amplitude of an ac wave. This is the voltage, current, or
power that a dc source would have to produce in order to have the same general effect as a given ac
wave. When you say a wall outlet provides 117 V, you mean 117 effective volts. This is not the same
as the peak or peak-to-peak voltage.

The most common expression for effective ac intensity is called the root-mean-square (rms) am-
plitude. The terminology reflects the fact that the ac wave is mathematically operated on by taking
the square root of the mean (average) of the square of all its instantaneous amplitudes.

In the case of a perfect ac sine wave, the rms value is equal to 0.707 times the peak value, or
0.354 times the peak-to-peak value. Conversely, the peak value is 1.414 times the rms value, and the
peak-to-peak value is 2.828 times the rms value. The rms amplitude is often specified when talking
about utility ac, radio-frequency (RF) ac, and audio-frequency (AF) ac.

For a perfect square wave, the rms value is the same as the peak value, and half the peak-to-peak
value. For sawtooth and irregular waves, the relationship between the rms value and the peak value
depends on the exact shape of the wave. But the rms value is never greater than the peak value for
any type of ac wave.

Superimposed DC
Sometimes a wave has components of both ac and dc. The simplest example of an ac/dc combina-
tion is illustrated by the connection of a dc voltage source, such as a battery, in series with an ac volt-
age source, like the utility mains. An example is shown in the schematic diagram of Fig. 9-12.
Imagine connecting a 12-V automotive battery in series with the wall outlet. (Do not try this exper-
iment in real life!) When this is done, the ac wave is displaced either positively or negatively by 
12 V, depending on the polarity of the battery. This results in a sine wave at the output, but one
peak is 24 V (twice the battery voltage) more than the other.

Any ac wave can have dc components along with it. If the dc component exceeds the peak
value of the ac wave, then fluctuating, or pulsating, dc will result. This would happen, for exam-
ple, if a 200-V dc source were connected in series with the output of a common utility ac outlet,
which has peak voltages of approximately �165 V. Pulsating dc would appear, with an average
value of 200 V but with instantaneous values much higher and lower. The waveshape in this case
is shown in Fig. 9-13.
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The Generator
Alternating current can be generated by a rotating coil of wire inside a powerful magnet, as shown
in Fig. 9-14. An ac voltage appears between the ends of the wire coil. The ac voltage that a genera-
tor can produce depends on the strength of the magnet, the number of turns in the wire coil, and
the speed at which the magnet or coil rotates. The ac frequency depends only on the speed of rota-
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tion. Normally, for utility ac, this speed is 3600 revolutions per minute (rpm), or 60 complete rev-
olutions per second (rps), so the ac output frequency is 60 Hz.

When a load, such as a light bulb or heater, is connected to an ac generator, it becomes more
difficult, mechanically, to turn the generator shaft, compared to when there is nothing connected to
the output. As the amount of electrical power demanded from a generator increases, so does the me-
chanical power required to drive it. This is why it is impossible to connect a generator to a station-
ary bicycle and pedal an entire city into electrification. There’s no way to get something for nothing.
The electrical power that comes out of a generator can never be more than the mechanical power
driving it. In fact, there is always some energy lost, mainly as heat in the generator. Your legs might
generate enough power to run a small radio or television set, but nowhere near enough to provide
electricity for a household.

The efficiency of a generator is the ratio of the electrical power output to the mechanical driv-
ing power, both measured in the same units (such as watts or kilowatts), multiplied by 100 to get a
percentage. No generator is 100 percent efficient, but a good one can come fairly close.

At power plants, generators are driven by massive turbines. The turbines are turned by various
natural sources of energy such as moving water, steam heated by combustion of fossil fuels, or steam
taken directly from deep inside the earth. These energy sources can provide tremendous mechanical
power, and this is why power plants can produce megawatts of electrical power.

Why Alternating and Not Direct?
Do you wonder why ac is used at all? Isn’t it a lot more complicated than dc? Well, ac may be more
complicated in theory, but in practice it is a lot simpler to use when it is necessary to provide elec-
tricity to a large number of people.

Alternating current lends itself well to being transformed to lower or higher voltages, according
to the needs of electrical apparatus. It is not so easy to change dc voltages. Electrochemical cells pro-
duce dc directly, but they are impractical for the needs of large populations. Serving millions of con-
sumers requires the immense power of falling or flowing water, the ocean tides, wind, fossil fuels,
controlled nuclear reactions, or geothermal heat. All of these energy sources can be used to drive tur-
bines that turn ac generators.

Technology is advancing in the realm of solar-electric energy; someday a significant part of our
electricity might come from photovoltaic power plants. These would generate dc. High voltages
could be attained by connecting giant arrays of solar panels in series. But there would be a problem
transforming this voltage down to manageable levels for consumer use.

Thomas Edison is said to have favored dc over ac for electrical power transmission in the early
days, as the electric utilities were first being devised and constructed. His colleagues argued that ac
would work better. But perhaps Edison knew something that his contemporaries did not. There is
one advantage to dc in utility applications, and it involves the transmission of energy over great
distances using wires. Direct currents, at extremely high voltages, are transported more efficiently
than alternating currents. The wire has less effective resistance with dc than with ac, and there is
less energy lost in the magnetic fields around the wires. Direct-current high-tension transmission
lines are being considered for future use. Right now, the main problem is expense. Sophisticated
power-conversion equipment is needed. If the cost can be brought within reason, Edison will be
vindicated.
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Quiz
Refer to the text in this chapter if necessary. A good score is at least 18 correct. Answers are in the
back of the book.

1. Which of the following can vary with ac, but never with dc?
(a) Power
(b) Voltage
(c) Frequency
(d) Amplitude

2. The length of time between a point in one cycle and the same point in the next cycle of an ac
wave is the

(a) frequency.
(b) magnitude.
(c) period.
(d) polarity.

3. On a spectrum analyzer, an ac signal having only one frequency component looks like
(a) a single pip.
(b) a sine wave.
(c) a square wave.
(d) a sawtooth wave.

4. The period of an ac wave, in seconds, is
(a) the same as the frequency in hertz.
(b) not related to the frequency in any way.
(c) equal to 1 divided by the frequency in hertz.
(d) equal to the peak amplitude in volts divided by the frequency in hertz.

5. The sixth harmonic of an ac wave whose period is 1.000 millisecond (1.000 ms) has a
frequency of

(a) 0.006 Hz.
(b) 167.0 Hz.
(c) 7.000 kHz.
(d) 6.000 kHz.

6. A degree of phase represents
(a) 6.28 cycles.
(b) 57.3 cycles.
(c) 1⁄ 60 of a cycle.
(d) 1⁄ 360 of a cycle.
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7. Suppose that two ac waves have the same frequency but differ in phase by exactly 1⁄ 20 of a
cycle. What is the phase difference between these two waves?

(a) 18°
(b) 20°
(c) 36°
(d) 5.73°

8. Suppose an ac signal has a frequency of 1770 Hz. What is its angular frequency?
(a) 1770 rad/s
(b) 11,120 rad/s
(c) 282 rad/s
(d) Impossible to determine from the data given

9. A triangular wave exhibits
(a) an instantaneous rise and a defined decay.
(b) a defined rise and an instantaneous decay.
(c) a defined rise and a defined decay, and the two are equal.
(d) an instantaneous rise and an instantaneous decay.

10. Three-phase ac
(a) has sawtooth waves that add together in phase.
(b) consists of three sine waves in different phases.
(c) is a sine wave with exactly three harmonics.
(d) is of interest only to physicists.

11. If two perfect sine waves have the same frequency and the same amplitude, but are in
opposite phase, the composite wave

(a) has twice the amplitude of either input wave alone.
(b) has half the amplitude of either input wave alone.
(c) is complex, but has the same frequency as the originals.
(d) has zero amplitude (that is, it does not exist), because the two input waves cancel each

other out.

12. If two perfect sine waves have the same frequency and the same phase, the composite wave
(a) is a sine wave with an amplitude equal to the difference between the amplitudes of the

two input waves.
(b) is a sine wave with an amplitude equal to the sum of the amplitudes of the two original

waves.
(c) is not a sine wave, but has the same frequency as the two input waves.
(d) has zero amplitude (that is, it does not exist), because the two input waves cancel each

other out.
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13. In a 117-V rms utility circuit, the positive peak voltage is approximately
(a) +82.7 V.
(b) +165 V.
(c) +234 V.
(d) +331 V.

14. In a 117-V rms utility circuit, the peak-to-peak voltage is approximately
(a) 82.7 V.
(b) 165 V.
(c) 234 V.
(d) 331 V.

15. In a perfect sine wave, the peak-to-peak amplitude is equal to
(a) half the peak amplitude.
(b) the peak amplitude.
(c) 1.414 times the peak amplitude.
(d) twice the peak amplitude.

16. If a 45-V dc battery is connected in series with the 117-V rms utility mains as shown in 
Fig. 9-15, the peak voltages will be approximately

(a) +210 V and −120 V.
(b) +162 V and −72 V.
(c) +396 V and −286 V.
(d) +117 V and −117V.
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9-15 Illustration for Quiz
Question 16.

17. In the situation described in question 16 and illustrated in Fig. 9-15, the peak-to-peak voltage
will be approximately

(a) 117 V.
(b) 210 V.
(c) 331 V.
(d) 396 V.



18. Which one of the following does not affect the power output available from a particular ac
generator?

(a) The strength of the magnet
(b) The number of turns in the coil
(c) The type of natural energy source used
(d) The speed of rotation of the coil or magnet

19. If a 175-V dc source were connected in series with the utility mains from a standard wall
outlet, the result would be

(a) smooth dc at a constant voltage.
(b) pure ac with equal peak voltages.
(c) ac with one peak voltage greater than the other.
(d) fluctuating dc.

20. An advantage of ac over dc in utility applications is the fact that
(a) ac is easier to transform from one voltage to another.
(b) ac is transmitted with lower loss in wires.
(c) ac can be easily obtained from dc generators.
(d) ac can be generated with less-dangerous by-products.
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IN THIS CHAPTER, YOU’LL LEARN ABOUT ELECTRICAL COMPONENTS THAT OPPOSE THE FLOW OF AC BY

temporarily storing energy as magnetic fields. These devices are called inductors, and their action is
known as inductance. Inductors often, but not always, consist of wire coils. Sometimes a length of
wire, or a pair of wires, is used as an inductor.

The Property of Inductance
Suppose you have a wire 1 million miles long (about 1.6 million kilometers). Imagine that you
make this wire into a huge loop, and connect its ends to the terminals of a battery (Fig. 10-1). An
electrical current will flow through the loop of wire, but this is only part of the picture.

If the wire was short, the current would begin to flow immediately, and it would attain a
level limited by the resistance in the wire and in the battery. But because the wire is extremely
long, it takes a while for the electrons from the negative terminal to work their way around the
loop to the positive terminal. It will take a little time for the current to build up to its maximum
level.
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10-1 A huge, imaginary
loop of wire can be
used to illustrate the
principle of
inductance.
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The magnetic field produced by the loop will be small during the first few moments when cur-
rent flows in only part of the loop. The magnetic field will build up as the electrons get around the
loop. Once a steady current is flowing around the entire loop, the magnetic field will have reached
its maximum quantity and will level off (see Fig. 10-2). A certain amount of energy is stored in this
magnetic field. The amount of stored energy depends on the inductance of the loop, which is a func-
tion of its overall size. Inductance, as a property or as a mathematical variable, is symbolized by an
italicized, uppercase letter L. The loop constitutes an inductor, the symbol for which is an uppercase,
nonitalicized letter L.

Practical Inductors
It is impractical to make wire loops 1 million miles in circumference. But lengths of wire can be
coiled up. When this is done, the magnetic flux is increased for a given length of wire compared
with the flux produced by a single-turn loop.

The magnetic flux density inside a coil is multiplied when a ferromagnetic core is placed within
it. The increase in flux density has the effect of increasing the inductance, too, so L is many times
greater with a ferromagnetic core than with an air core or a nonmagnetic core such as plastic or
wood. The current that an inductor can handle depends on the diameter (gauge) of the wire. But
the value of L is a function of the number of turns in the coil, the diameter of the coil itself, and the
overall shape of the coil.

In general, the inductance of a coil is directly proportional to the number of turns of wire. In-
ductance is directly proportional to the diameter of the coil. The length of a coil, given a certain
number of turns and a certain diameter, has an effect as well. If a coil having a certain number of
turns and a certain diameter is “stretched out,” its inductance decreases. Conversely, if it is
“squashed up,” its inductance increases.
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The Unit of Inductance
When a battery is first connected across an inductor, the current builds up at a rate that depends on
the inductance. The greater the inductance, the slower the rate of current buildup for a given bat-
tery voltage. The unit of inductance is an expression of the ratio between the rate of current buildup
and the voltage across an inductor. An inductance of 1 henry (1 H) represents a potential difference
of 1 volt (1 V) across an inductor within which the current is changing at the rate of 1 ampere per
second (1 A/s).

The henry is a huge unit of inductance. You won’t often see an inductor this large, although
some power-supply filter chokes have inductances up to several henrys. Usually, inductances are ex-
pressed in millihenrys (mH), microhenrys (µH), or nanohenrys (nH). You should know your prefix
multipliers by now, but in case you’ve forgotten:

1 mH = 0.001 H = 10−3 H
1 µH = 0.001 mH = 10−6 H
1 nH = 0.001 µH = 10−9 H

Small coils with few turns of wire produce small inductances, in which the current changes
quickly and the induced voltages are small. Large coils with ferromagnetic cores, and having many
turns of wire, have high inductances in which the current changes slowly and the induced voltages
are large. The current from a battery, building up or dying down through a high-L coil, can give rise
to a deadly potential difference between the end terminals of the coil—many times the voltage of
the battery itself. This is how spark coils work in internal combustion engines. Be careful around
them!

Inductors in Series
When the magnetic fields around inductors do not interact, inductances in series add like resist-
ances in series. The total value is the sum of the individual values. It’s important to be sure that you
are using the same size units for all the inductors when you add their values. After that, you can con-
vert the result to any inductance unit you want.

Problem 10-1
Suppose three 40.0-µH inductors are connected in series, and there is no interaction, or mutual in-
ductance, among them (Fig. 10-3). What is the total inductance?
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Add up the values. Call the inductances of the individual components L1, L2, and L3, and the
total inductance L. Then L = L1 + L2 + L3 = 40.0 + 40.0 + 40.0 = 120 µH.

Problem 10-2
Imagine three inductors, with no mutual inductance, with values of 20.0 mH, 55.0 µH, and 400
nH. What is the total inductance, in millihenrys, of these components if they are connected in se-
ries as shown in Fig. 10-3?

First, convert all the inductances to the same units. Microhenrys are a good choice because that
unit makes the calculation process the least messy. Call L1 = 20.0 mH = 20,000 µH, L2 = 55.0 µH,
and L3 = 400 nH = 0.400 µH. The total inductance is therefore L = 20,000 + 55.0 + 0.400 =
20,055.4 µH. This is 20.1 mH after converting and rounding off.

Inductors in Parallel
If there is no mutual inductance among two or more parallel-connected inductors, their values add
up like the values of resistors in parallel. Suppose you have inductances L1, L2, L3, . . . , Ln all con-
nected in parallel. Then you can find the reciprocal of the total inductance, 1/L, using the follow-
ing formula:

1/L = 1/L1 + 1/L2 + 1/L3 + . . . + 1/Ln

The total inductance, L, is found by taking the reciprocal of the number you get for 1/L. Again, as
with inductances in series, it’s important to remember that all the units have to agree during the cal-
culation process. Once you have completed the calculation, you can convert the result to any induc-
tance unit.

Problem 10-3
Suppose there are three inductors, each with a value of 40 µH, connected in parallel with no mu-
tual inductance, as shown in Fig. 10-4. What is the net inductance of the combination?

Let’s call the inductances L1 = 40 µH, L2 = 40 µH, and L3 = 40 µH. Use the preceding formula
to obtain 1/L = 1/40 + 1/40 + 1/40 = 3/40 = 0.075. Then L = 1/0.075 = 13.333 µH. This should be
rounded off to 13 µH, because the original inductances are specified to only two significant digits.

Problem 10-4
Imagine four inductors in parallel, with no mutual inductance and values of L1 = 75.0 mH, L2 =
40.0 mH, L3 = 333 µH, and L4 = 7.00 H. What is the net inductance of this combination?
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You can use henrys, millihenrys, or microhenrys as the standard units in this problem. Suppose
you decide to use henrys. Then L1 = 0.0750 H, L 2 = 0.0400 H, L 3 = 0.000333 H, and L4 = 7.00
H. Use the preceding formula to obtain 1/L = 13.33 + 25.0 + 3003 + 0.143 = 3041.473. The re-
ciprocal of this is the inductance L = 0.00032879 H = 328.79 µH. This should be rounded off to
329 µH. This is only a little less than the value of the 333 µH inductor alone.

If there are several inductors in parallel, and one of them has a value that is much smaller than
the values of all the others, then the total inductance is a little smaller than the value of the smallest
inductor.

Interaction among Inductors
In real-world circuits, there is almost always some mutual inductance between or among solenoidal
coils. The magnetic fields extend significantly outside such coils, and mutual effects are difficult to
avoid or eliminate. The same is true between and among lengths of wire, especially at high ac fre-
quencies. Sometimes, mutual inductance has no detrimental effect, but in some situations it is not
wanted. Mutual inductance can be minimized by using shielded wires and toroidal inductors. The
most common shielded wire is coaxial cable. Toroidal inductors are discussed later in this chapter.

Coefficient of Coupling
The coefficient of coupling, symbolized k, is an expression of the extent to which two inductors inter-
act. It is specified as a number ranging from 0 (no interaction) to 1 (the maximum possible interac-
tion). Two coils separated by a sheet of solid iron, or by a great distance, have a coefficient of
coupling of zero (k = 0); two coils wound on the same form, one right over the other, have the max-
imum possible coefficient of coupling (k = 1). Sometimes, the coefficient of coupling is multiplied
by 100 and expressed as a percentage from 0 to 100 percent.

Mutual Inductance
The mutual inductance between two inductors is symbolized M, and is expressed in the same units
as inductance: henrys, millihenrys, microhenrys, or nanohenrys. The value of M is a function of the
values of the inductors, and also of the coefficient of coupling.

In the case of two inductors having values of L1 and L2 (both expressed in the same size units),
and with a coefficient of coupling equal to k, the mutual inductance M is found by multiplying the
inductance values, taking the square root of the result, and then multiplying by k. Mathematically:

M = k (L1L 2)1/2

where the 1⁄ 2 power represents the square root. The value of M thus obtained will be in the same size
unit as the values of the inductance you input to the equation.

Effects of Mutual Inductance
Mutual inductance can either increase or decrease the net inductance of a pair of series-connected
coils, compared with the condition of zero mutual inductance. The magnetic fields around the coils
either reinforce each other or oppose each other, depending on the phase relationship of the ac ap-
plied to them. If the two ac waves (and thus the magnetic fields they produce) are in phase, the in-
ductance is increased compared with the condition of zero mutual inductance. If the two waves are
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in opposing phase, the net inductance is decreased relative to the condition of zero mutual induc-
tance.

When two inductors are connected in series and there is reinforcing mutual inductance between
them, the total inductance L is given by the following formula:

L = L1 + L 2 + 2M

where L1 and L 2 are the inductances, and M is the mutual inductance. All inductances must be ex-
pressed in the same size units.

When two inductors are connected in series and the mutual inductance is opposing, the total in-
ductance L is given by this formula:

L = L 1 + L 2 − 2M

where, again, L1 and L 2 are the values of the individual inductors.
It is possible for mutual inductance to increase the total series inductance of a pair of coils by as

much as a factor of 2, if the coupling is total and if the flux reinforces. Conversely, it is possible for
the inductances of two coils to completely cancel each other. If two equal-valued inductors are con-
nected in series so their fluxes oppose (or buck each other) and k = 1, the result is theoretically zero
inductance.

Problem 10-5
Suppose two coils, having inductances of 30 µH and 50 µH, are connected in series so that their
fields reinforce, as shown in Fig. 10-5. Suppose that the coefficient of coupling is 0.500. What is the
total inductance of the combination?
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First, calculate M from k. According to the formula for this, given previously, M = 0.500(50 ×
30)1/2 = 19.4 µH. Then figure the total inductance. It is equal to L = L1 + L2 + 2M = 30 + 50 + 38.8
= 118.8 µH, rounded to 120 µH because only two significant digits are justified.

Problem 10-6
Imagine two coils with inductances of L1 = 835 µH and L2 = 2.44 mH. Suppose they are connected
in series so that their coefficient of coupling is 0.922, acting so that the coils oppose each other, as
shown in Fig. 10-6. What is the net inductance of the pair?



First, calculate M from k. The coil inductances are specified in different units. Let’s use micro-
henrys for our calculations, so L 2 = 2440 µH. Then M = 0.922(835 × 2440)1/2 = 1316 µH. Then
figure the total inductance. It is L = L1 + L 2 − 2M = 835 + 2440 − 2632 = 643 µH.

Air-Core Coils
The simplest inductors (besides plain, straight lengths of wire) are coils. A coil can be wound on a
hollow cylinder of plastic or other nonferromagnetic material, forming an air-core coil. In practice,
the maximum attainable inductance for such coils is about 1 mH.

Air-core coils are used mostly in radio-frequency transmitters, receivers, and antenna networks.
In general, the higher the frequency of ac, the less inductance is needed to produce significant ef-
fects. Air-core coils can be made to have almost unlimited current-carrying capacity, simply by using
heavy-gauge wire and making the radius of the coil large. Air does not dissipate much energy in the
form of heat. It’s efficient, even though it has low permeability.

Ferromagnetic Cores
Ferromagnetic substances can be crushed into dust and then bound into various shapes, providing
core materials that greatly increase the inductance of a coil having a given number of turns. Depend-
ing on the mixture used, the increase in flux density can range from a factor of a few times, up
through many thousands of times. A small coil can thus be made to have a large inductance. There
are two main types of ferromagnetic material in common use as coil cores. These substances are
known as powdered iron and ferrite.

Advantages and Limitations
Powdered-iron cores are common at high and very high radio frequencies. Ferrite is a special form
of powdered iron that has exceptionally high permeability, causing a great concentration of mag-
netic flux lines within the coil. Ferrite is used at audio frequencies, as well as at low, medium, and
high radio frequencies. Coils using these materials can be made much smaller, physically, than can
air-core coils having the same inductance.

The main trouble with ferromagnetic cores is that, if the coil carries more than a certain
amount of current, the core will saturate. This means that the ferromagnetic material is holding as
much flux as it possibly can. When a core becomes saturated, any further increase in coil current will
not produce a corresponding increase in the magnetic flux in the core. The result is that the induc-
tance changes, decreasing with coil currents that are more than the critical value. In extreme cases,
ferromagnetic cores can also waste considerable power as heat. This makes a coil lossy.
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Permeability Tuning
Solenoidal coils can be made to have variable inductance by sliding ferromagnetic cores in and out
of them. The frequency of a radio circuit can be adjusted in this way, as you’ll learn later in this
book.

Because moving the core in and out of a coil changes the effective permeability within the coil,
this method of tuning is called permeability tuning. The in/out motion can be precisely controlled
by attaching the core to a screw shaft, and anchoring a nut at one end of the coil (Fig. 10-7). As the
screw shaft is rotated clockwise, the core enters the coil, and the inductance increases. As the screw
shaft is rotated counterclockwise, the core moves out of the coil, and the inductance decreases.

Toroids
Inductor coils do not have to be wound on cylindrical forms, or on cylindrical ferromagnetic cores.
There’s another coil geometry, called the toroid. It gets its name from the shape of the ferromagnetic
core. The coil is wound over a core having this shape (Fig. 10-8), which resembles a donut or bagel.
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There are several advantages to toroidal coils over solenoidal, or cylindrical, ones. First, fewer
turns of wire are needed to get a certain inductance with a toroid compared to a solenoid. Second,
a toroid can be physically smaller for a given inductance and current-carrying capacity. Third, prac-
tically all the flux is contained within the core material. This reduces unwanted mutual inductances
with components near the toroid.

Toroidal coils have limitations, too. It is more difficult to permeability-tune a toroidal coil than
it is to tune a solenoidal one. Toroidal coils are harder to wind than solenoidal ones. Sometimes,
mutual inductance between or among physically separate coils is actually desired; with a toroid, the
coils have to be wound on the same form for this to be possible.

Pot Cores
There is another way to confine the magnetic flux in a coil so that unwanted mutual inductance
does not occur: wrap ferromagnetic core material around a coil (Fig. 10-9). A wraparound core of
this sort is known as a pot core.

A typical pot core comes in two halves, inside one of which the coil is wound. Then the parts
are assembled and held together by a bolt and nut. The entire assembly looks like a miniature oil
tank. The wires come out of the core through small holes or slots.

Pot cores have the same advantages as toroids. The core tends to prevent the magnetic flux from
extending outside the physical assembly. Inductance is greatly increased compared to solenoidal
windings having a comparable number of turns. In fact, pot cores are even better than toroids if the
main objective is to get a large inductance in a small space. The main disadvantage of a pot core is
that tuning, or adjustment of the inductance, is all but impossible. The only way to do it is by
switching in different numbers of turns, using taps at various points on the coil.
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Filter Chokes
The largest values of inductance that can be obtained in practice are on the order of several henrys.
The primary use of a coil this large is to smooth out the pulsations in direct current that result when
ac is rectified in a power supply. This type of coil is known as a filter choke. You’ll learn more about
power supplies later in this book.

Inductors at AF
Inductors for audio frequency (AF) applications range in value from a few millihenrys up to about
1 H. They are almost always toroidally wound, or are wound in a pot core, or comprise part of an
audio transformer. Ferromagnetic cores are the rule.

Inductors can be used in conjunction with moderately large values of capacitance in order to
obtain AF-tuned circuits. However, in recent years, audio tuning has been largely taken over by ac-
tive components, particularly integrated circuits.

Inductors at RF
The radio frequency (RF) spectrum ranges from a few kilohertz to well above 100 GHz. At the low
end of this range, inductors are similar to those at AF. As the frequency increases, cores having lower
permeability are used. Toroids are common up through about 30 MHz. Above that frequency, air-
core coils are more often used.

In RF applications, coils are routinely connected in series or in parallel with capacitors to ob-
tain tuned circuits. Other arrangements yield various characteristics of attenuation versus frequency,
serving to let signals at some frequencies pass through, while rejecting signals at other frequencies.
You’ll learn more about this in the discussion about resonance in Chap. 17.

Transmission-Line Inductors
At frequencies about 100 MHz, another type of inductor becomes practical. This is the type formed
by a length of transmission line. A transmission line is generally used to get energy from one place to
another. In radio communications, transmission lines get energy from a transmitter to an antenna,
and from an antenna to a receiver.

Most transmission lines are found in either of two geometries, the parallel-wire type or the coax-
ial type. A parallel-wire transmission line consists of two wires running alongside each other with
constant spacing (Fig. 10-10). The spacing is maintained by polyethylene rods molded at regular in-
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tervals to the wires, or by a solid web of polyethylene. The substance separating the wires is called the
dielectric of the transmission line. A coaxial transmission line has a wire conductor surrounded by a
tubular braid or pipe (Fig. 10-11). The wire is kept at the center of this tubular shield by means of
polyethylene beads, or more often, by solid or foamed polyethylene, all along the length of the line.

Line Inductance
Short lengths of any type of transmission line behave as inductors, as long as the line length is less
than 90° (1⁄ 4 of a wavelength). At 100 MHz, 90° in free space is 75 cm, or a little more than 2 ft. In
general, if f is the frequency in megahertz, then 1⁄ 4 wavelength in free space, expressed in centime-
ters (scm), is given by this formula:

scm = 7500/f

The length of a quarter-wavelength section of transmission line is shortened from the free-space
quarter wavelength by the effects of the dielectric. In practice, 1⁄ 4 wavelength along the line can be
anywhere from about 0.66 (or 66 percent) of the free-space length for coaxial lines with solid poly-
ethylene dielectric to about 0.95 (or 95 percent) of the free-space length for parallel-wire line with
spacers molded at intervals of several centimeters. The factor by which the wavelength is shortened
is called the velocity factor of the line.

The shortening of the wavelength in a transmission line, compared with the wavelength in free
space, is a result of a slowing down of the speed with which the radio signals move in the line com-
pared with their speed in space (the speed of light). If the velocity factor of a line is given by v, then
the preceding formula for the length of a quarter-wave line, in centimeters, becomes:

scm = 7500v/f

Very short lengths of line—a few electrical degrees—produce small values of inductance. As
the length approaches 1⁄ 4 wavelength, the inductance increases.

Transmission line inductors behave differently than coils in one important way: the inductance
of a coil, particularly an air-core coil, is independent of the frequency. But the inductance of a trans-
mission-line section changes as the frequency changes. At first, the inductance becomes larger as the
frequency increases. At a certain limiting frequency, the inductance becomes theoretically infinite.
Above that frequency, the line becomes capacitive rather than inductive. You’ll learn about capaci-
tance in the next chapter.
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Unwanted Inductances
Any length of wire has some inductance. As with a transmission line, the inductance of a wire in-
creases as the frequency increases. Wire inductance is more significant at RF than at AF.

In some cases, especially in radio communications equipment, the inductance of, and among,
wires can become a major problem. Circuits can oscillate when they should not. A receiver might re-
spond to signals that it’s not designed to intercept. A transmitter can send out signals on unautho-
rized and unintended frequencies. The frequency response of any circuit can be altered, degrading the
performance of the equipment. Sometimes the effects of this stray inductance are so small that they
are not important; this might be the case in a stereo hi-fi set located at a distance from other electronic
equipment. But in some situations, stray inductance can cause serious equipment malfunctions.

A good way to minimize stray inductance is to use coaxial cables between and among sensitive
circuits or components. The shield of the cable is connected to the common ground of the apparatus.
In some cases, enclosing individual circuits in metal boxes can prevent stray inductance from caus-
ing feedback and other problems.

Quiz
Refer to the text in this chapter if necessary. A good score is 18 correct. Answers are in the back of
the book.

1. An inductor works by
(a) charging a piece of wire.
(b) storing energy as a magnetic field.
(c) choking off dc.
(d) introducing resistance into a circuit.

2. Which of the following does not affect the inductance of an air-core coil, if all other factors
are held constant?

(a) The frequency
(b) The number of turns
(c) The diameter of the coil
(d) The length of the coil

3. In a small inductance
(a) energy is stored and released slowly.
(b) the current flow is always large.
(c) the current flow is always small.
(d) energy is stored and released quickly.

4. A ferromagnetic core is placed in an inductor mainly to
(a) increase the current carrying capacity.
(b) increase the inductance.
(c) limit the current.
(d) reduce the inductance.
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5. Inductors in series, assuming there is no mutual inductance, combine
(a) like resistors in parallel.
(b) like resistors in series.
(c) like batteries in series with opposite polarities.
(d) in a way unlike any other type of component.

6. Suppose two inductors are connected in series, without mutual inductance. Their values are
33 mH and 55 mH. What is the net inductance of the combination?

(a) 1.8 H
(b) 22 mH
(c) 88 mH
(d) 21 mH

7. If the same two inductors (33 mH and 55 mH) are connected in parallel without mutual
inductance, the combination will have a value of

(a) 1.8 H.
(b) 22 mH.
(c) 88 mH.
(d) 21 mH.

8. Suppose three inductors are connected in series without mutual inductance. Their values are
4.00 nH, 140 µH, and 5.07 H. For practical purposes, the net inductance will be very close to

(a) 4.00 nH.
(b) 140 µH.
(c) 5.07 H.
(d) none of the above.

9. Suppose the three inductors mentioned above are connected in parallel without mutual
inductance. The net inductance will be close to

(a) 4.00 nH.
(b) 140 µH.
(c) 5.07 H.
(d) none of the above.

10. Suppose two inductors, each of 100 µH, are connected in series, and the coefficient of
coupling is 0.40. The net inductance, if the coil fields reinforce each other, is

(a) 50.0 µH.
(b) 120 µH.
(c) 200 µH.
(d) 280 µH.
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11. If the coil fields oppose in the foregoing series-connected arrangement, assuming the
coefficient of coupling does not change, the net inductance is

(a) 50.0 µH.
(b) 120 µH.
(c) 200 µH.
(d) 280 µH.

12. Suppose two inductors, having values of 44.0 mH and 88.0 mH, are connected in series with
a coefficient of coupling equal to 1.0 (the maximum possible mutual inductance). If their fields
reinforce, the net inductance is approximately

(a) 7.55 mH.
(b) 132 mH.
(c) 194 mH.
(d) 256 mH.

13. If the fields in the previous situation oppose, assuming the coefficient of coupling does not
change, the net inductance will be approximately

(a) 7.55 mH.
(b) 132 mH.
(c) 194 mH.
(d) 256 mH.

14. With permeability tuning, moving the core further into a solenoidal coil
(a) increases the inductance.
(b) reduces the inductance.
(c) has no effect on the inductance, but increases the current-carrying capacity of the coil.
(d) raises the frequency.

15. A significant advantage, in some situations, of a toroidal coil over a solenoid is the fact that
(a) the toroid is easier to wind.
(b) the solenoid cannot carry as much current.
(c) the toroid is easier to tune.
(d) the magnetic flux in a toroid is practically all within the core.

16. A major feature of a pot core inductor is
(a) high current capacity.
(b) large inductance in small volume.
(c) excellent efficiency at very high frequencies.
(d) ease of inductance adjustment.
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17. As an inductor core material, air
(a) has excellent efficiency.
(b) has high permeability.
(c) allows large inductance to exist in a small volume.
(d) has permeability that can vary over a wide range.

18. At a frequency of 400 Hz, which is in the AF range, the most likely form for an inductor
would be

(a) air-core.
(b) solenoidal.
(c) toroidal.
(d) transmission-line.

19. At a frequency of 95.7 MHz, which is in the frequency-modulation (FM) broadcast band and
is considered part of the very high frequency (VHF) radio spectrum, a good form for an inductor
would be

(a) air-core.
(b) pot core.
(c) either (a) or (b).
(d) neither (a) nor (b).

20. A transmission-line inductor made from coaxial cable having velocity factor of 0.66 and
working at 450 MHz, which is in the ultrahigh frequency (UHF) radio spectrum, should, in order
to measure less than 1⁄4 electrical wavelength, be cut shorter than

(a) 16.7 m.
(b) 11 m.
(c) 16.7 cm.
(d) 11 cm.

174 Inductance



ELECTRICAL COMPONENTS CAN OPPOSE THE FLOW OF AC IN THREE WAYS, TWO OF WHICH YOU’VE

learned about. Resistance slows the flow of ac or dc charge carriers (usually electrons) by brute force.
Inductance impedes the flow of ac charge carriers by temporarily storing the energy as a magnetic
field. Capacitance, about which you’ll learn in this chapter, impedes the flow of ac charge carriers by
temporarily storing the energy as an electric field.

The Property of Capacitance
Imagine two huge, flat sheets of metal that are excellent electrical conductors. Suppose they are each
the size of the state of Nebraska, and are placed one over the other, separated by only 1 foot of space.
If these two sheets of metal are connected to the terminals of a battery, as shown in Fig. 11-1, they
will become charged electrically, one positively and the other negatively.

If the plates were small, they would both become charged almost instantly, attaining a relative
voltage equal to the voltage of the battery. But because the plates are gigantic, it will take a little time
for the negative plate to reach full negative potential, and an equal time for the other plate to reach
full positive potential. Eventually, the voltage between the two plates will equal the battery voltage,
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and an electric field will exist in the space between the plates. This electric field will be small at first,
because the plates don’t charge up right away. But the charge will increase over a period of time, de-
pending on how large the plates are, and also depending on how far apart they are. Figure 11-2 is a
relative graph showing the intensity of the electric field between the plates as a function of time,
elapsed from the instant the plates are connected to the battery terminals.

Energy will be stored in this electric field. The ability of the plates, and of the space between
them, to store this energy is the property of capacitance. As a quantity or variable, capacitance is de-
noted by the uppercase italic letter C.

Practical Capacitors
It’s out of the question to make a capacitor of the preceding dimensions. But two sheets, or strips,
of foil can be placed one on top of the other, separated by a thin, nonconducting sheet such as paper,
and then the whole assembly can be rolled up to get a large effective surface area. When this is done,
the electric flux becomes great enough so that the device exhibits significant capacitance. Alterna-
tively, two sets of several plates each can be meshed together with air in between them, and the re-
sulting capacitance is significant at high ac frequencies.

In a capacitor, the electric flux concentration is multiplied when a dielectric of a certain type is
placed between the plates. This increases the effective surface area of the plates, so that a physically
small component can be made to have a large capacitance. The voltage that a capacitor can handle
depends on the thickness of the metal sheets or strips, on the spacing between them, and on the type
of dielectric used.

In general, capacitance is directly proportional to the surface area of the conducting plates or
sheets. Capacitance is inversely proportional to the separation between conducting sheets. In other
words, the closer the sheets are to each other, the greater the capacitance. The capacitance also de-
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pends on the dielectric constant of the material between the plates. A vacuum has a dielectric constant
of 1; some substances have dielectric constants that multiply the effective capacitance many times.

The Unit of Capacitance
When a battery is connected between the plates of a capacitor, the potential difference between the
plates builds up at a rate that depends on the capacitance. The greater the capacitance, the slower
the rate of change of voltage in the plates. The unit of capacitance is an expression of the ratio be-
tween the current that flows and the rate of voltage change between the plates as the plates become
charged. A capacitance of 1 farad (1 F) represents a current flow of 1 A while there is a voltage in-
crease of 1 V/s. A capacitance of 1 F also results in 1 V of potential difference for an electric charge
of 1 C.

The farad is a huge unit of capacitance. You’ll almost never see a capacitor with a value of 1 F.
Commonly employed units of capacitance are the microfarad (µF) and the picofarad (pF). A ca-
pacitance of 1 µF represents 0.000001 (10−6) F, and 1 pF is a millionth of a microfarad, or
0.000000000001 (10−12) F.

Physically small components can be made to have fairly large capacitance values. Conversely,
some capacitors with small values take up large physical volumes. The physical size of a capacitor, if
all other factors are held constant, is proportional to the voltage that it can handle. The higher the
rated voltage, the bigger the component.

Capacitors in Series
With capacitors, there is rarely any mutual interaction. This makes capacitors easier to work with
than inductors. We don’t have to worry about mutual capacitance very often, the way we have to be
concerned about mutual inductance when working with wire coils.

Capacitors in series add together like resistors or inductors in parallel. Suppose you have several
capacitors with values C1, C2, C3, . . . , Cn connected in series. You can find the reciprocal of the total
capacitance, 1/C, using the following formula:

1/C = 1/C1 + 1/C2 + 1/C3 + . . . + 1/Cn

The net capacitance of the series combination, C, is found by taking the reciprocal of the number
you get for 1/C.

If two or more capacitors are connected in series, and one of them has a value that is tiny com-
pared with the values of all the others, the net capacitance is roughly equal to the smallest capaci-
tance.

Problem 11-1
Suppose two capacitors, with values of C1 = 0.10 µF and C2 = 0.050 µF, are connected in series (Fig.
11-3). What is the net capacitance?

Using the preceding formula, first find the reciprocals of the values. They are 1/C1 = 10 and
1/C2 = 20. Then 1/C = 10 + 20 = 30, and C = 1/30 = 0.033 µF. Note that we can work with recip-
rocal capacitances in this calculation only because the values of the components are specified in the
same units.
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Problem 11-2
Suppose two capacitors with values of 0.0010 µF and 100 pF are connected in series. What is the
net capacitance?

In this case, you must convert to the same size units before doing any calculations. A value of
100 pF represents 0.000100 µF. Thus, C1 = 0.0010 µF and C2 = 0.000100 µF. The reciprocals are
1/C1 = 1000 and 1/C2 = 10,000. Therefore, 1/C = 1000 + 10,000 = 11,000, so C = 1/11,000 =
0.000091 µF. (You might rather say it’s 91 pF.)

Problem 11-3
Suppose five capacitors, each of 100 pF, are in series. What is the total capacitance?

If there are n capacitors in series, all of the same value so that C1 = C2 = C3 = . . . = Cn, the net
capacitance C is equal to 1/n of the capacitance of any of the components alone. Because there are
five 100-pF capacitors here, the total is C = 100/5 = 20.0 pF.

Capacitors in Parallel
Capacitances in parallel add like resistances in series. The total capacitance is the sum of the indi-
vidual component values. If two or more capacitors are connected in parallel, and one of the capac-
itances is far larger than any of the others, the total capacitance can be taken as approximately the
value of the biggest one.

Problem 11-4
Suppose three capacitors are in parallel, having values of C1 = 0.100 µF, C2 = 0.0100 µF, and C3 =
0.001000 µF, as shown in Fig. 11-4. What is the total capacitance?

Add them up: C = 0.100 + 0.0100 + 0.001000 = 0.111000. Because two of the values are given
to only three significant figures, the final answer should be stated as C = 0.111 µF.
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Problem 11-5
Suppose two capacitors are in parallel, one with a value of 100 µF and one with a value of 100 pF.
What is the net capacitance?

In this case, you can say right away that the net capacitance is 100 µF for practical purposes. The
100-pF capacitor has a value that is only one-millionth of the capacitance of the 100-µF component.
The smaller capacitance contributes essentially nothing to the net capacitance of this combination.

Fixed Capacitors
A fixed capacitor has a value that cannot be adjusted, and that (ideally) does not vary when environ-
mental or circuit conditions change. Here are some of the characteristics, and common types, of
fixed capacitors.

Dielectric Materials
Just as certain solids can be placed within a coil to increase the inductance, materials exist that can
be sandwiched in between the plates of a capacitor to increase the capacitance. The substance be-
tween the plates is called the dielectric of the capacitor. Air is an efficient dielectric; it has almost no
loss. But it is difficult to get very much capacitance using air as the dielectric. Some kind of solid
material is usually employed as the dielectric for most fixed capacitors.

Dielectric materials accommodate electric fields well, but they are poor conductors of electric
currents. In fact, dielectric materials are known as good insulators. Solid dielectrics increase the ca-
pacitance for a given surface area and spacing of the plates. Solid dielectrics also allow the plates to
be rolled up, squashed, and placed very close together (Fig. 11-5). This geometry acts to maximize
the capacitance per unit volume.

Paper Capacitors
In the early days of electronics, capacitors were commonly made by placing paper, soaked with min-
eral oil, between two strips of foil, rolling the assembly up, attaching wire leads to the two pieces of
foil, and enclosing the rolled-up foil and paper in an airtight cylindrical case. Paper capacitors can
still sometimes be found in older electronic equipment. They have values ranging from about 0.001
µF to 0.1 µF, and can handle low to moderate voltages, usually up to about 1000 V.
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Mica Capacitors
Mica is a naturally occurring, solid, transparent mineral substance that flakes off in thin sheets. It
makes an excellent dielectric for capacitors. Mica capacitors can be manufactured by alternately
stacking metal sheets and layers of mica, or by applying silver ink to sheets of mica. The metal sheets
are wired together into two meshed sets, forming the two terminals of the capacitor. This scheme is
shown in Fig. 11-6.

Mica capacitors have low loss, and are therefore highly efficient, provided their voltage rating is
not exceeded. Voltage ratings can be up to several thousand volts if thick sheets of mica are used. But
mica capacitors are large physically in proportion to their capacitance. The main application for
mica capacitors is in radio receivers and transmitters. Their capacitances are a little lower than those
of paper capacitors, ranging from a few tens of picofarads up to about 0.05 µF.

Ceramic Capacitors
Ceramic materials work well as dielectrics. Sheets of metal are stacked alternately with wafers of ce-
ramic to make these capacitors. The meshing/layering geometry of Fig. 11-6 is used. Ceramic, like
mica, has low loss and allows for high efficiency.

For small values of capacitance, only one layer of ceramic is needed, and two metal plates can
be glued to the disk-shaped material, one on each side. This type of component is known as a disk-
ceramic capacitor. Alternatively, a tube or cylinder of ceramic can be employed, and metal ink ap-
plied to the inside and outside of the tube. Such units are called tubular capacitors. Ceramic
capacitors have values ranging from a few picofarads to about 0.5 µF. Their voltage ratings are com-
parable to those of paper capacitors.

Plastic-Film Capacitors
Plastics make good dielectrics for the manufacture of capacitors. Polyethylene and polystyrene are
commonly used. The method of manufacture is similar to that for paper capacitors. Stacking meth-
ods can be used if the plastic is rigid. The geometries can vary, and these capacitors are therefore
found in various shapes.
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Capacitance values for plastic-film units range from about 50 pF to several tens of microfarads.
Most often they are in the range of 0.001 µF to 10 µF. Plastic capacitors are employed at AF and
RF, and at low to moderate voltages. The efficiency is good, although not as high as that for mica-
dielectric or air-dielectric units.

Electrolytic Capacitors
All of the aforementioned types of capacitors provide relatively small values of capacitance. They are
also nonpolarized, meaning that they can be hooked up in a circuit in either direction. An electrolytic
capacitor provides greater capacitance than any of the preceding types, but it must be connected in
the proper direction in a circuit to work right. An electrolytic capacitor is a polarized component.

Electrolytic capacitors are made by rolling up aluminum foil strips, separated by paper saturated
with an electrolyte liquid. The electrolyte is a conducting solution. When dc flows through the com-
ponent, the aluminum oxidizes because of the electrolyte. The oxide layer is nonconducting, and
forms the dielectric for the capacitor. The layer is extremely thin, and this results in a high capaci-
tance per unit volume. Electrolytic capacitors can have values up to thousands of microfarads, and
some can handle thousands of volts. These capacitors are most often seen in AF circuits and in dc
power supplies.

Tantalum Capacitors
Another type of electrolytic capacitor uses tantalum rather than aluminum. The tantalum can be
foil, as is the aluminum in a conventional electrolytic capacitor. It can also take the form of a porous
pellet, the irregular surface of which provides a large area in a small volume. An extremely thin oxide
layer forms on the tantalum.

Tantalum capacitors have high reliability and excellent efficiency. They are often used in mili-
tary applications because they almost never fail. They can be used in AF and digital circuits in place
of aluminum electrolytics.

Semiconductor Capacitors
Later in this book, you’ll learn about semiconductors. These materials have revolutionized electrical
and electronic circuit design in the past several decades.

Semiconductor materials can be employed to make capacitors. A semiconductor diode conducts
current in one direction, and refuses to conduct in the other direction. When a voltage source is
connected across a diode so that it does not conduct, the diode acts as a capacitor. The capacitance
varies depending on how much of this reverse voltage is applied to the diode. The greater the reverse
voltage, the smaller the capacitance. This makes the diode act as a variable capacitor. Some diodes
are especially manufactured to serve this function. Their capacitances fluctuate rapidly along with
pulsating dc. They are called varactor diodes or simply varactors.

Capacitors can be formed in the semiconductor materials of an integrated circuit (also called an
IC or chip) in much the same way. Sometimes, IC diodes are fabricated to serve as varactors. An-
other way to make a capacitor in an IC is to sandwich an oxide layer into the semiconductor mate-
rial, between two layers that conduct well. Most ICs look like little boxes with protruding metal
prongs (Fig. 11-7). The prongs provide the electrical connections to external circuits and systems.

Semiconductor capacitors usually have small values of capacitance. They are physically tiny, and
can handle only low voltages. The advantages are miniaturization and an ability, in the case of the
varactor, to change in value at a rapid rate.
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Variable Capacitors
The capacitance of a component can be varied at will by adjusting the mutual surface area between
the plates, or by changing the spacing between the plates. The two most common types of variable
capacitors (besides varactors) are the air variable and the trimmer. You will also sometimes encounter
coaxial capacitors.

Air Variables
By connecting two sets of metal plates so that they mesh, and by affixing one set to a rotatable shaft,
a variable capacitor is made. The rotatable set of plates is called the rotor, and the fixed set is called
the stator. This is the type of component you might have seen in older radio receivers, used to tune
the frequency. Such capacitors are still used in transmitter output tuning networks. Figure 11-8 is a
functional drawing of an air-variable capacitor.

Air variables have maximum capacitance that depends on the number of plates in each set, and
also on the spacing between the plates. Common maximum values are 50 to 500 pF; minimum val-
ues are a few picofarads. The voltage-handling capability depends on the spacing between the plates.
Some air variables can handle many kilovolts.

Air variables are used primarily in RF applications. They are highly efficient, and are nonpolar-
ized, although the rotor is usually connected to common ground (the chassis or circuit board).
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Trimmer Capacitors
When it is not necessary to change the value of a capacitor very often, a trimmer can be used. It con-
sists of two plates, mounted on a ceramic base and separated by a sheet of plastic, mica, or some
other solid dielectric. The plates are flexible, and can be squashed together more or less by means of
a screw (Fig. 11-9). Sometimes two sets of several plates are interleaved to increase the capacitance.

Trimmers can be connected in parallel with an air variable, so that the range of the air variable
can be adjusted. Some air-variable capacitors have trimmers built in. Typical maximum values for
trimmers range from a few picofarads up to about 200 pF. They handle low to moderate voltages,
are highly efficient, and are nonpolarized.

Coaxial Capacitors
You recall from the previous chapter that sections of transmission lines can work as inductors. They
can act as capacitors, too. If a section of transmission line is less than 1⁄ 4 wavelength long, and is left
open at the far end (rather than shorted out), it behaves as a capacitor. The capacitance increases
with length.

The most common transmission-line capacitor uses two telescoping sections of metal tubing.
This is called a coaxial capacitor. It works because there is a certain effective surface area between the
inner and the outer tubing sections. A sleeve of plastic dielectric is placed between the sections of
tubing, as shown in Fig. 11-10. This allows the capacitance to be adjusted by sliding the inner sec-
tion in or out of the outer section.
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Coaxial capacitors are used in RF applications, particularly in antenna systems. Their values are
generally from a few picofarads up to about 100 pF.

Capacitor Specifications
When you are looking for a capacitor for a particular application, it’s important to find a compo-
nent that has the right specifications for the job. Here are two of the most important specifications
to watch for.

Tolerance
Capacitors are rated according to how nearly their values can be expected to match the rated capac-
itance. The most common tolerance is �10%; some capacitors are rated at �5% or even at �1%.

The lower (or tighter) the tolerance number, the more closely you can expect the actual compo-
nent value to match the rated value. For example, a �10% capacitor rated at 100 pF can range from
90 to 110 pF. But if the tolerance is �1%, the manufacturer guarantees that the capacitance will be
between 99 and 101 pF.

Problem 11-6
A capacitor is rated at 0.10 µF �10%. What is its guaranteed range of capacitance?

First, multiply 0.10 by 10 percent to get the plus-or-minus variation. This is 0.10 × 0.10 =
0.010 µF. Then add and subtract this from the rated value to get the maximum and minimum pos-
sible capacitances. The result is a range of 0.09 to 0.11 µF.

Temperature Coefficient
Some capacitors increase in value as the temperature increases. These components have a positive
temperature coefficient. Some capacitors decrease in value as the temperature rises; these have a neg-
ative temperature coefficient. Some capacitors are manufactured so that their values remain constant
over a certain temperature range. Within this span of temperatures, such capacitors have zero tem-
perature coefficient.

The temperature coefficient is specified in percent per degree Celsius (%/°C). Sometimes, a ca-
pacitor with a negative temperature coefficient can be connected in series or parallel with a capaci-
tor having a positive temperature coefficient, and the two opposite effects cancel out over a range of
temperatures. In other instances, a capacitor with a positive or negative temperature coefficient can
be used to cancel out the effect of temperature on other components in a circuit, such as inductors
and resistors.

Interelectrode Capacitance
Any two pieces of conducting material, when they are brought near each other, can act as a capaci-
tor. Often, this interelectrode capacitance is so small that it can be neglected. It rarely amounts to
more than a few picofarads. In utility circuits and at AF, interelectrode capacitance is not usually 
significant. But it can cause problems at RF. The chances for trouble increase as the frequency in-
creases. The most common phenomena are feedback, and/or a change in the frequency characteris-
tics of a circuit.

Interelectrode capacitance can be minimized by keeping wire leads as short as possible, by using
shielded cables, and by enclosing sensitive circuits in metal housings.
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Quiz
Refer to the text in this chapter if necessary. A good score is 18 correct. Answers are in the back of
the book.

1. Capacitance acts to store electrical energy as
(a) current.
(b) voltage.
(c) a magnetic field.
(d) an electric field.

2. As capacitor plate area increases, all other things being equal,
(a) the capacitance increases.
(b) the capacitance decreases.
(c) the capacitance does not change.
(d) the current-handling ability decreases.

3. As the spacing between plates in a capacitor is made smaller, all other things being equal,
(a) the capacitance increases.
(b) the capacitance decreases.
(c) the capacitance does not change.
(d) the resistance increases.

4. A material with a high dielectric constant
(a) acts to increase capacitance per unit volume.
(b) acts to decrease capacitance per unit volume.
(c) has no effect on capacitance.
(d) causes a capacitor to become polarized.

5. A capacitance of 100 pF is the same as which of the following?
(a) 0.01 µF
(b) 0.001 µF
(c) 0.0001 µF
(d) 0.00001 µF

6. A capacitance of 0.033 µF is the same as which of the following?
(a) 33 pF
(b) 330 pF
(c) 3300 pF
(d) 33,000 pF

7. If five 0.050-µF capacitors are connected in parallel, what is the net capacitance of the
combination?

(a) 0.010 µF
(b) 0.25 µF
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(c) 0.50 µF
(d) 0.025 µF

8. If five 0.050-µF capacitors are connected in series, what is the net capacitance of the
combination?

(a) 0.010 µF
(b) 0.25 µF
(c) 0.50 µF
(d) 0.025 µF

9. Suppose that two capacitors are connected in series, and their values are 47 pF and 33 pF.
What is the net capacitance of this combination?

(a) 80 pF
(b) 47 pF
(c) 33 pF
(d) 19 pF

10. Suppose that two capacitors are in parallel. Their values are 47.0 pF and 470 µF. What is the
net capacitance of this combination?

(a) 47.0 pF
(b) 517 pF
(c) 517 µF
(d) 470 µF

11. Suppose that three capacitors are in parallel. Their values are 0.0200 µF, 0.0500 µF, and
0.10000 µF. What is the net capacitance of this combination?

(a) 0.0125 µF
(b) 0.1700 µF
(c) 0.1000 µF
(d) 0.1250 µF

12. The main advantage of air as a dielectric material for capacitors is the fact that it
(a) has a high dielectric constant.
(b) is not physically dense.
(c) has low loss.
(d) allows for large capacitance in a small volume.

13. Which of the following is not a characteristic of mica capacitors?
(a) Excellent efficiency
(b) Small size, even for large values of capacitance
(c) High voltage-handling capacity
(d) Low loss
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14. Which of the following capacitance values is most typical of a disk-ceramic capacitor?
(a) 100 pF
(b) 33 µF
(c) 470 µF
(d) 10,000 µF

15. Which of the following capacitance values is most typical of a paper capacitor?
(a) 0.001 pF
(b) 0.01 µF
(c) 100 µF
(d) 3300 µF

16. Which of the following capacitance ranges is most typical of an air-variable capacitor?
(a) 0.01 µF to 1 µF
(b) 1 µF to 100 µF
(c) 1 pF to 100 pF
(d) 0.001 pF to 0.1 pF

17. Which of the following types of capacitors is polarized?
(a) Paper
(b) Mica
(c) Interelectrode
(d) Electrolytic

18. If a capacitor has a negative temperature coefficient, then
(a) its capacitance decreases as the temperature rises.
(b) its capacitance increases as the temperature rises.
(c) its capacitance does not change with temperature.
(d) it will not work if the temperature is below freezing.

19. Suppose that a capacitor is rated at 33 pF �10%. Which of the following actual capacitance
values is outside the acceptable range?

(a) 30 pF
(b) 37 pF
(c) 35 pF
(d) 31 pF

20. Suppose that a capacitor, rated at 330 pF, shows an actual value of 317 pF. By how many
percent does its actual capacitance differ from its rated capacitance?

(a) −0.039%
(b) −3.9%
(c) −0.041%
(d) −4.1%
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IN ALTERNATING CURRENT, EACH 360° CYCLE IS EXACTLY THE SAME AS EVERY OTHER. IN EVERY CYCLE,
the waveform of the previous cycle is repeated. In this chapter, you’ll learn about the most common
type of ac waveform: the sine wave.

Instantaneous Values
An ac sine wave has a characteristic shape, as shown in Fig. 12-1. This is the way the graph of the
function y = sin x looks on an (x,y) coordinate plane. (The abbreviation sin stands for sine in
trigonometry.) Suppose that the peak voltage is �1 V, as shown. Further imagine that the period is
1 s, so the frequency is 1 Hz. Let the wave begin at time t = 0. Then each cycle begins every time
the value of t is a whole number. At every such instant, the voltage is zero and positive-going.
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12-1 A sine wave with a period of 1 second. It thus has a frequency of 1 Hz.
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If you freeze time at, say, t = 446.00, the voltage is zero. Looking at the diagram, you can see
that the voltage will also be zero every so-many-and-a-half seconds, so it will be zero at t = 446.5.
But instead of getting more positive at these instants, the voltage will be negative-going.

If you freeze time at so-many-and-a-quarter seconds, say t = 446.25, the voltage will be +1 V.
The wave will be exactly at its positive peak. If you stop time at so-many-and-three-quarter seconds,
say t = 446.75, the voltage will be exactly at its negative peak, −1 V. At intermediate times, say, so-
many-and-three-tenths seconds, the voltage will have intermediate values.

Instantaneous Rate of Change
Figure 12-1 shows that there are times the voltage is increasing, and times it is decreasing. Increas-
ing, in this context, means “getting more positive,” and decreasing means “getting more negative.”
The most rapid increase in voltage occurs when t = 0.0 and t = 1.0. The most rapid decrease takes
place when t = 0.5.

When t = 0.25, and also when t = 0.75, the instantaneous voltage neither increases nor de-
creases. But this condition exists only for a vanishingly small moment, a single point in time.

Suppose n is some whole number. Then the situation at t = n.25 is the same as it is for t = 0.25;
also, for t = n.75, things are the same as they are when t = 0.75. The single cycle shown in Fig. 
12-1 represents every possible condition of the ac sine wave having a frequency of 1 Hz and a peak value
of �1 V. The whole wave recurs, over and over, for as long as the ac continues to flow in the circuit.

Now imagine that you want to observe the instantaneous rate of change in the voltage of the wave
in Fig. 12-1, as a function of time. A graph of this turns out to be a sine wave, too—but it is dis-
placed to the left of the original wave by 1⁄ 4 of a cycle. If you plot the instantaneous rate of change
of a sine wave against time (Fig. 12-2), you get the derivative of the waveform. The derivative of a
sine wave is a cosine wave. This wave has the same shape as the sine wave, but the phase is different
by 1⁄ 4 of a cycle.

12-2 A sine wave representing the rate of change in the instantaneous
voltage of the wave shown in Fig. 12-1.
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Circles and Vectors
An ac sine wave represents the most efficient possible way that an electrical quantity can alternate.
It has only one frequency component. All the wave energy is concentrated into this smoothly see-
sawing variation. It is like a pure musical note.

Circular Motion
Suppose that you swing a ball around and around at the end of a string, at a rate of one revolution
per second (1 rps). The ball describes a circle in space (Fig. 12-3A). If a friend stands some distance
away, with his or her eyes in the plane of the ball’s path, your friend sees the ball oscillating back and
forth (Fig. 12-3B) with a frequency of 1 Hz. That is one complete cycle per second, because you
swing the ball around at 1 rps.

If you graph the position of the ball, as seen by your friend, with respect to time, the result is a
sine wave (Fig. 12-4). This wave has the same fundamental shape as all sine waves. Some sine waves
are taller than others, and some are stretched out horizontally more than others. But the general
waveform is the same in every case. By multiplying or dividing the amplitude and the wavelength
of any sine wave, it can be made to fit exactly along the curve of any other sine wave. The standard
sine wave is the function y = sin x in the coordinate plane.

You might whirl the ball around faster or slower than 1 rps. The string might be made longer
or shorter. This would alter the height and/or the frequency of the sine wave graphed in Fig. 12-4.
But the sine wave can always be reduced to the equivalent of constant, smooth motion in a circular
orbit. This is known as the circular motion model of a sine wave.

Rotating Vectors
Back in Chapter 9, degrees of phase were discussed. If you wondered then why phase is spoken of in
terms of angular measure, the reason should be clearer now. A circle has 360°. A sine wave can be
represented as circular motion. Points along a sine wave thus correspond to angles, or positions,
around a circle.

12-3 Swinging ball and string as seen from above (A) and from the side (B).



Figure 12-5 shows the way a rotating vector can be used to represent a sine wave. A vector is a
quantity with two independent properties, called magnitude (or amplitude) and direction. At A, the
vector points east, and this is assigned the value of 0°, where the wave amplitude is zero and is in-
creasing positively. At B, the vector points north; this is the 90° instant, where the wave has attained
its maximum positive amplitude. At C, the vector points west. This is 180°, the instant where the
wave has gone back to zero amplitude and is getting more negative. At D, the wave points south.
This is 270°, and it represents the maximum negative amplitude. When a full circle (360°) has been
completed, the vector once again points east.

The four points in Fig. 12-5 are shown on a sine wave graph in Fig. 12-6. Think of the vector as
revolving counterclockwise at a rate that corresponds to one revolution per cycle of the wave. If the
wave has a frequency of 1 Hz, the vector goes around at a rate of 1 rps. If the wave has a frequency of

12-4 Position of ball
(horizontal axis) as
seen from the side,
graphed as a function
of time (vertical axis).

12-5 Rotating-vector
representation of a sine
wave. At A, at the start
of the cycle; at B, one-
fourth of the way
through the cycle; at
C, halfway through
the cycle; at D, three-
fourths of the way
through the cycle.
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100 Hz, the speed of the vector is 100 rps, or a revolution every 0.01 s. If the wave is 1 MHz, then
the speed of the vector is 1 million rps (106 rps), and it goes once around every 0.000001 s (10−6 s).

The peak amplitude of a pure ac sine wave corresponds to the length of its vector. In Fig. 12-5,
time is shown by the angle counterclockwise from due east. Amplitude is independent of time. The
vector length never changes, but its direction does.

Expressions of Phase Difference
The phase difference, also called the phase angle, between two waves can have meaning only when
those two waves have identical frequencies. If the frequencies differ, even by just a little bit, the rel-
ative phase constantly changes, and it’s impossible to specify a value for it. In the following discus-
sions of phase angle, let’s assume that the two waves always have identical frequencies.

Phase Coincidence
Phase coincidence means that two waves begin at exactly the same moment. They are “lined up.”
This is shown in Fig. 12-7 for two waves having different amplitudes. The phase difference in this

12-6 The four points for the
vector model of Fig.
12-5, shown in the
standard amplitude-
versus-time graphical
manner.

12-7 Two sine waves in
phase coincidence.



case is 0°. You could say it’s some whole-number multiple of 360°, too—but engineers and techni-
cians rarely speak of any phase angle of less than 0° or more than 360°.

If two sine waves are in phase coincidence, and if neither wave has dc superimposed, then the
resultant is a sine wave with positive or negative peak amplitudes equal to the sum of the positive
and negative peak amplitudes of the composite waves. The phase of the resultant is the same as that
of the composite waves.

Phase Opposition
When two sine waves begin exactly 1⁄ 2 cycle, or 180°, apart, they are said to be in phase opposition.
This is illustrated by the drawing of Fig. 12-8. In this situation, engineers sometimes say that the
waves are out of phase, although this expression is a little nebulous because it could be taken to mean
some phase difference other than 180°.

If two sine waves have the same amplitudes and are in phase opposition, they cancel each other
out. This is because the instantaneous amplitudes of the two waves are equal and opposite at every
moment in time.

If two sine waves are in phase opposition, and if neither wave has dc superimposed, then the re-
sultant is a sine wave with positive or negative peak amplitudes equal to the difference between the
positive and negative peak amplitudes of the composite waves. The phase of the resultant is the same
as the phase of the stronger of the two composite waves.

Any sine wave without superimposed dc has the unique property that, if its phase is shifted by
180°, the resultant wave is the same as turning the original wave upside down. Not all waveforms
have this property. Perfect square waves do, but some rectangular and sawtooth waves don’t, and ir-
regular waveforms almost never do.

Intermediate Phase Differences
Two sine waves can differ in phase by any amount from 0° (phase coincidence), through 90° ( phase
quadrature, meaning a difference a quarter of a cycle), 180° (phase opposition), 270° (phase quad-
rature again), to 360° (phase coincidence again).

12-8 Two sine waves in
phase opposition.
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Leading Phase
Imagine two sine waves, called wave X and wave Y, with identical frequency. If wave X begins a
fraction of a cycle earlier than wave Y, then wave X is said to be leading wave Y in phase. For this
to be true, X must begin its cycle less than 180° before Y. Figure 12-9 shows wave X leading wave
Y by 90°.

Note that if wave X (the dashed line in Fig. 12-9) is leading wave Y (the solid line), then wave
X is displaced to the left of wave Y. In a time-domain graph or display, displacement to the left rep-
resents earlier moments in time, and displacement to the right represents later moments in time.

Lagging Phase
Suppose that some sine wave X begins its cycle more than 180°, but less than 360°, ahead of wave
Y. In this situation, it is easier to imagine that wave X starts its cycle later than wave Y, by some value
between 0° and 180°. Then wave X is not leading, but lagging, wave Y. Figure 12-10 shows wave X
lagging wave Y by 90°.

12-10 Wave X lags wave Y
by 90° of phase 
(1⁄4 of a cycle).

12-9 Wave X leads wave Y
by 90° of phase (1⁄4 of
a cycle).



Vector Diagrams of Phase Difference
The vector renditions of sine waves, such as are shown in Fig. 12-5, are well suited to showing phase
relationships.

If a sine wave X leads a sine wave Y by some number of degrees, then the two waves can be
drawn as vectors, with vector X being that number of angular degrees counterclockwise from vector
Y. If a sine wave X lags a sine wave Y by some number of degrees, then X appears to point in a di-
rection that is clockwise from Y by that number of angular degrees. If two waves are in phase coinci-
dence, then their vectors point in exactly the same direction. If two waves are in phase opposition,
then their vectors point in exactly opposite directions.

The drawings of Fig. 12-11 show four phase relationships between two sine waves X and Y. At
A, X is in phase with Y. At B, X leads Y by 90°. At C, X and Y are 180° apart in phase. At D, X lags
Y by 90°. In all of these examples, think of the vectors rotating counterclockwise as time passes, but
always maintaining the same angle with respect to each other, and always staying at the same
lengths. If the frequency in hertz is f, then the pair of vectors rotates together, counterclockwise, at
an angular speed of f, expressed in complete 360° revolutions per second.

12-11 Vector representations of phase difference. At A, waves X and Y are in
phase. At B, X leads Y by 90°. At C, X and Y are 180° out of phase. At
D, X lags Y by 90°. Time is represented by counterclockwise motion of
both vectors at a constant angular speed.
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Quiz
Refer to the text in this chapter if necessary. A good score is 18 correct. Answers are in the back of
the book.

1. Which of the following is not a general characteristic of an ac wave?

(a) The wave shape is identical for each cycle.

(b) The polarity reverses periodically.

(c) The electrons always flow in the same direction.

(d) There is a definite frequency.

2. All sine waves

(a) have similar general appearance.

(b) have instantaneous rise and fall times.

(c) are in the same phase as cosine waves.

(d) rise instantly, but decay slowly.

3. The derivative of a sine wave

(a) is shifted in phase by 1⁄ 2 cycle from the sine wave.

(b) is the rate of change in the instantaneous value.

(c) has instantaneous rise and decay times.

(d) rises instantly, but decays slowly.

4. A phase difference of 180° in the circular motion model of a sine wave represents

(a) 1⁄ 4 revolution.

(b) 1⁄ 2 revolution.

(c) a full revolution.

(d) two full revolutions.

5. You can add or subtract a certain number of degrees of phase to or from a wave, and end up
with exactly the same wave again. This number is

(a) 90, or any whole-number multiple of it.

(b) 180, or any whole-number multiple of it.

(c) 270, or any whole-number multiple of it.

(d) 360, or any whole-number multiple of it.

6. You can add or subtract a certain number of degrees of phase to or from a sine wave, and end
up with an inverted (upside-down) representation of the original. This number is

(a) 90, or any odd whole-number multiple of it.

(b) 180, or any odd whole-number multiple of it.

(c) 270, or any odd whole-number multiple of it.

(d) 360, or any odd whole-number multiple of it.
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7. Suppose a wave has a frequency of 300 kHz. How long does one complete cycle take?
(a) 1.300 s
(b) 0.00333 s
(c) 1/3000 s
(d) 3.33 × 10−6 s

8. If a wave has a frequency of 440 Hz, how long does it take for 10° of a cycle to occur?
(a) 0.00273 s
(b) 0.000273 s
(c) 0.0000631 s
(d) 0.00000631 s

9. Suppose two waves are in phase coincidence. One has peak values of �3 V and the other has
peak values of �5 V. The resultant has voltages of

(a) �8 V pk, in phase with the composites.
(b) �2 V pk, in phase with the composites.
(c) �8 V pk, in phase opposition with respect to the composites.
(d) �2 V pk, in phase opposition with respect to the composites.

10. As shown on a graph, shifting the phase of an ac sine wave by 90° is the same thing as
(a) moving it to the right or left by a full cycle.
(b) moving it to the right or left by 1⁄ 4 cycle.
(c) turning it upside down.
(d) leaving it alone.

11. Two pure sine waves that differ in phase by 180° can be considered to
(a) be offset by two full cycles.
(b) be in phase opposition.
(c) be separated by less than 1⁄ 4 cycle.
(d) have a frequency of 1⁄ 2 cycle.

12. Suppose two sine waves are in phase opposition. Wave X has a peak amplitude of �4 V and
wave Y has a peak amplitude of �8 V. The resultant has voltages of

(a) �4 V pk, in phase with the composites.
(b) �4 V pk, out of phase with the composites.
(c) �4 V pk, in phase with wave X.
(d) �4 V pk, in phase with wave Y.

13. If wave X leads wave Y by 45°, then
(a) wave Y is 1⁄ 4 cycle ahead of wave X.
(b) wave Y is 1⁄ 4 cycle behind wave X.
(c) wave Y is 1⁄ 8 cycle behind wave X.
(d) wave Y is 1.16 cycle ahead of wave X.
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14. If wave X lags wave Y by 1⁄ 3 cycle, then
(a) wave Y is 120° ahead of wave X.
(b) wave Y is 90° ahead of wave X.
(c) wave Y is 60° ahead of wave X.
(d) wave Y is 30° ahead of wave X.

15. Refer to Fig. 12-12. In this example,
(a) X lags Y by 45°.
(b) X leads Y by 45°.
(c) X lags Y by 135°.
(d) X leads Y by 135°.

16. Which of the drawings in Fig. 12-13 represents the situation of Fig. 12-12?
(a) Drawing A
(b) Drawing B
(c) Drawing C
(d) Drawing D

17. In vector diagrams such as those of Fig. 12-13, the length of the vector represents
(a) the average amplitude of a sine wave.
(b) the frequency of a sine wave.
(c) the phase of a sine wave.
(d) the peak amplitude of a sine wave.

18. In vector diagrams such as those of Fig. 12-13, the angle between two vectors represents
(a) the average of the peak amplitudes of two sine waves.
(b) the frequency difference between two sine waves.
(c) the phase difference between two sine waves.
(d) the difference between the peak amplitudes of two sine waves.
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19. In vector diagrams such as those of Fig. 12-13, the distance from the center of the graph
represents

(a) average amplitude.
(b) frequency.
(c) phase.
(d) peak amplitude.

20. In diagrams like those of Fig. 12-13, the progression of time is sometimes depicted as
(a) movement of a vector to the right.
(b) movement of a vector to the left.
(c) counterclockwise rotation of a vector.
(d) clockwise rotation of a vector.

12-13 Illustration for Quiz Questions 16 through 20.
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IN DC CIRCUITS, RESISTANCE CAN BE EXPRESSED AS A NUMBER RANGING FROM ZERO (REPRESENTING

a perfect conductor) to extremely large values. Physicists call resistance a scalar quantity, because it
can be expressed on a one-dimensional scale, as shown in Fig. 13-1.
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13
CHAPTER

Inductive Reactance

13-1 Resistance can be represented as numerical values (corresponding to
ohms) along a half line or ray.

13-2 An inductor connected
across a source of dc.

Coils and Direct Current
Suppose you have some wire that conducts electricity very well. If you wind a length of the wire into
a coil and connect it to a source of dc (Fig. 13-2), the wire draws a large current. It doesn’t matter
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whether the wire is a single-turn loop, or whether it’s lying haphazardly on the floor, or whether it’s
wrapped around a stick. The current amperes is equal to the applied voltage in volts divided by the
wire resistance in ohms. It’s that simple.

You can make an electromagnet, as you’ve already seen, by passing dc through a coil wound
around an iron rod. Electromagnets are known for the high current they draw from batteries or
power supplies. The coil of an electromagnet heats up as energy is dissipated in the resistance of the
wire. If the voltage of the battery or power supply increases, the wire in the coil gets hotter. Ulti-
mately, if the supply can deliver enough current, the wire will melt.

Coils and Alternating Current
Suppose you change the voltage source, connected across the coil, from dc to ac (Fig. 13-3). Imag-
ine that you can vary the frequency of the ac, from a few hertz to hundreds of hertz, then kilohertz,
then megahertz.

At first, the current will be high, just as it is with dc. But the coil has a certain amount of
inductance, and it takes some time for current to establish itself in the coil. Depending on how
many turns there are and on whether the core is air or a ferromagnetic material, you’ll reach a
point, as the ac frequency increases, when the coil starts to get sluggish. That is, the current won’t
have time to get established in the coil before the polarity of the ac voltage reverses. At high ac fre-
quencies, the current through the coil will have difficulty following the voltage placed across the
coil. This sluggishness in a coil for ac is, in effect, similar to dc resistance. As the frequency is raised,
the effect gets more pronounced. Eventually, if you keep increasing the frequency of the ac source,
the coil will not even come near establishing a current with each cycle. Then the coil will act like a
high resistance.

The opposition that the coil offers to ac is called inductive reactance. It, like resistance, is mea-
sured in ohms. It can vary, just as resistance does, from near zero (a short piece of wire) to a few
ohms (a small coil) to kilohms or megohms (bigger and bigger coils). Like resistance, inductive re-
actance affects the current in an ac circuit. But, unlike simple resistance, reactance changes with fre-
quency. This effect is not merely a decrease in the current, although in practice this does happen.
Inductive reactance produces a change in the way the current flows with respect to the voltage.
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Reactance and Frequency
Inductive reactance is one of two form of reactance. (The other form, called capacitive reactance, will
be discussed in the next chapter.) Reactance in general is symbolized by the italic uppercase letter X.
Inductive reactance is symbolized XL.

If the frequency of an ac source is given, in hertz, as f, and the inductance of a coil in henrys is
given as L, then the inductive reactance in ohms, XL, is calculated as follows:

XL = 2πf L

In this formula, the symbol π stands for the mathematical constant pi, which is the number of di-
ameters around the circumference of a circle. It is equal to approximately 3.14. We can consider the
value of 2π to be equal to 6.28 in most practical situations. Therefore, the preceding formula can be
written a little more simply as:

XL = 6.28f L

This same formula applies if the frequency, f, is in kilohertz and the inductance, L, is in milli-
henrys. And it also applies if f is in megahertz and L is in microhenrys. Just remember that if fre-
quency is in thousands, inductance must be in thousandths, and if frequency is in millions,
inductance must be in millionths.

Inductive reactance increases linearly with increasing ac frequency. This means that the function
of XL versus f is a straight line when graphed. Inductive reactance also increases linearly with induc-
tance. Therefore, the function of XL versus L also appears as a straight line on a graph. The value of
XL is directly proportional to f, and is also directly proportional to L. These relationships are graphed,
in relative form, in Fig. 13-4.

Problem 13-1
Suppose a coil has an inductance of 0.500 H, and the frequency of the ac passing through it is 60.0
Hz. What is the inductive reactance?
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13-4 Inductive reactance is
directly proportional
to inductance, and is
also directly
proportional to
frequency.



Using the preceding formula, calculate XL = 6.28 × 60.0 × 0.500 = 188 Ω. This is rounded to
three significant figures.

Problem 13-2
What will be the inductive reactance of the preceding coil if the supply is a battery that supplies 
pure dc?

Because dc has a frequency of zero, XL = 6.28 × 0 × 0.500 = 0 Ω. That is, there will be no in-
ductive reactance. Inductance doesn’t have any practical effect with pure dc.

Problem 13-3
If a coil has an inductive reactance of 100 Ω at a frequency of 5.00 MHz, what is its inductance?

In this case, you need to plug numbers into the formula and solve for the unknown L. Start out
with the equation 100 = 6.28 × 5.00 × L = 31.4 × L. Because the frequency is given in megahertz,
the inductance will come out in microhenrys. You can divide both sides of the equation by 31.4,
getting L = 100/31.4 = 3.18 µH.

Points in the RL Plane
Inductive reactance can be plotted along a half line, just as can resistance. In a circuit containing
both resistance and inductance, the characteristics become two-dimensional. You can orient the re-
sistance and reactance half lines perpendicular to each other to make a quarter-plane coordinate sys-
tem, as shown in Fig. 13-5. Resistance is plotted horizontally, and inductive reactance is plotted
vertically upward.
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13-5 The quarter plane for
inductive reactance
(XL ) and resistance (R).
This is also known as
the RL quarter-plane,
or simply as the RL
plane.



In this scheme, resistance-inductance (RL) combinations form complex impedances. (The term
impedance comes from the root impede, and fully describes how electrical components impede, or
inhibit, the flow of ac. You’ll learn all about this in Chap. 15.) Each point on the RL plane corre-
sponds to one unique complex impedance value. Conversely, each complex impedance value corre-
sponds to one unique point on the RL plane.

You might ask, “What’s the little j doing in Fig. 13-5?” For reasons that will be made clear in
Chap. 15, impedances on the RL plane are written in the form R + jXL, where R is the resistance in
ohms, and XL is the inductive reactance in ohms. The little j is called a j operator and is a mathemat-
ical way of expressing the fact that reactance is denoted at right angles to resistance in complex-
impedance graphs.

If you have a pure resistance, say R = 5 Ω, then the complex impedance is 5 + j 0, and is at the
point (5,0) on the RL plane. If you have a pure inductive reactance, such as XL = 3 Ω, then the com-
plex impedance is 0 + j3, and is at the point (0,j3) on the RL plane. These points, and a couple of
others, are shown in Fig. 13-6.

In real life, all coils have some resistance, because no wire is a perfect conductor. All resistors
have at least a tiny bit of inductive reactance, because they take up some physical space and they
have wire leads. So there is really no such thing as a mathematically perfect pure resistance such as
5 + j 0, or a mathematically perfect pure reactance like 0 + j3. But sometimes you can get extremely
close to theoretical ideals in real life.

Often, resistance and inductive reactance are both deliberately placed in a circuit. Then you get
impedances values such as 2 + j3 or 4 + j1.5. These are shown in Fig. 13-6 as points on the RL plane.

Remember that values for XL are reactances, not actual inductances. Because of this, they vary
with the frequency in an RL circuit. Changing the frequency has the effect of making complex im-
pedance points move around in the RL plane. They move vertically, going upward as the ac fre-
quency increases, and downward as the ac frequency decreases. If the ac frequency goes down to
zero, the inductive reactance vanishes. Then XL = 0, we have pure dc, and the point is right on the
resistance axis.
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Vectors in the RL Plane
Engineers sometimes represent points in the RL plane as vectors. Recall that a vector is a mathemat-
ical quantity that has a defined magnitude (length) and defined direction (orientation). Expressing
a point in the RL plane as a vector thus gives that point a unique magnitude and a unique direction.

In Fig. 13-6, four different points are shown. Each point is represented by a certain distance to
the right of the origin (0,j0), and a certain distance upward from the origin. The first of these is the
resistance, R, and the second is the inductive reactance, XL. Thus, the RL combination is a two-
dimensional quantity. There is no way to uniquely define RL combinations as single numbers, or
scalars, because there are two different quantities that can vary independently.

Another way to depict these points is to draw lines from the origin out to them. Then you can
think of the points as rays, each having a certain length, or magnitude, and a certain direction, or
angle counterclockwise from the resistance axis. These rays, going out to the points, are complex
impedance vectors (Fig. 13-7).

Current Lags Voltage
When an ac voltage is placed across an inductor and starts to increase (either positively or nega-
tively) from zero, it takes a fraction of a cycle for the current to follow. Once the voltage starts de-
creasing from its maximum peak (either positive or negative) in the cycle, it again takes a fraction of
a cycle for the current to follow. The instantaneous current can’t quite keep up with the instanta-
neous voltage, as it does in a pure resistance. Thus, in a circuit containing inductive reactance, the
current is said to lag the voltage in phase.

Pure Inductance
Suppose that you place an ac voltage across a coil, with a frequency high enough so that the induc-
tive reactance, XL, is much larger than the resistance, R. In this situation, the current is 1⁄ 4 of a cycle
behind the voltage. That is, the current lags the voltage by 90°, as shown in Fig. 13-8.

At very low frequencies, large inductances are normally needed in order for the current lag to be
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a full 90°. This is because any coil has some resistance; no wire is a perfect conductor. If some wire
were found that had a mathematically zero resistance, and if a coil of any size were wound from this
wire, then the current would lag the voltage by 90° in this inductor, no matter what the ac frequency.

When the value of XL is very large compared with the value of R in a circuit—that is, when there
is an essentially pure inductive reactance—the vector in the RL plane points straight up along the
XL axis. Its angle is 90° from the R axis, which is considered the zero line in the RL plane.

Inductance with Resistance
When the resistance in a resistance-inductance (RL) circuit is significant compared with the induc-
tive reactance, the current lags the voltage by something less than 90° (Fig. 13-9). If R is small com-
pared with XL, the current lag is almost 90°, but as R gets larger relative to XL, the lag decreases.

The value of R in an RL circuit can increase relative to XL because resistance is deliberately
placed in series with the inductance. It can also happen because the ac frequency gets so low that XL
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decreases until it is comparable to the loss resistance R in the coil winding. In either case, the situa-
tion can be schematically represented by an inductance in series with a resistance (Fig. 13-10).

If you know the values of XL and R, you can find the angle of lag, also called the RL phase angle,
by plotting the point R + jXL on the RL plane, drawing the vector from the origin out to that point,
and then measuring the angle of the vector, counterclockwise from the resistance axis. You can use
a protractor to measure this angle, or you can compute its value using trigonometry.

Actually, you don’t have to know the actual values of XL and R in order to find the angle of lag.
All you need to know is their ratio. For example, if XL = 5 Ω and R = 3 Ω, you get the same RL phase
angle that you get if XL = 50 Ω and R = 30 Ω, or if XL = 20 Ω and R = 12 Ω. The angle of lag is the
same for any values of XL and R in the ratio 5:3.

Pure Resistance
As the resistance in an RL circuit becomes large with respect to the inductive reactance, the angle of
lag gets small. The same thing happens if the inductive reactance gets small compared with the re-
sistance. When R is many times greater than XL, the vector in the RL plane lies almost on the R axis,
going east (to the right). The RL phase angle in this case is close to 0°. The current is nearly in phase
with the voltage.

In a pure resistance, with no inductance at all, the current is precisely in phase with the voltage
(Fig. 13-11). A pure resistance doesn’t store and release energy as an inductive circuit does, so there
is no sluggishness in it.
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How Much Lag?
If you know the ratio of the inductive reactance to the resistance (XL/R) in an RL circuit, then you
can find the phase angle. Of course, you can also find the phase angle if you know the actual values
of XL and R.

Pictorial Method
It isn’t necessary to construct an entire RL plane to find phase angles. You can use a ruler that has
centimeter (cm) and millimeter (mm) markings, and a protractor. First, draw a line a little more
than 10 cm long, going from left to right on a sheet of paper. Use the ruler and a sharp pencil. Then,
with the protractor, construct a line off the left end of this first line, going vertically upward. Make
this line at least 10 cm long. The horizontal line, or the one going to the right, is the R axis of a
coordinate system. The vertical line, or the one going upward, is the XL axis.

If you know the values of XL and R, divide them down or multiply them up so they’re both be-
tween 0 and 100. For example, if XL = 680 Ω and R = 840 Ω, you can divide them both by 10 to
get XL = 68 and R = 84. Plot these points lightly by making hash marks on the vertical and horizon-
tal lines you’ve drawn. The R mark in this example will be 84 mm to the right of the origin, and the
XL mark will be 68 mm up from the origin.

Next, draw a line connecting the two hash marks, as shown in Fig. 13-12. This line will run at
a slant, and will form a triangle along with the two axes. Your hash marks, and the origin of the co-
ordinate system, form the three vertices of a right triangle. The triangle is called right because one of
its angles is a right angle (90°). Measure the angle between the slanted line and the R axis. Extend
one or both of the lines if necessary in order to get a good reading on the protractor. This angle will
be between 0 and 90°, and represents the phase angle in the RL circuit.

The complex impedance vector, R + jXL, is found by constructing a rectangle using the origin
and your two hash marks as three of the four vertices, and drawing new horizontal and vertical lines
to complete the figure. The vector is the diagonal of this rectangle, as shown in Fig. 13-13. The
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phase angle is the angle between this vector and the R axis. It will be the same as the angle of the
slanted line in Fig. 13-12.

Trigonometric Method
If you have a good scientific calculator that can find the arctangent of a number (also called the in-
verse tangent and symbolized either as arctan or tan−1), you can determine the RL phase angle more
precisely than the pictorial method allows. Given the values of XL and R, the RL phase angle is the
arctangent of their ratio. Phase angle is symbolized by the lowercase Greek letter phi (pronounced
“fie” or “fee” and written φ). Therefore:

φ = tan−1 (XL/R) or φ = arctan (XL/R)

Problem 13-4
Suppose the inductive reactance in an RL circuit is 680 Ω and the resistance is 840 Ω. What is the
phase angle?

The ratio XL/R is 680/840. A calculator will display this quotient as something like 0.8095 and
some more digits. Find the arctangent of this number. You should get 38.99 and some more digits.
This can be rounded off to 39.0°.

Problem 13-5
Suppose an RL circuit operates at a frequency of 1.0 MHz with a resistance of 10 Ω and an induc-
tance of 90 µH. What is the phase angle? What does this tell us about the nature of this RL circuit
at this frequency?

Find the inductive reactance using the formula XL = 6.28fL = 6.28 × 1.0 × 90 = 565 Ω. Then
find the ratio XL/R = 565/10 = 56.5. The phase angle is equal to arctan 56.5, which, rounded to two
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significant figures, is 89°. The circuit contains an almost pure inductive reactance, because the phase
angle is close to 90°. The resistance contributes little to the behavior of this RL circuit at 1.0 MHz.

Problem 13-6
What is the phase angle for the preceding circuit at a frequency of 10 kHz? With that information,
what can we say about the behavior of the circuit at 10 kHz?

This requires that XL be calculated again, for the new frequency. Let’s use megahertz, so it goes
in the formula with microhenrys. A frequency of 10 kHz is the same as 0.010 MHz. Calculating,
we get XL = 6.28fL = 6.28 × 0.010 × 90 = 5.65 Ω. The ratio XL/R is 5.65/10 = 0.565. Therefore, the
phase angle is arctan 0.565, which, rounded to two significant figures, is 29°. This is not close to
either 0° or 90°. Thus, at 10 kHz, the resistance and the inductive reactance both play significant
roles in the behavior of the circuit.

Quiz
Refer to the text in this chapter if necessary. A good score is 18 correct. Answers are in the back of
the book.

1. As the number of turns in a coil that carries ac increases without limit, the current in the coil
will

(a) eventually become very large.
(b) stay the same.
(c) decrease, approaching zero.
(d) be stored in the core material.

2. As the number of turns in a coil increases, the reactance at a constant frequency
(a) increases.
(b) decreases.
(c) stays the same.
(d) is stored in the core material.

3. As the frequency of an ac wave gets lower, the value of XL for a particular coil of wire
(a) increases.
(b) decreases.
(c) stays the same.
(d) depends on the voltage.

4. Suppose a coil has an inductance of 100 mH. What is the reactance at a frequency of 1000
Hz?

(a) 0.628 Ω
(b) 6.28 Ω
(c) 62.8 Ω
(d) 628 Ω
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5. Suppose a coil shows an inductive reactance of 200 Ω at 500 Hz. What is its inductance?
(a) 0.637 H
(b) 628 H
(c) 63.7 mH
(d) 628 mH

6. Imagine a 400-µH inductor with a reactance of 33 Ω. What is the frequency?
(a) 13 kHz
(b) 0.013 kHz
(c) 83 kHz
(d) 83 MHz

7. Suppose an inductor has XL = 555 Ω at f = 132 kHz. What is L?
(a) 670 mH
(b) 670 µH
(c) 460 mH
(d) 460 µH

8. Suppose a coil has L = 689 µH at f = 990 kHz. What is XL?
(a) 682 Ω
(b) 4.28 Ω
(c) 4.28 kΩ
(d) 4.28 MΩ

9. Suppose an inductor has L = 88 mH with XL = 100 Ω. What is f ?
(a) 55.3 kHz
(b) 55.3 Hz
(c) 181 kHz
(d) 181 Hz

10. Each point in the RL plane
(a) corresponds to a unique resistance.
(b) corresponds to a unique inductance.
(c) corresponds to a unique combination of resistance and inductive reactance.
(d) corresponds to a unique combination of resistance and inductance.

11. If the resistance R and the inductive reactance XL both are allowed to vary from zero to
unlimited values, but are always in the ratio 3:1, the points in the RL plane for all the resulting
impedances will lie along

(a) a vector pointing straight up.
(b) a vector pointing east.
(c) a circle.
(d) a ray of indefinite length, pointing outward from the origin.
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12. Each specific complex impedance value defined in the form R + jXL

(a) corresponds to a specific point in the RL plane.
(b) corresponds to a specific inductive reactance.
(c) corresponds to a specific resistance.
(d) All of the above are true.

13. A vector is defined as a mathematical quantity that has
(a) magnitude and direction.
(b) resistance and inductance.
(c) resistance and reactance.
(d) inductance and reactance.

14. In an RL circuit, as the ratio of inductive reactance to resistance (XL/R) decreases, the phase
angle

(a) increases.
(b) decreases.
(c) stays the same.
(d) becomes alternately positive and negative.

15. In a circuit containing inductive reactance but no resistance, the phase angle is
(a) constantly increasing.
(b) constantly decreasing.
(c) equal to 0°.
(d) equal to 90°.

16. If the inductive reactance and the resistance in an RL circuit are equal (as expressed in ohms),
then what is the phase angle?

(a) 0°
(b) 45°
(c) 90°
(d) It depends on the actual values of the resistance and the inductive reactance.

17. In Fig. 13-14, the impedance shown is which of the following?
(a) 8.0 Ω
(b) 90 Ω
(c) 90 + j8.0
(d) 8.0 + j90

18. Note that in the diagram of Fig. 13-14, the R and XL scale divisions are of different sizes. The
phase angle can nevertheless be determined. It is

(a) about 50°, from the looks of it.
(b) 48°, as measured with a protractor.
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(c) 85°, as calculated using trigonometry.
(d) 6.5°, as calculated using trigonometry.

19. Consider an RL circuit that consists of a 100-µH inductor and a 100-Ω resistor. What is the
phase angle at a frequency of 200 kHz?

(a) 45.0°
(b) 51.5°
(c) 38.5°
(d) There isn’t enough data given to calculate it.

20. Suppose an RL circuit has an inductance of 88 mH, and the resistance is 95 Ω. At 800 Hz,
what is the phase angle?

(a) 78°
(b) 12°
(c) 43°
(d) 47°
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CAPACITIVE REACTANCE IS THE NATURAL COUNTERPART OF INDUCTIVE REACTANCE. IT, LIKE INDUCTIVE

reactance, can be represented as a ray. The capacitive-reactance ray goes in a negative direction and
is assigned negative ohmic values. When the capacitive-reactance and inductive-reactance rays are
joined at their endpoints (both of which correspond to a reactance of zero), a complete number line
is the result, as shown in Fig. 14-1. This line depicts all possible values of reactance.

Capacitors and Direct Current
Suppose you have two big, flat metal plates, both of which are excellent electrical conductors. Imag-
ine that you stack them one on top of the other, with only air in between. If you connect a source
of dc across the plates (Fig. 14-2), the plates will become electrically charged, and will reach a
potential difference equal to the dc source voltage. It won’t matter how big or small the plates are;
their mutual voltage will always be the same as that of the source, although, if the plates are huge, it
will take awhile for them to become fully charged. Once the plates are fully charged, the current will
drop to zero.

If you put some insulating material, such as glass, between the plates, their mutual voltage will
not change, although the charging time will increase. If you increase the source voltage, the poten-
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tial difference between the plates will follow along, more or less rapidly, depending on how large the
plates are and on what is between them. If the voltage is increased without limit, arcing will eventu-
ally take place. That is, sparks will begin to jump between the plates.

Capacitors and Alternating Current
Now, imagine that the voltage source connected across the plates is changed from dc to ac (Fig. 14-3).
Imagine that you can adjust the frequency of this ac from a low value of a few hertz, to hundreds of
hertz, to many kilohertz, megahertz, and gigahertz.

At first, the voltage between the plates will follow just about exactly along as the ac source po-
larity reverses. But the set of plates has a certain amount of capacitance. Perhaps they can charge up
fast, if they are small and if the space between them is large, but they can’t charge instantaneously.
As you increase the frequency of the ac voltage source, there will come a point at which the plates
do not get charged up very much before the source polarity reverses. The charge won’t have time to
get established with each ac cycle. At high ac frequencies, the voltage between the plates will have
trouble following the current that is charging and discharging them. Just as the plates begin to get a
good charge, the ac current will pass its peak and start to discharge them, pulling electrons out of
the negative plate and pumping electrons into the positive plate.

Capacitors and Alternating Current 215

14-2 A capacitor connected
across a source of dc.

14-3 A capacitor connected
across a source of ac.



As the frequency is raised without limit, the set of plates starts to act more and more like a short
circuit. When the frequency is low, there is a small charging current, but this quickly drops to zero
as the plates become fully charged. As the frequency becomes high, the current flows for more and
more of every cycle before dropping off; the charging time remains constant while the period of the
charging/discharging wave is getting shorter. Eventually, if you keep on increasing the frequency, the
period of the wave will be much shorter than the charging/discharging time, and current will flow
in and out of the plates in just about the same way as it would flow if the plates were shorted out.

The opposition that the set of plates offers to ac is the capacitive reactance. It is measured in
ohms, just like inductive reactance, and just like resistance. But it is, by convention, assigned nega-
tive values rather than positive ones. Capacitive reactance, denoted XC, can vary, just as resistance
and inductive reactance do, from near zero (when the plates are huge and close together, and/or the
frequency is very high) to a few negative ohms, to many negative kilohms or megohms.

Capacitive reactance, like inductive reactance, varies with frequency. But XC gets larger (nega-
tively) as the frequency goes down. This is the opposite of what happens with inductive reactance,
which gets larger (positively) as the frequency goes up.

Often, capacitive reactance is talked about in terms of its absolute value, with the minus sign re-
moved. Then we say that the absolute value of X C increases as the frequency goes down, or that the
absolute value of XC is decreases as the frequency goes up.

Capacitive Reactance and Frequency
In one sense, capacitive reactance behaves like a reflection of inductive reactance. But looked at an-
other way, XC is an extension of XL into negative values.

If the frequency of an ac source (in hertz) is given as f, and the capacitance (in farads) is given
as C, then the capacitive reactance in ohms, X C, is calculated as follows:

XC = −1/(2πfC )

Again, we meet our friend π! And again, for most practical purposes, we can take 2π to be equal to
6.28. Thus, the preceding formula can be expressed like this:

XC = −1/(6.28fC )

This same formula applies if the frequency, f, is in megahertz and the capacitance, C, is in microfarads.
Capacitive reactance varies inversely with the frequency. This means that the function X C versus

f appears as a curve when graphed, and this curve “blows up” as the frequency gets close to zero.
Capacitive reactance also varies inversely with the actual value of capacitance, given a fixed fre-
quency. Therefore, the function of X C versus C also appears as a curve that blows up as the capaci-
tance approaches zero.

The negative of XC is inversely proportional to frequency, and also to capacitance. Relative graphs
of these functions are shown in Fig. 14-4.

Problem 14-1
Suppose a capacitor has a value of 0.00100 µF at a frequency of 1.00 MHz. What is the capacitive
reactance?
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Use the formula and plug in the numbers. You can do this directly, because the data is specified
in microfarads (millionths) and in megahertz (millions):

XC = −1/(6.28 × 1.0 × 0.00100) = −1/(0.00628) = −159 Ω

This is rounded to three significant figures, because all the data is given to that many digits.

Problem 14-2
What is the capacitive reactance of the preceding capacitor if the frequency decreases to zero (that
is, if the voltage source is pure dc)?

In this case, if you plug the numbers into the formula, you get a zero denominator. Mathemati-
cians will tell you that such a quantity is undefined. But we can say that the reactance is negative in-
finity for all practical purposes.

Problem 14-3
Suppose a capacitor has a reactance of −100 Ω at a frequency of 10.0 MHz. What is its capacitance?

In this problem, you need to put the numbers in the formula and solve for the unknown C.
Begin with this equation:

−100 = −1/(6.28 × 10.0 × C )

Dividing through by −100, you get:

1 = 1/(628 × 10.0 × C )

Multiply each side of this by C, and you obtain C = 1/(628 × 10.0). This can be worked out with a
calculator. You should find that C = 0.000159 to three significant figures. Because the frequency is
given in megahertz, the capacitance comes out in microfarads. That means C = 0.000159 µF. You
can also say it is 159 pF. (Remember that 1 pF = 0.000001 µF.)
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Points in the RC Plane
In a circuit containing resistance and capacitive reactance, the characteristics are two-dimensional
in a way that is analogous to the situation with the RL plane from the previous chapter. The resis-
tance ray and the capacitive-reactance ray can be placed end to end at right angles to make a quar-
ter plane called the RC plane (Fig. 14-5). Resistance is plotted horizontally, with increasing values
toward the right. Capacitive reactance is plotted downward, with increasingly negative values as
you go down.

The combinations of R and X C in this RC plane form impedances. You’ll learn about impedance
in greater detail in the next chapter. Each point on the RC plane corresponds to one and only one
impedance. Conversely, each specific impedance coincides with one and only one point on the
plane.

Any impedance that consists of a resistance R and a capacitive reactance XC can be written in
the form R + jX C. Remember that XC is always negative or zero. Because of this, engineers will often
write R − jXC instead.

If an impedance is a pure resistance R with no reactance, then the complex impedance is
R − j0 (or R + j0; it doesn’t matter if j is multiplied by 0!). If R = 3 Ω with no reactance, you get
an impedance of 3 − j0, which corresponds to the point (3,j0) on the RC plane. If you have a
pure capacitive reactance, say X C = −4 Ω, then the complex impedance is 0 − j4, and this is at the
point (0,−j4) on the RC plane. Again, it’s important, for completeness, to write the “0” and not
just the “− j4.” The points for 3 − j 0 and 0 − j4, and two others, are plotted on the RC plane in
Fig. 14-6.

In practical circuits, all capacitors have some leakage resistance. If the frequency goes to zero
(pure dc), a tiny current always flows, because no capacitor has a perfect insulator between its plates.
In addition to this, all resistors have a little capacitive reactance because they occupy a finite physi-
cal space. So there is no such thing as a mathematically perfect resistor, either. The points 3 − j0 and
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0 − j4 represent an ideal resistor and an ideal capacitor, respectively—components that can be
worked with in theory, but that you will never see in the real world.

Sometimes, resistance and capacitive reactance are both placed in a circuit deliberately. Then
you get impedances such as 2 − j3 and 5 − j5, both shown in Fig. 14-6.

Remember that the values for XC are reactances, not the actual capacitances. If you raise or
lower the frequency, the value of XC will change. A higher frequency causes XC to get smaller nega-
tively (closer to zero). A lower frequency causes X C to get larger negatively (farther from zero, or
lower down on the RC plane). If the frequency goes to zero, then the capacitive reactance drops off
the bottom of the RC plane to negative infinity!

Vectors in the RC Plane
Recall from the last chapter that RL impedances can be represented as vectors. The same is true for
RC impedances.

In Fig. 14-6, four different complex impedance points are shown. Each point is represented by
a certain distance to the right of the origin (0,j0), and a certain displacement downward. The first
of these is the resistance, R, and the second is the capacitive reactance, XC. The complex RC imped-
ance is a two-dimensional quantity.

Impedance points in the RC plane can be rendered as vectors, just as they can in the RL plane.
Then the points become rays, each with a certain length and direction. The magnitude and direc-
tion for a vector, and the coordinates for the point, both uniquely define the same complex imped-
ance. The length of the vector is the distance of the point from the origin, and the direction is the
angle measured clockwise from the resistance (R ) line, and specified in negative degrees. The equiva-
lent vectors, for the points in Fig. 14-6, are shown in Fig. 14-7.
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Current Leads Voltage
When ac is driven through a capacitor and starts to increase (in either direction), it takes a fraction
of a cycle for the voltage between the plates to follow. Once the current starts decreasing from its
maximum peak (in either direction) in the cycle, it again takes a fraction of a cycle for the voltage
to follow. The instantaneous voltage can’t quite keep up with the instantaneous current, as it does in
a pure resistance. Thus, in a circuit containing capacitive reactance, the voltage lags the current in
phase. Another, and more often used, way of saying this is that the current leads the voltage.

Pure Capacitance
Suppose an ac voltage source is connected across a capacitor. Imagine that the frequency is low
enough, and/or the capacitance is small enough, so the absolute value of the capacitive reactance,
XC, is extremely large compared with the resistance, R. Then the current leads the voltage by just
about 90° (Fig. 14-8).

The situation depicted in Fig. 14-8 represents a pure capacitive reactance. The vector in the RC
plane in this situation points straight down. Its angle is −90° from the R axis.

Capacitance and Resistance
When the resistance in a resistance-capacitance circuit is significant compared with the absolute value
of the capacitive reactance, the current leads the voltage by something less than 90° (Fig. 14-9). If R
is small compared with the absolute value of XC, the difference is almost a quarter of a cycle. As R gets
larger, or as the absolute value of XC becomes smaller, the phase difference decreases. A circuit con-
taining resistance and capacitance is called an RC circuit.

The value of R in an RC circuit might increase relative to the absolute value of XC because re-
sistance is deliberately put into a circuit. It can also happen if the frequency becomes so high that
the absolute value of the capacitive reactance drops to a value comparable with the loss resistance in
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the circuit conductors. In either case, the situation can be represented by a resistance, R, in series
with a capacitive reactance, XC (Fig. 14-10).

If you know the values of XC and R, you can find the angle of lead, also called the RC phase angle,
by plotting the point R − jXC on the RC plane, drawing the vector from the origin 0 − j0 out to that
point, and then measuring the angle of the vector clockwise from the R axis. You can use a protrac-
tor to measure this angle, as you did in the previous chapter for RL phase angles. Or you can use
trigonometry to calculate the angle.

As with RL circuits, you need only know the ratio of XC to R to determine the phase angle. For
example, if X C = −4 Ω and R = 7 Ω, you’ll get the same angle as with X C = −400 Ω and R = 700 Ω,
or with XC = −16 Ω and R = 28 Ω. The phase angle will be the same whenever the ratio of XC to R
is equal to −4:7.
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Pure Resistance
As the resistance in an RC circuit gets large compared with the absolute value of the capacitive reac-
tance, the angle of lead becomes smaller. The same thing happens if the absolute value of XC gets
small compared with the value of R.

When R is many times larger than the absolute value of XC, whatever their actual values, the
vector in the RC plane points almost along the R axis. Then the RC phase angle is close to 0°. The
voltage comes nearly into phase with the current. The plates of the capacitor do not come anywhere
near getting fully charged with each cycle. The capacitor is said to “pass the ac” with very little loss,
as if it were shorted out. But it will still have an extremely high XC for any ac signals at much lower
frequencies that might exist across it at the same time. (This property of capacitors can be put to use
in electronic circuits. An example is when an engineer wants to let radio-frequency signals get
through while blocking signals at audio frequencies.)

Ultimately, if the absolute value of the capacitive reactance gets small enough, the circuit acts as
a pure resistance, and the current is in phase with the voltage.

How Much Lead?
If you know the ratio of capacitive reactance to resistance, or XC /R, in an RC circuit, then you can
find the phase angle. Of course, you can find this angle if you know the precise values, too.

Pictorial Method
You can use a protractor and a ruler to find phase angles for RC circuits, just as you did with RL cir-
cuits in the previous chapter, as long as the angles aren’t too close to 0° or 90°. First, draw a line
somewhat longer than 10 cm, going from left to right on the paper. Then, use the protractor to con-
struct a line going somewhat more than 10 cm vertically downward, starting at the left end of the
horizontal line. The horizontal line is the R axis of an RC plane. The line going down is the XC axis.

If you know the actual values of X C and R, divide or multiply them by a constant, chosen to
make both values fall between −100 and 100. For example, if XC = −3800 Ω and R = 7400 Ω, di-
vide them both by 100, getting −38 and 74. Plot these points on the lines. The X C point goes 38
mm down from the intersection point between your two axes. The R point goes 74 mm to the right
of the intersection point. Next, draw a line connecting the two points, as shown in Fig. 14-11. This
line will be at a slant and will form a triangle along with the two axes. This is a right triangle, with
the right angle at the origin of the RC plane. Measure the angle between the slanted line and the R
axis. Use the protractor for this. Extend the lines, if necessary, using the ruler, to get a good reading
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on the protractor. This angle will be between 0 and 90°. Multiply this reading by −1 to get the RC
phase angle. That is, if the protractor shows 27°, the RC phase angle is −27°.

The actual vector is found by constructing a rectangle using the origin and your two points,
making new perpendicular lines to complete the figure. The vector is the diagonal of this rectangle,
running out from the origin (Fig. 14-12). The phase angle is the angle between the R axis and this
vector, multiplied by −1. It will have the same measure as the angle of the slanted line you con-
structed in Fig. 14-11.
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Trigonometric Method
Using trigonometry, you can determine the RC phase angle more precisely than the pictorial
method allows. Given the values of XC and R, the RC phase angle is the arctangent of their ratio.
Phase angle in RC circuits is symbolized by the lowercase Greek letter φ, just as it is in RL circuits.
Here are the formulas:

φ = tan−1 (XC /R ) or φ = arctan (XC /R )

When doing problems of this kind, remember to use the capacitive reactance values for XC, and not
the capacitance values. This means that, if you are given the capacitance, you must use the formula
for X C in terms of capacitance and frequency and then calculate the phase angle. You should get an-
gles that come out negative or zero. This indicates that they’re RC phase angles rather than RL phase
angles (which are always positive or zero).

Problem 14-4
Suppose the capacitive reactance in an RC circuit is −3800 Ω and the resistance is 7400 Ω. What is
the phase angle?

Find the ratio XC /R = −3800/7400. The calculator display should show you something like 
−0.513513513. Find the arctangent, or tan−1, getting a phase angle of −27.18111109° on the cal-
culator display. Round this off to −27.18°.

Problem 14-5
Suppose an RC circuit works at a frequency of 3.50 MHz. It has a resistance of 130 Ω and a capac-
itance of 150 pF. What is the phase angle?

First, find the capacitive reactance for a capacitor of 150 pF at 3.50 MHz. Convert the capaci-
tance to microfarads, getting C = 0.000150 µF. Remember that microfarads go with megahertz (mil-
lionths go with millions to cancel each other out). Then:

XC = −1/(6.28 × 3.50 × 0.000150)
= −1/0.003297 = −303 Ω

Now you can find the ratio XC /R = −303/130 = −2.33. The phase angle is equal to the arctangent
of −2.33, or −66.8°.

Problem 14-6
What is the phase angle in the preceding circuit if the frequency is raised to 7.10 MHz?

You need to find the new value for XC, because it will change as a result of the frequency change.
Calculating:

XC = −1/(6.28 × 7.10 × 0.000150)
= −1/0.006688 = −150 Ω

The ratio XC /R in this case is equal to −150/130, or −1.15. The phase angle is the arctangent of 
−1.15, which turns out to be −49.0°.

224 Capacitive Reactance



Quiz
Refer to the text in this chapter if necessary. A good score is at least 18 correct. Answers are in the
back of the book.

1. As the size of the plates in a capacitor increases, all other things being equal,
(a) the value of XC increases negatively.
(b) the value of XC decreases negatively.
(c) the value of XC does not change.
(d) we cannot say what happens to XC without more data.

2. If the dielectric material between the plates of a capacitor is changed, all other things being
equal,

(a) the value of X C increases negatively.
(b) the value of XC decreases negatively.
(c) the value of XC does not change.
(d) we cannot say what happens to XC without more data.

3. As the frequency of a wave gets lower, all other things being equal, the value of XC for a
capacitor

(a) increases negatively.
(b) decreases negatively.
(c) does not change.
(d) depends on the current.

4. What is the reactance of a 330-pF capacitor at 800 kHz?
(a) −1.66 Ω
(b) −0.00166 Ω
(c) −603 Ω
(d) −603 kΩ

5. Suppose a capacitor has a reactance of −4.50 Ω at 377 Hz. What is its capacitance?
(a) 9.39 µF
(b) 93.9 µF
(c) 7.42 µF
(d) 74.2 µF

6. Suppose a 47-µF capacitor has a reactance of −47 Ω. What is the frequency?
(a) 72 Hz
(b) 7.2 MHz
(c) 0.000072 Hz
(d) 7.2 Hz
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7. Suppose a capacitor has XC = −8800 Ω at f = 830 kHz. What is C ?
(a) 2.18 µF
(b) 21.8 pF
(c) 0.00218 µF
(d) 2.18 pF

8. Suppose a capacitor has C = 166 pF at f = 400 kHz. What is XC ?
(a) −2.4 kΩ
(b) −2.4 Ω
(c) −2.4 × 10−6 Ω
(d) −2.4 MΩ

9. Suppose a capacitor has C = 4700 µF and XC = −33 Ω. What is f ?
(a) 1.0 Hz
(b) 10 Hz
(c) 1.0 kHz
(d) 10 kHz

10. Each point in the RC plane
(a) corresponds to a unique inductance.
(b) corresponds to a unique capacitance.
(c) corresponds to a unique combination of resistance and capacitance.
(d) corresponds to a unique combination of resistance and reactance.

11. If R increases in an RC circuit, but XC is always zero, the vector in the RC plane will
(a) rotate clockwise.
(b) rotate counterclockwise.
(c) always point straight toward the right.
(d) always point straight down.

12. If the resistance R increases in an RC circuit, but the capacitance and the frequency are
nonzero and constant, then the vector in the RC plane will

(a) get longer and rotate clockwise.
(b) get longer and rotate counterclockwise.
(c) get shorter and rotate clockwise.
(d) get shorter and rotate counterclockwise.

13. Each complex impedance value R − jXC

(a) represents a unique combination of resistance and capacitance.
(b) represents a unique combination of resistance and reactance.
(c) represents a unique combination of resistance and frequency.
(d) All of the above are true.
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14. In an RC circuit, as the ratio XC /R approaches zero, the phase angle
(a) approaches −90°.
(b) approaches 0°.
(c) stays the same.
(d) cannot be found.

15. In a purely resistive circuit, the phase angle is
(a) increasing.
(b) decreasing.
(c) 0°.
(d) −90°.

16. If XC /R = −1, then what is the phase angle?
(a) 0°
(b) −45°
(c) −90°
(d) Impossible to find because there’s not enough data given

17. In Fig. 14-13, the impedance shown is
(a) 8.02 + j323.
(b) 323 + j8.02.
(c) 8.02 − j323.
(d) 323 − j8.02.
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18. In Fig. 14-13, note that the R and XC scale divisions are not the same size. What is the actual
phase angle?

(a) −1.42°
(b) About −60°, from the looks of it
(c) −58.9°
(d) −88.6°

19. Suppose an RC circuit consists of a 150-pF capacitor and a 330-Ω resistor in series. What is
the phase angle at a frequency of 1.34 MHz?

(a) −67.4°
(b) −22.6°
(c) −24.4°
(d) −65.6°

20. Suppose an RC circuit has a capacitance of 0.015 µF. The resistance is 52 Ω. What is the
phase angle at 90 kHz?

(a) −24°
(b) −0.017°
(c) −66°
(d) None of the above
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IN THIS CHAPTER, A COMPLETE, WORKING DEFINITION OF COMPLEX IMPEDANCE IS DEVELOPED. YOU’LL

also get acquainted with admittance, the extent to which an ac circuit allows (or admits) current
flow, rather than impeding it. As we develop these concepts, let’s review, and then expand on, some
of the material presented in the previous couple of chapters.

Imaginary Numbers
Have you been wondering what j actually means in expressions of impedance? Well, j is nothing but
a number: the positive square root of −1. There’s a negative square root of −1, too, and it is equal 
to −j. When either j or −j is multiplied by itself, the result is −1. (Pure mathematicians often denote
these same numbers as i or −i.)

The positive square root of −1 is known as the unit imaginary number. The set of imaginary
numbers is composed of real-number multiples of j or −j. Some examples are j4, j35.79, −j25.76,
and −j25,000.

The square of an imaginary number is always negative. Some people have trouble grasping this,
but when you think long and hard about it, all numbers are abstractions. Imaginary numbers are no
more imaginary (and no less real) than so-called real numbers such as 4, 35.79, −25.76, or −25,000.

The unit imaginary number j can be multiplied by any real number on a conventional 
real number line. If you do this for all the real numbers on the real number line, you get an imag-
inary number line (Fig. 15-1). The imaginary number line should be oriented at a right angle to
the real number line when you want to graphically portray real and imaginary numbers at the
same time.

In electronics, real numbers represent resistances. Imaginary numbers represent reactances.

Complex Numbers
When you add a real number and an imaginary number, you get a complex number. In this context,
the term complex does not mean “complicated.” A better word would be composite. Examples are 
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4 + j5, 8 − j 7, −7 + j13, and −6 − j 87. The set of complex numbers needs two dimensions—a
plane—to be graphically defined.

Adding and Subtracting Complex Numbers
Adding complex numbers is just a matter of adding the real parts and the complex parts separately.
For example, the sum of 4 + j 7 and 45 − j 83 works out like this:

(4 + 45) + j (7 − 83)
= 49 + j (−76)
= 49 − j 76

Subtracting complex numbers is a little more involved; it’s best to convert a difference to a sum. For
example, the difference (4 + j 7) − (45 − j83) can be found by multiplying the second complex
number by −1 and then adding the result:

(4 + j 7) − (45 − j83)
= (4 + j 7) + [−1(45 − j83)]
= (4 + j 7) + (−45 + j83)
= −41 + j90
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Multiplying Complex Numbers
When you multiply these numbers, you should treat them as sums of number pairs, that is, as bi-
nomials. It’s easier to give the general formula than to work with specifics here. If a, b, c, and d are
real numbers (positive, negative, or zero), then:

(a + jb) (c + jd )
= ac + jad + jbc + j 2bd
= (ac − bd ) + j (ad + bc)

Fortunately, you won’t encounter complex number multiplication problems very often in electron-
ics. Nevertheless, a working knowledge of how complex numbers multiply can help you get a solid
grasp of them.

The Complex Number Plane
A complete complex number plane is made by taking the real and imaginary number lines and plac-
ing them together, at right angles, so that they intersect at the zero points, 0 and j0. This is shown
in Fig. 15-2. The result is a Cartesian coordinate plane, just like the ones people use to make graphs
of everyday things such as stock price versus time.
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Complex Number Vectors
Complex numbers can also be represented as vectors. This gives each complex number a unique
magnitude and a unique direction. The magnitude is the distance of the point a + jb from the origin
0 + j0. The direction is the angle of the vector, expressed counterclockwise from the positive real-
number axis. This is shown in Fig. 15-3.

Absolute Value
The absolute value of a complex number a + jb is the length, or magnitude, of its vector in the com-
plex plane, measured from the origin (0,0) to the point (a,b).

In the case of a pure real number a + j0, the absolute value is simply the real number itself, a, if
a is positive. If a is negative, then the absolute value of a + j0 is equal to −a.

In the case of a pure imaginary number 0 + jb, the absolute value is equal to b, if b (a real num-
ber) is positive. If b is negative, the absolute value of 0 + jb is equal to −b.

If the number a + jb is neither pure real or pure imaginary, the absolute value must be found by
using a formula. First, square both a and b. Then add them. Finally, take the square root. This is the
length, c, of the vector a + jb. The situation is illustrated in Fig. 15-4.

Problem 15-1
Find the absolute value of the complex number −22 − j0.

This is a pure real number. Actually, it is the same as −22 + j0, because j0 = 0. Therefore, the
absolute value of this complex number is −(−22) = 22.

Problem 15-2
Find the absolute value of 0 − j34.

This is a pure imaginary number. The value of b in this case is −34, because 0 − j34 = 0 +
j (−34). Therefore, the absolute value is −(−34) = 34.
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Problem 15-3
Find the absolute value of 3 − j 4.

In this number, a = 3 and b = −4. Squaring both of these, and adding the results, gives us 32 +
(−4)2 = 9 + 16 = 25. The square root of 25 is 5. Therefore, the absolute value of this complex num-
ber is 5.

The RX Plane
Recall the planes for resistance (R ) and inductive reactance (XL ) from Chap. 13. This is the same as
the upper-right quadrant of the complex number plane shown in Fig. 15-2. Similarly, the plane for
resistance and capacitive reactance (XC) is the same as the lower-right quadrant of the complex num-
ber plane. Resistances are represented by nonnegative real numbers. Reactances, whether they are
inductive (positive) or capacitive (negative), correspond to imaginary numbers.

No Negative Resistance
There is no such thing, strictly speaking, as negative resistance. You cannot have anything better
than a perfect conductor. In some cases, a supply of direct current, such as a battery, can be treated
as a negative resistance; in other cases, you can have a device that acts as if its resistance were nega-
tive under certain changing (or dynamic) conditions. But for most practical applications in the RX
plane, the resistance value is always positive. You can remove the negative axis, along with the upper-
left and lower-left quadrants, of the complex number plane, obtaining a half plane, as shown in Fig.
15-5, and still get a complete set of coordinates for depicting complex impedances.

“Negative Inductors” and “Negative Capacitors”
Capacitive reactance, XC, is effectively an extension of inductive reactance, XL, into the realm of neg-
atives. Capacitors act like “negative inductors.” It’s equally true to say that inductors act like “nega-
tive capacitors,” because the negative of a negative number is a positive number. Reactance can vary
from extremely large negative values, through zero, to extremely large positive values.
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Vector Representation of Impedance
Any impedance R + jX can be represented by a complex number of the form a + jb. Just let R = a
and X = b. Now try to envision how the impedance vector changes as either R or X, or both, are var-
ied. If X remains constant, an increase in R causes the vector to get longer. If R remains constant and
XL gets larger, the vector grows longer. If R stays the same but XC gets larger negatively, the vector
grows longer.

Think of the point R + jX moving around in the RX plane, and imagine where the correspon-
ding points on the axes lie. These points can be found by drawing dashed lines from the point R +
jX to the R and X axes, so that the dashed lines intersect the axes at right angles. Some examples are
shown in Fig. 15-6.

Now think of the points for R and X moving toward the right and left, or up and down, on their
axes. Imagine what happens to the point R + jX in various scenarios. This is how impedance changes
as the resistance and reactance in a circuit are varied.

Resistance is one-dimensional. Reactance is also one-dimensional. But impedance is two-
dimensional. To fully define impedance, you must render it on a two-dimensional coordinate sys-
tem such as the RX plane. The resistance and the reactance can change independently of one
another.
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Absolute-Value Impedance
You’ll occasionally read or hear that the “impedance” of some device or component is a certain num-
ber of ohms. For example, in audio electronics, there are “8-Ω” speakers and “600-Ω” amplifier in-
puts. How, you ask, can manufacturers quote a single number for a quantity that is two-dimensional
and needs two numbers to be completely expressed?

That’s a good question, and there are two answers. First, figures like this refer to devices that
have purely resistive impedances, also known as nonreactive impedances. Thus, the 8-Ω speaker really
has a complex impedance of 8 + j0, and the 600-Ω input circuit is designed to operate with a com-
plex impedance at, or near, 600 + j0. Second, you can talk about the length of the impedance vec-
tor (that is, the absolute value of the complex impedance), calling this a certain number of ohms. If
you talk about impedance this way, however, you are being ambiguous. There can exist an infinite
number of different vectors of any given length in the RX plane.

Sometimes, the uppercase italic letter Z is used in place of the word impedance in general dis-
cussions. This is what engineers mean when they say things like “Z = 50 Ω” or “Z = 300 Ω nonre-
active.” In this context, if no specific impedance is given, “Z = 8 Ω” can theoretically refer to 8 + j0,
0 + j8, 0 − j8, or any other complex impedance point on a half circle consisting of all points 8 units
from 0 + j0. This is shown in Fig. 15-7.

Problem 15-4
Name seven different complex impedances that can theoretically be meant by the expression “Z =
10 Ω.”

It’s easy name three: 0 + j10, 10 + j0, and 0 − j10. These represent pure inductance, pure resist-
ance, and pure capacitance, respectively.

A right triangle can exist having sides in a ratio of 6:8:10 units. This is true because 62 + 82 =
102. (Check it and see!) Therefore, you can have 6 + j8, 6 − j8, 8 + j6, and 8 − j6, all complex im-
pedances whose absolute value is 10.
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Characteristic Impedance
There is a rather exotic property of certain electronic components that you’ll sometimes hear or read
about. It is called characteristic impedance or surge impedance, and is symbolized Zo. It is a specifica-
tion of an important property of transmission lines. It can always be expressed as a positive real num-
ber, in ohms.

Transmission Lines
When it is necessary to get energy or signals from one place to another, a transmission line is re-
quired. These almost always take either of two forms, coaxial or two-wire (also called parallel-wire).
Cross-sectional renditions of both types are shown in Fig. 15-8. Examples of transmission lines in-
clude the “ribbon” that goes from a television antenna to the receiver, the cable running from a hi-
fi amplifier to the speakers, and the set of wires that carries electricity over the countryside.

Factors Affecting Zo

The Zo of a parallel-wire transmission line depends on the diameter of the wires, on the spacing be-
tween the wires, and on the nature of the insulating material separating the wires. In general, the Zo

236 Impedance and Admittance

15-7 Vectors representing 
an absolute-value
impedance of 8 Ω.



increases as the wire diameter gets smaller, and decreases as the wire diameter gets larger, all other
things being equal.

In a coaxial line, as the center conductor gets thicker, the Zo decreases if the shield stays the same
size. If the center conductor stays the same size and the shield increases in diameter, the Zo increases.

For either type of line, the Zo increases as the spacing between wires, or between the center con-
ductor and the shield, gets larger. The Zo decreases as the spacing is reduced. Solid dielectric mate-
rials such as polyethylene reduce the Zo of a transmission line, compared with air or a vacuum, when
placed between the conductors.

An Example of Zo in Practice
In rigorous terms, the ideal characteristic impedance for a transmission line is determined accord-
ing to the nature of the load with which the line works.

For a system having a purely resistive impedance of a certain number of ohms, the best line Zo

value is that same number of ohms. If the load impedance is much different from the characteristic
impedance of the transmission line, excessive power is wasted in heating up the transmission line.

Imagine that you have a so-called 300-Ω frequency-modulation (FM) receiving antenna, such
as the folded-dipole type that you can mount indoors. Suppose that you want the best possible re-
ception. Of course, you should choose a good location for the antenna. You should make sure that
the transmission line between your radio and the antenna is as short as possible. But you should also
be sure that you purchase 300-Ω TV ribbon. It has a value of Zo that has been optimized for use
with antennas whose impedances are close to 300 + j0.
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Impedance matching is the process of making sure that the impedance of a load (such as an an-
tenna) is purely resistive, with an ohmic value equal to the characteristic impedance of the transmis-
sion line connected to it. This concept will be discussed in more detail in the next chapter.

Conductance
In an ac circuit, electrical conductance works the same way as it does in a dc circuit. Conductance is
symbolized by the capital letter G. It was introduced in Chap. 2. The relationship between conduc-
tance and resistance is simple: G = 1/R. The standard unit of conductance is the siemens. The larger
the value of conductance, the smaller the resistance, and the more current will flow. Conversely, the
smaller the value of G, the greater the value of R, and the less current will flow.

Susceptance
Sometimes, you’ll come across the term susceptance in reference to ac circuits. Susceptance is sym-
bolized by the capital letter B. It is the reciprocal of reactance. Susceptance can be either capacitive
or inductive. These quantities are symbolized as BC and BL, respectively. Therefore we have these two
relations:

BC = 1/XC

BL = 1/XL

All values of B theoretically contain the j operator, just as do all values of X. But when it comes
to finding reciprocals of quantities containing j, things get tricky. The reciprocal of j is equal to its
negative! Expressed mathematically, we have these two facts:

1/j = −j
1/(−j ) = j

As a result of these properties of j, the sign reverses whenever you find a susceptance value in terms
of a reactance value. When expressed in terms of j, inductive susceptance is negative imaginary, and
capacitive susceptance is positive imaginary—just the opposite situation from inductive reactance
and capacitive reactance.

Suppose you have an inductive reactance of 2 Ω. This is expressed in imaginary terms as j2. To
find the inductive susceptance, you must find 1/( j2). Mathematically, this expression can be con-
verted to a real-number multiple of j in the following manner:

1/( j 2) = (1/j )(1⁄ 2)
= (1/j )0.5
= −j0.5

Now suppose you have a capacitive reactance of 10 Ω. This is expressed in imaginary terms as
−j10. To find the capacitive susceptance, you must find 1/(−j10). Here’s how this can be converted
to the straightforward product of j and a real number:
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1/(−j10) = (1/−j )(1⁄ 10)
= (1/−j )0.1
= j 0.1

When you want to find an imaginary value of susceptance in terms of an imaginary value of reac-
tance, first take the reciprocal of the real-number part of the expression, and then multiply the re-
sult by −1.

Problem 15-5
Suppose you have a capacitor of 100 pF at a frequency of 3.00 MHz. What is BC ?

First, find XC by the formula for capacitive reactance:

XC = −1/(6.28f C )

Note that 100 pF = 0.000100 µF. Therefore:

XC = −1/(6.28 × 3.00 × 0.000100)
= −1/0.001884 = −531 Ω

The imaginary value of XC is equal to −j531. The susceptance, BC, is equal to 1/XC. Thus, BC =
1/(−j531) = j0.00188, rounded to three significant figures.

The general formula for capacitive susceptance in siemens, in terms of frequency in hertz and
capacitance in farads, is:

BC = 6.28f C

This formula also works for frequencies in megahertz and capacitances in microfarads.

Problem 15-6
Suppose an inductor has L = 163 µH at a frequency of 887 kHz. What is BL?

Note that 887 kHz = 0.887 MHz. You can calculate XL from the formula for inductive
reactance:

XL = 6.28fL
= 6.28 × 0.887 × 163
= 908 Ω

The imaginary value of XL is equal to j908. The susceptance, BL = is equal to 1/XL. It follows that
BL = −1/j 908 = −j0.00110.

The general formula for inductive susceptance in siemens, in terms of frequency in hertz and
inductance in henrys, is:

BL = −1/(6.28fL)

This formula also works for frequencies in kilohertz and inductances in millihenrys, and for fre-
quencies in megahertz and inductances in microhenrys.
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Admittance
Real-number conductance and imaginary-number susceptance combine to form complex admit-
tance, symbolized by the capital letter Y. This is a complete expression of the extent to which a cir-
cuit allows ac to flow.

As the absolute value of complex impedance gets larger, the absolute value of complex admit-
tance becomes smaller, in general. Huge impedances correspond to tiny admittances, and vice
versa.

Admittances are written in complex form just like impedances. But you need to keep track of
which quantity you’re talking about! This will be obvious if you use the symbol, such as Y = 3 − j0.5
or Y = 7 + j3. When you see Y instead of Z, you know that negative j factors (such as in the quan-
tity 3 − j0.5) mean there is a net inductance in the circuit, and positive j factors (such as in the
quantity 7 + j3) mean there is net capacitance.

Admittance is the complex composite of conductance and susceptance. Thus, complex admit-
tance values always take the form Y = G + jB. When the j factor is negative, a complex admittance
may appear in the form Y = G − jB.

Do you remember how resistances combine with reactances in series to form complex imped-
ances? In Chaps. 13 and 14, you saw series RL and RC circuits. Did you wonder why parallel cir-
cuits were ignored in those discussions? The reason was the fact that admittance, not impedance, is
best for working with parallel ac circuits. Resistance and reactance combine in a messy fashion in
parallel circuits. But conductance (G ) and susceptance (B ) merely add together in parallel circuits,
yielding admittance (Y ). Parallel circuit analysis is covered in detail in the next chapter.

The GB Plane
Admittance can be depicted on a plane similar to the complex impedance (RX ) plane. Actually, it’s
a half plane, because there is ordinarily no such thing as negative conductance. (You can’t have a
component that conducts worse than not at all.) Conductance is plotted along the horizontal, or G,
axis on this coordinate half plane, and susceptance is plotted along the B axis. The GB plane is
shown in Fig. 15-9, with several points plotted.

It’s Inside Out
The GB plane looks superficially identical to the RX plane. But mathematically, the two could not
be more different! The GB plane is mathematically inside out with respect to the RX plane. The
center, or origin, of the GB plane represents the point at which there is no conduction for dc or for
ac. It is the zero-admittance point, rather than the zero-impedance point. In the RX plane, the ori-
gin represents a perfect short circuit, but in the GB plane, the origin corresponds to a perfect open
circuit.

As you move out toward the right (east) along the G, or conductance, axis of the GB plane, the
conductance improves, and the current gets greater. When you move upward (north) along the jB
axis from the origin, you have ever-increasing positive (capacitive) susceptance. When you go
down (south) along the jB axis from the origin, you encounter increasingly negative (inductive)
susceptance.
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Vector Representation of Admittance
Complex admittances can be shown as vectors, just as can complex impedances. In Fig. 15-10, the
points from Fig. 15-9 are rendered as vectors.

Generally, long vectors in the GB plane indicate large currents, and short vectors indicate
small currents. Imagine a point moving around on the GB plane, and think of the vector getting
longer and shorter and changing direction. Vectors pointing generally northeast, or upward and to
the right, correspond to conductances and capacitances in parallel. Vectors pointing in a more or
less southeasterly direction, or downward and to the right, are conductances and inductances in
parallel.
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Quiz
Refer to the text in this chapter if necessary. A good score is 18 or more correct. Answers are in the
back of the book.

1. The square of an imaginary number
(a) can never be negative.
(b) can never be positive.
(c) can be either positive or negative.
(d) is equal to j.

2. A complex number
(a) is the same thing as an imaginary number.
(b) has a real-number part and an imaginary-number part.
(c) is one-dimensional.
(d) is a concept reserved for elite mathematicians.

3. What is the sum of 3 + j 7 and −3 − j 7?
(a) 0 + j0
(b) 6 + j14
(c) −6 − j14
(d) 0 − j14

4. What is (−5 + j 7) − (4 − j5)?
(a) −1 + j2
(b) −9 − j2
(c) −1 − j2
(d) −9 + j12

5. What is the product (−4 − j 7)(6 − j2)?
(a) 24 − j14
(b) −38 − j34
(c) −24 − j14
(d) −24 + j14

6. What is the magnitude of the vector 18 − j24?
(a) 6
(b) 21
(c) 30
(d) 52

7. The complex impedance value 5 + j0 represents
(a) a pure resistance.
(b) a pure inductance.
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(c) a pure capacitance.
(d) an inductance combined with a capacitance.

8. The complex impedance value 0 − j22 represents

(a) a pure resistance.

(b) a pure inductance.

(c) a pure capacitance.

(d) an inductance combined with a resistance.

9. What is the absolute-value impedance of 3.0 − j 6.0?

(a) Z = 9.0 Ω
(b) Z = 3.0 Ω
(c) Z = 45 Ω
(d) Z = 6.7 Ω

10. What is the absolute-value impedance of 50 − j235?

(a) Z = 240 Ω
(b) Z = 58,000 Ω
(c) Z = 285 Ω
(d) Z = −185 Ω

11. If the center conductor of a coaxial cable is made to have a smaller diameter, all other things
being equal, what will happen to the Zo of the transmission line?

(a) It will increase.

(b) It will decrease.

(c) It will not change.

(d) There is no way to determine this without knowing the actual dimensions.

12. If a device is said to have an impedance of Z = 100 Ω, you can reasonably expect that this
indicates

(a) R + jX = 100 + j0.

(b) R + jX = 0 + j100.

(c) R + jX = 100 + j100.

(d) the reactance and the resistance add up to 100 Ω.

13. Suppose a capacitor has a value of 0.050 µF at 665 kHz. What is the capacitive susceptance,
stated as an imaginary number?

(a) BC = j4.79

(b) BC = −j4.79

(c) BC = j0.209

(d) BC = −j 0.209
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14. An inductor has a value of 44 mH at 60 Hz. What is the inductive susceptance, stated as an
imaginary number?

(a) BL = −j0.060
(b) BL = j0.060
(c) BL = −j17
(d) BL = j17

15. Susceptance and conductance add to form
(a) complex impedance.
(b) complex inductance.
(c) complex reactance.
(d) complex admittance.

16. Absolute-value impedance is equal to the square root of which of the following?
(a) G 2 + B 2

(b) R 2 + X 2

(c) Zo

(d) Y 2 + R 2

17. Inductive susceptance is defined in
(a) imaginary ohms.
(b) imaginary henrys.
(c) imaginary farads.
(d) imaginary siemens.

18. Capacitive susceptance values can be defined by
(a) positive real numbers.
(b) negative real numbers.
(c) positive imaginary numbers.
(d) negative imaginary numbers.

19. Which of the following is false?
(a) BC = 1/XC.
(b) Complex impedance can be depicted as a vector.
(c) Characteristic impedance is complex.
(d) G = 1/R.

20. In general, as the absolute value of the impedance in a circuit increases,
(a) the flow of ac increases.
(b) the flow of ac decreases.
(c) the reactance decreases.
(d) the resistance decreases.

244 Impedance and Admittance



WHEN YOU SEE AN AC CIRCUIT THAT CONTAINS COILS AND/OR CAPACITORS, YOU SHOULD ENVISION a
complex-number plane, either RX (resistance-reactance) or GB (conductance-admittance). The RX
plane applies to series circuit analysis. The GB plane applies to parallel circuit analysis.

Complex Impedances in Series
When you see resistors, coils, and capacitors in series, each component has an impedance that can
be represented as a vector in the RX plane. The vectors for resistors are constant, regardless of the
frequency. But the vectors for coils and capacitors vary with frequency.

Pure Reactances
Pure inductive reactances (XL ) and capacitive reactances (XC) simply add together when coils and
capacitors are in series. Thus, X = XL + XC. In the RX plane, their vectors add, but because these vec-
tors point in exactly opposite directions—inductive reactance upward and capacitive reactance
downward (Fig. 16-1)—the resultant sum vector inevitably points either straight up or straight
down, unless the reactances are equal and opposite, in which case they cancel and the result is the
zero vector.

Problem 16-1
Suppose a coil and capacitor are connected in series, with jXL = j200 and jXC = − j150. What is the
net reactance?

Just add the values: jX = jXL + jXC = j200 + (−j150) = j (200 − 150) = j50. This is a pure induc-
tive reactance, because it is positive imaginary.

Problem 16-2
Suppose a coil and capacitor are connected in series, with jXL = j30 and jXC = −j110. What is the
net reactance?
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Again, add the values: jX = j30 + (−j110) = j (30 − 110) = −j80. This is a pure capacitive reac-
tance, because it is negative imaginary.

Problem 16-3
Suppose a coil of inductance L = 5.00 µH and a capacitor of capacitance C = 200 pF are connected
in series. Suppose the frequency is f = 4.00 MHz. What is the net reactance?

First, calculate the reactance of the inductor at 4.00 MHz. Proceed as follows:

jXL = j6.28f L
= j (6.28 × 4.00 × 5.00)
= j126

Next, calculate the reactance of the capacitor at 4.00 MHz. Proceed as follows:

jXC = −j [1/(6.28f C )]
= −j[1/(6.28 × 4.00 × 0.000200)]
= −j199

Finally, add the inductive and capacitive reactances to obtain the net reactance:

jX = jXL + jXC

= j126 + (−j199)
= −j 73

This is a pure capacitive reactance.

Problem 16-4
What is the net reactance of the aforementioned inductor and capacitor combination at the fre-
quency f = 10.0 MHz?
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First, calculate the reactance of the inductor at 10.0 MHz. Proceed as follows:

jXL = j6.28f L
= j (6.28 × 10.0 × 5.00)
= j314

Next, calculate the reactance of the capacitor at 10.00 MHz. Proceed as follows:

jXC = −j [1/(6.28fC )]
= −j [1/(6.28 × 10.0 × 0.000200)]
= −j 79.6

Finally, add the inductive and capacitive reactances to obtain the net reactance:

jX = jXL + jXC

= j314 + (−j79.6)
= j234

This is a pure inductive reactance. For series-connected components, the condition in which the
capacitive and inductive reactances cancel is known as series resonance. We’ll deal with this in more
detail in the next chapter.

Adding Impedance Vectors
In the real world, there is resistance, as well as reactance, in an ac series circuit containing a coil and
capacitor. This occurs because the coil wire has some resistance (it’s never a perfect conductor). It
can also be the case because a resistor is deliberately connected into the circuit.

Whenever the resistance in a series circuit is significant, the impedance vectors no longer point
straight up and straight down. Instead, they run off toward the northeast (for the inductive part of
the circuit) and southeast (for the capacitive part). This is illustrated in Fig. 16-2.
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When two impedance vectors don’t lie along a single line, you must use vector addition to be
sure that you get the correct net impedance. In Fig. 16-3, the geometry of vector addition is shown.
Construct a parallelogram, using the two vectors Z1 = R1 + jX1 and Z2 = R2 + jX2 as two adjacent sides
of the figure. The diagonal of the parallelogram is the vector representing the net complex imped-
ance. (Note that in a parallelogram, pairs of opposite angles have equal measures. These equalities
are indicated by single and double arcs in Fig. 16-3.)

Formula for Complex Impedances in Series
Suppose you are given two complex impedances, Z1 = R1 + jX1 and Z2 = R2 + jX2. The net imped-
ance, Z, of these in series is their vector sum, given by the following formula:

Z = (R1 + jX1) + (R2 + jX2)
= (R1 + R2) + j (X1 + X2)

Calculating a vector sum using the formula is easier than doing it geometrically with a parallelo-
gram. The arithmetic method is also more exact. The resistance and reactance components add sep-
arately. Just remember that if a reactance is capacitive, then it is negative imaginary in this formula.

Series RLC Circuits
When an inductance, capacitance, and resistance are connected in series (Fig. 16-4), the resistance
R can be imagined as belonging entirely to the coil, when you use the preceding formulas. Then you
have two vectors to add, when finding the impedance of the series RLC circuit containing three such
components:

Z = (R + jXL ) + (0 + jXC)
= R + j (XL + XC)

Again, remember that XC is never positive! So, although the formulas here have addition symbols in
them, you’re adding a negative number when you add in a capacitive reactance.
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Problem 16-5
Suppose a resistor, a coil, and a capacitor are connected in series with R = 50 Ω, XL = 22 Ω, and 
XC = −33 Ω. What is the net impedance, Z ?

Consider the resistor to be part of the coil, obtaining two complex vectors, 50 + j22 and 0 −
j33. Adding these gives the resistance component of 50 + 0 = 50, and the reactive component of 
j22 − j33 = −j11. Therefore, Z = 50 − j11.

Problem 16-6
Consider a resistor, a coil, and a capacitor that are connected in series with R = 600 Ω, XL = 444 Ω,
and XC = −444 Ω. What is the net impedance, Z ?

Again, imagine the resistor to be part of the inductor. Then the complex impedance vectors are
600 + j444 and 0 − j444. Adding these, the resistance component is 600 + 0 = 600, and the reac-
tive component is j444 − j444 = j0. Thus, Z = 600 + j0. This is a purely resistive impedance, and
you can rightly call it 600 Ω.

Problem 16-7
Suppose a resistor, a coil, and a capacitor are connected in series. The resistor has a value of 330 Ω,
the capacitance is 220 pF, and the inductance is 100 µH. The frequency is 7.15 MHz. What is the
complex impedance of this series RLC circuit at this frequency?

First, calculate the inductive reactance. Remember that XL = 6.28f L and that megahertz and
microhenrys go together in the formula. Multiply to obtain the following:

jXL = j (6.28 × 7.15 × 100)
= j4490

Next, calculate the capacitive reactance using the formula XC = −1/(6.28fC ). Convert 220 pF to mi-
crofarads to obtain C = 0.000220 µF. Then calculate:

jXC = −j [1/(6.28 × 7.15 × 0.000220)]
= −j101

Now, lump the resistance and the inductive reactance together, so one of the impedance vectors 
is 330 + j4490. The other is 0 − j101. Adding these gives Z = 330 + j4389; this rounds off to 
Z = 330 + j4390.
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Problem 16-8
Suppose a resistor, a coil, and a capacitor are connected in series. The resistance is 50.0 Ω, the in-
ductance is 10.0 µH, and the capacitance is 1000 pF. The frequency is 1592 kHz. What is the com-
plex impedance of this series RLC circuit at this frequency?

First, calculate XL = 6.28f L. Convert the frequency to megahertz; 1592 kHz = 1.592 MHz.
Then:

jXL = j (6.28 × 1.592 × 10.0)
= j100

Then calculate X C = −1/(6.28fC ). Let’s convert picofarads to microfarads, and use megahertz for
the frequency. Therefore:

jXC = −j [1/(6.28 × 1.592 × 0.001000)]
= −j100

Let the resistance and inductive reactance go together as one vector, 50.0 + j100. Let the capacitive
reactance be represented as 0 − j100. The sum is Z = 50.0 + j100 − j100 = 50.0 + j0. This is a pure
resistance of 50.0 Ω. You can correctly say that the impedance is 50.0 Ω in this case.

Complex Admittances in Parallel
When you see resistors, coils, and capacitors in parallel, remember that each component, whether it
is a resistor, an inductor, or a capacitor, has an admittance that can be represented as a vector in the
GB plane. The vectors for pure conductances are constant, even as the frequency changes. But the
vectors for the coils and capacitors vary with frequency.

Pure Susceptances
Pure inductive susceptances (BL ) and capacitive susceptances (BC) add together when coils and ca-
pacitors are in parallel. Thus, B = BL + BC. Remember that BL is never positive, and BC is never neg-
ative. This is just the opposite situation from reactances.

In the GB plane, pure jBL and jBC vectors add. Because such vectors always point in exactly op-
posite directions—inductive susceptance down and capacitive susceptance up—the sum, jB, in-
evitably points either straight down or straight up (Fig. 16-5), unless the susceptances are equal and
opposite, in which case they cancel and the result is the zero vector.

Problem 16-9
Suppose a coil and capacitor are connected in parallel, with jBL = −j0.05 and jBC = j0.08. What is
the net susceptance?

Just add the values as follows: jB = jBL + jBC = −j0.05 + j0.08 = j0.03. This is a capacitive sus-
ceptance, because it is positive imaginary.

Problem 16-10
Suppose a coil and capacitor are connected in parallel, with jBL = −j0.60 and jBC = j0.25. What is
the net susceptance?
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Again, add the values: jB = −j0.60 + j0.25 = −j0.35. This is an inductive susceptance, because
it is negative imaginary.

Problem 16-11
Suppose a coil of L = 6.00 µH and a capacitor of C = 150 pF are connected in parallel. The fre-
quency is f = 4.00 MHz. What is the net susceptance?

First calculate the susceptance of the inductor at 4.00 MHz, as follows:

jBL = −j [1/(6.28fL)]
= −j [1/(6.28 × 4.00 × 6.00)]
= −j0.00663

Next, calculate the susceptance of the capacitor (converting its value to microfarads) at 4.00 MHz,
as follows:

jBC = j(6.28fC )
= j(6.28 × 4.00 × 0.000150)
= j0.00377

Finally, add the inductive and capacitive susceptances to obtain the net susceptance:

jB = jBL + jBC

= −j0.00663 + j0.00377
= −j0.00286

This is a pure inductive susceptance.

Problem 16-12
What is the net susceptance of the above parallel-connected inductor and capacitor at a frequency
of f = 5.31 MHz?
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First calculate the susceptance of the inductor at 5.31 MHz, as follows:

jBL = −j [1/(6.28fL)]
= −j [1/(6.28 × 5.31 × 6.00)]
= −j0.00500

Next calculate the susceptance of the capacitor (converting its value to microfarads) at 5.31 MHz,
as follows:

jBC = j(6.28fC )
= j (6.28 × 5.31 × 0.000150)
= j0.00500

Finally, add the inductive and capacitive susceptances to obtain the net susceptance:

jB = jBL + jBC

= −j0.00500 + j0.00500
= j0

This means that the circuit has no susceptance at 5.31 MHz. The situation in which there is no sus-
ceptance in an LC circuit is known as parallel resonance. It is discussed in the next chapter.

Adding Admittance Vectors
In real life, there is a small amount of conductance, as well as susceptance, in an ac parallel circuit
containing a coil and capacitor. This occurs when the capacitor lets a little bit of current leak
through. More often, though, it is the case because a load is connected in parallel with the coil and
capacitor. This load can be an antenna, the input to an amplifier circuit, a test instrument, a trans-
ducer, or some other device.

When the conductance in a parallel circuit containing inductance and capacitance is signifi-
cant, the admittance vectors do not point straight up and down. Instead, they run off toward the
northeast (for the capacitive part of the circuit) and southeast (for the inductive part). This is illus-
trated in Fig. 16-6.
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You’ve seen how vectors add in the RX plane. In the GB plane, the principle is the same. The
net admittance vector is the sum of the component admittance vectors.

Formula for Complex Admittances in Parallel
Given two admittances, Y1 = G1 + jB1 and Y2 = G2 + jB2, the net admittance Y of these in parallel is
their vector sum, as follows:

Y = (G1 + jB1 ) + (G2 + jB2 )
= (G1 + G2 ) + j (B1 + B2 )

The conductance and susceptance components add separately. Just remember that if a susceptance
is inductive, then it is negative imaginary in this formula.

Parallel GLC Circuits
When a coil, capacitor, and resistor are connected in parallel (Fig. 16-7), the resistance should be
thought of as a conductance, whose value in siemens (symbolized S) is equal to the reciprocal of the
value in ohms. Think of the conductance as all belonging to the inductor. Then you have two vec-
tors to add, when finding the admittance of a parallel GLC (conductance-inductance-capacitance)
circuit:

Y = (G + jBL ) + (0 + jBC)
= G + j (BL + BC)

Again, remember that BL is never positive! So, although the formulas here have addition symbols in
them, you’re adding a negative number when you add in an inductive susceptance.

Problem 16-13
Suppose a resistor, a coil, and a capacitor are connected in parallel. Suppose the resistor has a con-
ductance G = 0.10 S, and the susceptances are jBL = −j0.010 and jBC = j0.020. What is the com-
plex admittance of this combination?

Consider the resistor to be part of the coil. Then there are two complex admittances in parallel:
0.10 − j0.010 and 0.00 + j0.020. Adding these gives a conductance component of 0.10 + 0.00 =
0.10 and a susceptance component of −j0.010 + j0.020 = j0.010. Therefore, the complex admit-
tance is 0.10 + j0.010.
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Problem 16-14
Suppose a resistor, a coil, and a capacitor are connected in parallel. Suppose the resistor has a con-
ductance G = 0.0010 S, and the susceptances are jBL = −j0.0022 and jBC = j0.0022. What is the
complex admittance of this combination?

Again, consider the resistor to be part of the coil. Then the complex admittances are 0.0010 −
j0.0022 and 0.0000 + j0.0022. Adding these, the conductance component is 0.0010 + 0.0000 =
0.0010, and the susceptance component is −j0.0022 + j0.0022 = j0. Thus, the admittance is 
0.0010 + j0. This is a purely conductive admittance.

Problem 16-15
Suppose a resistor, a coil, and a capacitor are connected in parallel. The resistor has a value of 100
Ω, the capacitance is 200 pF, and the inductance is 100 µH. The frequency is 1.00 MHz. What is
the net complex admittance?

First, you need to calculate the inductive susceptance. Recall the formula, and plug in the num-
bers as follows:

jBL = −j [1/(6.28fL)]
= −j [1/(6.28 × 1.00 × 100)]
= −j0.00159

Megahertz and microhenrys go together in the formula. Next, you must calculate the capacitive
susceptance. Convert 200 pF to microfarads to go with megahertz in the formula; thus C =
0.000200 µF. Then:

jBC = j (6.28fC )
= j (6.28 × 1.00 × 0.000200)
= j0.00126

Finally, consider the conductance, which is 1⁄ 100 = 0.0100 S, and the inductive susceptance as exist-
ing together in a single component. That means that one of the parallel-connected admittances is
0.0100 − j0.00159. The other is 0.0000 + j0.00126. Adding these gives 0.0100 − j0.00033.

Problem 16-16
Suppose a resistor, a coil, and a capacitor are in parallel. The resistance is 10.0 Ω, the inductance is
10.0 µH, and the capacitance is 1000 pF. The frequency is 1592 kHz. What is the complex admit-
tance of this circuit at this frequency?

First, calculate the inductive susceptance. Convert the frequency to megahertz; 1592 kHz =
1.592 MHz. Plug in the numbers as follows:

jBL = −j [1/(6.28fL)]
= −j [1/(6.28 × 1.592 × 10.0)]
= −j0.0100

Next, calculate the capacitive susceptance. Convert 1000 pF to microfarads to go with megahertz in
the formula; thus C = 0.001000 µF. Then:
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jBC = j (6.28fC )
= j (6.28 × 1.592 × 0.001000)
= j0.0100

Finally, consider the conductance, which is 1/10.0 = 0.100 S, and the inductive susceptance as
existing together in a single component. That means that one of the parallel-connected admittances
is 0.100 − j0.0100. The other is 0.0000 + j0.0100. Adding these gives 0.100 + j0.

Converting Complex Admittance to Complex Impedance
The GB plane is, as you have seen, similar in appearance to the RX plane, although mathematically
they are different. Once you’ve found a complex admittance for a parallel RLC circuit, you will usu-
ally want to transform this back to a complex impedance.

The transformation from a complex admittance G + jB to a complex impedance R + jX can be
carried out using the following two formulas, one for R and the other for X:

R = G/(G 2 + B 2)
X = −B/(G 2 + B 2)

If you know the complex admittance, first find the resistance and reactance components individu-
ally using the preceding formulas. Then assemble the two components into the complex impedance,
R + jX.

Problem 16-17
Suppose the complex admittance of a certain parallel circuit is 0.010 − j0.0050. What is the com-
plex impedance of this same circuit, assuming the frequency does not change?

In this case, G = 0.010 S and B = −0.0050 S. First find G 2 + B 2, as follows:

G 2 + B 2 = 0.010 2 + (−0.0050)2

= 0.000100 + 0.000025
= 0.000125

Now it is easy to calculate R and X, like this:

R = G/0.000125
= 0.010/0.000125
= 80 Ω

X = −B/0.000125
= 0.0050/0.000125
= 40 Ω

The complex impedance is therefore 80 + j40.
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Putting It All Together
When you’re confronted with a parallel circuit containing resistance, inductance, and capacitance,
and you want to determine the complex impedance of the combination, do these things:

1. Find the conductance G = 1/R for the resistor. (It will be positive or zero.)
2. Find the susceptance BL of the inductor using the appropriate formula. (It will be negative or

zero.)
3. Find the susceptance BC of the capacitor using the appropriate formula. (It will be positive or

zero.)
4. Find the net susceptance B = BL + BC. (It might be positive, negative, or zero.)
5. Compute R and X in terms of G and B using the appropriate formulas.
6. Assemble the complex impedance R + jX.

Problem 16-18
Suppose a resistor of 10.0 Ω, a capacitor of 820 pF, and a coil of 10.0 µH are in parallel. The fre-
quency is 1.00 MHz. What is the complex impedance?

Proceed according to the above steps, as follows:

1. Calculate G = 1/R = 1/10.0 = 0.100.
2. Calculate BL = −1/(6.28fL) = −1/(6.28 × 1.00 × 10.0) = −0.0159.
3. Calculate BC = 6.28fC = 6.28 × 1.00 × 0.000820 = 0.00515. (Remember to first convert the

capacitance to microfarads, to go with megahertz.)
4. Calculate B = BL + BC = −0.0159 + 0.00515 = −0.0108.
5. Define G 2 + B 2 = 0.1002 + (−0.0108)2 = 0.010117. Then R = G/0.010117 =

0.100/0.010117 = 9.88 Ω, and X = −B/0.010117 = 0.0108/0.010117 = 1.07 Ω.
6. The complex impedance is R + jX = 9.88 + j1.07.

Problem 16-19
Suppose a resistor of 47.0 Ω, a capacitor of 500 pF, and a coil of 10.0 µH are in parallel. What is
their complex impedance at a frequency of 2.252 MHz?

Proceed as before:

1. Calculate G = 1/R = 1/47.0 = 0.021277.
2. Calculate BL = −1/(6.28fL) = −1/(6.28 × 2.252 × 10.0) = −0.00707.
3. Calculate BC = 6.28fC = 6.28 × 2.252 × 0.000500 = 0.00707. (Remember to first convert

the capacitance to microfarads, to go with megahertz.)
4. Calculate B = BL + BC = −0.00707 + 0.00707 = 0.00000.
5. Define G 2 + B 2 = 0.0212772 + 0.000002 = 0.00045271. Then R = G/0.00045271 =

0.021277/0.00045271 = 46.999 Ω, and X = −B/0.00045271 = 0.00000/0.00045271 =
0.00000.

6. The complex impedance is R + jX = 46.9999 + j0.00000. When we round it off to three
significant figures, we get 47.0 + j0.00. This a pure resistance equal to the value of the resistor
in the circuit.
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Reducing Complicated RLC Circuits
Sometimes you’ll see circuits in which there are several resistors, capacitors, and/or coils in series and
parallel combinations. Such a circuit can be reduced to an equivalent series or parallel RLC circuit
that contains one resistance, one capacitance, and one inductance.

Series Combinations
Resistances in series simply add. Inductances in series also add. Capacitances in series combine in a
somewhat more complicated way. If you don’t remember the formula, here it is:

1/C = 1/C1 + 1/C2 + ��� + 1/Cn

where C1, C2, . . . , and Cn are the individual capacitances, and C is the total capacitance. Once
you’ve found 1/C, take its reciprocal to obtain C. Figure 16-8A shows an example of a complicated
series RLC circuit. The equivalent circuit, with one resistance, one capacitance, and one inductance,
is shown in Fig. 16-8B.

Parallel Combinations
In parallel, resistances and inductances combine the way capacitances do in series. Capacitances
simply add up. An example of a complicated parallel RLC circuit is shown in Fig. 16-9A. 
The equivalent circuit, with one resistance, one capacitance, and one inductance, is shown in 
Fig. 16-9B.
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16-8 At A, a complicated
series circuit
containing multiple
resistances and
reactances. At B, the
same circuit simplified.
Resistances are in
ohms; inductances are
in microhenrys (µH);
capacitances are in
picofarads (pF).



Nightmare Scenarios
Imagine an RLC circuit like the one shown in Fig. 16-10. How would you find the complex imped-
ance of this circuit at some particular frequency, such as 8.54 MHz? Don’t waste much time worry-
ing about circuits like this. You’ll rarely encounter them. But rest assured that, given a frequency, a
complex impedance does exist, no matter how complicated an RLC circuit happens to be.

An engineer could use a computer to find the theoretical complex impedance of a circuit such
as the one in Fig. 16-10 at a specific frequency, or as a function of the frequency. The experimental
approach would be to build the circuit, connect a signal generator to it, and then measure R and X
at various frequencies with a device called an impedance bridge.
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16-10 A series-parallel
nightmare circuit
containing multiple
resistances and
reactances. Resis-
tances are in ohms;
inductances are in
microhenrys (µH);
capacitances are in
picofarads (pF).

16-9 At A, a complicated
parallel circuit
containing multiple
resistances and
reactances. At B, the
same circuit simplified.
Resistances are in
ohms; inductances are
in microhenrys (µH);
capacitances are in
picofarads (pF).



Ohm’s Law for AC Circuits
Ohm’s Law for a dc circuit is a simple relationship among three variables: the current I (in amperes), the
voltage E (in volts), and the resistance R (in ohms). Here are the formulas, in case you don’t recall them:

E = IR
I = E/R
R = E/I

In ac circuits containing no reactance, these same formulas apply, as long as you work with root-
mean-square (rms) voltages and currents. If you need a refresher concerning the meaning of rms,
refer to Chapter 9.

Purely Resistive Impedances
When the impedance Z in an ac circuit contains no reactance, so that all of the current and voltage
exist through and across a pure resistance R, Ohm’s Law for an ac circuit is expressed as follows:

E = IZ
I = E/Z

Z = E/I

where Z = R, and the values I and E are rms current and voltage.

Complex Impedances
When you want to determine the relationship among current, voltage, and resistance in an ac cir-
cuit that contains resistance and reactance, things get interesting. Recall the formula for the square
of the absolute-value impedance in a series RLC circuit:

Z 2 = R 2 + X 2

This means that Z is equal to the square root of the quantity R 2 + X 2, as follows:

Z = (R 2 + X 2 )1/2

This is the length of the vector R + jX in the complex impedance plane. You learned this in Chap.
15. This formula applies only for series RLC circuits.

The square of the absolute-value impedance for a parallel RLC circuit, in which the resistance
is R and the reactance is X, is defined this way:

Z 2 = R 2X 2/(R 2 + X 2)

This means that the absolute-value impedance, Z, must be calculated using the rather arcane formula:

Z = [R 2X 2/(R 2 + X 2)]1/2

The 1⁄ 2 power of a quantity represents the positive square root of that quantity.
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Problem 16-20
Suppose a series RX circuit (shown by the generic block diagram of Fig. 16-11) has a resistance of 
R = 50.0 Ω and a capacitive reactance of X = −50.0 Ω. Suppose 100-V rms ac is applied to this cir-
cuit. What is the current?

First, calculate Z 2 = R 2 + X 2 = 50.02 + (−50.0)2 = 2500 + 2500 = 5000. Then Z is the square
root of 5000, or 70.7. Therefore, I = E/Z = 100/70.7 = 1.41 A rms.

Problem 16-21
What are the rms ac voltages across the resistance and the reactance, respectively, in the circuit de-
scribed in Problem 16-20?

The Ohm’s Law formulas for dc will work here. Because the current is I = 1.41 A rms, the volt-
age drop across the resistance is equal to ER = IR = 1.41 × 50.0 = 70.5 V rms. The voltage drop
across the reactance is the product of the current and the reactance: EX = IX = 1.41 × (−50.0) =
−70.5 V rms. This is an rms ac voltage of equal magnitude to that across the resistance. But the
phase is different.

Note that voltages across the resistance and the reactance—a capacitive reactance in this case,
because it’s negative—don’t add up to 100 V rms, which is placed across the whole circuit. This is
because, in an RX ac circuit, there is always a difference in phase between the voltage across the re-
sistance and the voltage across the reactance. The voltages across the components always add up to
the applied voltage vectorially, but not always arithmetically.

Problem 16-22
Suppose a series RX circuit (Fig. 16-11) has R = 10.0 Ω. and X = 40.0 Ω. The applied voltage is 100-
V rms ac. What is the current?

Calculate Z 2 = R 2 + X 2 = 100 + 1600 = 1700. This means that Z is the square root of 1700, or
41.2. Therefore, I = E/Z = 100/41.2 = 2.43 A rms.

Problem 16-23
What are the rms ac voltages across the resistance and the reactance, respectively, in the circuit de-
scribed in Problem 16-22?

Knowing the current, calculate ER = IR = 2.43 × 10.0 = 24.3 V rms. Also, EX = IX = 2.43 ×
40.0 = 97.2 V rms. If you add ER + EX arithmetically, you get 24.3 + 97.2 = 121.5 V as the total
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16-11 A series circuit
containing resistance
and reactance.
Illustration for
Problems 16-20
through 16-23.



across R and X. Again, this differs from the applied voltage! The simple dc rule does not work here,
for the same reason it didn’t work in the scenario of Problem 16-21.

Problem 16-24
Suppose a parallel RX circuit (shown by the generic block diagram of Fig. 16-12) has R = 30.0 Ω
and X = −20.0 Ω. The ac supply voltage is 50.0 V rms. What is the total current drawn from the ac
supply?

First, find the square of the absolute-value impedance, remembering the formula for parallel
circuits: Z 2 = R 2X 2/(R 2 + X 2) = 360,000/1300 = 277. The absolute-value impedance Z is the
square root of 277, or 16.6. The total current is therefore I = E/Z = 50/16.6 = 3.01 A rms.

Problem 16-25
What are the rms currents through the resistance and the reactance, respectively, in the circuit de-
scribed in Problem 16-24?

The Ohm’s Law formulas for dc will work here. For the resistance, IR = E/R = 50.0/30.0 = 1.67
A rms. For the reactance, IX = E/X = 50.0/(−20.0) = −2.5 A rms. Note that these currents don’t add
up to 3.01 A, the total current. The reason for this is the same as the reason ac voltages don’t add
arithmetically in ac circuits that contain reactance. The constituent currents, IR and IX, differ in
phase. Vectorially, they add up to 3.01 A rms, but arithmetically, they don’t.

Quiz
Refer to the text in this chapter if necessary. A good score is 18 correct. Answers are in the back of
the book.

1. Suppose a coil and capacitor are connected in series. The inductive reactance is 250 Ω, and
the capacitive reactance is −300 Ω. What is the complex impedance?

(a) 0 + j550
(b) 0 − j50
(c) 250 − j300
(d) −300 + j250
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16-12 A parallel circuit
containing resistance
and reactance.
Illustration for
Problems 16-24 
and 16-25.



2. Suppose a coil of 25.0 µH and capacitor of 100 pF are connected in series. The frequency is
5.00 MHz. What is the complex impedance?

(a) 0 + j467
(b) 25 + j100
(c) 0 − j467
(d) 25 − j100

3. When R = 0 in a series RLC circuit, but the net reactance is not zero, the impedance vector
(a) always points straight up.
(b) always points straight down.
(c) always points straight toward the right.
(d) None of the above is correct.

4. Suppose a resistor of 150 Ω, a coil with a reactance of 100 Ω, and a capacitor with a
reactance of −200 Ω are connected in series. What is the complex impedance?

(a) 150 + j100
(b) 150 − j200
(c) 100 − j200
(d) 150 − j100

5. Suppose a resistor of 330 Ω, a coil of 1.00 µH, and a capacitor of 200 pF are in series. What
is the complex impedance at 10.0 MHz?

(a) 330 − j199
(b) 300 + j201
(c) 300 + j142
(d) 330 − j16.8

6. Suppose a coil has an inductance of 3.00 µH and a resistance of 10.0 Ω in its winding. A
capacitor of 100 pF is in series with this coil. What is the complex impedance at 10.0 MHz?

(a) 10 + j3.00
(b) 10 + j29.2
(c) 10 − j97
(d) 10 + j348

7. Suppose a coil has a reactance of 4.00 Ω. What is the complex admittance, assuming there is
nothing else is in the circuit?

(a) 0 + j0.25
(b) 0 + j4.00
(c) 0 − j0.25
(d) 0 − j4.00

8. What will happen to the susceptance of a capacitor if the frequency is doubled and all other
factors remain constant?

(a) It will decrease to half its former value.
(b) It will not change.
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(c) It will double.
(d) It will quadruple.

9. Suppose a coil and capacitor are in parallel, with jBL = −j0.05 and jBC = j0.03. What is the
complex admittance, assuming that nothing is in series or parallel with these components?

(a) 0 − j0.02
(b) 0 − j0.07
(c) 0 + j0.02
(d) −0.05 + j0.03

10. Imagine a coil, a resistor, and a capacitor connected in parallel. The resistance is 1.0 Ω, the
capacitive susceptance is 1.0 S, and the inductive susceptance is −1.0 S. Then, suddenly, the
frequency is cut to half its former value. What is the complex admittance at the new frequency?

(a) 1.0 + j0.0
(b) 1.0 + j1.5
(c) 1.0 − j1.5
(d) 1.0 − j2.0

11. Suppose a coil of 3.50 µH and a capacitor of 47.0 pF are in parallel. The frequency is 9.55
MHz. There is nothing else in series or parallel with these components. What is the complex
admittance?

(a) 0 + j0.00282
(b) 0 − j0.00194
(c) 0 + j0.00194
(d) 0 − j0.00758

12. A vector pointing southeast in the GB plane would indicate
(a) pure conductance with zero susceptance.
(b) conductance and inductive susceptance.
(c) conductance and capacitive susceptance.
(d) pure susceptance with zero conductance.

13. Suppose a resistor with conductance 0.0044 S, a capacitor with susceptance 0.035 S, and a
coil with susceptance −0.011 S are all connected in parallel. What is the complex admittance?

(a) 0.0044 + j 0.024
(b) 0.035 − j0.011
(c) −0.011 + j0.035
(d) 0.0044 + j0.046

14. Suppose a resistor of 100 Ω, a coil of 4.50 µH, and a capacitor of 220 pF are in parallel.
What is the complex admittance at a frequency of 6.50 MHz?

(a) 100 + j0.00354
(b) 0.010 + j0.00354
(c) 100 − j0.0144
(d) 0.010 + j0.0144
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15. Suppose the complex admittance of a circuit is 0.02 + j0.20. What is the complex impedance,
assuming the frequency does not change?

(a) 50 + j5.0
(b) 0.495 − j4.95
(c) 50 − j5.0
(d) 0.495 + j4.95

16. Suppose a resistor of 51.0 Ω, an inductor of 22.0 µH, and a capacitor of 150 pF are in
parallel. The frequency is 1.00 MHz. What is the complex impedance?

(a) 51.0 − j14.9
(b) 51.0 + j14.9
(c) 46.2 − j14.9
(d) 46.2 + j14.9

17. Suppose a series circuit has 99.0 Ω of resistance and 88.0 Ω of inductive reactance. An ac rms
voltage of 117 V is applied to this series network. What is the current?

(a) 1.18 A
(b) 1.13 A
(c) 0.886 A
(d) 0.846 A

18. What is the voltage across the reactance in the preceding example?
(a) 78.0 V
(b) 55.1 V
(c) 99.4 V
(d) 74.4 V

19. Suppose a parallel circuit has 10 Ω of resistance and 15 Ω of reactance. An ac rms voltage of
20 V is applied across it. What is the total current?

(a) 2.00 A
(b) 2.40 A
(c) 1.33 A
(d) 0.800 A

20. What is the current through the resistance in the preceding example?
(a) 2.00 A
(b) 2.40 A
(c) 1.33 A
(d) 0.800 A
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ONE OF THE BIGGEST CHALLENGES IN ELECTRICITY AND ELECTRONICS IS OPTIMIZING THE EFFICIENCY

with which power is transferred from one place to another, or converted from one form to another.
Also important, especially for the radio-frequency (RF) engineer, is the phenomenon of resonance.
Power and resonance are closely related.

Forms of Power
What is power, exactly? Here is an all-encompassing definition: Power is the rate at which energy is
expended, radiated, or dissipated. This definition can be applied to mechanical motion, chemical ef-
fects, dc and ac electricity, sound waves, radio waves, sound, heat, infrared (IR), visible light, ultra-
violet (UV), X rays, gamma rays, and high-speed subatomic particles. In all cases, the energy is
converted from one form into another form at a certain rate.

Units of Power
The standard unit of power is the watt, abbreviated W. A watt is equivalent to a joule per second ( J/s).
Sometimes power is given as kilowatts (kW or thousands of watts), megawatts (MW or millions of
watts), or gigawatts (GW or billions of watts). It is also sometimes expressed as milliwatts (mW or
thousandths of watts), microwatts (µW or millionths of watts), or nanowatts (nW or billionths of
watts).

Volt-Amperes
In dc circuits, and also in ac circuits having no reactance, power can be defined this way: Power is the
product of the voltage across a circuit or component and the current through that same circuit or component.
Mathematically this is written P = EI. If E is in volts and I is in amperes, then P is in volt-amperes (VA).
This translates into watts when there is no reactance in the circuit (Fig. 17-1). The root-mean-square
(rms) values for voltage and current are always used to derive the effective, or average, power.

Volt-amperes, also called VA power or apparent power, can take various forms. A resistor converts
electrical energy into heat energy, at a rate that depends on the value of the resistance and the cur-
rent through it. A light bulb converts electricity into light and heat. A radio antenna converts high-
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frequency ac into radio waves. A speaker converts low-frequency ac into sound waves. The power in
these forms is a measure of the intensity of the heat, light, radio waves, or sound waves.

Instantaneous Power
Usually, but not always, engineers think of power based on the rms, or effective, ac value. But for
VA power, peak values are sometimes used instead. If the ac is a sine wave, the peak current is 1.414
times the rms current, and the peak voltage is 1.414 times the rms voltage. If the current and the
voltage are exactly in phase, the product of their peak values is twice the product of their rms values.

There are instants in time when the VA power in a reactance-free, sine-wave ac circuit is twice
the effective power. There are other instants in time when the VA power is zero; at still other mo-
ments, the VA power is somewhere between zero and twice the effective power level (Fig. 17-2).
This constantly changing power is called instantaneous power.

In some situations, such as with a voice-modulated radio signal or a fast-scan television signal,
the instantaneous power varies in an extremely complicated fashion. Have you ever seen the modu-
lation envelope of such a signal displayed on an oscilloscope?
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17-2 Peak versus effective
power for a sine wave.
The left-hand vertical
scale shows relative
voltage. The right-
hand vertical scale
shows relative power.
The solid curve
represents the voltage
as a function of time.
The light and heavy
dashed waves show
peak and effective
power, respectively, as
functions of time.

17-1 When there is no
reactance in an ac
component, the power
P is the product of the
voltage E across the
component and the
current I through the
component.



Imaginary Power
If an ac circuit contains reactance, things get interesting. In a pure resistance, the rate of energy
expenditure per unit time (or true power) is the same as the VA power (also known as apparent
power). But when inductance and/or capacitance exists in an ac circuit, the VA power is greater than
the power actually manifested as heat, light, radio waves, or whatever. The apparent power is then
greater than the true power! The extra power is called imaginary power, because it exists in the reac-
tance, and reactance can be, as you have learned, rendered in mathematically imaginary numerical
form. Imaginary power is also known as reactive power.

Inductors and capacitors store energy and then release it a fraction of a cycle later. This phe-
nomenon, like true power, is expressible as the rate at which energy is changed from one form to an-
other. But rather than existing as a usable form of power, such as heat, light, radio waves, sound
waves, or mechanical motion, imaginary power is stored up as a magnetic or electric field, and then
released back into the circuit or system. This storage and release of power takes place over and over
with each repeating ac cycle.

True Power Does Not Travel
A common and usually harmless misconception about true power is the notion that it can travel.
For example, if you connect a radio transmitter to a cable that runs outdoors to an antenna, you
might say you’re “feeding power” through the cable to the antenna. Everybody says this, even engi-
neers and technicians. But true power always involves a change in form, such as from electrical cur-
rent and voltage into radio waves. It doesn’t go from place to place. It simply happens in a specific
place. It’s the imaginary power that moves in situations like this, especially in transmission lines
between power stations and power users, or between radio transmitters and radio antennas.

In a real-life radio antenna system, some true power is dissipated as heat in the transmitter am-
plifiers and in the feed line (Fig. 17-3). The useful dissipation of true power occurs when the imag-
inary power, in the form of electric and magnetic fields, gets to the antenna, where it is changed into
electromagnetic waves.

You will often hear expressions such as “forward power” and “reflected power,” or “power is fed
from this amplifier to these speakers.” It is all right to talk like this, but it can sometimes lead to
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wrong conclusions, especially concerning impedance and standing waves. Then, you need to be
keenly aware of the distinction among true, imaginary, and apparent power.

Reactance Does Not Consume Power
A pure inductance or a pure capacitance cannot dissipate any power. The only thing that such a
component can do is store energy and then give it back to the circuit a fraction of a cycle later. In
real life, the dielectrics or wires in coils and capacitors dissipate some power as heat, but ideal com-
ponents would not do this.

A capacitor, as you have learned, stores energy as an electric field. An inductor stores energy as
a magnetic field.

A component that contains reactance causes ac to shift in phase, so that the current is no longer
exactly in step with the voltage. In a circuit with inductive reactance, the current lags the voltage by
up to 90°, or one-quarter cycle. In a circuit with capacitive reactance, the current leads the voltage
by up to 90°.

In a resistance-reactance circuit, true power is dissipated only in the resistive components. The
reactive components exaggerate the VA power compared with the true power. Why, you ask, does
reactance cause this discrepancy? In a circuit that is purely resistive, the voltage and current march
right along in step with each other, and therefore, they combine in the most efficient possible way
(Fig. 17-4A). But in a circuit containing reactance, the voltage and current are out of step with each
other (Fig. 17-4B) because of their phase difference. Therefore, the actual energy expenditure, or
true power, is not as great as the product of the voltage and the current.

True Power, VA Power, and Reactive Power
In an ac circuit or system containing nonzero resistance and nonzero reactance, the relationships
among true power PT, apparent (VA) power PVA, and imaginary (reactive) power PX are as follows:

PVA
2 = PT

2 + PX
2

PT < PVA

PX < PVA
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17-4 At A, current (I ) and
voltage (E ) are in
phase in a nonreactive
ac circuit. At B, I and
E are not in phase
when reactance is
present.



If there is no reactance in the circuit or system, then PVA = PT, and PX = 0. Engineers strive to min-
imize, and if possible eliminate, the reactance in power-transmission systems.

Power Factor
In an ac circuit, the ratio of the true power to the VA power, PT/PVA, is called the power factor. If there
is no reactance, the ideal case, then PT = PVA, and the power factor (PF ) is equal to 1. If the circuit
contains all reactance and no resistance of any significance (that is, zero or infinite resistance), then
PT = 0, and therefore PF = 0.

When a load, or a circuit in which you want power to be dissipated, contains resistance and re-
actance, then PF is between 0 and 1. That is, 0 < PF < 1. The power factor can also be expressed as
a percentage between 0 and 100, written PF%. Mathematically, we have these formulas for the
power factor:

PF = PT/PVA

PF% = 100PT/PVA

When a load has some resistance and some reactance, then some of the power is dissipated as true
power, and some is rejected by the load as imaginary power. In a sense, this imaginary power is sent
back to the power source.

There are two ways to determine the power factor in an ac circuit that contains reactance and
resistance. One method is to find the cosine of the phase angle. The other method involves the ratio
of the resistance to the absolute-value impedance.

Cosine of Phase Angle
Recall that in a circuit having reactance and resistance, the current and the voltage are not in phase.
The phase angle (φ) is the extent, expressed in degrees, to which the current and the voltage differ
in phase. If there is no reactance, then φ = 0°. If there is a pure reactance, then either φ = +90° (if
the reactance is inductive) or else φ = −90° (if the reactance is capacitive). The power factor is equal
to the cosine of the phase angle:

PF = cos φ

Problem 17-1
Suppose a circuit contains no reactance, but a pure resistance of 600 Ω. What is the power factor?

Without doing any calculations, it is evident that PF = 1, because PVA = PT in a pure resistance.
That means PT/PVA = 1. But you can also look at this by noting that the phase angle is 0°, because
the current is in phase with the voltage. Using your calculator, you can see that cos 0° = 1. There-
fore, PF = 1 = 100%. The vector for this case is shown in Fig. 17-5.

Problem 17-2
Suppose a circuit contains a pure capacitive reactance of −40 Ω, but no resistance. What is the
power factor?

Here, the phase angle is −90° (Fig. 17-6). A calculator will tell you that cos −90° = 0. There-
fore, PF = 0, and PT/PVA = 0 = 0%. None of the power is true; all of it is reactive.
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Problem 17-3
Suppose a circuit contains a resistance of 50 Ω and an inductive reactance of 50 Ω in series. What
is the power factor?

The phase angle in this case is 45° (Fig. 17-7). The resistance and reactance vectors have equal
lengths and form two sides of a right triangle, with the complex impedance vector forming the hy-
potenuse. To determine the power factor, you can use a calculator to find cos 45° = 0.707. This
means that PT/PVA = 0.707 = 70.7%.

The Ratio R/Z
The second way to calculate the power factor is to find the ratio of the resistance R to the absolute-
value impedance Z. In Fig. 17-7, this is visually apparent. A right triangle is formed by the resist-
ance vector R (the base), the reactance vector jX (the height), and the absolute-value impedance Z
(the hypotenuse). The cosine of the phase angle is equal to the ratio of the base length to the hy-
potenuse length; this represents R/Z.
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17-5 Vector diagram
showing the phase
angle for a purely
resistive impedance of
600 + j0. The R and
jX scales are relative.

17-6 Vector diagram
showing the phase
angle for a purely
capacitive impedance
of 0 − j40. The R and
jX scales are relative.



Problem 17-4
Suppose a circuit has an absolute-value impedance Z of 100 Ω, with a resistance R = 80 Ω. What is
the power factor?

Simply find the ratio PF = R/Z = 80/100 = 0.8 = 80%. Note that it doesn’t matter whether the
reactance in this circuit is capacitive or inductive.

Problem 17-5
Suppose a circuit has an absolute-value impedance of 50 Ω, purely resistive. What is the power factor?

Here, R = Z = 50 Ω. Therefore, PF = R/Z = 50/50 = 1 = 100%.

Problem 17-6
Suppose a circuit has a resistance of 50 Ω and a capacitive reactance of −30 Ω in series. What is the
power factor? Use the cosine method.

First, find the phase angle. Remember the formula: φ = arctan (X/R ), where X is the reactance
and R is the resistance. Therefore, φ = arctan (−30/50) = arctan (−0.60) = −31°. The power factor
is the cosine of this angle; PF = cos (−31°) = 0.86 = 86%.

Problem 17-7
Suppose a circuit has a resistance of 30 Ω and an inductive reactance of 40 Ω. What is the power
factor? Use the R/Z method.

Find the absolute-value impedance: Z 2 = R 2 + X 2 = 302 + 402 = 900 + 1600 = 2500. There-
fore, Z = 25001/2 = 50 Ω, so PF = R/Z = 30/50 = 0.60 = 60%. This problem can be represented vec-
torially by a 30:40:50 right triangle, as shown in Fig. 17-8.

How Much of the Power Is True?
The preceding formulas allow you to figure out, given the resistance, reactance, and VA power, how
many watts are true or real power, and how many watts are imaginary or reactive power. This is im-
portant in RF equipment, because some RF wattmeters display VA power rather than true power.
When there is reactance in a circuit or system, the wattage reading is therefore exaggerated.
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17-7 Vector diagram
showing the phase
angle for a complex
impedance of 50 +
j50. The R and jX
scales are relative.



Problem 17-8
Suppose a circuit has 50 Ω of resistance and 30 Ω of inductive reactance in series. A wattmeter
shows 100 W, representing the VA power. What is the true power?

First, calculate the power factor. Suppose you use the phase-angle method. Then:

φ = arctan (X/R )
= arctan (30/50) = 31°

The power factor is the cosine of the phase angle. Thus:

PF = cos 31° = 0.86 = 86%

Remember that PF = PT/PVA. This formula can be rearranged to solve for true power:

PT = PF × PVA

= 0.86 × 100
= 86 W

Problem 17-9
Suppose a circuit has a resistance of 1000 Ω in parallel with a capacitance of 1000 pF. The frequency
is 100 kHz. If a wattmeter designed to read VA power shows a reading of 88.0 W, what is the true
power?

This problem is rather complicated because the components are in parallel. To begin, be sure
the units are all in agreement so the formulas will work right. Convert the frequency to megahertz:
f = 100 kHz = 0.100 MHz. Convert capacitance to microfarads: C = 1000 pF = 0.001000 µF. From
the previous chapter, recall the formula for capacitive susceptance, and calculate it for this situation:

BC = 6.28f C
= 6.28 × 0.100 × 0.001000
= 0.000628 S
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Problem 17-7. (The
vertical and horizontal
scale increments differ;
this is a common
practice in graphs,
often done for
illustration
convenience.)



The conductance of the resistor, G, is the reciprocal of the resistance, R, as follows:

G = 1/R
= 1/1000
= 0.001000 S

Now, use the formulas for calculating resistance and reactance in terms of conductance and suscep-
tance in parallel circuits. First, find the resistance:

R = G/(G 2 + B 2)
= 0.001000/(0.0010002 + 0.0006282)
= 0.001000/0.000001394
= 717 Ω

Then, find the reactance:

X = −B/(G 2 + B 2)
= −0.000628/0.000001394
= −451 Ω

Next, calculate the phase angle:

φ = arctan (X/R)
= arctan (−451/717)
= arctan (−0.629)
= −32.2°

The power factor is found from the phase angle as follows:

PF = cos φ
= cos (−32.2°)
= 0.846 = 84.6%

The VA power, PVA, is given as 88.0 W. Therefore:

PT = PF × PVA

= 0.846 × 88.0
= 74.4 W

Power Transmission
Consider how electricity gets to your home. Generators produce large voltages and currents at a power
plant. The problem: getting the electricity from the plant to the homes, businesses, and other facilities
that need it. This process involves the use of long wire transmission lines. Transformers are also required
to step the voltages up or down. As another example, consider a radio broadcast or communications sta-
tion. The transmitter produces high-frequency ac. The problem is getting the power to be radiated by
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the antenna, located some distance from the transmitter. This involves the use of an RF transmission
line. The most common type is coaxial cable. Two-wire line is also sometimes used. At ultrahigh and
microwave frequencies, another kind of transmission line, known as a waveguide, is often employed.

Loss: The Less, The Better!
The overriding concern in any power transmission system is minimizing the loss. Power wastage
occurs almost entirely as heat in the transmission line conductors and dielectric, and in objects near
the line. Some loss can take the form of unwanted electromagnetic radiation from the line. Loss also
occurs in transformers. Power loss in an electrical system is analogous to the loss of usable work pro-
duced by friction in a mechanical system. The less of it, the better!

In an ideal power transmission system, all of the power is VA power; that is, it is in the form of
ac in the conductors and an alternating voltage between them. It is undesirable to have power in a
transmission line or transformer exist in the form of true power, because that translates into either
heat loss, or radiation loss, or both. The place for true power dissipation or radiation is in the load,
such as electrical appliances or radio antennas.

Power Measurement in a Transmission Line
In an ac transmission line, power is measured by placing an ac voltmeter between the conductors,
and an ac ammeter in series with one of the conductors (Fig. 17-9). Then the power P (in watts) is
equal to the product of the rms voltage E (in volts) and the rms current I (in amperes). This tech-
nique can be used in any transmission line. But this is not necessarily an indication of the true power
dissipated by the load at the end of the line.

Recall that any transmission line has a characteristic impedance. This value, Zo, depends on the
diameters of the line conductors, the spacing between the conductors, and the type of dielectric ma-
terial that separates the conductors. If the load is a pure resistance R containing no reactance, and if
R = Zo, then the power indicated by the voltmeter/ammeter scheme will be the same as the true
power dissipated by the load—provided that the voltmeter and ammeter are placed at the load end
of the transmission line.
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17-9 Power measurement in a transmission line. Ideally, the voltage and
the current should be measured at the same physical point on the
line.



If the load is a pure resistance but it differs from the characteristic impedance of the line, then
the voltmeter and ammeter will not give an indication of the true power. Also, if there is any reac-
tance in the load, the voltmeter/ammeter method will not be accurate, even if the resistive compo-
nent happens to be the same as the characteristic impedance of the line. The physics of this is rather
complicated, and we won’t get into the details here. But you should remember that it is optimum
for the impedance of a load to be a pure resistance R, such that R = Zo. When this is not the case, an
impedance mismatch is said to exist.

Small impedance mismatches can often be tolerated in power transmission systems. But this is
not always the case. In very high frequency (VHF), ultrahigh frequency (UHF), and microwave
radio transmitting systems, even a small impedance mismatch between the load and the line can
cause excessive power losses in the line. An impedance mismatch can usually be corrected by means
of a matching transformer between a transmission line and the load, and/or the deliberate addition
of reactance at the load end of the line to cancel out any existing load reactance.

Loss in a Mismatched Line
When a transmission line is terminated in a resistance R = Zo, then the current and the voltage are
constant all along the line, provided the line has no loss. The ratio of the voltage to the current, E/I,
is equal to R and also equal to Zo. But this is an idealized case. No line is completely lossless.

In a real-world transmission line, the current and voltage gradually decrease as a signal makes
its way from the source to the load. But if the load is a pure resistance equal to the characteristic
impedance of the line, the current and voltage remain in the same ratio at all points along the line
(Fig. 17-10).

Standing Waves
If the load is not perfectly matched to the line, the current and voltage vary in a complicated way
along the length of the line. In some places, the current is high; in other places it is low. The max-
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17-10 In a matched line, the ratio of the voltage to the current (E/I ) is
constant everywhere along the line, although the actual values of
E and I decrease with increasing distance from the source.



ima and minima are called loops and nodes, respectively. At a current loop, the voltage is minimum (a
voltage node), and at a current node, the voltage is maximum (a voltage loop). The current and volt-
age loops and nodes along a mismatched transmission line, if graphed as functions of the position
on the line, form wavelike patterns that remain fixed over time. They just stand there. For this rea-
son, they are called standing waves.

Standing-Wave Loss
At current loops, the loss in line conductors reaches a maximum. At voltage loops, the loss in the
dielectric reaches a maximum. At current nodes, the loss in the conductors reaches a minimum. At
voltage nodes, the loss in the dielectric reaches a minimum. It is tempting to suppose that every-
thing would average out here, but it doesn’t work that way! Overall, in a mismatched line, the line
losses are greater than they are in a perfectly matched line. This extra line loss increases as the mis-
match gets worse.

Transmission-line mismatch loss, also called standing-wave loss, occurs in the form of heat dissipa-
tion. It is true power. Any true power that goes into heating up a transmission line is wasted, because
it cannot be dissipated in the load.

The greater the mismatch, the more severe the standing-wave loss becomes. The more loss a line
has to begin with (that is, when it is perfectly matched), the more loss is caused by a given amount
of mismatch. Standing-wave loss also increases as the frequency increases, if all other factors are held
constant. This loss is the most significant, and the most harmful, in long lengths of transmission
line, especially in RF practice at VHF, UHF, and microwave frequencies.

Line Overheating
A severe mismatch between the load and the transmission line can cause another problem: physical
damage to, or destruction of, the line!

A feed line might be able to handle a kilowatt (1 kW) of power when it is perfectly matched.
But if a severe mismatch exists and you try to feed 1 kW into the line, the extra current at the cur-
rent loops can heat the conductors to the point where the dielectric material melts and the line
shorts out. It is also possible for the voltage at the voltage loops to cause arcing between the line con-
ductors. This perforates and/or burns the dielectric, ruining the line.

When an RF transmission line must be used with a mismatch, derating functions are required to
determine how much power the line can safely handle. Manufacturers of prefabricated lines such as
coaxial cable can supply you with this information.

Resonance
One of the most important phenomena in ac circuits, especially in RF engineering, is the property
of resonance. This is a condition that occurs when capacitive and inductive reactance cancel each
other out.

Series Resonance
Recall that capacitive reactance, XC, and inductive reactance, XL, can be equal in magnitude, al-
though they are always opposite in effect. In any circuit containing an inductance and capacitance,
there exists a frequency at which XL = −XC. This condition constitutes resonance. In a simple LC cir-
cuit, there is only one such frequency. But in some circuits involving transmission lines or antennas,
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there can be many such frequencies. The lowest frequency at which resonance occurs is called the
resonant frequency, symbolized fo.

Refer to the schematic diagram of Fig. 17-11. You should recognize this as a series RLC circuit.
At some particular frequency, XL = −XC. This is inevitable if L and C are finite and nonzero. This fre-
quency is fo for the circuit. At fo, the effects of capacitive reactance and inductive reactance cancel out.
The result is that the circuit appears as a pure resistance, with a value that is theoretically equal to R.

If R = 0, that is, if the resistor is a short circuit, then the circuit is called a series LC circuit, and
the impedance at resonance will be theoretically 0 + j 0. The circuit will offer no opposition to the
flow of alternating current at the frequency fo. This condition is series resonance. In a practical series
LC circuit, there is always a little bit of loss in the coil and capacitor, so the real part of the complex
impedance is not exactly equal to 0 (although it can be extremely small).

Parallel Resonance
Refer to the circuit diagram of Fig. 17-12. This is a parallel RLC circuit. Remember that, in this sort
of situation, the resistance R should be thought of as a conductance G, with G = 1/R. Then the cir-
cuit can be called a parallel GLC circuit.

At some particular frequency fo, the inductive susceptance BL will exactly cancel the capacitive
susceptance BC ; that is, BL = −BC. This is inevitable for some frequency fo, as long as the circuit con-
tains finite, nonzero inductance and finite, nonzero capacitance. At the frequency fo, the suscep-
tances cancel each other out, leaving theoretically zero susceptance. The admittance through the
circuit is then very nearly equal to the conductance, G, of the resistor.

If the circuit contains no resistor, but only a coil and capacitor, it is called a parallel LC circuit,
and the admittance at resonance will be theoretically 0 + j0. That means the circuit will offer great
opposition to alternating current at fo, and the complex impedance will theoretically be infinite!
This condition is parallel resonance. In a practical parallel LC circuit, there is always a little bit of loss
in the coil and capacitor, so the real part of the complex impedance is not infinite (although it can
be extremely large).

Calculating Resonant Frequency
The formula for calculating resonant frequency fo, in terms of the inductance L in henrys and the
capacitance C in farads, is as follows:

fo = 1/[2π (LC )1/2]
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Considering π = 3.14 to three significant figures, this formula can be simplified to:

fo = 0.159/(LC )1/2

The 1⁄ 2 power of a quantity represents the positive square root of that quantity. The preceding for-
mulas are valid for series-resonant and parallel-resonant RLC circuits.

The formula will also work if you want to find fo in megahertz (MHz) when L is given in mi-
crohenrys (µH) and C is in microfarads (µF). These values are far more common than hertz, hen-
rys, and farads in electronic circuits. Just remember that millions of hertz go with millionths of
henrys, and with millionths of farads.

The Effects of R and G
Interestingly, the value of R or G does not affect the resonant frequency in either type of circuit. But
these quantities are significant, nevertheless! The presence of nonzero resistance in a series-resonant
circuit, or nonzero conductance in a parallel-resonant circuit, makes the resonant frequency less well-
defined. Engineers say that the resonant frequency response becomes “more broad” or “less sharp.”

In a series circuit, the resonant frequency response becomes more broad as the resistance in-
creases. In a parallel circuit, the resonant frequency response becomes more broad as the conductance
increases. The sharpest possible responses occur when R = 0 in a series circuit, and when G = 0 (that
is, R =  ) in a parallel circuit.

Problem 17-10
Find the resonant frequency of a series circuit with an inductance of 100 µH and a capacitance of
100 pF.

First, convert the capacitance to microfarads: 100 pF = 0.000100 µF. Then find the product 
LC = 100 × 0.000100 = 0.0100. Take the square root of this, getting 0.100. Finally, divide 0.159 by
0.100, getting fo = 1.59 MHz.

Problem 17-11
Find the resonant frequency of a parallel circuit consisting of a 33-µH coil and a 47-pF capacitor.

Again, convert the capacitance to microfarads: 47 pF = 0.000047 µF. Then find the product 
LC = 33 × 0.000047 = 0.00155. Take the square root of this, getting 0.0394. Finally, divide 0.159
by 0.0394, getting fo = 4.04 MHz.

Problem 17-12
Suppose you want to design a circuit so that it has fo = 9.00 MHz. You have a 33-pF fixed capacitor
available. What size coil will be needed to get the desired resonant frequency?

Use the formula for the resonant frequency, and plug in the values. This will allow you to use
simple arithmetic to solve for L. Convert the capacitance to microfarads: 33 pF = 0.000033 µF.
Then calculate as follows:

fo = 0.159/(LC )1/2

9.00 = 0.159/(L × 0.000033)1/2

9.002 = 0.1592/(0.000033 × L)
81.0 = 0.0253/(0.000033 × L)
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81.0 × 0.000033 × L = 0.0253
0.00267 × L = 0.0253

L = 0.0253/0.00267
= 9.48 µH

Problem 17-13
Suppose a circuit must be designed to have fo = 455 kHz. A coil of 100 µH is available. What size
capacitor is needed?

Convert the frequency to megahertz: 455 kHz = 0.455 MHz. Then the calculation proceeds in
the same way as with the preceding problem:

fo = 0.159/(LC )1/2

0.455 = 0.159/(100 × C )1/2

0.4552 = 0.1592/(100 × C )
0.207 = 0.0253/(100 × C )

0.207 × 100 × C = 0.0253
20.7 × C = 0.0253

C = 0.0253/20.7
= 0.00122 µF
= 1220 pF

In practical circuits, variable inductors and/or variable capacitors are often placed in tuned circuits,
so that small errors in the frequency can be compensated for. The most common approach is to
design the circuit for a frequency slightly higher than fo, and to use a padder capacitor in parallel with
the main capacitor (Fig. 17-13).
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17-13 Padding capacitors
(Cp ) allow limited
adjustment of the
resonant frequency in
a series LC circuit 
(as shown at A), or in
a parallel LC circuit
(as shown at B).



Resonant Devices
Resonant circuits often consist of coils and capacitors in series or parallel, but there are other kinds
of hardware that exhibit resonance. Some of these are as follows.

Piezoelectric Crystals
Pieces of quartz, when cut into thin wafers and subjected to voltages, will vibrate at high frequencies.
Because of the physical dimensions of such a piezoelectric crystal, these vibrations occur at a precise fre-
quency fo, and also at whole-number multiples of fo. These multiples, 2fo, 3fo, 4fo, and so on, are called
harmonic frequencies or simply harmonics. The frequency fo is called the fundamental frequency or sim-
ply the fundamental. The fundamental, fo, is defined as the lowest frequency at which resonance oc-
curs. Quartz crystals can be made to act like LC circuits in electronic devices. A crystal exhibits an
impedance that varies with frequency. The reactance is zero at fo and the harmonic frequencies.

Cavities
Lengths of metal tubing, cut to specific dimensions, exhibit resonance at very high, ultrahigh, and
microwave radio frequencies. They work in much the same way as musical instruments resonate
with sound waves. But the waves are electromagnetic, rather than acoustic. Such cavities, also called
cavity resonators, have reasonable physical dimensions at frequencies above about 150 MHz. Below
this frequency, a cavity can be made to work, but it is long and unwieldy. Like crystals, cavities res-
onate at a fundamental frequency fo, and also at harmonic frequencies.

Sections of Transmission Line
When a transmission line is cut to 1⁄ 4 wavelength, or to any whole-number multiple of this, it
behaves as a resonant circuit. The most common length for a transmission-line resonator is a 
1⁄ 4 wavelength. Such a piece of transmission line is called a quarter-wave section.

When a quarter-wave section is short-circuited at the far end, it acts like a parallel-resonant LC
circuit, and has a high resistive impedance at the resonant frequency fo. When it is open at the far
end, it acts as a series-resonant LC circuit, and has a low resistive impedance at fo. In effect, a quarter-
wave section converts an ac short circuit into an ac open circuit and vice versa, at a specific
frequency fo.

The length of a quarter-wave section depends on the desired fo. It also depends on how fast the
electromagnetic energy travels along the line. This speed is specified in terms of a velocity factor,
abbreviated v. The value of v is given as a fraction of the speed of light. Typical transmission lines
have velocity factors ranging from about 0.66 to 0.95 (or 66 percent to 95 percent). This factor is
provided by the manufacturers of prefabricated lines such as coaxial cable.

If the frequency in megahertz is fo and the velocity factor of a line is v, then the length L ft of a
quarter-wave section of transmission line, in feet, is given by this formula:

L ft = 246v/fo

The length Lm in meters is given by this:

Lm = 75.0v/fo

We use L here to stand for “length,” not “inductance”!
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Antennas
Many types of antennas exhibit resonant properties. The simplest type of resonant antenna, and the
only kind that will be mentioned here, is the center-fed, half-wavelength dipole antenna (Fig. 17-14).

The length Lft, in feet, for a dipole antenna at a frequency of fo, in megahertz, is given by the
following formula:

Lft = 468/fo

This takes into account the fact that electromagnetic fields travel along a wire at about 95 percent
of the speed of light. A straight, thin wire in free space has a velocity factor of approximately 0.95.

If the length of the half-wave dipole is specified in meters as Lm, then:

Lm = 143/fo

A half-wave dipole has a purely resistive impedance of about 73 Ω at its fundamental frequency fo.
But this type of antenna is also resonant at all harmonics of fo. The dipole is a full wavelength long at
2fo; it is 

3⁄ 2 wavelength long at 3fo; it is two full wavelengths long at 4fo, and so on.

Radiation Resistance
At fo and all of the odd harmonics, the antenna behaves like a series-resonant RLC circuit with a
fairly low resistance. At all even harmonics, the antenna acts like a parallel-resonant RLC circuit with
a high resistance. Does this confuse you? There’s no resistor in Fig. 17-14! Where, you ask, does the
resistance come from in the half-wave dipole? The answer to this is rather esoteric, and it brings to
light an interesting property that all antennas have. It is called radiation resistance, and is a crucial
factor in the design and construction of all RF antenna systems.

When electromagnetic energy is fed into an antenna, power is radiated into space in the form
of radio waves. This is a manifestation of true power, just as the dissipation of power in a pure re-
sistance is a manifestation of true power. Although there is no physical resistor in Fig. 17-14, the ra-
diation of radio waves is like power dissipation in a pure resistance. In fact, if a half-wave dipole
antenna were replaced with a 73-Ω nonreactive resistor that could dissipate enough power without
burning out, a radio transmitter connected to the opposite end of the line wouldn’t know the dif-
ference. (But a receiver would!)

Problem 17-14
How many feet long is a quarter-wave section of transmission line at 7.05 MHz, if the velocity fac-
tor is 0.800?
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Just use the formula:

L ft = 246v/fo

= (246 × 0.800)/7.05
= 197/7.05
= 27.9 ft

Quiz
Refer to the text in this chapter if necessary. A good source is 18 or more correct. Answers are in the
back of the book.

1. The power in a pure reactance is
(a) radiated.
(b) true.
(c) imaginary.
(d) apparent.

2. Which of the following is not an example of true power?
(a) Power in the form of heat, produced by dc flowing through a resistor
(b) Power in the form of electromagnetic fields, radiated from a radio antenna
(c) The product of the rms ac through a capacitor and the rms voltage across it
(d) Power in the form of heat, produced by losses in an RF transmission line

3. Suppose the apparent power in a circuit is 100 W, and the imaginary power is 40 W. What is
the true power?

(a) 92 W
(b) 100 W
(c) 140 W
(d) It is impossible to determine from this information.

4. Power factor is equal to
(a) apparent power divided by true power.
(b) imaginary power divided by apparent power.
(c) imaginary power divided by true power.
(d) true power divided by apparent power.

5. Suppose a circuit has a resistance of 300 Ω and an inductance of 13.5 µH in series, and is
operated at 10.0 MHz. What is the power factor?

(a) 0.334
(b) 0.999
(c) 0.595
(d) It cannot be determined from the information given.
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6. Suppose a series circuit has Z = 88.4 Ω, with R = 50.0 Ω. What is the power factor, expressed
as a percentage?

(a) 99.9 percent
(b) 56.6 percent
(c) 60.5 percent
(d) 29.5 percent

7. Suppose a series circuit has R = 53.5 Ω, with X = 75.5 Ω. What is the power factor, expressed
as a percentage?

(a) 70.9 percent
(b) 81.6 percent
(c) 57.8 percent
(d) 63.2 percent

8. The phase angle in an ac circuit is equal to
(a) arctan (Z/R).
(b) arctan (R/Z).
(c) arctan (R/X).
(d) arctan (X/R).

9. Suppose an ac ammeter and an ac voltmeter indicate that there are 220 W of VA power in a
circuit that consists of a resistance of 50 Ω in series with a capacitive reactance of −20 Ω. What is
the true power?

(a) 237 W
(b) 204 W
(c) 88.0 W
(d) 81.6 W

10. Suppose an ac ammeter and an ac voltmeter indicate that there are 57 W of VA power in a
circuit. The resistance is known to be 50 Ω, and the true power is known to be 40 W. What is the
absolute-value impedance?

(a) 50 Ω
(b) 57 Ω
(c) 71 Ω
(d) It is impossible to determine on the basis of this data.

11. Which of the following should be minimized in an RF transmission line?
(a) The load impedance
(b) The load resistance
(c) The line loss
(d) The transmitter power
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12. Which of the following does not increase the loss in a transmission line?
(a) Reducing the power output of the source
(b) Increasing the degree of mismatch between the line and the load
(c) Reducing the diameter of the line conductors
(d) Raising the frequency

13. Which of the following is a significant problem that standing waves can cause in an RF
transmission line?

(a) Line overheating
(b) Excessive power loss
(c) Inaccuracy in power measurement
(d) All of the above

14. Suppose a coil and capacitor are in series. The inductance is 88 mH and the capacitance is
1000 pF. What is the resonant frequency?

(a) 17 kHz
(b) 540 Hz
(c) 17 MHz
(d) 540 kHz

15. Suppose a coil and capacitor are in parallel, with L = 10.0 µH and C = 10 pF. What is fo?
(a) 15.9 kHz
(b) 5.04 MHz
(c) 15.9 MHz
(d) 50.4 MHz

16. Suppose you want to build a series-resonant circuit with fo = 14.1 MHz. A coil of 13.5 µH is
available. How much capacitance is needed?

(a) 0.945 µF
(b) 9.45 pF
(c) 94.5 pF
(d) 945 pF

17. Suppose you want to build a parallel-resonant circuit with fo = 21.3 MHz. A capacitor of
22.0 pF is available. How much inductance is needed?

(a) 2.54 mH
(b) 254 µH
(c) 25.4 µH
(d) 2.54 µH

18. A 1⁄ 4-wave section of transmission line is cut for use at 21.1 MHz. The line has a velocity
factor of 0.800. What is its physical length in meters?

(a) 11.1 m
(b) 3.55 m
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(c) 8.87 m
(d) 2.84 m

19. What is the fourth harmonic of 800 kHz?
(a) 200 kHz
(b) 400 kHz
(c) 3.20 MHz
(d) 4.00 MHz

20. Suppose you want to build a 1⁄ 2-wave dipole antenna designed to have a fundamental
resonant frequency of 3.60 MHz. How long should you make it, as measured from end to end in
feet?

(a) 130 ft
(b) 1680 ft
(c) 39.7 ft
(d) 515 ft
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TRANSFORMERS ARE USED TO OBTAIN THE OPTIMUM VOLTAGE FOR THE OPERATION OF A CIRCUIT OR

system. Transformers can also match impedances between a circuit and a load, or between two 
different circuits. Transformers can be used to provide dc isolation between electronic circuits 
while letting ac pass. Another application is to mate balanced and unbalanced circuits, feed systems, 
and loads.

Principle of the Transformer
When two wires are near each other and one of them carries a fluctuating current, a fluctuating cur-
rent is induced in the other wire. This effect is known as electromagnetic induction. All ac transformers
work according to the principle of electromagnetic induction. If the first wire carries sine-wave ac of a
certain frequency, then the induced current is sine-wave ac of the same frequency in the second wire.

The closer the two wires are to each other, the greater is the induced current, for a given current
in the first wire. If the wires are wound into coils and placed along a common axis (Fig. 18-1), the
induced current will be greater than if the wires are straight and parallel. Even more coupling, or ef-
ficiency of induced-current transfer, is obtained if the two coils are wound one atop the other.

Primary and Secondary
The two windings, along with the core on which they are wound, constitute a transformer. The first
coil is called the primary winding, and the second coil is known as the secondary winding. These are
often spoken of simply as the primary and the secondary. The induced current in the secondary cre-
ates a voltage between its end terminals. In a step-down transformer, the secondary voltage is less
than the primary voltage. In a step-up transformer, the secondary voltage is greater than the primary
voltage. The primary voltage is abbreviated Epri, and the secondary voltage is abbreviated Esec. Un-
less otherwise stated, effective (rms) voltages are always specified.

The windings of a transformer have inductance, because they are coils. The required induc-
tances of the primary and secondary depend on the frequency of operation, and also on the resistive
part of the impedance in the circuit. As the frequency increases, the needed inductance decreases. At
high resistive impedances, more inductance is generally needed than at low resistive impedances.
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Turns Ratio
The primary-to-secondary turns ratio in a transformer is the ratio of the number of turns in the pri-
mary, Tpri, to the number of turns in the secondary, Tsec. This ratio is written Tpri:Tsec or Tpri/Tsec. In
a transformer with excellent primary-to-secondary coupling, the following relationship always
holds:

Epri/Esec = Tpri/Tsec

That is, the primary-to-secondary voltage ratio is always equal to the primary-to-secondary turns
ratio (Fig. 18-2).

Problem 18-1
Suppose a transformer has a primary-to-secondary turns ratio of exactly 9:1. The ac voltage at the
primary is 117 V rms. Is this a step-up transformer or a step-down transformer? What is the voltage
across the secondary?

This is a step-down transformer. Simply plug in the numbers in the preceding equation and
solve for Esec, as follows:

Epri/Esec = Tpri/Tsec

117/Esec = 9.00
1/Esec = 9.00/117

Esec = 117/9.00
= 13.0 V rms
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18-1 Magnetic lines of flux
between two aligned
coils of wire when one
of the coils carries
fluctuating or
alternating current.

18-2 The primary voltage (Epri) and
secondary voltage (Esec) in a
transformer depend on the number
of turns in the primary winding
(Tpri) versus the number of turns in
the secondary winding (Tsec).



Problem 18-2
Consider a transformer with a primary-to-secondary turns ratio of exactly 1:9. The voltage at the
primary is 121.4 V rms. Is this a step-up transformer or a step-down transformer? What is the volt-
age at the secondary?

This is a step-up transformer. Plug in numbers and solve for Esec, as follows:

121.4/Esec = 1/9.000
Esec/121.4 = 9.000

Esec = 9.000 × 121.4
= 1093 V rms

Sometimes the secondary-to-primary turns ratio is given, rather than the primary-to-secondary
turns ratio. This is written Tsec/Tpri. In a step-down unit, Tsec/Tpri is less than 1. In a step-up unit,
Tsec/Tpri is greater than 1. When you hear someone say that such-and-such a transformer has a cer-
tain “turns ratio,” say 10:1, be sure of which ratio is meant, Tpri/Tsec or Tsec/Tpri! If you get it wrong,
you’ll have the secondary voltage wrong by a factor of the square of the turns ratio.

Ferromagnetic Cores
If a ferromagnetic substance such as laminated iron or powdered iron is placed within the pair of
coils, the extent of coupling is increased far above that possible with an air core. But this improve-
ment in coupling is obtained at a price. Some energy is invariably lost as heat in the core. Also, fer-
romagnetic cores limit the maximum frequency at which a transformer will work well.

The schematic symbol for an air-core transformer consists of two inductor symbols back-to-
back (Fig. 18-3A). If a laminated iron core is used, two parallel lines are added to the schematic sym-
bol (Fig. 18-3B). If the core is made of powdered iron, the two parallel lines are broken or dashed
(Fig. 18-3C).

In transformers for 60-Hz utility ac, and also for low audio-frequency (AF) use, sheets of an
alloy called silicon steel, glued together in layers, are often employed as transformer cores. The sili-
con steel is sometimes called transformer iron. The reason layering is used, rather than making the
core from a single mass of metal, is that the magnetic fields from the coils cause currents to flow in
a solid core. These eddy currents go in circles, heating up the core and wasting energy that would oth-
erwise be transferred from the primary to the secondary. Eddy currents are choked off by breaking
up the core into layers, so that currents cannot flow very well in circles.

A rather esoteric form of loss, called hysteresis loss, occurs in all ferromagnetic transformer cores,
but especially laminated iron. Hysteresis is the tendency for a core material to be sluggish in accept-
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18-3 Schematic symbols for transformers. At A, air core. At B, laminated
iron core. At C, ferrite or powdered iron core.



ing a fluctuating magnetic field. Laminated cores exhibit high hysteresis loss above the AF range,
and are therefore not good above a few kilohertz.

At frequencies up to several tens of megahertz, powdered iron works well for RF transformers.
This material has high magnetic permeability and concentrates the flux efficiently. High permeabil-
ity cores minimize the number of turns needed in the coils, and this minimizes the loss that occurs
in the wires.

Geometries
The properties of a transformer depend on the shape of its core, and on the way in which the wires
are wound on it. There are several different geometries used with transformers.

E Core
A common core for a power transformer is the E core, so named because it is shaped like the capital
letter E. A bar, placed at the open end of the E, completes the core assembly after the coils have been
wound on the E-shaped section (Fig. 18-4A).

The primary and secondary windings can be placed on an E core in either of two ways. The
simpler winding method is to put both the primary and the secondary around the middle bar of the
E (Fig. 18-4B). This is called the shell method of transformer winding. It provides maximum cou-
pling between the windings. However, this scheme results in considerable capacitance between the
primary and the secondary. Such interwinding capacitance can sometimes be tolerated, but often it
cannot. Another disadvantage of the shell geometry is that, when windings are placed one on top of
the other, the transformer cannot handle very much voltage. High voltages cause arcing between the
windings, which can destroy the insulation on the wires and lead to permanent short circuits.

Another winding method is the core method. In this scheme, one winding is placed at the bot-
tom of the E section, and the other winding is placed at the top (Fig. 18-4C). The coupling occurs
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18-4 At A, a utility transformer E core, showing both sections. At B, the shell
winding method. At C, the core winding method.



by means of magnetic flux in the core. The interwinding capacitance is lower than it is in a shell-
wound transformer because the windings are physically farther apart. Also, a core-wound trans-
former can handle higher voltages than a shell-wound transformer of the same physical size.
Sometimes the center part of the E is left out of the core when the core winding scheme is used.

Shell-wound and core-wound transformers are almost universally employed at 60 Hz. These
configurations are also common at AF.

Solenoidal Core
A pair of cylindrical coils, wound around a rod-shaped piece of powdered iron or ferrite, was once
a common configuration for RF transformers. Sometimes this type of transformer is still seen, al-
though it is most often used as a loopstick antenna in portable radio receivers and in radio direction-
finding equipment. The coil windings can be placed one atop the other, or they can be separated
(Fig. 18-5) to reduce the capacitance between the primary and secondary.

In a loopstick antenna, the primary serves to pick up the radio signals. The secondary winding
provides an optimum impedance match to the first amplifier stage, or front end, of the radio re-
ceiver. The use of transformers for impedance matching is discussed later in this chapter.

Toroidal Core
The toroidal core (or toroid ) has become common for winding RF transformers. The core is a
donut-shaped ring of powdered iron. The coils are wound around the donut. The complete assem-
bly is called a toroidal transformer. The primary and secondary can be wound one over the other, or
they can be wound over different parts of the core (Fig. 18-6). As with other transformers, when the
windings are one on top of the other, there is more interwinding capacitance than when they are
separated.

Toroids confine practically all the magnetic flux within the core material. This allows toroidal
coils and transformers to be placed near other components without inductive interaction. Also, a
toroidal coil or transformer can be mounted directly on a metal chassis, and the operation is not
affected (assuming the wire is insulated or enameled).
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18-5 A solenoidal-core
transformer.



A toroidal core provides considerably more inductance per turn, for the same kind of ferromag-
netic material, than a solenoidal core. It is common to see toroidal coils or transformers that have
inductance values as high as 100 mH.

Pot Core
Even more inductance per turn can be obtained with a pot core. This is a shell of ferromagnetic
material that is wrapped around a loop-shaped coil. The core is manufactured in two halves (Fig. 
18-7). You wind the coil inside one of the halves, and then bolt the two together. The final core
completely surrounds the loop, and the magnetic flux is confined to the core material.
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18-6 A toroidal-core
transformer.

18-7 Exploded view of a
pot-core transformer.



Like the toroid, the pot core is self-shielding. There is essentially no coupling to external com-
ponents. A pot core can be used to wind a single, high-inductance coil. Inductance values of more
than 1 H are possible with a reasonable number of wire turns.

In a pot-core transformer, the primary and secondary must be wound next to each other. This
is unavoidable because of the geometry. Therefore, the interwinding capacitance of a pot-core trans-
former is high. Pot cores are useful at AF and the lowest-frequency parts of the RF spectrum. They
are rarely employed at high radio frequencies.

Autotransformer
In some situations, there is no need to provide dc isolation between the primary and secondary
windings of a transformer. In a case of this sort, an autotransformer can be used. It has a single,
tapped winding.

Figure 18-8 shows three autotransformer configurations. The unit shown at A has an air core,
and is a step-down type. The unit at B has a laminated iron core, and is a step-up type. The unit at
C has a powdered iron core, and is a step-up type.

You’ll sometimes see autotransformers in radio receivers or transmitters. Autotransformers work
well in impedance-matching applications, and also perform well as solenoidal loopstick antennas.
Autotransformers are occasionally, but not often, used in AF applications and in 60-Hz utility
wiring. In utility circuits, autotransformers can step the voltage down by a large factor, but they
aren’t used to step voltages up by more than a few percent.

Power Transformers
Any transformer used in the 60-Hz utility line, intended to provide a certain rms ac voltage for the
operation of electrical circuits, is a power transformer. Power transformers exist in a vast range of
physical sizes, from smaller than a tennis ball to as big as a room.

At the Generating Plant
The largest transformers are employed at the places where electricity is generated. Not surprisingly,
high-energy power plants have bigger transformers that develop higher voltages than low-energy,
local power plants. These transformers must be able to handle high voltages and large currents
simultaneously.
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18-8 Schematic symbols for autotransformers. At A, air core, step-down.
At B, laminated iron core, step-up. At C, ferrite or powdered iron
core, step-up.



When electrical energy must be sent over long distances, extremely high voltages are used. This
is because, for a given amount of power ultimately dissipated by the loads, the current is lower when
the voltage is higher. Lower current translates into reduced loss in the transmission line.

Recall the formula P = EI, where P is the power (in watts), E is the voltage (in volts), and I is
the current (in amperes). If you can make the voltage 10 times larger, for a given power level, then
the current is reduced to 1⁄ 10 as much. The ohmic losses in the wires are proportional to the square
of the current. Remember that P = I 2R, where P is the power (in watts), I is the current (in am-
peres), and R is the resistance (in ohms). Engineers can’t do much about the wire resistance or the
power consumed by the loads, but they can adjust the voltage, and thereby the current.

Suppose the voltage in a power transmission line is increased by a factor of 10, and the load at
the end of the line draws constant power. This increase in the voltage reduces the current to 1⁄ 10 of
its previous value. As a result, the ohmic loss is cut to (1⁄ 10)2, or 1⁄ 100, of its previous amount. That’s
a major improvement in the efficiency of the transmission line, at least in terms of the loss caused
by the resistance in the wires—and it is the reason why regional power plants have massive trans-
formers capable of generating hundreds of thousands of volts.

Along the Line
Extreme voltage is good for high-tension power transmission, but it’s certainly of no use to an average
consumer. The wiring in a high-tension system must be done using precautions to prevent arcing
(sparking) and short circuits. Personnel must be kept at least several meters away from the wires. Can
you imagine trying to use an appliance, say a home computer, by plugging it into a 500,000-V rms
electrical outlet?

Medium-voltage power lines branch out from the major lines, and step-down transformers are
used at the branch points. These lines fan out to still lower-voltage lines, and step-down transform-
ers are employed at these points, too. Each transformer must have windings heavy enough to with-
stand the product P = EI, the amount of VA power delivered to all the subscribers served by that
transformer, at periods of peak demand.

Sometimes, such as during a heat wave, the demand for electricity rises above the normal peak
level. This loads down the circuit to the point that the voltage drops several percent. This is called a
brownout. If consumption rises further still, a dangerous current load is placed on one or more in-
termediate power transformers. Circuit breakers in the transformers protect them from destruction
by opening the circuit. Then there is a temporary blackout.

At individual homes and buildings, transformers step the voltage down to either 234 V rms or
117 V rms. Usually, 234-V rms electricity is provided in the form of three sine waves, called phases,
each separated by 120°, and each appearing at one of the three slots in the outlet (Fig. 18-9A). This
voltage is commonly employed with heavy appliances, such as the kitchen oven/stove (if they are
electric), heating (if it is electric), and the laundry washer and dryer. A 117-V rms outlet supplies
just one phase, appearing between two of the three slots in the outlet. The third opening in the out-
let leads to an earth ground (Fig. 18-9B).

In Electronic Devices
The smallest power transformers are found in electronic equipment such as television sets, ham
radios, and home computers. Most solid-state devices use low voltages, ranging from about 5 V up
to perhaps 50 V. This equipment needs step-down power transformers in its power supplies.

Solid-state equipment usually (but not always) consumes relatively little power, so the trans-
formers are usually not very bulky. The exception is high-powered AF or RF amplifiers, whose tran-
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sistors can demand more than 1000 W (1 kW) in some cases. At 12 V, this translates to a current
demand of 90 A or more.

Television sets have cathode-ray tubes that need several hundred volts. This is derived by using
a step-up transformer in the power supply. Such transformers don’t have to supply a lot of current,
though, so they are not very big or heavy. Another type of device that needs rather high voltage is a
ham-radio amplifier with vacuum tubes. Such an amplifier requires from 2 kV to 5 kV.

Any voltage higher than about 12 V should be treated with respect. Warning: The voltages in tel-
evisions and ham radios can present an electrocution hazard, even after the equipment has been switched
off. Do not try to service such equipment unless you are trained to do so!

At Audio Frequencies
Transformers for use at AF are similar to those employed for 60-Hz electricity. The differences are
that the frequency is somewhat higher (up to 20 kHz), and that audio signals exist in a band of fre-
quencies (20 Hz to 20 kHz) rather than at only one frequency.

Most AF transformers are constructed like miniature utility transformers. They have laminated
E cores with primary and secondary windings wound around the crossbars, as shown in Fig. 18-4.
Audio transformers can be either the step-up or the step-down type. However, rather than being
made to produce a specific voltage, AF transformers are designed to match impedances.

Audio circuits, and in fact all electronic circuits that handle sine-wave or complex-wave signals,
exhibit impedance at the input and output. The load has a certain impedance; a source has another
impedance. Good audio design strives to minimize the reactance in the circuitry, so that the
absolute-value impedance Z is close to the resistance R. This means that X must be zero or nearly
zero. In the following discussion of impedance-matching transformers, for both AF and RF appli-
cations, assume that the reactance is zero, so the impedance is purely resistive with Z = R + j 0.

Isolation and Impedance Matching
Transformers can provide isolation between electronic circuits. While there is inductive coupling in a
transformer, there is comparatively little capacitive coupling. The amount of capacitive coupling can
be reduced by using cores that minimize the number of wire turns needed in the windings, and by
keeping the windings physically separated from each other (rather than overlapping).
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18-9 At A, an outlet for three-phase, 234-V rms utility ac. At B, a
conventional single-phase utility outlet for 117-V rms utility ac.



Balanced and Unbalanced Loads and Lines
A balanced load is one whose terminals can be reversed without significantly affecting circuit behav-
ior. A plain resistor is a good example. The two-wire antenna input in a television receiver is another
example of a balanced load. A balanced transmission line is usually a two-wire line, such as old-
fashioned TV ribbon, also called twinlead.

An unbalanced load is a load that must be connected a certain way. Switching its leads will re-
sult in improper circuit operation. In this sense, an unbalanced load is a little like a polarized com-
ponent such as a battery or capacitor. Many wireless antennas are of this type. Usually, unbalanced
sources and loads have one side connected to ground. The coaxial input of a television receiver is un-
balanced; the shield (braid) of the cable is grounded. An unbalanced transmission line is usually a
coaxial line, such as you find in a cable television system.

Normally, you cannot connect an unbalanced line to a balanced load, or a balanced line to an
unbalanced load, and expect good performance. But a transformer can allow for mating between
these two types of systems. In Fig. 18-10A, a balanced-to-unbalanced transformer is shown. Note that
the balanced side is center-tapped, and the tap is grounded. In Fig. 18-10B, an unbalanced-to-
balanced transformer is illustrated. Again, the balanced side has a grounded center tap.

The turns ratio of a balanced-to-unbalanced transformer (also called a balun) or an unbalanced-
to-balanced transformer (also known as an unbal) can be 1:1, but this need not be the case, and
often it is not. If the impedances of the balanced and unbalanced parts of the systems are the same,
then a 1:1 turns ratio is ideal. But if the impedances differ, the turns ratio should be such that the
impedances are matched. Shortly, we’ll see how the turns ratio of a transformer can be manipulated
to transform one purely resistive impedance into another.

Transformer Coupling
Transformers are sometimes used between amplifier stages in electronic equipment where a large
amplification factor is needed. There are other methods of coupling from one amplifier stage to an-
other, but transformers offer some advantages, especially in RF receivers and transmitters.

Part of the problem in getting a radio to work is that the amplifiers must operate in a stable
manner. If there is too much feedback, a series of amplifiers will oscillate, and this will severely de-
grade the performance of the radio. Transformers that minimize the capacitance between the ampli-
fier stages, while still transferring the desired signals, can help to prevent this oscillation.
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18-10 At A, a balanced-to-unbalanced transformer. At B, an
unbalanced-to-balanced transformer.



Impedance Transfer Ratio
In RF and AF systems, transformers are employed to match impedances. Thus, you will sometimes
hear or read about an impedance step-up transformer or an impedance step-down transformer.

The impedance transfer ratio of a transformer varies according to the square of the turns ratio,
and also according to the square of the voltage-transfer ratio. If the primary (source) and secondary
(load) impedances are purely resistive and are denoted Zpri and Zsec, then the following relations
hold:

Zpri/Zsec = (Tpri/Tsec)2

Zpri/Zsec = (Epri/Esec)2

The inverses of these formulas, in which the turns ratio or voltage-transfer ratio are expressed in
terms of the impedance-transfer ratio, are:

Tpri/Tsec = (Zpri/Zsec)1/2

Epri/Esec = (Zpri/Zsec)1/2

Problem 18-3
Consider a situation in which a transformer is needed to match an input impedance of 50.0 Ω,
purely resistive, to an output impedance of 300 Ω, also purely resistive. What is the required turns
ratio Tpri/Tsec?

The required transformer will have a step-up impedance ratio of Zpri/Zsec = 50.0/300 = 1/6.00.
From the preceding formulas:

Tpri/Tsec = (Zpri/Zsec)1/2

= (1/6.00)1/2

= 0.166671/2

= 0.408
= 1/2.45

Problem 18-4
Suppose a transformer has a primary-to-secondary turns ratio of 4.00:1. The load, connected to the
transformer output, is a pure resistance of 37.5 Ω. What is the impedance at the primary?

The impedance-transfer ratio is equal to the square of the turns ratio. Therefore:

Zpri/Zsec = (Tpri/Tsec)2

= (4.00/1)2

= 4.002

= 16.0

We know that the secondary impedance, Zsec is 37.5 Ω. Thus:

Zpri = 16.0 × Zsec

= 16.0 × 37.5
= 600 Ω
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Radio-Frequency Transformers
In radio receivers and transmitters, transformers can be categorized generally by the method of con-
struction used. Some have primary and secondary windings, just like utility and audio units. Oth-
ers employ transmission-line sections. These are the two most common types of transformer found
at radio frequencies.

Wire-Wound Types
In wire-wound RF transformers, powdered-iron cores can be used up to quite high frequencies.
Toroidal cores are common, because they are self-shielding (all of the magnetic flux is confined
within the core material). The number of turns depends on the frequency, and also on the perme-
ability of the core.

In high-power applications, air-core coils are often preferred. Although air has low permeabil-
ity, it has negligible hysteresis loss, and will not heat up or fracture as powdered-iron cores some-
times do. The disadvantage of air-core coils is that some of the magnetic flux extends outside of the
coil. This affects the performance of the transformer when it must be placed in a cramped space,
such as in a transmitter final-amplifier compartment.

A major advantage of coil-type transformers, especially when they are wound on toroidal cores,
is that they can be made to work over a wide band of frequencies, such as from 3.5 MHz to 
30 MHz. These are called broadband transformers.

Transmission-Line Types
As you recall, any transmission line has a characteristic impedance, or Zo, that depends on the line
construction. This property is sometimes used to make impedance transformers out of coaxial or
parallel-wire line.

Transmission-line transformers are always made from quarter-wave sections. From the previous
chapter, remember the formula for the length of a quarter-wave section:

Lft = 246v/fo

where Lft is the length of the section in feet, v is the velocity factor expressed as a fraction, and fo is
the frequency of operation in megahertz. If the length Lm is specified in meters, then:

Lm = 75v/fo

Suppose that a quarter-wave section of line, with characteristic impedance Zo, is terminated in
a purely resistive impedance R out. Then the impedance that appears at the input end of the line, Rin,
is also a pure resistance, and the following relations hold:

Zo
2 = RinR out

Zo = (RinR out)1/2

This is illustrated in Fig. 18-11. The first of the preceding formulas can be rearranged to solve for
Rin in terms of Rout, or vice versa:

Rin = Zo
2/R out

R out = Zo
2/R in
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These equations are valid at the frequency fo for which the line length measures 1⁄ 4 wavelength.
Sometimes, the word “wavelength” is replaced by the lowercase Greek letter lambda (λ), so you will
occasionally see the length of a quarter-wave section denoted as (1⁄ 4)λ or 0.25λ.

Neglecting line losses, the preceding relations hold at all odd harmonics of fo, that is, at 3fo, 5fo,
7fo, and so on. At other frequencies, a quarter-wave section of line does not act as a transformer.
Instead, it behaves in a complex manner that is beyond the scope of this discussion.

Quarter-wave transmission-line transformers are most often used in antenna systems, especially
at the higher frequencies, where their dimensions become practical. A quarter-wave matching sec-
tion should be made using unbalanced line if the load is unbalanced, and balanced line if the load
is balanced.

A disadvantage of quarter-wave sections is the fact that they work only at specific frequencies.
But this is often offset by the ease with which they are constructed, if radio equipment is to be used
at only one frequency, or at odd-harmonic frequencies.

Problem 18-5
Suppose an antenna has a purely resistive impedance of 100 Ω. It is connected to a 1⁄ 4-wave section
of 75-Ω coaxial cable. What is the impedance at the input end of the section?

Use the formula from above:

R in = Zo
2/Rout

= 752/100
= 5625/100
= 56 Ω

Problem 18-6
Consider an antenna known to have a purely resistive impedance of 600 Ω. You want to match it to
the output of a radio transmitter designed to work into a 50.0-Ω pure resistance. What is the char-
acteristic impedance needed for a quarter-wave matching section?

Use this formula:

Z 2 = R inRout

= 600 × 50
= 30,000
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18-11 A quarter-wave
matching section of
transmission line.
The input impedance
is Rin, the output
impedance is Rout,
and the characteristic
impedance of the 
line is Zo.



Therefore:

Zo = (30,000)1/2

= 173 Ω

It may be difficult to find a commercially manufactured transmission line that has this particular
characteristic impedance. Prefabricated lines come in standard Zo values, and a perfect match might
not be obtainable. In that case, the closest obtainable Zo should be used. In this case, it would prob-
ably be 150 Ω. If nothing is available anywhere near the characteristic impedance needed for a quar-
ter-wave matching section, then a coil-type transformer can be used instead.

What about Reactance?
Things are simple when there is no reactance in an ac circuit using transformers. But often, espe-
cially in RF antenna systems, pure resistance doesn’t occur naturally. It has to be obtained by using
inductors and/or capacitors to cancel the reactance out. The presence of reactance in a load makes a
perfect match impossible with an impedance-matching transformer alone.

Recall that inductive and capacitive reactances are opposite in effect, and that their magnitudes
can vary. If a load presents a complex impedance R + jX , it is possible to cancel the reactance X by
deliberately introducing an equal and opposite reactance −X. This can be, and often is, done by con-
necting an inductor or capacitor in series with a load that contains reactance as well as resistance.
The result is a pure resistance with a value equal to (R + jX ) − jX, or simply R.

When wireless communications is contemplated over a wide band of frequencies, adjustable
impedance-matching and reactance-canceling networks can be placed between the transmitter and
the antenna system. Such a device is called a transmatch or an antenna tuner. These devices not only
match the resistive portions of the transmitter and load impedances, but they can tune out reac-
tances in the load. Transmatches are popular among amateur radio operators, who use equipment
capable of operation from less than 2 MHz up to the highest known radio frequencies.

Quiz
Refer to the text in this chapter if necessary. A good score is 18 or more correct. Answers are in the
back of the book.

1. In a step-up transformer,
(a) the primary impedance is greater than the secondary impedance.
(b) the secondary winding is right on top of the primary.
(c) the primary voltage is less than the secondary voltage.
(d) All of the above are true.

2. The capacitance between the primary and the secondary windings of a transformer can be
minimized by

(a) placing the windings on opposite sides of a toroidal core.
(b) winding the secondary right on top of the primary.
(c) using the highest possible frequency.
(d) using a center tap on the balanced winding.
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3. A transformer steps a voltage down from 117 V to 6.00 V. What is its primary-to-secondary
turns ratio?

(a) 1:380
(b) 380:1
(c) 1:19.5
(d) 19.5:1

4. A step-up transformer has a primary-to-secondary turns ratio of 1:5.00. If 117 V rms appears
at the primary, what is the ac rms voltage across the secondary?

(a) 23.4 V rms
(b) 585 V rms
(c) 117 V rms
(d) 2.93 kV rms

5. A transformer has a secondary-to-primary turns ratio of 0.167. This transformer is
(a) a step-up unit.
(b) a step-down unit.
(c) neither a step-up unit nor a step-down unit.
(d) a reversible unit.

6. Which of the following statements is false, concerning air cores compared with ferromagnetic
cores?

(a) Air concentrates the magnetic lines of flux.
(b) Air works at higher frequencies than ferromagnetics.
(c) Ferromagnetics are lossier than air.
(d) A ferromagnetic-core transformer needs fewer turns of wire than an equivalent air-core

transformer.

7. Eddy currents cause
(a) an increase in efficiency.
(b) an increase in coupling between windings.
(c) an increase in core loss.
(d) an increase in usable frequency range.

8. Suppose a transformer has an ac voltage of 117 V rms across its primary, and 234 V rms
appears across its secondary. If this transformer is reversed (that is, connected backward), assuming
that this be done without damaging the windings, what will be the voltage at the output?

(a) 234 V rms
(b) 468 V rms
(c) 117 V rms
(d) 58.5 V rms

9. The shell method of transformer winding
(a) provides maximum coupling.
(b) minimizes capacitance between windings.
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(c) withstands more voltage than other winding methods.
(d) has windings far apart but along a common axis.

10. Which of these core types is best if you need a winding inductance of 1.5 H?
(a) Air core
(b) Ferromagnetic solenoid core
(c) Ferromagnetic toroid core
(d) Ferromagnetic pot core

11. An advantage of a toroid core over a solenoid core is the fact that
(a) the toroid works at higher frequencies.
(b) the toroid confines the magnetic flux.
(c) the toroid can work for dc as well as for ac.
(d) it is easier to wind the turns on a toroid.

12. High voltage is used in long-distance power transmission because
(a) it is easier to regulate than low voltage.
(b) the I 2R losses are minimized.
(c) the electromagnetic fields are strong.
(d) small transformers can be used.

13. In a household circuit, 234-V rms electricity usually has
(a) one phase.
(b) two phases.
(c) three phases.
(d) four phases.

14. In a transformer, a center tap often exists in
(a) the primary winding.
(b) the secondary winding.
(c) an unbalanced winding.
(d) a balanced winding.

15. An autotransformer
(a) can be adjusted automatically.
(b) has a center-tapped secondary.
(c) consists of a single tapped winding.
(d) is useful only for impedance matching.

16. Suppose a transformer has a primary-to-secondary turns ratio of 2.00:1. The input
impedance is 300 Ω, purely resistive. What is the output impedance?

(a) 75 Ω, purely resistive
(b) 150 Ω, purely resistive
(c) 600 Ω, purely resistive
(d) 1200 Ω, purely resistive
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17. Suppose a purely resistive input impedance of 50 Ω must be matched to a purely resistive
output impedance of 450 Ω. The primary-to-secondary turns ratio of the transformer must be
which of the following?

(a) 9.00
(b) 3.00
(c) 1/3.00
(d) 1/9.00

18. Suppose a quarter-wave matching section has a characteristic impedance of 75.0 Ω. The
input impedance is 50.0 Ω, purely resistive. What is the output impedance?

(a) 150 Ω, purely resistive
(b) 125 Ω, purely resistive
(c) 100 Ω, purely resistive
(d) 113 Ω, purely resistive

19. Suppose a purely resistive impedance of 75 Ω must be matched to a purely resistive
impedance of 300 Ω. A quarter-wave section would need to have

(a) Zo = 188 Ω.
(b) Zo = 150 Ω.
(c) Zo = 225 Ω.
(d) Zo = 375 Ω.

20. If there is reactance in the load to which a transformer is connected, then
(a) the transformer will be destroyed.
(b) a perfect impedance match cannot be obtained.
(c) a center tap must be used in the secondary.
(d) the turns ratio must be changed to obtain an impedance match.
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Do not refer to the text when taking this test. A good score is at least 37 correct. Answers are in the
back of the book. It’s best to have a friend check your score the first time, so you won’t memorize
the answers if you want to take the test again.

1. Consider a series circuit that has a resistance of 100 Ω and a capacitive reactance of −200 Ω.
What is the complex impedance?

(a) −200 + j100
(b) 100 + j200
(c) 200 − j100
(d) 200 + j100
(e) 100 − j200

2. Mutual inductance causes the net value of a set of coils to
(a) cancel out, resulting in zero inductance.
(b) be greater than what it would be with no mutual coupling.
(c) be less than what it would be with no mutual coupling.
(d) double.
(e) vary, depending on the extent and phase of mutual coupling.

3. Refer to Fig. Test 2-1. Wave A is
(a) leading wave B by 90°.
(b) lagging wave B by 90°.
(c) leading wave B by 180°.
(d) lagging wave B by 135°.
(e) lagging wave B by 45°.
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4. If a pure sine wave with no dc component has a positive peak value of +30.0 V pk, what is its
rms voltage?

(a) 21.2 V rms
(b) 30.0 V rms
(c) 42.4 V rms
(d) 60.0 V rms
(e) 90.0 V rms

5. Suppose four capacitors are connected in parallel. Their values are 100 pF each. What is the
net capacitance?

(a) 25 pF
(b) 50 pF
(c) 100 pF
(d) 200 pF
(e) 400 pF

6. Suppose an ac transformer has a primary-to-secondary turns ratio of 8.88/1. The input
voltage is 234 V rms. What is the output voltage?

(a) 2.08 kV rms
(b) 18.5 kV rms
(c) 2.97 V rms
(d) 26.4 V rms
(e) 20.8 V rms

7. In a series RL circuit, as the resistance becomes small compared with the reactance, the angle
of lag approaches which of the following?

(a) 0°
(b) 45°
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(c) 90°
(d) 180°
(e) 360°

8. Suppose an ac transmission line carries 3.50 A rms and 150 V rms. Imagine that the line is
perfectly lossless, and that the load impedance is a pure resistance equal to the characteristic
impedance of the line. What is the true power in this transmission line?

(a) 525 W

(b) 42.9 W

(c) 1.84 W

(d) Nonexistent, because true power is dissipated, not transmitted

(e) Variable, depending on standing-wave effects

9. In a parallel configuration, susceptances

(a) simply add up.

(b) add like capacitances in series.

(c) add like inductances in parallel.

(d) must be changed to reactances before you can work with them.

(e) cancel out.

10. Consider a sine wave that has a frequency of 200 kHz. How many degrees of phase change
occur in a microsecond (a millionth of a second)?

(a) 180°
(b) 144°
(c) 120°
(d) 90°
(e) 72°

11. At a frequency of 2.55 MHz, what is the reactance of a 330-pF capacitor?

(a) −5.28 Ω
(b) −0.00528 Ω
(c) −189 Ω
(d) −18.9 kΩ
(e) −0.000189 Ω

12. Suppose a transformer has a step-up turns ratio of 1/3.16. The impedance of the load
connected to the secondary is 499 Ω, purely resistive. What is the impedance at the primary?

(a) 50.0 Ω, purely resistive

(b) 158 Ω, purely resistive

(c) 1.58 kΩ, purely resistive

(d) 4.98 kΩ, purely resistive

(e) Impossible to calculate from the data given
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13. If a complex impedance is represented by 34 − j23, what is the absolute-value impedance?
(a) 34 Ω
(b) 11 Ω
(c) −23 Ω
(d) 41 Ω
(e) 57 Ω

14. Suppose a coil has an inductance of 750 µH. What is the inductive reactance at 100 kHz?
(a) 75.0 Ω
(b) 75.0 kΩ
(c) 471 Ω
(d) 47.1 kΩ
(e) 212 Ω

15. If two sine waves are 180° out of phase, it represents a difference of
(a) 1⁄ 8 of a cycle.
(b) 1⁄ 4 of a cycle.
(c) 1⁄ 2 of a cycle.
(d) 1 full cycle.
(e) 2 full cycles.

16. If R denotes resistance and Z denotes absolute-value impedance, then R/Z represents the
(a) true power.
(b) imaginary power.
(c) apparent power.
(d) absolute-value power.
(e) power factor.

17. Suppose two components are connected in series. One component has a complex impedance
of 30 + j50, and the other component has a complex impedance of 50 − j30. What is the
impedance of the series combination?

(a) 80 + j80
(b) 20 + j20
(c) 20 − j20
(d) −20 + j20
(e) 80 + j20

18. Suppose two inductors, having values of 140 µH and 1.50 mH, are connected in series. What
is the net inductance?

(a) 141.5 µH
(b) 1.64 µH
(c) 0.1415 mH
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(d) 1.64 mH

(e) 0.164 mH

19. Which of the following types of capacitor is polarized?

(a) Mica

(b) Paper

(c) Electrolytic

(d) Air variable

(e) Ceramic

20. A coil with a toroidal, ferromagnetic core

(a) has less inductance than an air-core coil with the same number of turns.

(b) is essentially self-shielding.

(c) works well as a loopstick antenna.

(d) is ideal as a transmission-line transformer.

(e) cannot be used at frequencies below 10 MHz.

21. The efficiency of an electric generator

(a) depends on the mechanical driving power source.

(b) is equal to the electrical output power divided by the mechanical input power.

(c) depends on the nature of the electrical load.

(d) is equal to driving voltage divided by output voltage.

(e) is equal to driving current divided by output current.

22. Admittance is

(a) the reciprocal of reactance.

(b) the reciprocal of resistance.

(c) a measure of the opposition a circuit offers to ac.

(d) a measure of the ease with which a circuit passes ac.

(e) another expression for absolute-value impedance.

23. The absolute-value impedance Z of a parallel RLC circuit, where R is the resistance and X is
the net reactance, is found according to which of the following formulas?

(a) Z = R + X
(b) Z 2 = R 2 + X 2

(c) Z 2 = R 2X 2/(R 2 + X 2)

(d) Z = 1/(R 2 + X 2)

(e) Z = R 2X 2/(R + X )

24. Complex numbers are used to represent impedance because

(a) reactance cannot store power.

(b) reactance isn’t a real physical thing.
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(c) they provide a way to represent what happens in resistance-reactance circuits.

(d) engineers like to work with sophisticated mathematics.

(e) Forget it! Complex numbers are never used to represent impedance.

25. Which of the following (within reason) has no effect on the value, in farads, of a capacitor?

(a) The mutual surface area of the plates

(b) The dielectric constant of the material between the plates

(c) The spacing between the plates

(d) The amount of overlap between plates

(e) The frequency

26. The 0° phase point in an ac sine wave is usually considered to be the point in time at which
the instantaneous amplitude is

(a) zero and negative-going.

(b) at its negative peak.

(c) zero and positive-going.

(d) at its positive peak.

(e) any value; it doesn’t matter.

27. The inductance of a coil can be adjusted in a practical way by

(a) varying the frequency of the signal applied to the coil.

(b) varying the number of turns using multiple taps.

(c) varying the current in the coil.

(d) varying the wavelength of the signal applied to the coil.

(e) varying the voltage across the coil.

28. Power factor is defined as the ratio of

(a) true power to VA power.

(b) true power to imaginary power.

(c) imaginary power to VA power.

(d) imaginary power to true power.

(e) VA power to true power.

29. Consider a situation in which you want to match a feed line with Zo = 50 Ω to an antenna
with a purely resistive impedance of 200 Ω. A quarter-wave matching section should have which
of the following?

(a) Zo = 150 Ω
(b) Zo = 250 Ω
(c) Zo = 125 Ω
(d) Zo = 133 Ω
(e) Zo = 100 Ω
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30. The vector 40 + j30 in the RX plane represents
(a) 40 Ω of resistance and 30 µH of inductance.
(b) 40 µH of inductance and 30 Ω of resistance.
(c) 40 Ω of resistance and 30 Ω of inductive reactance.
(d) 40 Ω of inductive reactance and 30 Ω of resistance.
(e) 40 µH of inductive reactance and 30 Ω of resistance.

31. In a series RC circuit where R = 300 Ω and XC = −30 Ω,
(a) the current leads the voltage by a few degrees.
(b) the current leads the voltage by almost 90°.
(c) the voltage leads the current by a few degrees.
(d) the voltage leads the current by almost 90°.
(e) the voltage leads the current by 90°.

32. In a step-down transformer,
(a) the primary voltage is greater than the secondary voltage.
(b) the purely resistive impedance across the primary is less than the purely resistive

impedance across the secondary.
(c) the secondary voltage is greater than the primary voltage.
(d) the output frequency is higher than the input frequency.
(e) the output frequency is lower than the input frequency.

33. Suppose a capacitor of 470 pF is in parallel with an inductor of 4.44 µH. What is the
resonant frequency?

(a) 3.49 MHz
(b) 3.49 kHz
(c) 13.0 MHz
(d) 13.0 GHz
(e) It cannot be calculated from the data given.

34. A pure sine wave contains energy at
(a) only one specific frequency.
(b) a specific frequency and its even harmonics.
(c) a specific frequency and its odd harmonics.
(d) a specific frequency and all its harmonics.
(e) a specific frequency and its second harmonic only.

35. Inductive susceptance is
(a) the reciprocal of inductance.
(b) negative imaginary.
(c) equivalent to capacitive reactance.
(d) the reciprocal of capacitive susceptance.
(e) positive imaginary.

Test: Part 2 309



36. The rate of change (derivative) of a pure sine wave is another pure sine wave that has the
same frequency as the original wave, and

(a) is in phase with the original wave.
(b) is 180° out of phase with the original wave.
(c) leads the original wave by 45°.
(d) lags the original wave by 90°.
(e) leads the original wave by 90°.

37. True power is equal to
(a) VA power plus imaginary power.
(b) imaginary power minus VA power.
(c) the vector difference between VA and reactive power.
(d) VA power; the two are the same thing.
(e) 0.707 times the VA power.

38. Consider a circuit in which three capacitors are connected in series. Their values are 47 µF,
68 µF, and 100 µF. The total capacitance of this combination is

(a) 215 µF.
(b) between 68 µF and 100 µF.
(c) between 47 µF and 68 µF.
(d) 22 µF.
(e) not determinable from the data given.

39. The reactance of a section of transmission line depends on all of the following factors except
(a) the velocity factor of the line.
(b) the length of the section.
(c) the current in the line.
(d) the frequency of the signal in the line.
(e) the wavelength of the signal in the line.

40. When analyzing a parallel RLC circuit to find the complex impedance, you should
(a) add the resistance and reactance to get R + jX.
(b) find the net conductance and susceptance, convert to resistance and reactance, and then

add these to get R + jX.
(c) find the net conductance and susceptance, and add these to get R + jX.
(d) rearrange the components so they’re connected in series, and find the complex impedance

of that circuit.
(e) subtract reactance from resistance to get R − jX.

41. The illustration in Fig. Test 2-2 shows a vector R + jX representing
(a) XC = 60 Ω and R = 25 Ω.
(b) XL = 60 Ω and R = 25 Ω.
(c) XL = 60 µH and R = 25 Ω.
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(d) C = 60 µF and R = 25 Ω.
(e) L = 60 µH and R = 25 Ω.

42. Suppose two pure sine waves have no dc components, have the same frequency, and have the
same peak-to-peak voltages, but they cancel each other out when combined. What is the phase
difference between the waves?

(a) 45°
(b) 90°
(c) 180°
(d) 270°
(e) 360°

43. Suppose a series RC circuit has a resistance of 50 Ω and a capacitive reactance of −37 Ω.
What is the phase angle?

(a) 37°
(b) 53°
(c) −37°
(d) −53°
(e) It cannot be calculated from the data given.

44. Suppose a 200-Ω resistor is in series with a coil and capacitor, such that XL = 200 Ω and XC =
−100 Ω. What is the complex impedance?

(a) 200 − j100
(b) 200 − j200
(c) 200 + j100
(d) 200 + j200
(e) Impossible to determine from the data given
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45. The characteristic impedance of a transmission line
(a) is negative imaginary.
(b) is positive imaginary.
(c) depends on the frequency.
(d) depends on the construction of the line.
(e) depends on the length of the line.

46. Suppose the period of a pure sine wave is 2 × 10−8s. What is the frequency?
(a) 2 × 108 Hz
(b) 20 MHz
(c) 50 kHz
(d) 50 MHz
(e) 500 MHz

47. Suppose a series RC circuit has a resistance of 600 Ω and a capacitance of 220 pF. What is the
phase angle?

(a) −20°
(b) 20°
(c) −70°
(d) 70°
(e) Not determinable from the data given

48. A capacitor with a negative temperature coefficient
(a) works less well as the temperature increases.
(b) works better as the temperature increases.
(c) heats up as its value is made larger.
(d) cools down as its value is made larger.
(e) exhibits increasing capacitance as the temperature drops.

49. Suppose three coils are connected in parallel. Each has an inductance of 300 µH. There is no
mutual inductance. What is the net inductance?

(a) 100 µH
(b) 300 µH
(c) 900 µH
(d) 17.3 µH
(e) 173 µH

50. Suppose a coil has 100 Ω of inductive reactance at 30.0 MHz. What is its inductance?
(a) 0.531 µH
(b) 18.8 mH
(c) 531 µH
(d) 18.8 µH
(e) It can’t be found from the data given.
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